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Abstract

Proper noun compounds, e.g., “Covid vac-
cine”, convey information in a succinct manner
(a “Covid vaccine” is a “vaccine that immu-
nizes against the Covid disease”). These are
commonly used in short-form domains, such
as news headlines, but are largely ignored in
information-seeking applications. To address
this limitation, we release a new manually an-
notated dataset, PRONCI, consisting of 22.5K
proper noun compounds along with their free-
form semantic interpretations. PRONCI is 60
times larger than prior noun compound datasets
and also includes non-compositional examples,
which have not been previously explored. We
experiment with various neural models for au-
tomatically generating the semantic interpre-
tations from proper noun compounds, ranging
from few-shot prompting to supervised learn-
ing, with varying degrees of knowledge about
the constituent nouns. We find that adding tar-
geted knowledge, particularly about the com-
mon noun, results in performance gains of upto
2.8%. Finally, we integrate our model gener-
ated interpretations with an existing Open IE
system and observe an 7.5% increase in yield
at a precision of 85%. The dataset and code are
available at https://github.com/dair-iitd/pronci.

1 Introduction

Proper noun compounds (PNCs) (Breban et al.,
2019)1 are grammatical constructions where a
proper noun is followed by a common noun, for ex-
ample: Covid vaccines or Buddhist monks. These
often serve as a compact way to convey information
about an already known entity, omitting predicates
that are interpreted by the reader using surround-
ing context, common sense, and world knowledge.
For example, a reader is likely to interpret that
“Buddhist monks” are “religious people who are
buddhists”. In other cases, PNCs are used to iden-
tify specific entities, and do not provide additional

1also referred to as proper noun modified compounds.

information. For example, Watergate scandal and
Kawasaki disease do not have any implicit relation
between the proper and common noun as they refer
to a specific instance of a scandal and a disease.
Table 1 provides additional examples.

Thanks to their brevity, PNCs are commonly
used to shorten descriptions in space-constrained
domains, such as news articles headlines (Breban
et al., 2019). However, we find that prior work
on compound noun interpretations only considered
cases where the constituents are common nouns
(e.g. baby oil), thus missing all of the information
conveyed in proper noun compounds (Shwartz and
Waterson, 2018; Hendrickx et al., 2013).

To address this limitation in current systems, we
begin by defining the task of PNC interpretation
as two subsequent stages (Section 3). The first
stage requires identifying whether a given PNC is
compositional or not, while the second stage is the
generation of an interpretation, where applicable.

In Section 4, we present PRONCI, a crowd-
sourced dataset over Wikipedia containing 22.5K
proper noun compounds and their annotated se-
mantic interpretations. Candidates PNCs are found
using syntactic parsing, and are then presented to
crowdworkers who are asked to interpret them. Our
annotation interface marks whether workers needed
to read the full sentence, thus identifying PNCs
whose interpretation relies on context. We will
make the PRONCI dataset publicly available to
spur future research into PNCs.

In Section 5, we develop two approaches for
PNC interpretation: (1) a multi-task neural model
that performs classification and sequence gener-
ation in two distinct stages and (2) a text-to-text
approach, using a sequence-to-sequence model for
both classification and generation. In addition, we
experiment with different methods for injecting
various sources of world knowledge, which seems
crucial for the task, using external resources like
Wikipedia and WordNet (Fellbaum, 2010), that
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Type Example Semantic Interpretations

Proper NC Shakespeare biography is a biography about Shakespeare
(Proper-Common) London theatre is a theatre in London ; is a theatre located in London

Concorde airplane [NON-CMP] (Non-Compositional)
Notre-Dame cathedral [NON-CMP] (Non-Compositional)

Common NC nursing job is a job in nursing field ; is a job involving nursing
(Common-Common) oil price is price paid for the oil

Table 1: Examples of common and proper noun compounds along with their semantic interpretations (“;” separates
multiple interpretations). [NON-CMP] indicates the absence of implicit relation between the constituent nouns.

give relevant information or definitions about the
PNCs, that help in improving performance.

For evaluating the generated interpretations, we
propose a combination of classification-based met-
ric and generation metrics to properly handle both
the interpretable and non-interpretable cases, re-
spectively (Section 6). Since multiple correct inter-
pretations are possible for a PNC, we use learned
metrics such as BLEURT (Sellam et al., 2020), that
is finetuned on human-annotated preferences.

Finally, we show that training on PRONCI yields
models that can readily benefit extrinsic down-
stream application in the task of Open Information
Extraction (Banko et al., 2007), thus widely extend-
ing their coverage (Section 8). Our approach first
automatically extracts PNC interpretations using
our models, then introduces it explicitly back into
an Open IE extraction using a sequence to sequence
model, thus giving an interpretation-integrated ex-
traction. We then apply a high precision rule to
generate new relations which leads to a 7.5% in-
crease in yield at an estimated precision of 85% on
the added extractions, when compared to extrac-
tions generated from the original sentences them-
selves. A major advantage of this approach is that
it is agnostic to the Open IE system being used. To
conclude, our main contributions are:

1. We introduce the PRONCI dataset, contain-
ing interpretation for 22.5K proper noun com-
pounds and their semantic interpretations.

2. We develop multi-task and generation based
neural baselines that can leverage external
knowledge for achieving higher performance.

3. We design metrics for evaluating the quality
of generated semantic interpretations.

4. We demonstrate the usefulness of the gener-
ated interpretations in a downstream applica-
tion by using them to augment the expressivity
of Open IE systems.

2 Related Work

Noun compounds are commonly used in English
language, constituting 3.9% of the tokens in the
Reuters corpus (Baldwin and Tanaka, 2004). They
can be arbitrary length phrases, such as split air
conditioner, but most prior work on interpreting
noun compounds has primarily looked at two word
noun compounds of the type noun-noun, where
both are common nouns. To the best of our knowl-
edge challenges in interpretation where the first
word is a proper noun (i.e., proper noun com-
pounds) have not been addressed, although their
functional analysis and prevalence in certain do-
mains have been studied in linguistics (Rosen-
bach, 2007; Alexiadou, 2019; Breban et al., 2019).
We briefly summarise the various types of noun-
compound interpretations in literature and discuss
their uses in applications.

Types of interpretation: Various types of in-
terpretations for noun compounds have been ex-
plored, covering classification, ranking and gen-
eration. Prior literature has frequently posed the
interpretation as a classification task, where the
classes can belong to abstract labels (Fares, 2016),
semantic frame elements (Ponkiya et al., 2018)
or prepositions (Lauer, 1995) However, none of
these schemes can cover all range of possible noun
compounds, thus limiting their expressivity and
coverage. SemEval 2010 Task 9 (Butnariu et al.,
2009) annotates human preferences for a set of
25-30 templatized paraphrases for each of the 250
training and 300 testing noun compounds. The task
is framed as producing an accurate score for each
paraphrase that ranks them in the correct order.
SemEval 2013 Task 4 (Hendrickx et al., 2013) re-
leased a dataset of noun compounds and annotated
free paraphrases for each compound. Participating
models were evaluated by matching and scoring
the generated predictions with the gold set.
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Ponkiya et al. (2020) is the current state of art
which poses the problem as generation of masked
tokens using a pretrained T5 model (Raffel et al.,
2020) to get free paraphrase interpretations in a
completely unsupervised manner. This leads to bet-
ter performance than techniques that use the avail-
able training data. However, with the PRONCI
dataset, we do find that supervised models do out-
perform zero-shot models due to the scale.

Applications: Noun compound interpretations
have been helpful in translation of noun compounds
by either using a one-to-one mapping of interpreted
prepositions (Paul et al., 2010) or using recursive
translation patterns (Balyan and Chatterjee, 2015).
In Question Answering systems, they have been
used for disambiguating different types of noun-
noun compounds in passage analysis (Ahn et al.,
2005). They have also been useful for normalizing
text that can help textual entailment (Nakov, 2013)
and as auxiliary semantic annotation modules to
improve parsing (Tratz, 2011). In this work, we
show their use in the task of Open IE.

Open Information Extraction (Open IE)
(Banko et al., 2007; Mausam, 2016; Kolluru et al.,
2020b) involves extracting a set of tuples from the
sentence where each field of the tuple contains
phrases from the sentence itself. This makes it
ontology-agnostic and allows it to be used for
creation of domain agnostic Open Knowledge
Bases (Broscheit et al., 2020; Vashishth et al.,
2018; Gupta et al., 2019). The relations are often
verb-based (Fader et al., 2011) but can also be
noun-mediated (Pal and Mausam, 2016) or involve
implicit information (Soderland et al., 2015).

Fader et al. (2011) relied on high precision rules
to extract a wide variety of verb-mediated relations.
Soderland et al. (2015) uses dependency paths
for generating high precision extractions based on
three implicit relations, has job title, has city and
has nationality. Pal and Mausam (2016) consid-
ers noun mediated relations that can be extracted
from compound noun phrases while dealing with
challenges involved with denonyms and compound
relational nouns. However, none of them consider
implicit relations present in noun compounds.

Moreover, recent state of art Open IE systems
like OpenIE6 (Kolluru et al., 2020a) and Gen2OIE
(Kolluru et al., 2022) rely on bootstrapped exam-
ples (generated using OpenIE4 (Pal and Mausam,
2016; Christensen et al., 2011)) for training. There-

Task Instructions
1. Your goal is to describe the relation between the two
words by filling in the blanks.
2. You can write up to five words (or less!) 3. The
resulting relation should form a valid English sentence
(see below for an example).
4. You can consult an example sentence as additional
context, but the relation you write should be inferred only
from the two words, and not by additional information.
5. If it is a name, entity, location or if you can’t describe
the relation between the words, please leave the relation
blank.

Examples
1. Coke Spokesman is a worker of Coke.
2. Leake government is located in Leake.
3. Capitol Hill

Pitfalls
1. Coke Spokesman employment Coke.
The relation should form a valid sentence.
2. Leake government has a failed goverment.
The relation should be inferred by the words themselves
and not by additional context.

Table 2: Instructions for the task along with examples
and common pitfalls that are provided to the human
workers from AMT for constructing PRONCI dataset.

fore they only generate extractions that contain
phrases from the text and miss the cases where the
content words are implicit. OpenIE6 (Kolluru et al.,
2020a) adopts a pipeline approach to integrate con-
junction splitting into Open IE outputs, where co-
ordination analysis and sentence splitting is per-
formed as a preprocessing step, and the Open IE
extractions are generated from the split sentences
which are then merged.

3 Problem Definition

Interpretations of noun compounds are meant to
expose the expressed implicit relation. Free-form
paraphrases as interpretations provide flexibility for
expressing relations implied in noun compounds,
overcoming the limitations associated with choos-
ing from a fixed set of classes or templates at the
cost of a possibly non-consolidated representation,
i.e., where similar-meaning noun compounds are
represented differently. Hence, we define semantic
interpretation of a PNC as a free-form paraphrase
that exposes the implicit relation between the con-
stituent nouns, if any relation exists, else identify it
as non-compositional ([NON-CMP]).

SemInt(pnc) =

{
Paraphrase, if reln. exists
[NON-CMP], if reln. absent

10409



Figure 1: MTGEN, a multi-task Seq2Seq model classifies the example into (non) compositional classes and generates
the interpretation where valid, while the UNIGEN, an unified generation model, uses a Seq2Seq model to generate
interpretations or identify non-compositional examples using a specific string “is not compositional”.

4 PRONCI Dataset

To facilitate research in semantic understanding of
proper noun compounds, we collect and release
a supervised dataset as part of this work, which
we call the PRONCI dataset. It contains 22,500
PNCs and their semantic interpretations which are
annotated by human workers hired from Amazon
Mechanical Turk (AMT).

The scale of the dataset is orders of magnitude
greater than previously published free-paraphrase
(common) noun compound datasets like SemEval
2013 Task 4 (Hendrickx et al., 2013) that have
only considered 355 noun compounds. For han-
dling the evaluation of generated interpretations
where multiple correct answers are possible, prior
datasets choose to annotate multiple interpretations
for each noun compound (varying from 30-50). On
the other hand, PRONCI dataset only contains one
interpretation per noun compound as we choose to
invest our annotation budget in breadth rather than
depth, relying on recent advances in semantic text
similarity (e.g. BLEURT (Sellam et al., 2020)) to
help evaluate the generated interpretations.

Moreover, prior datasets consider noun com-
pounds out of context, while PRONCI also contains
the sentence in which the proper noun compound
is used. Providing this additional context helps to
limit the ambiguity associated with multiple pos-
sible interpretations of the noun compound. For
example, U.S. sanctions can mean either sanctions
imposed by U.S. or sanctions imposed on U.S. The
exact case can be determined based on the context
in which it is used. “U.S. sanctions on Iran have
crippled the country”, implies the former and “U.S.
sanctions by Iran...” implies the latter.

To prepare the PRONCI dataset, we randomly
sample sentences from Wikipedia, and retain sen-
tences which contain two-word proper noun com-
pounds as identified by the SpaCy dependency

parser (Honnibal et al., 2019). For every word,
SpaCy identifies the root word along with the de-
pendency tag. The “compound” dependency tag is
used if the word and its root are part of a compound
word. Then the parts of speech of the first and sec-
ond word of the compound are checked. If they
are proper noun (“PROPN”) and common noun
(“NOUN”) respectively, we identify it as a proper
noun compound and include it. If any word pairs
have been identified incorrectly as proper noun
compounds, they are marked by annotators to indi-
cate the absence of any relation.

After the collection of proper noun compounds
and corresponding sentences in which they appear,
we posted HITs on the AMT platform for identifica-
tion of relation between two words. The HITs were
accompanied by task instructions, summarized in
Table 2. The workers were paid 9 USD per hour
on average, based on initial annotation experiments
which indicated an average annotation time of 20
seconds on each compound.

To check the quality of annotation, we randomly
sample 100 examples and find them to be correct
93% of the time. This represents an acceptable
level, considering the difficulty of understanding
certain compounds that need technical knowledge
(AES key) or cultural background (Abner charac-
ters), as well as the subjectiveness in determining
non-compositionality.

5 Models

The task of semantic interpretation of proper noun
compounds involves generating valid paraphrases
that explicate the relation in cases which are compo-
sitional. So a model designed for this task needs to
first identify if the given noun compound is compo-
sitional ([CMP]) or not ([NON-CMP]), and generate
a paraphrase accordingly. We experiment with (1)
supervised neural models, (2) adding external infor-
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Knowledge Example

None Buddhist monks
Sentence Recent visitors to the campus include Buddhist monks who installed an environmental artwork at

Lower Pond. [SEP] Buddhist monks
WordNet-NN Buddhist meaning: Buddhism is a widespread Asian religion based on a series of original teachings

attributed to Gautama Buddha. [SEP] Buddhist monks
Wiki-NNP monks meaning: a male religious living in a cloister and devoting himself to contemplation and

prayer and work [SEP] Buddhist monks
NER-NNP Buddhist belongs to nationalities or religious groups [SEP] Buddhist monks

Table 3: Examples demonstrating the addition of different sources of knowledge for the compound, “Buddhist
monks”, in form of prompts that are concatenated with [SEP] token. NNP and NN correspond for information about
proper and common noun respectively, which can be from WordNet, Named Entity tags or Wikipedia.

mation and (3) zero/few-shot prompting models.

Supervised neural models: We use two types
of supervised neural models: (1) a multi-task and
(2) a unified generative model. Both models are
depicted in Figure 1. The multi-task neural model
uses a single model to perform both the tasks of
classification as well as generation. For classifi-
cation, the model uses the max-pooled representa-
tions of encoder hidden states that is passed to an
MLP (Maini et al., 2020) to get the corresponding
class probabilities of [CMP] and [NON-CMP]. In
case the example is classified as compositional, a
decoder is used for generating the paraphrase. We
refer to this model as MTGEN.

In the unified generation model, we follow the
recent advances in NLP where multiple tasks are
posed in a common text-to-text format and are han-
dled by a single Seq2Seq model like T5 (Raffel
et al., 2020). For this purpose, we pose the task
as a simple string generation problem that outputs
either the paraphrase itself in cases where it is in-
terpretable or generates the string “proper noun
compound is non-compositional” in the remaining
cases. We refer to this model as UNIGEN.

External information: Since the task of interpre-
tation requires knowledge of the noun compound,
we also experiment with adding different types
of knowledge to the model that help it in gener-
ating accurate interpretations. Various methods
have been proposed to incorporate external knowl-
edge into pre-trained language models (Wang et al.,
2021; Liu et al., 2022b; Verga et al., 2021). We use
a simple strategy of concatenating the knowledge
along with the proper noun compound before pass-
ing it to the model. A [SEP] token is added as a
demarcator to differentiate the added knowledge.

We use four sources of knowledge that pro-
vide further information about the noun compound.

They include information of the proper noun, from
(1) the first paragraph of Wikipedia that an entity
linking system links it to (Wiki-NNP), (2) tags as-
signed to it by the Named Entity Recognition sys-
tem (NER-NNP), or include information about the
common noun using (3) the corresponding synset
definitions provided in Wordnet (WordNet-NN), or
information about the entire compound based on
the (4) sentence in which it is used. An example of
each type of knowledge is shown in Table 3.

Zero/Few-shot prompting: Prior techniques for
noun compound interpretation such as (Ponkiya
et al., 2020) have proposed zero-shot generation
using pre-trained language models to achieve state-
of-art performance on SemEval 2013 Task 4 (Hen-
drickx et al., 2013) and SemEval 2010 Task 9 (But-
nariu et al., 2009). We therefore evaluate the per-
formance of such techniques along with some ex-
tensions using few-shot learning on the PRONCI
dataset. We find that there exists a significant gap
compared to finetuning on the supervised dataset,
demonstrating the importance of having a large
scale dataset for the task of PNC interpretation.

6 Experimental Setup

The 22,500 examples of PRONCI are split into
train, validation and test such that all compounds
with the same common noun occur exclusively in
a single set. Such splitting ensures that there is
no intersecting common noun in either the train or
evaluation splits. This results in a more challeng-
ing setting than splitting the examples randomly,
whose results are shown in Appendix B. Further,
we also consider subsets that contain only composi-
tional examples (CMP) or only non-compositional
examples (Non-CMP). The number of examples in
each case are shown in Table 4.

The dataset has 7,383 unique relations, with ev-
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Type #Train #Validation #Test #Total

CMP 9,722 1,416 2,497 14,389
Non-CMP 5,568 934 1,609 8,111

All 15,290 2,350 4,106 22,500

Table 4: Number of training, validation and testing
examples in the PRONCI dataset. CMP indicates the
subset that contains only compositional examples and
constitute 63.9% of the examples. Non-CMP indi-
cates the complementary subset that contains only non-
compositional examples and constitute the remaining
36.1% of the examples.

Figure 2: Plot of relation distribution in the PRONCI
dataset. It shows the number of relations that have a
frequency of 1 to 9 and >=10.

ery relation occurring in an average of 1.84 exam-
ples. It contains 6,061 relations that occur only
once in the dataset, as shown in Figure 2. The
top 5 most commonly occurring relations along
with their frequency (indicated in brackets) are is
located in (560), is based in (389), are relatives of
(245), is an area of (215) and are located in (125).
Evaluation metrics: Since the task involves a com-
bination of classification and generation, the eval-
uation metric uses either exact match or semantic
similarity depending on the type of example. If an
example has either the model prediction (p) or the
gold annotation (g) as non-compositional, then an
exact match (EX-MATCH) between the prediction
and gold gives a binary score of 0 or 1. In ex-
amples where both the gold annotation and model
prediction are compositional, a semantic matching
algorithm (SEM-MATCH) is used to give a score
between 0 and 1 which indicates the extent of their
similarity.

Score(g,p) =

{
SEM-MATCH(g,p), if CMP
EX-MATCH(g,p), if Non-CMP.

In particular, we compare two alternatives for

SEM-MATCH: (1) the rule-based popular BLEU
score, relies on n-gram overlap, and often used in
machine translations; and (2) BLEURT, which is
finetuned over pretrained language model and rep-
resents a recent trend in trained evaluation metrics
for text generation tasks.

In both alternatives, we use the entire paraphrase
to evaluate the semantic score as evaluating only
the relations does not suit metrics such as BLEURT,
which expects a full-formed sentence to infer the
semantic meaning. Evaluation of the quality of
BLUERT for similarity between predicted and gold
paraphrases using 1K human annotated judgements
indicates a 0.57 Pearson and 0.56 Kendall correla-
tion. We follow standard protocols in evaluating
metric quality, as used in WMT Metrics shared
tasks, and ask human annotators to rate the compo-
sitional model predictions as good, average and bad
and see how these judgement scores correlate with
the BLEU and BLEURT scores. Further details are
provided in Appendix A.

We denote the final evaluation metric as
SEM/EX-MATCH. When using BLEU or BLEURT
as the semantic matcher, the metric is also referred
to as BLEU/EX or BLEURT/EX, respectively. To
understand the effect of each type of match, we
also report the EX-MATCH classification accuracy
over all the examples, where the compositional
type is assigned the positive class, and the non-
compositional type is assigned as the negative class.
Along with binary accuracy, we compute the pre-
cision and recall as well. Since the SEM-MATCH

cannot be computed over all examples, we report
the scores averaged over only the cases where both
gold and prediction are compositional.

Pre-trained models: For all our experiments, we
use the T5-base (Raffel et al., 2020) as the default
initialization, unless explicitly mentioned other-
wise. It contains 220M parameters. For checking
the statistical consistency, every model is trained
5 times with different seeds and their mean and
standard deviation are reported.

Hyper-parameters and computational re-
sources: We run all our experiments using a
V100 GPU. We use the standard hyper-parameters
recommended in T5 for all the experiments, using
a batch size of 16, initial learning rate of 2e-5. The
final model is chosen using early stopping on the
validation set after training for 10 epochs. Each
round of training and evaluation takes around 1 hr.
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Model Knowledge EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

MTGEN

None 79.1 ± 1.37 67.1 ± 1.84 79.5 ± 0.58 32.7 ± 1.61 57.9 ± 0.42 44.3 ± 1.05 57.5 ± 0.66

Sentence 78.1 ± 1.51 68.4 ± 2.50 79.4 ± 0.25 34.7 ± 0.36 58.3 ± 0.76 45.7 ± 0.60 57.8 ± 0.75

WordNet-NN 74.2 ± 3.71 76.4 ± 5.68 79.4 ± 1.08 33.2 ± 1.08 57.6 ± 0.51 47.1 ± 0.92 58.9 ± 0.76

Wiki-NNP 52.8 ± 2.43 90.6 ± 3.02 63.2 ± 2.96 24.0 ± 0.36 32.9 ± 2.38 43.0 ± 0.50 45.4 ± 0.98

NER-NNP 79.1 ± 0.63 67.7 ± 1.63 79.7 ± 0.55 34.5 ± 0.23 59.2 ± 0.37 45.4 ± 0.51 58.3 ± 0.68

UNIGEN

None 73.5 ± 2.99 74.4 ± 2.26 78.7 ± 1.40 34.1 ± 1.99 58.6 ± 0.78 46.7 ± 1.12 58.6 ± 0.94

Sentence 73.0 ± 1.57 77.6 ± 1.83 79.3 ± 0.55 34.4 ± 0.81 58.8 ± 0.68 47.9 ± 0.41 59.5 ± 0.57

WordNet-NN 65.3 ± 5.76 82.9 ± 5.05 74.5 ± 3.74 33.7 ± 0.88 56.5 ± 0.65 47.4 ± 0.45 56.7 ± 1.52

Wiki-NNP 65.3 ± 3.05 66.3 ± 5.50 71.8 ± 1.32 25.7 ± 0.59 37.8 ± 2.13 38.4 ± 1.55 43.9 ± 1.09

NER-NNP 75.7 ± 0.95 72.3 ± 1.52 79.4 ± 0.21 35.2 ± 0.23 59.4 ± 0.40 46.9 ± 0.45 59.0 ± 0.42

Table 5: Performance of MTGEN and UNIGEN on the PRONCI dataset trained under five different knowledge
settings. All the models are evaluated using the three types of matching. ‘None’ corresponds to using no external
knowledge. Adding external knowledge improves the performance of the models in three out of four cases.

Model EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

Ponkiya et al. (2020) 0.0 0.0 60.8 23.1 44.9 13.8 26.8
Rand Few-Shot (5) 37.3 11.0 55.3 27.7 40.2 18.5 25.1
Rand Few-Shot (10) 62.1 21.4 58.2 27.6 39.3 22.3 28.2
KNN Few-Shot (5) 68.7 43.6 69.1 29.9 46.1 33.1 41.4
KNN Few-Shot (10) 67.1 50.5 69.9 29.9 46.9 35.2 43.7

Table 6: Performance of T5 model without any finetuning. Ponkiya et al. (2020) corresponds to the zero-shot setting
adapted from the corresponding paper. Few-shot techniques use either five or ten example demonstrations. In
‘Rand’ the few-shot examples are chosen randomly while in ‘KNN’ the nearest neighbours of the query are chosen
as the few-shot examples. Availability of annotated examples from PRONCI helps to substantially improve the
performance of the model. Overall performance remains inferior to the finetuned models.

7 Experiments

In this section, we address the following questions:

1. How do UNIGEN and MTGEN compare with
each other and what benefit does adding exter-
nal knowledge provide to these models?

2. What is the performance difference between
few-shot learning and supervised training?

3. How do individual components of the noun
compound influence the model predictions?

7.1 Performance of Supervised Models

In Table 5, we show the results of both, the multi-
task model, MTGEN and the unified generation
model, UNIGEN (Section 5).

We find that the UNIGEN model outperforms the
MTGEN model in overall performance but leads to
a modest drop in the compositionality classification
performance. For example, in the case where no
additional knowledge is used, UNIGEN leads to a
higher SEM/EX-MATCH score with both BLEU
and BLEURT leading to an increase of (2.4, 1.1)

pts. But UNIGEN achieves a lower classification
score with the EX-MATCH accuracy reducing by
0.8%. We attribute this observation to the fact that
MTGEN uses a separate module that enables it to
be tuned better for the classification task. However,
UNIGEN performs better in overall performance
as both the encoder and decoder can benefit from
positive transfer between the tasks.

By adding knowledge to the model, using the
prompting described in Table 3, at both training
and testing time, we see gains in performance in
three out of four types of knowledge added. Using
information of the proper noun from Wikipedia of-
ten reduces the performance due to incorrect entity
linking. Among the the remaining three sources of
knowledge, we find that WordNet-NN leads to the
maximum increase in performance in three of the
four settings. We find that the predicted interpre-
tations are often biased to re-use words that occur
in the knowledge prompts and this leads to higher
scores in case of less frequently occurring com-
pounds. For instance, the prediction changes from
“Kirati community is a group of Kirati” to “Kirati
community are people of Kirati”, when added with
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the knowledge, “Major groups of Kirati community
follows Buddhism”. Using student paired t-test we
find that improvements are statistically significant
with p-value of 3.78e−10 of BLEURT scores aver-
aged over all 5 seeds. We do not find additional
improvements when multiple knowledge sources
are added simultaneously (Appendix E).

Predictions of UNIGEN trained with sentence
knowledge are rated to be 72% correct when
checked manually on a sample of 100 sentences.
This indicates a significant scope for improvement,
when compared to the upper bound of 93% data
quality (Section 4).

We conduct two further experiments on the
trained UNIGEN model to understand the strength
of semantic matching used and the effectiveness
of the model on the related task of common noun
compound interpretation.

Template scoring: To test the effect of template
word matching on BLEU and BLEURT scores, we
introduce a dummy relation: i.e., the prediction for
every non-compositional example is forced to be
‘noun-compound is none of common-noun’. This
ensures that only template words match, but the
semantic meaning is wrong. On re-computing the
SEM-MATCH scores of UNIGEN, this reduces the
BLEU score from 34.1 to 22.9 and BLEURT score
from 46.7 to -3. This follows the expected trend as
BLEU gives partial scores to template matches, but
BLEURT focuses on the overall semantic meaning.

SemEval evaluation: When UNIGEN is evalu-
ated on the free noun compound paraphrasing task
of SemEval 2013 Task 4 (Hendrickx et al., 2013), it
achieves an isomorphic score of 72.8 compared to
80.1 reported by Ponkiya et al. (2018). We attribute
this to different interpretation styles with PRONCI
focusing on detailed relations (average length of
6.9 words) compared to SemEval (average length
of 5.1 words), leading to slightly lower scores with
word match heuristics adopted by the task.

7.2 Performance of few-shot learning

State-of-art models for free paraphrase interpreta-
tions of common noun compounds (Ponkiya et al.,
2020) uses the zero-shot generation capabilities of
T5 and show that they outperform supervised mod-
els. To check if the same holds for the PRONCI
dataset, we experiment with zero-shot generation.
Similar to (Ponkiya et al., 2020), we use the masked
template, “w1w2 is a <extra_id_0> the w1”, where

T5 fills in the missing words in place of <ex-
tra_id_0>.

We further experiment with few-shot learning,
where K training examples are chosen as part of
the prompt which the model can use to perform
in-context learning and generate the prediction for
the given input. No additional knowledge is used in
these set of experiments. These K examples can ei-
ther be chosen randomly or the nearest neighbours
to the input query can be chosen, where cosine dis-
tance between the input and a training example is
computed after embedding them with a pre-trained
T5-Encoder (Liu et al., 2022a). We experiment
with K = 5 or 10. The limitations of context size in
the pretrained models prevent us from testing with
higher values of K.

In Table 6, we find that the zero-shot per-
formance trails behind the best few-shot model
with a decrease of 21.4, 41 pts in BLEU/EX,
BLEURT/EX, respectively. This is partly because
of the variety of examples in the PRONCI dataset,
which cannot be fit into specific templates and
the inability of zero-shot model to handle non-
compositional examples. In few-shot learning, ex-
panding the prompt size and dynamically choosing
the prompt examples helps achieve higher perfor-
mance but the performance still remains lower than
the fully-supervised UNIGEN model which is still
11.2, 15.3 pts higher in BLEU/EX, BLEURT/EX.

7.3 Proper noun vs. Common noun

The interpretation of a proper noun compound de-
pends on both the proper noun and common noun
present in it. To study how each of the two nouns
influence the prediction, we randomly shuffle the
their characters in both input and gold annotation.

In Table 7, we find that common noun has a
larger effect on the model performance as shuf-
fling its characters leads to a significant drop per-
formance of (5.8, 17.6, 35) pts in (BLEU/EX,
BLEURT/EX, EX-MATCH Accuracy%). Compar-
atively, the proper noun results in a much smaller
drop of (3.1, 8, 16.3) pts in the three evaluation
metrics.

8 Application to Open IE

To demonstrate the downstream value of the noun
compound interpretations, we add them to a state-
of-art Open IE system, Gen2OIE (Kolluru et al.,
2022), and generate new extractions that capture
implicit relations. We apply this on a corpus of
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Shuffle EX-MATCH SEM/EX-MATCH

Accuracy BLEU BLEURT

None 78.7 ± 1.40 46.7 ± 1.12 58.6 ± 0.94

NNP 62.4 ± 0.97 43.6 ± 1.01 50.6 ± 0.44

NN 43.7 ± 1.02 40.9 ± 0.15 41.0 ± 0.16

Table 7: UNIGEN evaluated after random shuffling of
characters in the proper (NNP) or common (NN) noun.

21,228 COVID-19 news headlines that contain
proper noun compounds like COVID-19 outbreak,
Rohingya refugee, etc (Aslam et al., 2020).

Integration: To achieve this, we train a Seq2Seq
model that takes as input the sentence concatenated
with the interpretation of the PNC present in it and
outputs an interpretation-augmented sentence. For
example, the sentence, “Workers sound alarm on
Covid-19 outbreak” and the interpretation, “Covid-
19 outbreak is an outbreak of Covid-19” are inte-
grated to get the following output, “Workers sound
alarm on outbreak of Covid-19”. Considering the
simplicity of the task, we annotate a small set of
200 examples of this kind and use it to train a
Seq2Seq model. Since this style of integration con-
verts the implicit relation in the noun compound to
an explicit form, it allows for the Open IE system
to add new relations that were missing earlier.

Processing: We experiment with a high precision
rule that post-processes an extraction to generate a
new one, whenever the extraction contains a PNC
at the start of its object. For example, if the original
extraction is (Workers; sound alarm on; COVID-
19 outbreak), and the corresponding integrated ex-
traction is (Workers; sound alarm on; outbreak of
COVID-19), then the rule generates a new extrac-
tion by moving words till the proper noun back
into the relation. In this case, we get the extraction,
(Workers; sound alarm on outbreak of; COVID-19)
– thus exposing a direct relationship between work-
ers and COVID-19, which was not present earlier.
The overall pipeline is shown in Figure 3.

We find that extractions generated using this
pipeline leads to an increase in yield of 7.5% where
the added extractions have a precision of 85%, com-
pared to a precision of 82.2% of the original extrac-
tions, as determined on a random sample of 500
extractions. We note that the method can use any
Open IE system without any additional finetuning
to produce the noun-compound extractions.

Figure 3: Open IE Pipeline. Postprocessing of the ex-
traction integrated with noun compound interpretation,
generates the new extraction.

9 Conclusion

In this work we develop the novel task of seman-
tic intepretation of proper noun compounds. We
present the PRONCI dataset for the task and test
performance of various neural models. We show
the downstream utility of generated interpretations
by integrating it with an Open IE system that re-
sults in generation of new extractions involving im-
plicit relations. Linguistic characterization of non-
compositionality and utilizing additional sources
of knowledge present scope for further work.

10 Limitations

The proposed models are evaluated on a specific
test set, which may not be representative of all the
types of examples that it may encounter during
deployment. Due to the use of pretrained models,
the system may also exhibit possible biases that
have been discovered in the pretrained models.
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“Covid vaccine is against Covid but Oxford vaccine is made at Oxford!”
Semantic Interpretation of Proper Noun Compounds

(Appendix)

A Quality Assesment of Evaluation
Metrics

For evaluating the quality of the metrics that are
used for evaluating the model predictions, in partic-
ular, the semantic matching component Section 6,
we manually annotate the quality of model predic-
tions with respect to gold using a 3-index scale.
The scale indicates whether the quality of the pre-
diction is bad, average or good. This is done only
for the cases where the gold annotation indicates
that the compound is compositional and the predic-
tion of the model is also a paraphrase, as semantic
matching is applicable only in these cases. A total
of 1500 examples are annotated out of which 500
are used for finetuning the learned metrics such as
BLEURT. On the remaining 1K examples, we com-
pute the Pearson and Kendall correlation between
the scores assigned by the evaluation metric and
the human annotated scores. We report the results
in Table 8 for five evaluation metrics which include
BLEU, BLEURT with and without finetuning on
both the base and large variants. We find that the
fine-tuned BLEURT outperforms both BLEU and
the un-trained BLEURT. It specifically outperforms
BLEU by a significant margin from 0.28 to 0.57 in
Pearson correlation and 0.23 to 0.46 in Kendall cor-
relation. We find that the performance of both the
base and large variants of BLEURT perform simi-
larly after being finetuned and a minor difference
exists in their untuned variants.

We note that the correlation of 0.57 is on par
with the current state of NLG metrics. For ex-
ample, Chen et al. (2020), reports a correlation
of 0.45-0.60 for standard metrics such as BLEU,
BERTScore (Zhang et al., 2020) on short-text eval-
uation. To further encourage research in building
better generation metrics, we release the human
judgements of the interpretations.

B Random Split of PRONCI

In this section, we evaluate the results of UNIGEN

and MTGEN on a random split of the PRONCI
dataset, where the 22,500 examples are randomly
split into 17,500 training, 2,500 validation and
2,500 testing examples. The results are reported in
Table 9 and Table 10. We find that the performance
is higher compared when split according to com-

Metric Pearson
|ρ|

Kendall
τ

BLEU 0.28 0.23
BLEURT-base 0.43 0.37
BLEURT-large 0.49 0.4
BLEURT-base (tuned) 0.56 0.46
BLEURT-large (tuned) 0.57 0.46

Table 8: Quality of metrics evaluated using Pearson and
Kendall rank correlation. (tuned) indicates models that
are fine-tuned on 500 manually evaluated comparisons.

mon nouns. This can be attributed to the lack of
intersecting common nouns between the training
and evaluation sets that could have provided addi-
tional clues. This leads to a drop in (BLEU/EX,
BLEURT/EX, EX Acc%) scores of (5.7, 5.4, 3.3)
pts in MTGEN and (5.3, 4.6, 2.9) pts in UNIGEN.

C Effect of Pretraining

To understand the effect pretraining has on the ef-
fect of model performance for the task of seman-
tic interpretation of proper noun compounds, we
re-train the UNIGEN on the NOUN split starting
from random initialization, instead of using T5-
base, the default in all of our experiments. We
also experiment with using T5-large. We report
the results in Table 11. We find that Random ini-
tialization is considerably worse, where the scores
reduces from 46.7 to 33.9 in BLEU/EM and 58.6
to 30.5 in BLEURT/EM. This indicates that pre-
trained initialization plays a significant role in the
final performance on the task. Moreover, on exper-
imenting with the larger model, T5-large, we find
a slight increase in scores from (46.7, 58.6, 78.7)
to (47.7, 58.7, 79.4) in (BLEU/EM, BLEURT/EM,
CMP). Thus the task can benefit from scaling of
the language models as they typically gain more
information about the common and proper nouns.

D Error Analysis

We analyze the mistakes made by the UNIGEN

model trained with Sentence Knowledge to find
potential scopes for improvement. We divide them
into the following categories -

1. Lack of word sense disambiguation: We no-
tice mistakes in the model predictions in cases
when some words have multiple meanings.

10418



Model Knowledge EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

MTGEN

None 78.2 ± 1.14 74.5 ± 1.48 82.8 ± 0.25 40.5 ± 0.58 63.8 ± 0.36 50.0 ± 0.39 62.9 ± 0.29

Sentence 76.9 ± 1.70 78.6 ± 1.38 83.3 ± 0.69 40.4 ± 0.43 63.2 ± 0.30 51.1 ± 0.25 63.4 ± 0.50

WordNet-NN 76.4 ± 1.30 80.5 ± 1.95 83.5 ± 0.36 40.8 ± 0.63 63.3 ± 0.40 51.8 ± 0.55 63.8 ± 0.47

Wiki-NNP 51.7 ± 1.04 94.7 ± 0.82 65.2 ± 1.41 25.9 ± 1.26 36.0 ± 3.80 42.9 ± 0.44 46.0 ± 1.14

NER-NNP 75.4 ± 2.19 80.5 ± 3.06 82.9 ± 0.45 40.5 ± 0.79 63.4 ± 0.62 51.4 ± 0.29 63.5 ± 0.26

UNIGEN

None 71.7 ± 0.68 83.4 ± 1.07 81.6 ± 0.21 41.5 ± 0.16 63.7 ± 0.17 52.0 ± 0.24 63.2 ± 0.15

Sentence 72.1 ± 0.32 83.6 ± 0.44 81.9 ± 0.19 41.3 ± 0.19 63.4 ± 0.45 52.0 ± 0.12 63.3 ± 0.17

WordNet-NN 71.0 ± 1.71 86.2 ± 1.23 81.7 ± 0.88 42.0 ± 0.40 64.0 ± 0.39 52.9 ± 0.34 63.8 ± 0.42

Wiki-NNP 68.6 ± 2.08 68.2 ± 1.93 76.5 ± 0.82 26.1 ± 0.78 39.0 ± 2.18 38.7 ± 0.42 45.3 ± 1.25

NER-NNP 71.9 ± 0.98 81.8 ± 1.70 81.3 ± 0.25 41.6 ± 0.34 64.2 ± 0.68 51.6 ± 0.42 63.1 ± 0.49

Table 9: Performance of the two models, MTGEN and UNIGEN on the randomly split PRONCI dataset trained
under five different knowledge settings.

Model EX-MATCH SEM-MATCH SEM/EX-MATCH

Precision Recall Accuracy BLEU BLEURT BLEU BLEURT

Ponkiya et al. (2020) 0.0 0.0 62.8 22.9 44.1 14.4 27.7
Rand Few-Shot (5) 53.7 1.2 63.0 27.6 41.2 17.7 26.2
Rand Few-Shot (10) 37.7 33.6 54.4 28.8 42.2 24.7 29.7
KNN Few-Shot (5) 70.5 53.0 74.3 34.8 51.7 38.7 48.0
KNN Few-Shot (10) 68.4 60.1 74.8 35.4 53.2 41.0 50.3

Table 10: Performance of T5 model without any finetuning on the random split of PRONCI dataset.

Init EX-MATCH SEM/EX-MATCH

Accuracy BLEU BLEURT

Random 63.9 ± 1.98 33.9 ± 1.25 30.5 ± 1.27

T5-base 78.7 ± 1.40 46.7 ± 1.12 58.6 ± 0.94

T5-large 79.4 ± 0.11 47.7 ± 0.29 58.7 ± 0.35

Table 11: Performance of the UNIGEN model on the
PRONCI dataset trained using different initializations
of the Seq2Seq model. Random initialization leads to
huge drop in performance.

The model defaults to choosing the one with
most frequent usage and not disambiguating
properly based on the context. For example,
the the interpretation, “Sunday strip is a comic
printed on a Sunday” is mistaken as “Sunday
strip is a show on Sunday”, even when the
sentence contains sufficient clues for the same.
The given sentence is “In a few cases, the top-
per introduced characters later developed into
a successful Sunday strip.”

2. Non Informative predictions: Although pre-
dictions are not wrong they are often not very
informative. For example, the model produces
the following interpretation, “EU economies
are based in EU” compared to the more de-
tailed gold “EU economies are the financial
condition of EU members”.

Knowledge EX-MATCH SEM/EX-MATCH

Accuracy BLEU BLEURT

Sentence 79.3 ± 0.55 47.9 ± 0.41 59.5 ± 0.57

+WNet-NN 77.4 ± 2.14 46.5 ± 1.48 57.4 ± 1.63

+Wiki-NNP 74.0 ± 1.62 38.9 ± 4.21 46.1 ± 6.38

+NER-NNP 79.4 ± 0.23 47.0 ± 0.52 58.9 ± 0.40

Table 12: Performance of the UNIGEN model on
PRONCI dataset trained with additional sources of
knowledge added over Sentence knowledge. The addi-
tional sources do not provide further benefits.

3. Errors in evaluation and mistakes in Gold: In
some cases, the evaluation metric is unable
to capture semantic similarity. For example,
the model prediction “Baltimore hospitals are
located in Baltimore” and the gold, “Balti-
more hospitals are medical institutions in Bal-
timore”, has a BLEURT score of only -0.11.

E Adding multiple sources of knowledge

In Section 7, we observed statistically significant
benefits to model performance after adding infor-
mation about the noun compound from various
sources of knowledge. We also experiment with
adding information from multiple source of knowl-
edge to see if it can further augment the model
performance. On taking the best performing Sen-
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tence knowledge in the UNIGEN model on NOUN
split, we add the remaining three sources of knowl-
edge and report their performance in Table 12. We
find that it results in a slightly decrease in perfor-
mance in case of WNet-NN and NER-NNP and
in case of Wiki-NNP the decrease is much greater
because of the reduced quality of Wikipedia enti-
ties. We attribute this to possible confusion arising
from disparate sources of knowledge that highlight
different parts of the noun compound.
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