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Abstract
Pre-trained multilingual language models are
the foundation of many NLP approaches, in-
cluding cross-lingual transfer solutions. How-
ever, languages with small available mono-
lingual corpora are often not well-supported
by these models leading to poor performance.
We propose an unsupervised approach to im-
prove the cross-lingual representations of low-
resource languages by bootstrapping word trans-
lation pairs from monolingual corpora and us-
ing them to improve language alignment in pre-
trained language models. We perform experi-
ments on nine languages, using contextual word
retrieval and zero-shot named entity recognition
to measure both intrinsic cross-lingual word
representation quality and downstream task per-
formance, showing improvements on both tasks.
Our results show that it is possible to improve
pre-trained multilingual language models by
relying only on non-parallel resources.

1 Introduction
Pre-trained language models (LMs) have replaced
static word embeddings, such as word2vec, fast-
Text or GloVe (Mikolov et al., 2013a; Bojanowski
et al., 2017; Jameel and Schockaert, 2016), due to
their superior contextualized representations. Ap-
proaches such as mBERT (Devlin et al., 2019) or
XLM-R (Conneau et al., 2020a) are trained on mul-
tiple languages simultaneously resulting in mul-
tilingual models which can be used for various
cross-lingual transfer learning tasks (Conneau et al.,
2018b; Schuster et al., 2019; Artetxe et al., 2020,
inter alia).

However, multilingual LMs mainly focus on high
resource languages, e.g., mBERT supports the top
104 languages based on Wikipedia sizes, while
XLM-R supports the top 100 based on Common-
Crawl data. Additionally, many of these languages
are underrepresented leading to low model perfor-
mance in both monolingual and cross-lingual se-
tups. Due to the small data sizes of low-resource

languages, subword tokenizers trained jointly on
multiple languages tend to over-split the tokens
of such languages and LMs are not able to learn
good quality representations for them. Recent work
have shown that pre-trained LMs can be improved
on low-resource languages using vocabulary ex-
tension and model fine-tuning (Wang et al., 2020).
The cross-lingual quality of LMs can further be
improved by learning an additional alignment of
language pairs (Aldarmaki and Diab, 2019; Wang
et al., 2019) or fine-tuning the whole model (Cao
et al., 2020). However these methods require cross-
lingual data, often in the form of word aligned par-
allel sentences, to improve cross-linguality which
is often missing for low-resource languages.

In this work we propose an unsupervised ap-
proach to improve the language support of low-
resource languages without any parallel data. Rely-
ing on the initial cross-lingual quality of mBERT
we mine word translation pairs from monolingual
data of the source and target language pairs by lever-
aging contextualized cross-lingual word representa-
tions (CCWRs). More precisely, we build CCWRs
for each token in the source and target corpora and
look for the most similar token pairs by calculating
their cosine similarity. Even though our approach
does not rely on parallel corpora, we show that there
are enough sentences with similar contexts (topics)
containing at least one word translation pair that are
detected by our mining approach. We then use the
CCWRs of the mined word pairs to make their rep-
resentations more similar, this way aligning source
and target pairs. We use dedicated linear layers for
both of the languages of the considered language
pair to learn the alignment and we keep the LM’s
core frozen. An important contrast with previous
work (Aldarmaki and Diab, 2019;Wang et al., 2019;
Cao et al., 2020) is that we mine word pairs from
sentences of similar contexts, while they were only
able to extract them from parallel sentences, which
are often not available for low resource languages.
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Despite this, we show that CCWRs can be improved
using our mined word pairs.
We conduct experiments on nine low-resource

languages and test on two tasks: contextual cross-
lingual word retrieval (Cao et al., 2020) and zero-
shot named entity recognition (Rahimi et al., 2019).
Our results show improved CCWRs for each of the
languages and improved NER F1 scores for eight
out of the nine languages. Our analysis reveals our
approach to be robust even when we mine noisy
word pairs, because it benefits more from a larger
quantity than a better quality of bootstrapped train-
ing set. Additionally, we experiment with vocab-
ulary extension techniques (Wang et al., 2020) in
case of languages using scripts other than Latin or
Cyrillic, since the tokenizers of LMs tend to over-
split the text of such languages. This step improves
CCWR quality of the initial LMs which gives a
further boost to our bootstrapping method, leading
to the best performance on these languages. Finally,
we run preliminary experiments on further four very
low-resource languages that were not used for LM
pre-training and show that the initial LM quality
on such unseen languages is very low, which our
approach can marginally improve. Our implemen-
tation is publicly available.1

2 Related Work

Pre-trained LMs (Devlin et al., 2019; Conneau et al.,
2020a) provide the core of many NLP solutions.
They are trained using accessible monolingual cor-
pora of multiple languages resulting in multilingual
LMs allowing them to be used in zero-shot trans-
fer setups mitigating the issues of missing down-
stream task training data for many low-resource lan-
guages (Conneau et al., 2018b; Schuster et al., 2019;
Artetxe et al., 2020). Although no parallel data is
used, these models show remarkable cross-lingual
quality, i.e., words with similar meaning in differ-
ent languages are represented similarly by the mod-
els. Previous work investigated the reasons of this
phenomenon. K et al. (2020) found that the struc-
tural similarity of languages is an important factor,
while both Conneau et al. (2020b) and Artetxe et al.
(2020) showed that a shared vocabulary is not neces-
sary. Dufter and Schütze (2020) identified essential
elements for multilinguality, such as shared special
tokens or comparable training corpora.

On the other hand, multilingual LMs are less ef-
fective on low-resource languages. It was shown

1https://cistern.cis.lmu.de/lowresCCWR

that a fixed sized model can only support up to
a certain number of languages efficiently, while
adding more languages deteriorates its performance
(Conneau et al., 2020a). The small size of the
available monolingual data for low-resource lan-
guages decreases model performance further (Wu
and Dredze, 2020a; Lauscher et al., 2020). Addi-
tionally, data size imbalance of the used languages
leads to an imbalanced subword vocabulary as well
(Rust et al., 2021). To mitigate tokenization issues
Wang et al. (2020) extend the vocabulary of pre-
trained LMs with language specific tokens, while
Pfeiffer et al. (2021) propose to learn language
specific embeddings for low-resource languages.
They show that with better subword vocabulary and
model fine-tuning the model’s performance can be
improved on low-resource languages. We also rely
on these techniques in our work.

To improve the cross-lingual quality of LMs var-
ious authors proposed steps on top of model pre-
training. Based on embedding mapping approaches
(Mikolov et al., 2013b; Conneau et al., 2018a) it was
shown that representations of monolingual LMs can
also be aligned (Schuster et al., 2019). In addition,
mapping approaches can be applied to the repre-
sentations of multilingual LMs as well for further
improvements (Aldarmaki and Diab, 2019; Wang
et al., 2019; Hämmerl et al., 2022). In contrast to
the above approaches, Cao et al. (2020) proposes a
word alignment based objective function that fine-
tunes the whole model in order to build more simi-
lar token representations for the aligned word pairs,
while Chi et al. (2021) introduced the denoising
word alignment task and Wu and Dredze (2020b)
relied on a contrastive alignment objective to en-
courage better cross-lingual performance. Others
leverage cross-lingual training signals already in
the model pre-training phase (Conneau and Lam-
ple, 2019; Hu et al., 2021). However, the above
approaches require parallel data which is not avail-
able for many low-resource languages. In contrast,
we show that LMs can be improved by using only
monolingual corpora where source and target lan-
guage sentences with similar contexts can be found.

3 Unsupervised Language Alignment

In order to improve the cross-lingual quality of pre-
trained multilingual LMs we mine word translation
pairs using only monolingual corpora of the source
and target languages. We rely on the token represen-
tations given by LMs to look for the most similar
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Figure 1: High-level overview of our proposed approach. First we generate CCWRs (Ew·
·,·) of source (w

s
i,j) and

target (wt
k,l) language words in the input sentences followed by mining translation pairs (Dm) and making their

representation more similar at the end. We keep the core LM parameters frozen (^) and train only the linear layers
on top of it. The process is repeated for multiple iterations.

source and target language word pairs in the mining
step. Mined pairs are then used as training samples
in the update step, where the training objective is
to make their representations more similar. We iter-
ate the mining and update steps until convergence.
Even though our approach does not require parallel
sentences, we show that it is possible to mine use-
ful word pairs from sentences with similar contexts.
We depict our approach in Figure 1 and detail the
two main steps in the following.

3.1 Word Pair Mining
For the word translation pair extraction we assume
that we have monolingual corpora for the source
and target languages, Ds and Dt. We build con-
textualized cross-lingual word representations for
each token in each sentence of both corpora by tak-
ing the corresponding output vectors of the used
model’s final layer. As explained in Section 3.2 we
apply a linear layer on top of the used LM for align-
ment purposes. We take the output of this linear
layer as CCWR instead of the average of multiple
LM layers in contrast to previous work (Vulić et al.,
2020) in order to directly benefit from model up-
dates as our method progresses. If a word is split
into multiple subwords by the LM’s tokenizer we
take the representation of the last subword token
based on the findings of (Ács et al., 2021).2 For
each token ws

i,j ∈ Ds we look for the most similar
token wt

k,l ∈ Dt by calculating:

wt
k,l = argmax

wt
m,n∈Dt

cos(Ews
i,j
, Ewt

m,n
) (1)

wherewx
i,j is the jth token of the ith sentence inDx,

E(wx
i,j) is its CCWR and cos is the cosine similar-

2We ignore special tokens, such as [CLS] or [SEP].

ity of two vectors. Finally, we filter out low quality
word pairs by keeping only those pairs which have a
similarity value larger than a given threshold value
(th = 0.2). Wemine word pairs in both language di-
rections, i.e., we mine pairs for each ws

i,j ∈ Ds and
in the reverse direction as well for each wt

k,l ∈ Dt

this way boosting the number of training examples.
Due to the quadratic nature of the mining process,

instead of using the full source and target corpora,
we randomly sample 1K sentences in each iteration
fromDs andDt resulting in D̃s and D̃t respectively
and use them for the word alignment instead of the
full corpora. Calculating with 20 tokens per sen-
tence on average means that there are 20K source
tokens for which we look for the most similar pair
in the 20K candidate target tokens in each iteration.
Furthermore, we keep the mining process simple,
fast and memory efficient, i.e., we use cosine simi-
larity instead of CSLS (Conneau et al., 2018a) and
do not rely on previously introduced word align-
ment techniques, such as SimAlign (Jalili Sabet
et al., 2020). We present further analysis of the
mining quality in Section 5.3 and experiments with
up to 100K sample size instead of 1K per iteration
and employ the efficient search method of Faiss
(Johnson et al., 2019) in Appendix C.

3.2 Model Training
Motivated by mapping approaches (Mikolov et al.,
2013b; Schuster et al., 2019) we use a dedicated
linear layer on top of the pre-trained LM for both
source and target languages in the given language
pair to improve cross-lingual quality.3 More pre-
cisely, we feed the output representations of the

3We use a layer not only for the source language but for
the target as well, since we found it to be beneficial.
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LM’s last hidden layer to the dedicated linear layer
depending on the language of the input word, which
has input and output sizes matching the LM’s hid-
den size and has no bias term. Since we want to
exploit the improved cross-linguality of the model
in the mining step in each iteration, we initialize the
dedicated linear layers with the identity matrix4 and
use the output of the linear layers as CCWRs for
word pair mining. Given the mined word pairs we
update the parameters of the dedicated linear layers
while keeping the parameters of the LM frozen by
minimizing the following loss function based on
the work of Cao et al. (2020):

L =
∑

(ws
i,j ,w

t
k,l)∈Dm

∥∥∥Ews
i,j
− Ewt

k,l

∥∥∥
2

2
(2)

whereDm ⊆ D̃s× D̃t is the dataset containing the
mined word pairs from step 1.

We note that we experimented with the proposed
model of Cao et al. (2020), i.e., updating the full
model using no linear layer on top of the origi-
nal LM architecture but it resulted in significant
degradation of the model performance when using
our mined training samples. The main difference
with the original method of Cao et al. (2020) is that
they use parallel sentences where most of the words
are aligned, while in our case most sentence pairs
that are extracted by our method contain only one
aligned word pair and the rest are unaligned, thus
not used for training. Our conjecture is that due to
the smaller information ratio per sentence pair and
the smaller number of covered unique words in the
training process (see Section 5.3) the full model
update is more susceptible to over-fitting, thus the
use of language specific linear layers is crucial for
our approach. This shows that the simpler linear
layer and the static LM is needed to prevent over-
fitting and degrading the quality of monolingual
language subspaces in case of the mined training
data. We summarize our complete iterative method
in Algorithm 1.

4 Experimental Setup
4.1 Datasets and Model Parameters
We test our proposed model on a wide range of lan-
guages: Bengali, Basque, Macedonian, Malayalam,
Afrikaans, Swahili, Kannada, Gujarati and Nepali.
For each of the languages we used 1M randomly

4We add a uniform random noise with value up to 0.01 for
better training performance.

Algorithm 1 High level pseudo-code of our pro-
posed method.
Require: Ds, Dt the full monolingual corpora of
the source and target languages; Θ pre-trained
model parameters; N number of update steps;
th minimum word similarity threshold
for i in 0..N do

D̃s, D̃t ← sample(Ds), sample(Dt)
Dm ← mining(D̃s, D̃t, Θ, th)
Θ← update(Dm, Θ)

end for

selected sentences from the full Wikipedia dumps
as monolingual corpora (Ds andDt) which we tok-
enized with the IndicNLP toolkit (Kakwani et al.,
2020) in case of the Indian subcontinent languages5
or with the Moses toolkit (Koehn et al., 2007) in
case of the others.6 We show language and dataset
statistics in Table 1. In Appendix D we present
simulated low-resource experiments indicating the
effectiveness of our approach when only a small
amount of monolingual sentences are available.
As the pre-trained LM we use bert-base-

multilingual-cased (Devlin et al., 2019) which we
refer to as mBERT in the following. To try to
strengthen the baselines for underrepresented lan-
guages we perform vocabulary extension andmodel
fine-tuning using the monolingual data of the target
low-resource language. We follow the approach and
suggested model parameters of Wang et al. (2020),
i.e., we extend mBERT’s original vocabulary with
the most frequent 10K subword tokens of the low-
resource language and run 100K fine-tuning steps
on the full Wikipedia dumps using only the masked
language modeling objective. We refer to the vo-
cabulary extended models as eBERT.
For our approach we tune model parameters us-

ing the development set of the word retrieval task
(see Section 4.2) on Nepali only and use the same
parameters for the rest of the languages as well.
The used parameters are the following: number
of model update steps (N ) 5K with batch size 2,
gradient accumulation steps 6 (which means 60K
extracted sentence pairs), 1K warm-up steps and
learning rate 5 × 10−5. We used the Hugging-
face library for the implementation of our tech-
niques (Wolf et al., 2020). The runtime of our
method ranges between 0.5 and 2 hours using a

5Bengali, Malayalam, Kannada, Gujarati and Nepali.
6The tokenization of monolingual corpora is only required

for the word pair mining process.
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ISO #Wiki Para. corp. #Para. #NER
Bengali bn 959 Bangla-NMT 300 10
Basque eu 807 OpenSubtitles 805 10

Macedonian mk 515 OpenSubtitles 3,399 10
Malayalam ml 481 Samanantar 5,774 10

Afrikaans af 369 OpenSubtitles
+ Bible 107 5

Swahili sw 141 GoURMET 155 1
Kannada kn 128 Samanantar 4,011 0.1
Gujarati gu 115 Samanantar 3,017 0.1
Nepali ne 102 Bible 68 0.1

Table 1: Language and dataset statistics. From left to
right we indicate language ISO code, total number of
Wikipedia articles in thousands (K), used parallel cor-
pora, the number of parallel sentence pairs (K) and the
number of WikiANN training sentences (K) for NER.

single GeForce GTX 1080 Ti.

4.2 Evaluation
Contextual cross-lingual word retrieval As an
intrinsic evaluation of cross-lingual quality of LMs
we perform the word retrieval task as defined by
Cao et al. (2020). Given a word aligned parallel test
corpus for the source and target languages the task
is for each aligned token in the source corpus to
retrieve its pair, i.e., the target word it is aligned to,
given all tokens in the target corpus. Similarly as in
our proposed mining process, we follow Equation 1
for word retrieval with the only exception that we
use CSLS7 instead of cosine as the vector similarity
function, since its longer runtime and larger mem-
ory footprint is not an issue for the evaluation. Note
that since a given word type is contained in multiple
sentences on both the source and target language
sides, thus it has multiple CCWRs, Equation 1 im-
plicitly involves retrieving the parallel sentence pair
of the source sentence and the aligned word pair
of the source word just by measuring CSLS sim-
ilarity of CCWRs. Accuracy is measured by the
ratio of correctly retrieved aligned word pairs. We
measure accuracy in both source to target and target
to source directions and report their average.
In our experiments we consider English as the

target language and the already mentioned low-
resource languages as the source and use var-
ious parallel corpora including the corpora of
Bangla-NMT (Hasan et al., 2020), OpenSubtitles
(Lison and Tiedemann, 2016), the Samanantar
(Ramesh et al., 2021) and GoURMET (Sánchez-
Martínez et al., 2020) projects, as well as the Bible
(Christodouloupoulos and Steedman, 2015). More

7CSLS neighborhood size: 10.

details are shown in Table 1. We use the first 1024
sentence pairs as test. We reserved the next 1024
as development (recall that we only used the Nepali
development data as discussed above). We used the
rest only for training the supervised baselinemodels
(Cao et al., 2020). We tokenized the datasets with
the tools discussed in Section 4.1, performed word
alignment using fastAlign (Dyer et al., 2013) and
kept only the one-to-one pairs in the intersection,
in order to obtain a high quality test set.
Named entity recognition To test the useful-

ness of our approach on downstream tasks as well
we perform zero-shot cross-lingual NER, since it
was shown to reflect the cross-lingual quality of
LMs well (Wang et al., 2020). We use the multi-
lingual WikiANN dataset which supports a large
set of languages (Rahimi et al., 2019). We keep our
sequence tagger simple so that the quality of token
representations is the most influential factor in the
final results. We only apply a dropout (probability
0.1) and a single linear layer as the classification
head. Additionally, we freeze all model parame-
ters except the final classifier layer during training.
We train our models on English with batch size 32,
learning rate 5× 10−5, warm-up steps 1K, using
early stopping on the development set of the target
language. We report F1 scores as our final results.
Compared systems We compare our ap-

proach to the off-the-shelf mBERT model (De-
vlin et al., 2019) and additionally to the vocabu-
lary extended eBERT (Wang et al., 2020) model
for languages not written using Latin or Cyril-
lic scripts. Additionally we evaluated the su-
pervised model of Cao et al. (2020) which fine-
tunes the whole model using the training por-
tion of the parallel corpora (mBERT_full_sup and
eBERT_full_sup). To test the effectiveness of using
just a linear layer for language alignment instead
of full model update in the supervised setup we
run experiments with our proposed architecture but
with parallel data as training instead of running
the unsupervised mining step (mBERT_linear_sup
and eBERT_linear_sup). Finally, we refer
to our systems as mBERT_linear_unsup and
eBERT_linear_unsup. As mentioned in Section 3.2
mBERT_full_unsup and eBERT_full_unsup (full
model update with mined training data) did not
converge, thus we omit it from our final results.
Due to environmental considerations we report the
results of a single run for each setup.
On top of pure BERT-based models in case of
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Bn Eu Mk Ml Af Sw Kn Gu Ne
mBERT 14.31 6.84 9.17 6.90 10.24 6.37 9.51 5.90 2.28

mBERT_linear_unsup 24.12 10.55 12.83 12.04 13.82 13.49 13.76 12.05 4.64
mBERT_full_sup 42.80 23.68 26.53 46.34 16.21 7.83 50.47 49.90 12.45

mBERT_linear_sup 30.98 13.46 18.17 17.53 18.50 19.06 22.53 17.42 8.81
eBERT 13.73 - - 5.46 - - 5.56 7.01 4.92

eBERT_linear_unsup 20.11 - - 9.44 - - 10.56 12.25 7.16
eBERT_full_sup 36.36 - - 39.69 - - 44.60 46.18 12.21

eBERT_linear_sup 26.48 - - 12.48 - - 13.64 15.49 11.10

Table 2: Accuracy (%) scores of the contextual cross-lingual word retrieval task on the low-resource languages.
Languages are sorted based on their Wikipedia sizes in descending order. We do not test the vocabulary extended
eBERT on languages with Latin or Cyrillic scripts. Our proposed method is listed as mBERT_linear_unsup and
eBERT_linear_unsup. Best results ignoring the supervised methods are indicated with bold fonts.

the NER task, we experiment with aligning BERT
representation using VecMap (Artetxe et al., 2018)
similarly to Schuster et al. (2019) and Liu et al.
(2019). More precisely, i) we build type-level rep-
resentations (anchors) for each of the most fre-
quent 50K words of a given language. We ran-
domly sample 100 sentences8 containing a given
word (w), build its CCWRs (Ew) and take their
dimension-wise average as the type-level repre-
sentation. Then ii) we train an orthogonal align-
ment of the source and target language type-level
embedding spaces with VecMap using iterative-
refinement. We use two types of training sig-
nals: identical word pairs (mBERT_vecmap_id
and eBERT_vecmap_id) which similarly to our
approach does not need explicit cross-lingual
resources; and word translation pairs from
the MUSE project (Conneau et al., 2018a) as
the supervised setup (mBERT_vecmap_sup and
eBERT_vecmap_sup). Finally, iii) we initialize the
weights of the linear layer9 on top of BERT with the
learned alignment before NER training to transfer
it to the downstream task.

5 Results

5.1 Contextual Word Retrieval
We show accuracy results of the word retrieval task
on the low-resource languages in Table 2. On a
high level it can be seen that both baseline models,
mBERT and eBERT, were improved by all of the
used methods for each of the languages.
Additionally, LMs updated with our unsuper-

vised mining method (mBERT_linear_unsup and
8Schuster et al. (2019) and Liu et al. (2019) used 1000

sentences for type-level representations, however we found
100 to be similarly effective but much faster.

9The linear layer of the source language and use identity
for the target.

eBERT_linear_unsup) show large improvements
compared to the baselines although no parallel data
was used. This shows that useful word translation
pairs can be mined automatically relying on the ini-
tial cross-lingual quality of multilingual LMs and
that parallel data is not necessary. We show mined
examples in Section 5.3.
We built vocabulary extended mBERT models

(eBERT) for languages that used a script other than
Latin or Cyrillic. eBERT is effective on the lower
resourced languages (Gu and Ne). Still our min-
ing approach improves over eBERT achieving best
scores on Gu and Ne while mBERT_linear_unsup
achieves best scores on the others.

The supervised approaches, which can be consid-
ered as oracle systems since they assume the avail-
ability of good quality parallel data, achieve large
improvements over our unsupervised approach.
This is not surprising, since these approaches do
not rely on the initial cross-lingual quality of the
used LM which is low for the considered languages.
Additionally, the aligned word pairs in the used
parallel data cover a larger portion of the given lan-
guage’s vocabulary which means more information
for the training process. In contrast, the mining pro-
cess covers less unique word pairs (see Section 5.3).
Among the two variations the fully fine-tuned
model (mBERT_full_sup and eBERT_full_sup)
achieves best performance, while the supervised
model with linear layer (mBERT_linear_sup and
eBERT_linear_sup) lies between our proposed un-
supervised models and the supervised fully fine-
tuned models. As mentioned before, the informa-
tion density of parallel sentences is much higher
than that of the mined pairs, since most of the words
are aligned in case of the former, while in most of
the cases only one word pair is contained per sen-
tence pair in case of the latter. This shows that
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Bn Eu Mk Ml Af Sw Kn Gu Ne
mBERT 40.45 35.49 46.80 31.36 50.28 37.95 33.77 17.39 27.97

mBERT_vecmap_id 34.36 33.68 44.97 25.65 43.04 27.51 14.85 5.89 11.88
mBERT_linear_unsup 43.57 40.91 49.94 34.04 47.93 38.15 33.87 24.20 28.26
mBERT_vecmap_sup 29.72 35.73 42.56 - 42.61 - - - -

mBERT_full_sup 59.07 49.24 59.39 47.32 57.64 31.46 49.78 50.53 31.75
mBERT_linear_sup 42.90 39.89 47.82 36.76 52.48 41.36 38.33 15.89 28.44

eBERT 36.50 - - 29.68 - - 30.30 29.02 38.13
eBERT_vecmap_id 36.29 - - 29.52 - - 30.94 29.02 40.40

eBERT_linear_unsup 34.47 - - 32.64 - - 30.33 31.82 43.75
eBERT_vecmap_sup 36.29 - - - - - - - -

eBERT_full_sup 51.29 - - 47.51 - - 45.11 56.29 43.18
eBERT_linear_sup 38.25 - - 34.85 - - 36.02 34.58 39.69

Table 3: F1 scores of zeros-shot cross-lingual named entity recognition. Models are trained on English and evaluated
on the low-resource languages. Some supervised VecMap results are not presented due to lack of MUSE training
dictionaries. Best results ignoring the supervised methods are indicated with bold fonts.

parallel data can be exploited better by updating the
full LM, while the simpler linear layer and frozen
LM parameters are needed to prevent over-fitting
in case of the mined training data.

5.2 Named Entity Recognition

We show F1 scores of our zero-shot cross-lingual
experiments in Table 3. Similarly to the contex-
tualized word retrieval task the best scores were
achieved by fine-tuning the baseline models. Fol-
lowing the trend in the contextual word retrieval
results, eBERT is effective in case of the lower re-
sourced languages (Gu and Ne) and the supervised
methods using a strong cross-lingual signal in the
form of a word aligned parallel data achieve best
results. However, the latter is only applicable if par-
allel data exists for the low-resource language. Our
mining based approach improved on the baselines
on all languages except Afrikaans.
Similarly to Cao et al. (2020), we found the

mapping based approach (VecMap) to be ineffec-
tive. mBERT_vecmap_id which uses no explicit
cross-lingual training signal to learn the align-
ment, only identical word pairs, achieves lower
performance than mBERT especially in case of
the lower-resource spectrum (Kn, Gu and Ne). In
contrast, eBERT_vecmap_id is competitive with
eBERT and even outperforms it on Kannada and
Nepali. This shows that extending the vocab-
ulary of mBERT is an important step to make
VecMap based on identical pairs effective even
on the higher-resource languages. On the other
hand, our unsupervised mining approach achieves
better scores than VecMap with the exceptions of
Bengali and Kannada where eBERT_vecmap_id

performs better than eBERT_linear_unsup, how-
ever mBERT_linear_unsup is the most effective in
these cases. Finally, it can be seen that the super-
vised variations of the VecMap based approach
(mBERT_vecmap_sup and eBERT_vecmap_sup)
are not able to benefit further from the stronger
cross-lingual training signal. This is in line with
the findings of previous work which show identi-
cal pairs often to be competitive with dictionaries
(Artetxe et al., 2017; Søgaard et al., 2018; Severini
et al., 2022).
We present our preliminary results on unseen

languages, i.e., languages which were not used for
LM pre-training, in Appendix A.

5.3 Analysis

Mined word pairs In Table 4 we show English to
Macedonian mined word pair examples. It can be
seen that the sentence pairs selected by our method
are indeed not parallel but their contexts are similar.
In example 1 both sentences mention Eastern Eu-
ropean armies, example 2 discusses controversial
events, while example 3 mentions various English
and German well-known individuals. The simi-
lar context of the sentences helps to build similar
CCWRs for the selected word pairs. As we men-
tioned before, most of the mined sentence pairs
contain only one aligned word pair as in example 1,
however there are a few sentence pairs (about 25%)
containing multiple word pairs, such as example 2.
Finally, example 3 shows a mined word pair (iden-
tity – име (name)) which is not a correct translation,
however the words as used have similar meanings.
Such examples indicate that our approach is able to
leverage word pairs with similar meanings as well.
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1 SRC Immediately thereafter, Ceaus,escu presided over the CPEx (Political Executive Committee) meeting and
assumed the leadership of the army.

TRG Вероjатно преценето но несомнено византиската воjска била значително поголема од бугарската.
TR Probably overestimated but undoubtedly the Byzantine army was significantly larger than the Bulgarian.

2 SRC Although the probing effect can1 be2 controversial when it comes to explaining just why it happens,
researchers attempt to explain through the sender behavioral adaptation.

TRG Понекогаш, разликата помеѓу умерено-планински и планински jа одредуваат самите организатори
и самата поделба може1 да биде2 контроверзна.

TR Sometimes, the difference between temperate and mountainous is determined by the organizers themselves
and the division itself can1 be2 controversial.

3 SRC It is a consequence of the Philip Hall and Ernst Witt’s eponymous identity.

TRG Албрехт Петар Кан е еден од наjплодните и читани писатели на германски jазик, иако само мал
броj луѓе го познаваа неговото вистинско име.

TR Albrecht Peter Kahn is one of the most prolific and well-read German-language writers, although only a
handful of people knew his real name.

Table 4: Mining examples of the English to Macedonian mining direction by mBERT_linear_unsup. Mined word
pairs are bolded. Translations (TR) are provided using Google Translate.

Bn Eu Mk Ml Af Sw Kn Gu Ne
bestBERT 40.45 35.49 46.80 31.36 50.28 37.95 33.77 29.02 38.13

intersection +2.03 +5.38 +2.57 +2.16 -1.45 +2.14 -1.29 -1.57 +2.60
forward-backward +3.13 +5.42 +3.15 +2.68 -2.35 +0.20 +0.10 +2.80 +5.62

Table 5: Relative F1 change on the named entity recognition task using intersection (quality) or forward-backward
(quantity) mining methods compared to the best performing baseline model on each language respectively (best-
BERT).

As discussed in Section 4.1 the complete train-
ing process extracts 60K sentence pairs due to the
fixed batch size, gradient accumulation number and
model update steps. The numbers of unique mined
word types however are relatively small. For En-
glish it varies between 11K and 15K, while for the
low-resource languages it varies between 8K and
14K. Covered word types mainly involve frequent
words of the given language’s vocabulary. When
a given language has less monolingual resources
the number of words having good quality vector
representation decreases as well due to the lower
frequency of these words (making the pairing of
the word difficult). However, the number of mined
word types is still larger than the frequently used
5K pairs for mapping approaches (Conneau et al.,
2018a). We show the exact number of unique words
per language mined by our method in Table 9, Ap-
pendix B.
Quality vs. Quantity We compared two vari-

ations of our word pair mining method in Table 5.
We call our method which was discussed previously
forward-backward, since it mines word pairs in the
source to target and target to source language di-
rections using the method discussed in Section 3.1.
We simply take the union of the output of the two
directions as the final set of mined word pairs. In

contrast, in order to increase the quality of word
pairs at the expense of quantity we take mutually
aligned word pairs in the two directions. We call
this approach the intersection mining method.
The results in Table 5 shows that the larger but

less precise set of mined word pairs resulted by the
forward-backward method outperforms the smaller
but more precise set of intersection in 7 out of 9
cases on the named entity recognition task. This
shows that the alignment method is robust against
incorrectly aligned pairs and can successfully lever-
age pairs that are not direct translations but are
nevertheless similar in meaning. This also leads to
a larger number of mined unique word types.

6 Conclusions

Low-resource languages are underrepresented in
pre-trained multilingual LMs. In contrast to pre-
vious work using a parallel dataset to improve the
language support of low-resource languages, we
presented an unsupervised method to align lan-
guage pairs by relying only on monolingual cor-
pora. We showed that word translation pairs can
be extracted from non-parallel sentence pairs by
leveraging the cross-lingual contextualized repre-
sentations of words which in turn can be used to
align the vector spaces of languages. We tested our
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approach on the intrinsic contextual word retrieval
and the downstream named entity recognition tasks.
Our results showed improved cross-lingual quality
of the fine-tuned LMs. Our analysis revealed that
the quantity of mined word pairs matters over their
quality and that the vocabulary extension method is
important for performance boost in case of the low-
est resource languages. As future work we aim at
leveraging easily accessible cross-lingual resources
for better unseen language support.

Limitations
Our preliminary experiments on unseen languages
in Appendix A show that our approach improves
the baselines for these languages as well but the
achieved performance is still low. The main reason
for this is the initial low quality of mBERT and
eBERT, thus the mining using poor CCWEs is inef-
fective. The supervised experiments using parallel
sentences show that with a larger quantity and more
precisely aligned word pairs further improvements
can be achieved. However, since such resources
are often unavailable for low-resource languages
further methods relying on more easily accessible
cross-lingual resources should be considered in fu-
ture work.
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A Unseen languages
We ran initial experiments on unseen languages
(Sindhi, Faroese, Upper Sorbian and Maori) that
were not used for pre-training mBERT. Other than
the mentioned parallel datasets in Table 1 we used
Tanzil (Tiedemann, 2012) for Sindhi. There are no
available parallel corpora aligned with English for
Faroese and Upper Sorbian. Dataset statistics can
be seen in Table 6. We follow the same data prepro-
cessing (we use IndicNLP for Sindhi andMoses for
the others) and use the same hyper-parameters as
for the seen languages.
The results in Table 7 show that mBERT per-

forms below 1% accuracy on the two unseen lan-
guages in terms of word retrieval which is im-
proved by our mining approach. Vocabulary ex-
tension is an important step as eBERT performs
better than mBERT_linear_unsup on Sindhi. The
updated eBERT_linear_unsup model achieves fur-
ther improvements compared to eBERT. However,
these results are still low and further improvements
are needed. The F1 scores on the named entity
recognition task shown in Table 8 are inconsistent.
Our approach achieves improvements on Sindhi and
Faroese but not on Upper Sorbian and Maori, al-
though it achieves improvements on all unseen lan-
guages in terms of word retrieval accuracy (we do
not have Faroese and Upper Sorbian retrieval results
due to the lack of parallel data with English). Simi-
larly as in case of the seen languages, the VecMap
based approach performs lower than the baseline
when no vocabulary extension is performed. In con-
trast, eBERT_vecmap_id outperforms eBERT but
not eBERT_linear_unsup.

ISO #Wiki Para. corp. #Para. #NER
Sindhi sd 56 Tanzil 93 0.1
Faroese fo 40 - - 0.1

Upper Sorbian hsb 35 - - 0.1
Maori mi 13 Bible 61 0.1

Table 6: Language and dataset statistics. From left to
right we indicate language ISO code, total number of
Wikipedia articles in thousands (K), used parallel cor-
pora, the number of parallel sentence pairs (K) and the
number of WikiANN training sentences (K) for NER.

Sd Mi
mBERT 0.09 0.17

mBERT_linear_unsup 0.16 0.38
mBERT_full_sup 6.75 12.68

mBERT_linear_sup 0.54 1.21
eBERT 0.66 -

eBERT_linear_unsup 1.32 -
eBERT_full_sup 6.07 -

eBERT_linear_sup 2.64 -

Table 7: Accuracy (%) scores of the contextual cross-
lingual word retrieval task on the low-resource un-
seen languages. Languages are sorted based on their
Wikipedia sizes in descending order. We do not test the
vocabulary extended eBERT on languages with Latin or
Cyrillic scripts. Faroese and Upper Sorbian evaluation is
omitted because we do not have access to Fo-En and Hsb-
En parallel corpora. Our proposed method is listed as
mBERT_linear_unsup and eBERT_linear_unsup. Best
results ignoring the supervised methods are indicated
with bold fonts.

The supervised methods using parallel corpora
for training show that with good quality word pairs
even unseen languages can be improved signifi-
cantly, indicating that in case of low initial LM
quality on a given language a stronger cross-lingual
signal is needed for meaningful model improve-
ment. On the other hand, parallel datasets are not
available for many low-resource languages.

Finally, Table 9 shows that the number of mined
unique words for the unseen languages are lower
than the numbers for seen languages, ranging be-
tween 5K and 10K. Due to smaller monolingual
corpora word types are less frequent and there is
stronger oversplitting by the subword tokenizer,
leading to fewer words with high quality CCWRs.

B Mined Words
We show the number of unique word types that were
mined by our approach for both seen and unseen
languages in Table 9.

C Size of Mining Candidates
In our main experiments we use cosine similarity
for word pair mining and randomly sample 1K sen-
tences as the source and target datasets (D̃s and D̃t)
in each iteration. We experimented further with
larger sampling sizes and a more efficient CCWR
similarity method on top of cosine which, although
quadratic in runtime and memory requirements,
can be efficiently performed on GPUs using batch-
ing. The runtime of our cosine-based approach on
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Sd Fo Hsb Mi
mBERT 8.57 50.97 39.01 26.39

mBERT_vecmap_id 3.24 28.13 23.26 3.56
mBERT_linear_unsup 7.94 52.17 31.87 11.69
mBERT_vecmap_sup - - - -

mBERT_full_sup 13.53 - - 35.60
mBERT_linear_sup 4.95 - - 32.93

eBERT 21.86 - - -
eBERT_vecmap_id 23.98 - - -

eBERT_linear_unsup 25.71 - - -
eBERT_vecmap_sup - - - -

eBERT_full_sup 26.40 - - -
eBERT_linear_sup 24.72 - - -

Table 8: F1 scores of zeros-shot cross-lingual named
entity recognition. Models are trained on English and
evaluated on the low-resource languages. Supervised
scores for Fo and Hsb are missing due to lack of parallel
training data. Additionally, supervised VecMap results
are missing due to lack of MUSE training dictionaries.
Best results ignoring the supervised methods are indi-
cated with bold fonts.

En Low-res.

Se
en

Bn 15,257 11,915
Eu 14,896 11,721
Mk 11,295 8,514
Ml 15,241 12,970
Af 11,291 8,038
Sw 14,717 10,321
Kn 14,970 13,941
Gu 15,123 11,196
Ne 15,110 11,524

U
ns
ee
n Sd 15,249 9,946

Fo 11,293 7,272
Hsb 11,350 6,418
Mi 14,858 5,447

Table 9: Number of English and low-resource language
vocabulary entries mined by mBERT_linear_unsup.

Nepali ranges between only 0.5 (|D̃t| = 1K) and
15 (|D̃t| = 100K) hours. Since the main goal of
using larger data samples is to increase the chance
of including the translation of a given source word
in the candidate set, we keep the size of D̃s at 1K
(since we sample a new set in every iteration) and
only vary the size of D̃t. As the alternative search
method we use Faiss, a library for efficient vector
similarity calculation (Johnson et al., 2019). More
precisely, we use an inverted file index with 100
lists for faster search and product quantizer with
8 bits encoding for memory efficiency.10 The run-
time of the Faiss based system ranges between 20
minutes and 1.5 hours.
Table 10 shows our findings on Nepali with

10Faiss index factory code: IVF100,PQ8.

|D̃t| cosine Faiss
1 7.16 6.50
5 7.15 6.45

10 7.10 6.49
50 6.99 6.46
100 6.97 6.51

Table 10: Comparing setups on Nepali contextual cross-
lingual word retrieval (%) using eBERT_linear_unsup
with different numbers of sampled target language sen-
tences (in thousands) as candidates for mining using
exact match with cosine similarity or runtime/memory
optimized Faiss search.

|Ds| Ne
5 7.19

10 7.27
50 7.21

100 7.14
500 7.18

1,000 7.16

Table 11: Comparing simulated low-resource setups on
Nepali contextual cross-lingual word retrieval (%) using
eBERT_linear_unsup. We test how our approach per-
forms when only a small monolingual corpus (size given
in thousands) is available for a given source language
(Nepali).

eBERT_linear_unsup. It can be seen that as the size
of candidates increases the performance slightly de-
creases in case of cosine and stays on the same level
in case of Faiss. As expected, we found that the se-
tups with larger target candidate sizes mine more
pairs per iteration, thus our conjecture is that it is
better to update the model with a few examples in
the initial training steps which positively influences
the mining quality in the later stages. Secondly,
cosine similarity outperforms Faiss due to its exact
search in exchange for computational efficiency.

D Size of Monolingual Data

We also run simulated low-resource experiments
where we assume that the size of the overall mono-
lingual corpus (Ds), from which we sample 1K
sentences in each iteration (D̃s), is limited. Table 11
shows the results on simulated Nepali contextual
cross-lingual word retrieval. Recall that in our main
experiments we used 1, 000K sentences for both
Ds and Dt. It can be seen that there is a negligible
difference between the different dataset sizes, show-
ing the robustness of our approach against lack of
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data for mining. As discussed in Section 4.1 the
complete training process extracts 60K sentence
pairs due to the fixed batch size, gradient accumu-
lation number and model update steps, thus even
the lowest setup has enough possible sentence pairs
to mine from (5K × 1, 000K).
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