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Abstract

Combining the visual modality with pretrained
language models has been surprisingly effec-
tive for simple descriptive tasks such as image
captioning. More general text generation how-
ever remains elusive. We take a step back and
ask: How do these models work for more com-
plex generative tasks, i.e. conditioning on both
text and images? Are multimodal models sim-
ply visually adapted language models, or do
they combine they reason jointly over modali-
ties?

We investigate these questions in the context
of self-rationalization (jointly generating task
labels/answers and free-text explanations) of
three tasks: (i) visual question answering in
VQA-X, (ii) visual commonsense reasoning
in VCR, and (iii) visual-textual entailment in
E-SNLI-VE. We show that recent unimodal
advances, CLIP image representations and scal-
ing of language models, do not consistently im-
prove self-rationalization in multimodal tasks.
We find that no single model type works univer-
sally best across tasks, datasets, and finetuning
data sizes. Our findings motivate the need for
novel general backbones approach that move
text generation from images and text beyond
image captioning.

1 Introduction

The pretrain-finetune paradigm has changed the
field of NLP. Inspired by its success, there has been
an explosion of interest in multimodal pretraining
(Su et al., 2020; Lu et al., 2019; Chen et al., 2019;
Li et al., 2020a; Tan and Bansal, 2019; Li et al.,
2020b; Gui et al., 2022a). To enable text generation
from images, captioning is often included as one of
the pretraining tasks (Zhou et al., 2020; Gupta et al.,
2022; Wang et al., 2022b). Captioning is also the
only generative task used to evaluate and compare
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joint models, for which only minor improvements
are reported relative to classification tasks (Cho
et al., 2021; Chang et al., 2022). Moreover, cap-
tioning is conditioned only on a single image. This
leads us to ask: Do recent advances transfer to
more complex generative tasks? Can generation
condition on both images and text? Another line
of work skips joint pretraining and directly modi-
fies and finetunes a pretrained language model apt
for generation (e.g., GPT-2; Radford et al., 2019)
on multimodal datasets (Park et al., 2020; Sollami
and Jain, 2021; Eichenberg et al., 2021; Gui et al.,
2022b). This approach has distinct benefits and
downsides compared to models based on joint pre-
training (see Table 1), but these two families of
models are rarely compared. This leads us to other
questions: Given a new generative task, which ap-
proaches should be used or combined?

We study these questions through the lens of
a newly emerging and important, but challenging
task of self-rationalization (Wiegreffe et al., 2021):
jointly generating both the task label/answer and a
free-text explanation for the prediction. Standard
tasks for studying multimodal self-rationalization
present different levels of difficulty. Explaining
VQA is similar to captioning since corresponding
explanations describe visible information in the
image that is relevant to the context (Fig. 1, left).
On the other hand, VCR instances require higher-
order reasoning about unstated information such as
commonsense (Fig. 1, right). Since VCR answers
are full sentences, self-rationalization consists of
two generative sub-tasks.

We evaluate the following models: (i) a joint
vision-language model, VLP (Zhou et al., 2020),
(ii) a pretrained language model, T5 (Raffel et al.,
2020), that we visually adapt only through finetun-
ing, and (iii) VL-T5/VL-BART (Cho et al., 2021),
a combination of the previous two approaches.
Namely, VL-T5/VL-BART are developed from T5
and BART (Lewis et al., 2020) by doing a second
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Figure 1: Self-rationalization tasks.

round of pretraining, using multimodal datasets
and objectives. We finetune all models for self-
rationalization in two data settings: (i) using entire
finetuning datasets (high-resource setting), and (ii)
using 30% of the data (low-resource setting).

We first present an analysis of the factors in-
fluencing performance of the visually adapted T5:
the choice of image representation (§4.1) and T5’s
model size (§4.2). We demonstrate that recent ad-
vances in representing images, namely CLIP fea-
tures, can be easily leveraged to get more accurate
visually adapted T5 models. However, these im-
provements are not realized for a more complex
sub-task of explanation generation. Moreover, un-
like for text generation conditioned only on text
(including self-rationalization of tasks with tex-
tual inputs; Marasović et al. 2022) we do not see
clear performance improvements from scaling visu-
ally adapted PLMs. Finally, the main comparison
of the three model types described above (§4.3)
shows that no model type works universally the
best across tasks and data regimes. These results
demonstrate that outside of image captioning, there
is no clear choice of model backbone or training
regime in image conditioned text generation. We
aim to motivate research on multimodal model com-
parisons across generative tasks and experimental
setups, to help realize benefits of different model
families (Table 1) with a single approach.

2 Text Generation from Images: Models

Vision-and-language (VL) learning currently com-
prises two families of models: (i) joint VL mod-
els that are pretrained from scratch using data

with both modalities (§2.1), and (ii) vision-adapted
language models—pretrained language models
adapted to the visual modality through finetuning
using end-task multimodal datasets (§2.2). Some
models combine these two approaches to some ex-
tent, so they could be the best of both worlds (§2.3).

In Table 1, we overview reasons for why one
model family might be preferred over the other. In
Tables 2–3, we outline model specifications and list
image sources. For generative tasks conditioned on
images, including self-rationalization of VL tasks,
the choice of the best base model family is not
obvious. The aim of this paper is to find whether
such a choice exists.

2.1 VLP: Joint Vision-and-Language Model

We use VLP (Zhou et al., 2020) to analyze im-
portance of benefits of joint VL pretraining from
scratch relative to other approaches.

VLP is a shared encoder-decoder transformer
(Vaswani et al., 2017) of size similar to BERT-base
(110M parameters; Devlin et al., 2019). It is pre-
trained with objectives similar to both masked and
standard language modeling. Thus, it is suitable
for discriminative as well as generative tasks. A
given input image is represented with vector rep-
resentations of a fixed number of regions obtained
with an off-the-shelf object detector (Wu et al.,
2019). During finetuning, the same object detector
representations should be used. The Conceptual
Captions dataset (Sharma et al., 2018), containing
about 3M web-accessible images and associated
captions, is used for pretraining.
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Wanted Model Properties for Multimodal Self-Rationalization

Visually
Adapted
PLMs
(§2.2)

Joint
VL
Models
(§2.1)

Comb.
Models
(§2.3)

1 Designed for some text generation task (e.g., image captioning, language modeling) ✓ Some Some
2 Offered in larger sizes (related to better text generation performance) ✓
3 Large textual pretraining data (related to capturing world/commonsense knowledge) ✓ ✓
4 Easy plug-and-playing with the latest pretrained LMs and image representations ✓
5 Tight coupling between modalities ✓ ✓
6 Expected to be robust when multimodal training data is limited ✓ ✓

Table 1: A comparison between: training vision and language (VL) jointly from scratch, adapting pretrained
language models (PLM) to visual features, and models that somewhat combine these two approaches, w.r.t. desired
model properties for self-rationalization. Text generation typically improves with model size (Brown et al., 2020),
incl. self-rationalization (Marasović et al., 2022). Due to huge pretraining corpora, PLMs have been shown to
capture some world (Petroni et al., 2019) and commonsense knowledge (Davison et al., 2019) which is beneficial
for self-rationalization as the task often requires inferring relevant information from the inputs (see Fig. 1).

2.2 VA-T5: Vision-Adapted Pretrained LM

Vision-adapted training involves starting with a pre-
trained language model (PLM) and adapting it to
VL tasks as a finetuning step. We start with T5 (Raf-
fel et al., 2020)—a PLM that is commonly used
for self-rationalization (Narang et al., 2020; Hase
et al., 2020; Wiegreffe et al., 2021; Marasović et al.,
2022)—and finetune it for self-rationalization of
VL tasks. Specifically, we concatenate image rep-
resentations with representations of textual inputs,
feed the result to the subsequent PLM’s layers, and
train using language modeling loss on generated
answer and explanation tokens.

A question that emerges is: what kind of image
representations should be used? While vector repre-
sentations of image regions extracted with an object
detector are the most frequent choice, most recently
advantages of representations from the CLIP model
(Radford et al., 2021) have been demonstrated for
various applications (Shen et al., 2022). Moreover,
we wonder whether using automatic image cap-
tions is the way to visually adapt a PLM given that
the input will then be completely textual, i.e, in the
modality a PLM has seen before. Thus, in §4.1, we
compare three different features: (i) auto-generated
captions from the off-the-shelf image captioning
model (VL-T5 model; Cho et al., 2021), (ii) object
features from a pre-trained R-CNN model (Ren
et al., 2015), and (iii) CLIP features (obtained from
the last layer of ViT-B/32). Besides exploring dif-
ferent image representations, visually adapting a
PLM allows us to study model scaling. In §4.2,
we study the following sizes of T5: Base (220M
parameters), Large (770M), and 3B. We refer to
visually adapted T5 as VA-T5.

2.3 VL-T5 / VL-BART: Combined Models

Another approach is to start with a PLM, do a sec-
ond round of pretraining to learn joint VL represen-
tations, and finally finetune the model to learn the
end-task. This approach can be seen both as a joint
model and a visually adapted PLM, and thus may
offer benefits from the both model families.

To compare this approach with the others, we
use VL-T5 and VL-BART (Cho et al., 2021). VL-
BART, a multimodal extension of BART-Base
(139M parameters; Lewis et al., 2020), also fol-
lows an encoder-decoder transformer but does not
share the parameters between the encoder and de-
coder as is done in VLP. To represent images, it
uses the Faster R-CNN model for object detec-
tion (Ren et al., 2015). Specifically, vector rep-
resentations of a fixed number of image regions
are are concatenated with text embeddings and
fed into VL-BART, which is then pretrained using
masked language modeling objectives in addition
to new objectives such as visual question answer-
ing, image-text matching, visual grounding, and
grounded captioning. VL-T5 is similar in spirit to
VL-BART, where it is initialized with a T5-Base
model (220M parametes; Raffel et al., 2020) corre-
spondingly. T5 is trained for various downstream
tasks jointly, whereas BART exploits a task-specific
encoder-decoder set up for sequence generation
tasks. Both VL-BART and VL-T5 are pre-trained
with MS COCO (Lin et al., 2014), Visual Genome
(Krishna et al., 2017), VQA v2 (Goyal et al., 2017),
GQA (Hudson and Manning, 2019), and Visual7W
(Zhu et al., 2016), leading to a total of 9.18M image-
text pairs on 180K unique images.
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Model Backbone Backbone PT
Objectives

Backbone PT Data Continued PT
Datasets

VLP BERT / UniLM MLM Wiki, BookCorpus Conceptual Captions

VA-T5-CLIP

T5
Fill-in-the-span-style
denoising objectives +
multitask learning

C4 + a suite of
annotated datasets for
classification, QA,
translation, etc.

NoneVA-T5-Captions
VA-T5-Objects

VL-T5 MS COCO, Visual
Genome, VQA v2.0,
GQA, Visual7W

VL-BART BART Reconstruct text cor-
rupted with an arbi-
trary noising function

Wiki, BookCorpus,
Stories, CCNews,
OpenWebText

Model Continued PT
Objectives

Img. Feat. Model Img. Feat. Model
Backbone

Img. Feat. Model
PT Data

VLP MLM, LM Faster R-CNN ResNeXt-101 FPN Visual Genome

VA-T5-CLIP
None

CLIP Vision Transformer New unavail. data
VA-T5-Captions VL-T5 See VL-T5 rows See VL-T5 rows
VA-T5-Objects Faster R-CNN ResNeXt-101 FPN Visual Genome

VL-T5 MLM, VQA,
image-text matching,
visual grounding,
grounded captioning

Faster R-CNN ResNeXt-101 FPN Visual GenomeVL-BART

Table 2: Model specifications. PT stands for “pretraining”, MLM for “masked language modeling”, “Img. Feat.”
for “Image Features”. Sources: BERT (Devlin et al., 2019), UniLM (Dong et al., 2019), BookCorpus (Zhu et al.,
2015), T5 (Raffel et al., 2020), C4 (Raffel et al., 2020) is made publicly available by Dodge et al. (2021), BART
(Lewis et al., 2020), MS COCO (Lin et al., 2014), VQA v2 (Goyal et al., 2017), GQA (Hudson and Manning, 2019),
Visual7W (Zhu et al., 2016), Stories (Trinh and Le, 2018), CCNews, OpenWebText (Gokaslan and Cohen, 2019),
Conceptual Captions (Sharma et al., 2018), Faster R-CNN (Ren et al., 2015), Visual Genome (Krishna et al., 2017),
ResNeXt-101 FPN (Xie et al., 2017), Vision Transformer (Dosovitskiy et al., 2021).

3 Experimental Setup

In this section, we describe tasks, datasets, and eval-
uation setup for self-rationalization of vision-and-
language tasks introduced in prior work (Marasović
et al., 2020; Kayser et al., 2021).

3.1 Tasks and Datasets

The dataset statistics are given in Table 4, where
the average answer and explanation lengths hint
on differences in complexities of each task. The
three datasets represent different levels of required
reasoning (see examples in Figure 1), e.g., are the
images representing simpler scenarios (Flickr30K)
or complex movie scenes (VCR).
VQA-X (Park et al., 2018) is the extension of
the widely-used Visual Question Answering v1
(Antol et al., 2015) and v2 (Goyal et al., 2017)
datasets, with corresponding free-text explanations.
The images here are originally sourced from the
MSCOCO dataset (Lin et al., 2014), and the an-
swers are collected for open-ended questions about
these images that require vision, language, and
commonsense knowledge to answer.

Dataset Image Sources

VQA-X VQA v2.0
E-SNLI-VE SNLI / Flickr
VCR movie clips / Fandango

MS COCO Flickr
YFCC100M Flickr
Visual Genome YFCC100M + MS COCO
VQA v2.0 MS COCO
GQA Visual Genome
Visual7W MS COCO

Table 3: Image sources. MS COCO (Lin et al., 2014),
SNLI (Bowman et al., 2015), movie clips (Rohrbach
et al., 2017), YFCC100M (Thomee et al., 2016).

E-SNLI-VE (Kayser et al., 2021) is a dataset
for visual-textual entailment, the task of predicting
whether a statement is entailed, contradicted, or
neutral given an image that serves as a premise. E-
SNLI-VE combines annotations from two datasets:
(i) SNLI-VE (Xie et al., 2019), collected by replac-
ing the textual premises of SNLI (Bowman et al.,
2015) with Flickr30K images (Young et al., 2014),
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Dataset Task # Samples Avg. Answer Len Avg. Explanation Len
train/val/test train/val/test train/val/test

VCR Visual Commonsense Reasoning 212.9K / 26.5K / 25.2K 7.54 / 7.65 / 7.55 16.16 / 16.19 / 16.07
E-SNLI-VE Visual Entailment 402K / 14K / 15K 1/1/1 12.3/13.3/13.2
VQA-X Visual Question Answering 29.5K / 1.5K / 2K 1.03/1.05/1.03 8.6/9.0/9.2

Table 4: Specifications of the self-rationalization datasets.

and (ii) E-SNLI (Camburu et al., 2018), a dataset
of crowdsourced free-text explanations for SNLI.
VCR (Zellers et al., 2019) is a carefully crowd-
sourced dataset of answers and explanations for
visual scenes extracted from Hollywood movies.
Thus, the visual context in this data is more com-
plex than MSCOCO or Flickr30K images, lead-
ing to more complex answers and explanations.
Zellers et al. instructed crowdworkers to first anno-
tate answers for a given question-image pair, and
then showed the annotated answer along with the
question-image pair to a different set of annota-
tors to get the corresponding explanation. This
dataset was orginally introduced in a classification
setting: given a question about an image, pick the
correct answer from four choices, and then pick the
correct explanation again from four choices. Dua
et al. (2021) propose instead to generate both the
answer and explanation. This is more realistic than
the multiple-choice setting which is restricted to a
user giving answer choices. In this paper, we also
generate VCR answers and explanations.

3.2 Evaluation Metrics

Self-rationalization requires evaluating two sub-
tasks: correctness of predicted answers/labels, and
quality of generated explanations. For the for-
mer, we use accuracy for E-SNLI-VE and VQA-X.
Evaluating VCR answers is more complicated as
they are full sentences. Following Dua et al. (2021),
given a generated answer, we normalize text (re-
move articles, punctuation, lowercase), and count
the number of overlapping words with the four
available answer choices in the VCR dataset. We
select an answer candidate with the highest overlap
as the predicted answer. Proxy accuracy is the ac-
curacy that is computed between the correct answer
candidate and predicted answer candidate. Dua
et al. (2021) do not report the correlation between
proxy accuracy and human judgments of answer
plausibility. To this end, for 600 VCR instances, we
ask 5 crowdworkers to respond to “Given the image
and the question, is this answer likely?” with yes,

weak yes, weak no, or no, and map answers to 1,
2/3, 1/3, and 0, respectively. Answer plausibility
is the average of scores of 5 annotators. In §4, we
report the average answer plausibility across 600
instances, as well as proxy accuracy. Spearman’s
correlation coefficient between the proxy accuracy
and answer plausibility is 0.56 (p < 0.028) indicat-
ing a moderate correlation between them.

Automatic metrics are unreliable, so human eval-
uation has been used to evaluate free-text explana-
tion generation (Camburu et al., 2018; Kayser et al.,
2021; Clinciu et al., 2021). We ask 3 annotators
whether an explanation justifies an answer/label
given an image, questions/hypothesis, and a gener-
ated answer/label. Annotators pick one of the four
options (yes, weak yes, weak no, no), and the four
options are assigned numerical values (1, 2/3, 1/3,
0). We average scores of 3 annotators to get the
plausibility of an individual explanation, and report
the average explanation plausibility in a sample
of 300 instances. Following Kayser et al. (2021),
we select the first 300 instances for which the an-
swer/label is correctly generated. For E-SNLI-VE,
we select an equal number of examples for each
label to produce a balanced evaluation set. Human
evaluation used Amazon Mechanical Turk.1

Kayser et al. (2021) report that all automated
metrics are weakly correlated with explanation
plausibility (per humans), but that BERTscore is
most correlated. Therefore, we report BERTscores
for completeness and reproducibility. Following
Kayser et al. (2021), we set the BERTscore of in-
correctly predicted instances to 0.

4 Results

To study whether there is a base model family that
is more suitable for text generation conditioned on
images and text, we compare: (i) a joint vision-
and-language model, VLP (§2.1), (ii) a visually
adapted PLM, VA-T5 (§2.2), and (iii) VL-T5 / VL-

1Each batch of evaluation contains 10 samples. We pay
$1.5 per batch to each annotator for VCR evaluations and $1
per batch for E-SNLI-VE and VQA-X each as VCR tasks
require longer time to complete.
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Task \ Feat. None Captions Objects CLIP

VCR 54.5 56.2 57.8 58.1
29.4 34.4 37.4 41.4

E-SNLI-VE 67.6 71.7 72.5 74.7
VQA-X 43.4 73.8 72.3 74.7

(a) Answer (Proxy) Accuracy / Plausibility†

Task \ Feat. None Captions Objects CLIP

VCR 85.3 85.7 85.6 86.0
E-SNLI-VE 89.1 89.3 89.3 89.3
VQA-X 90.7 91.2 91.1 90.9

(b) Explanation BERTscore

Task \ Feat. None Captions Objects CLIP

VCR 15.6 19.6 21.0 21.0
E-SNLI-VE 65.4 66.6 65.7 65.2
VQA-X 70.8 75.5 76.4 75.8

(c) Explanation Plausibility

Table 5: A comparison of image features (Captions,
Objects, CLIP) for VA-T5-Base (§2.2). † For VCR
answers, we report both proxy accuracy (1st row) and
plausibility (2nd row; §3.2).

BART, a combination of the previous two model
families (§2.3), for self-rationalization of the three
tasks in Figure 1 and Table 4. The benefits and
downsides of (i) and (ii) are outlined in Table 1.
Before presenting the outcomes of this comparison
in §4.3, we study the impact of the choice of image
features and model size on VA-T5’s performance.

4.1 VA-T5: Analysis of Image Features

Visually adapting PLMs allows us to combine dif-
ferent image features with PLM’s text represen-
tations. We analyze VA-T5-Base (finetuned with
the full training data) with different image features
in the input: auto-generated captions, object, and
CLIP features (see §2.2 for more information). We
also report a control setting where no image fea-
tures are used (None). In Table 5a, we report an-
swer (proxy) accuracy and plausibility (for VCR),
and in Tables 5b and 5c explanation BERTscore
and plausibility. Metrics are described in §3.2 and
hyperparameters are reported in the Appendix.

Results We observe that CLIP features give the
best accuracy scores for all three datasets (Table 5a).
This result demonstrates the benefit of visual adap-
tation: advances in image representations, such as
CLIP, can be effortlessly used, unlike with joint
models for which we need to re-train the model

jointly from scratch with these new representations.
In §2.2, we hypothesize that captioning could

be a straightforward way to bridge two modalities
to get the most out of a PLM that is already well-
positioned to solve the end-task in one modality
(text). However, with the exception of VQA-X,
captions give the worst accuracy scores relative to
object and CLIP features.

We turn to evaluation of plausibility of generated
explanations which paints a different picture (Table
5c). We observe that CLIP and object features per-
form similarly for VCR and VQA-X—object fea-
tures are even slightly better for VQA-X. In other
words, advances from CLIP features diminish for
the more complex task of explanation generation.
Captions work best for generating E-SNLI-VE ex-
planations with VA-T5-Base, but not for the other
two datasets. However, E-SNLI-VE is an outlier in
another way. It is the only task for which having
no image features is better for explanation gener-
ation than having CLIP features, and just slightly
worse (0.3 points) than having object features. No-
tably, CLIP/object features require combining vec-
tors from different models while captions are repre-
sented with the same pretrained word embeddings
as the rest of the input. We thus explore whether the
way that layer normalization is applied to the con-
catenated vectors is crucial, but we find that it is not
(see Appendix). We leave further analysis for why
visual adaptation gives only minor improvements
for generation of E-SNLI-VE explanations with
VA-T5 relative to other datasets to future work.

BERTscore results (Table 5b) are mixed. Ac-
cording to them, CLIP features are the best for
VCR and the worst for VQA-X. Moreover, the dif-
ferences between BERTscore values obtained with
different features are very small (0.0–0.4) which
makes these results hard to interpret.

4.2 VA-T5: Analysis of Model Size

Another advantage of visually adapting PLMs is
that we can use larger model sizes since PLMs are
typically more frequently scaled relative to joint
models. The benefits of scaling the model and
pretraining data size are outlined in Table 1. We
explore three model sizes for VA-T5 (§2.2): Base
(220M), Large (770M), and 3B. We use CLIP fea-
tures to visually adapt T5 for these experiments
since they give more accurate VA-T5 models, while
generating explanations that are similarly plausi-
ble to those generated by T5 adapted with object
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Task \ Model Size Answer Accuracy† Explanation BERTscore Explanation Plausibility

Base Large 3B Base Large 3B Base Large 3B

VCR 58.1 59.1 59.1 86.0 86.0 85.8 21.0 24.4 25.8
41.4 45.8 42.2 - - - - - -

E-SNLI-VE 74.7 74.4 68.0 89.3 89.3 89.2 65.2 65.0 64.1
VQA-X 74.7 75.6 75.1 90.9 90.6 90.0 75.8 72.3 69.3

Table 6: A comparison of VA-T5-CLIP model sizes (§2.2). † For VCR answers, we report both proxy accuracy (1st
row) and plausibility (2nd row; §3.2).

VCR E-SNLI-VE VQA-X
Answer Explanation Answer Explanation Answer Explanation

Model Acc. Plaus. BERTsc. Plaus. Acc. BERTsc.. Plaus. Acc. BERTsc. Plaus.

VLP 55.5 50.1 85.7 34.0 75.4 87.7 63.8 79.4 89.6 73.5

VA-T5-Base 58.1 41.4 86.0 21.0 74.7 89.3 65.2 74.7 90.9 75.8
VA-T5-Large 59.1 45.8 86.0 24.4 74.4 89.3 65.0 75.6 90.6 72.3
VA-T5-3B 59.1 42.2 85.8 25.8 68.0 89.2 64.1 75.1 90.0 69.3

VL-BART 57.8 47.7 86.6 29.5 75.6 89.3 71.5 86.3 91.2 75.9
VL-T5 58.4 44.6 85.5 28.7 76.3 89.1 69.0 84.9 91.0 72.2

(a) High-resource data setting.

VCR E-SNLI-VE VQA-X
Answer Explanation Answer Explanation Answer Explanation

Model Acc. Plaus. BERTsc. Plaus. Acc. BERTsc.. Plaus. Acc. BERTsc. Plaus.

VLP 54.7 21.1 85.9 25.1 73.5 87.6 63.6 71.8 89.4 72.9

VA-T5-Base 57.2 38.6 85.7 23.1 66.5 89.1 64.5 66.5 90.8 75.8
VA-T5-Large 57.3 37.3 85.8 21.1 68.3 89.2 62.0 67.3 90.4 73.6
VA-T5-3B 57.0 32.5 85.3 19.0 68.7 89.2 63.6 53.7 90.6 69.8

VL-BART 57.4 42.8 86.4 22.7 74.4 89.3 66.1 85.6 90.9 72.9
VL-T5 58.5 41.5 85.2 22.5 74.2 89.3 66.6 83.5 90.5 71.3

(b) Low-resource data setting.

Table 7: Comparison of a joint VL mode (VLP), visually adapted pretrained LM (VA-T5), and combined models
(VL-BART, VL-T5) on three datasets: VCR, E-SNLI-VE, and VQA-X. We report (proxy) answer accuracy and
plausibility (for VCR), and explanation BERTscore and plausibility. See §2 for more information on models and §3
for tasks, datasets, and evaluation metrics.

features (see §4.1). We use the full training sets to
finetune VA-T5 models in this section.

Results Scaling the model size from 220M
(Base) to 770M (Large) parameters gives more ac-
curate models for VCR and VQA-X, but further
scaling to 3B parameters degrades performance.
This is in contrast to self-rationalization of text-
only inputs where performance monotonically in-
creases with the T5’s model size (Marasović et al.,
2022). E-SNLI-VE is an exception with no clear
pattern between the model size and accuracy. More-
over, explanation plausibility decreases with the
model size (Base > Large > 3B) for E-SNLI-VE
and VQA-X. This is also in contrast to observations
in text-only self-rationalization. The exact opposite

is true for the plausibility of generated VCR expla-
nations which increases with the model size (3B >
Large > Base). Notably, in Table 1, we report that
the larger model and data size are correlated with
capturing more world and commonsense knowl-
edge, and generating VCR explanations requires
more inferring about information that is unstated
in the input relative to generating E-SNLI-VE or
VQA-X explanations. This might explain the dif-
ference between why scaling is beneficial for VCR
and not for other datasets.

Unlike accuracy and plausibility for which
model scaling is helpful at least to some extent,
BERTscore values decrease monotonically when
scaling the model size. Despite reservations about
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this evaluation metric given its weak correlation
with human judgements of explanation plausibility,
BERTscore values are increasing monotonically for
self-rationalization with textual inputs as expected
(Marasović et al., 2022). Thus, we see this result
as another evidence of the difficulty of visually
adapting larger models rather than the limitations
of BERTscore as an evaluation metric.

A better understanding of what is the bottleneck
for visually adapting larger PLMs is needed. We
might need other ways to visually adapt besides the
simple input changes that have been done so far.

4.3 Joint Models vs. Visually Adapted PLMs

We turn to our main comparison between a joint
model (VLP), a visually adapted PLM (VA-T5-
CLIP), and combined models (VL-BART, VL-T5).
Given that joint models might be advantageous
when finetuning data is limited, we compare the
models when finetuned with: (i) the entire training
sets (high-resource data setting), and (ii) 30% of
the training data (low-resource data setting).

Results In a high-resource setting (Table 7a), the
best answer accuracy/plausibility is achieved by a
different model for each dataset. To illustrate, VA-
T5 (a visually adapted PLM) obtains the best VCR
answer proxy accuracy, VLP (a joint model) VCR
answer plausibility, VL-T5 (a combined model) E-
SNLI-VE accuracy, and VL-BART (another com-
bined model) VQA-X accuracy.

Explanation plausibility results are slightly more
consistent (Table 7a). Namely, VL-BART gener-
ates most plausible explanations for E-SNLI-VE
and VQA-X, and is only behind VLP for VCR.
The best explanation BERTscore is also achieved
with VL-BART for all tasks. However, the rela-
tive order of model types (joint, visually adapted,
combined) across tasks is still mixed. Specifically,
for VCR: joint > combined (both) > adapted (all);
for E-SNLI-VE: combined (both) > adapted (all)
> joint; for VQA-X: combined > adapted > joint >
adapted > combined > adapted.

It is not necessarily concerning that the results
are mixed given the unique benefits and downsides
of these models (see Table 1) that could be relevant
for one task and not another. However, observed
cross-task differences in results are not intuitive.
For example, visually adapting T5 and combined
models give worse VCR explanation plausibility
compared to plausibility obtained with the joint
model, VLP. Since generating VCR explanations

require the most commonsense and word knowl-
edge relative to the other two tasks, it is reasonable
to expect that this is a scenario where long pretrain-
ing using a more complex text will be beneficial,
but it turns out it is not.

We now turn to results in low-resource data set-
ting (see Table 7b). We hypothesized that joint
models might work better when finetuning data is
limited since there might not be enough images to
appropriately visually adapt PLMs and they might
still behave like (unimodal) language models. How-
ever, VA-T5 is not always underperforming relative
to VLP, VL-BART, and VL-T5 in the low-resource
setting. Specifically, VA-T5 is slightly better for
explanation generation compared to VL-BART and
VL-T5 for VCR, comparable to VLP for E-SNLI-
VE, and better than all of the three models for VQA-
X. It is also better than VLP for generating VCR
answers. These results show that the size of finetun-
ing data is not as detrimental for visual adaptation
relative to joint models as we speculated.

As in the high-resource setting, we observe that
no model (type) works universally the best. Model
ordering according to their performance sometimes
stay consistent compare to the high-resource set-
ting, e.g., for E-SNLI-VE accuracy, and sometimes
changes notably, e.g., VLP gives the best VCR an-
swer and explanation plausibility in high-resource
setting, but the worst when data is limited. These
results highlight the necessity to compare models,
not only using a variety of tasks/datasets, but also
models finetuned with different amounts of data.

We see that the differences between model per-
formance in high-resource are smaller than in low-
resource, where in some cases the gap is huge. For
example, VL-BART achieves VCR answer plausi-
bility of 42.8 in low-resource, while VLP results in
only 21.1. Another example is VQA-X answer ac-
curacy for which VL-BART achieves 85.6 and VLP
71.8. Unlike VCR, this can be explained by the
fact that VQA is one of the tasks used to pretrain
VL-BART (and VL-T5). Such huge differences
between models are not observed for explanation
generation, so even though a model is much more
accurate, the plausibility of explanations for its
correct answers are not that much more plausible
compared to explanations of other models.

5 Conclusions

We extensively analyze different multimodal mod-
els that have unique benefits and downsides for text
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generation conditioned on images and text beyond
image captioning. We focus on self-rationalization
(jointly generating labels/answers and free-text ex-
planations), and show that there is no single ap-
proach that works best across instances of this com-
plex domain. A key question moving forward is
how best to leverage unimodal advances.

In the meantime, our findings can be used as
intermediate guidelines for which model to choose:

• Unlike for most text-only tasks, larger visually
adapted language models, do not give better
results. Our results suggest starting with T5-
Large (770M parameters).

• Although not always the best, CLIP features
are a reasonable choice for visual adaptation.

• Do not eliminate visual adaptation if your mul-
timodal dataset is small.

• If your multimodal data is not limited, VL-
BART is a reasonable baseline for multimodal
self-rationalization. Otherwise, multiple mod-
els should be compared.

6 Limitations

While we examine multiple methods that were
available to us while we were conducting this re-
search, it is inevitable that new multimodal models
will be released, leaving the question of whether
those models are already superior for multimodal
self-rationalizing open. For example, the recently
proposed model OFA (Wang et al., 2022a) could
be particularly suitable. It is available in large sizes
(33M, 93M, 182M, 472M, 930M), trained with a
filtered version of the large-scale text corpus PILE
(140GB; Gao et al., 2021) as well as with a variety
of multimodal datasets and objectives including
image captioning and grounded captioning.

Besides that, all of the models we examined have
been trained on data in the English language and
using clean, high quality images from similar data
sources (MS COCO, Flickr). Inherent biases stem-
ming from this source of data would need to be
studied in future work towards scaling this work
to multiple languages and other image sources (for
e.g. noisy, dense context, adversarial images). Our
main measure of explanation quality is plausibil-
ity that does not answer whether these plausible
explanations are useful in real-world applications
of VQA and NLI to actual stakeholders. Another
limitation are our computational resources. With
access to even more compute, we would be able to
examine at a larger scale such as T5 11B or more.
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A Appendix

A.1 VA-T5: LayerNorm Analysis
Since VA-T5 is not pretrained jointly with visual
and textual representation, when we combine them
for finetuning we might need to re-consider how
to apply the layer normalization to concatenated
representations. Table 8 contains results of no layer
normalization upon fusion (concatenation of image
and text representations), layer normalization only
for image features (as the T5 backbone automati-
cally normalizes text during pretraining), and layer
normalization of both text and vision upon fusion.
The differences between different ways of applying
layer normalization are minor. Therefore, we

A.2 Hyperparameters
Adafactor was chosen as the optimizer as it con-
verged faster than Adam, while taking up lesser
memory; this was necessary for fitting the VA-T5-
3B model on the GPU. We trained VQA-X for
longer as its convergence was slower. The batch
size for every model was picked based on the vali-
dation BLEU-4 score for the generated answer and
rationale. For VLP, VL-T5, and VL-BART we use
hyperparameters that are reported in the respective
papers.

Accuracy BERTscore

No LayerNorm 72.4 89.3
LayerNorm(vision) 73.0 89.3
LayerNorm([vision;text]) 72.6 89.3

Table 8: A comparison of different way of applying
layer normalization in the VA-T5-CLIP-Base model
finetuned and evaluated in the E-SNLI-VE dataset.
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Computing Infrastructure NVIDIA Tesla A100

Hyperparameter Assignment

Number of epochs 20 or 50 (VQA-X)

Patience 5

Optimizer Adafactor

Learning rate 5e-5

Learning rate scheduler None

Dropout 0.1

(a) Common hyperparameters.

VCR E-SNLI-VE VQA-X

Model CLIP Object Captions CLIP Object Captions CLIP Object Captions

VA-T5-Base 256 64 64 512 128 128 8 8 32
VA-T5-Large 64 - - 128 - - 32 - -
VA-T5-3B 4 - - 8 - - 8 - -

(b) Effective batch size.

Table 9: Hyperparameters for VA-T5
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