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Abstract

There have been many proposals to reduce
constituency parsing to tagging in the lit-
erature. To better understand what these
approaches have in common, we cast several
existing proposals into a unifying pipeline
consisting of three steps: linearization, learn-
ing, and decoding. In particular, we show
how to reduce tetratagging, a state-of-the-art
constituency tagger, to shift–reduce parsing
by performing a right-corner transformation
on the grammar and making a specific
independence assumption. Furthermore, we
empirically evaluate our taxonomy of tagging
pipelines with different choices of linearizers,
learners, and decoders. Based on the results
in English and a set of 8 typologically diverse
languages, we conclude that the linearization
of the derivation tree and its alignment with
the input sequence is the most critical factor
in achieving accurate taggers.

https://github.com/rycolab/

parsing-as-tagging

1 Introduction

The automatic syntactic analysis of natural
language text is an important problem in natural
language processing (NLP). Due to the ambiguity
present in natural language, many parsers for
natural language are statistical in nature, i.e., they
provide a probability distribution over syntactic
analyses for a given input sequence. A common
design pattern for natural language parsers is to
re-purpose tools from formal language theory that
were often designed for compiler construction
(Aho and Ullman, 1972), to construct probability
distributions over derivation trees (syntactic
analyses). Indeed, one of the most commonly
deployed parsers in NLP is a statistical version
of the classic shift–reduce parser, which has been
widely applied in constituency parsing (Sagae and
Lavie, 2005; Zhang and Clark, 2009; Zhu et al.,
2013), dependency parsing (Fraser, 1989; Yamada
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Figure 1: We subdivide parsing-as-tagging schemes
into three steps: 1) linearization, 2) learning, and 3)
decoding. The figure depicts how subdivision affects
the parsing of the sentence She enjoys reading papers
with pre-order linearization.

and Matsumoto, 2003; Nivre, 2004), and even for
the parsing of more exotic formalisms, e.g., CCG
parsing (Zhang and Clark, 2011; Xu et al., 2014).

Another relatively recent trend in statistical
parsing is the idea of reducing parsing to tagging
(Gómez-Rodríguez and Vilares, 2018; Strzyz
et al., 2019; Vilares et al., 2019; Vacareanu et al.,
2020; Gómez-Rodríguez et al., 2020; Kitaev and
Klein, 2020). There are a number of motivations
behind this reduction. For instance, Kitaev and
Klein (2020) motivate tetratagging, their novel
constituency parsing-as-tagging scheme, by its
ability to parallelize the computation during
training and to minimize task-specific modeling.
The proposed taggers in the literature are argued to
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exhibit the right balance in the trade-off between
accuracy and efficiency. Nevertheless, there are
several ways to cast parsing as a tagging problem,
and the relationship of each of these ways to
transition-based parsing remains underdeveloped.

To better understand the relationship between
parsing as tagging and transition-based parsing, we
identify a common pipeline that many parsing-as-
tagging approaches seem to follow. This pipeline,
as shown in Fig. 1, consists of three steps: lin-
earization, learning, and decoding. Furthermore,
we demonstrate that Kitaev and Klein’s (2020)
tetratagging may be derived under two additional
assumptions on a classic shift–reduce parser: (i) a
right-corner transform in the linearization step and
(ii) factored scoring of the rules in the learning step.
We find that (i) leads to better alignment with the in-
put sequence, while (ii) leads to parallel execution.

In light of these findings, we propose a taxonomy
of parsing-as-tagging schemes based on different
choices of linearizations, learners, and decoders.
Furthermore, we empirically evaluate the effect that
the different choice points have on the performance
of the resulting model. Based on experimental
results, one of the most important factors in
achieving the best-performing tagger is the order
in which the linearizer enumerates the tree and the
alignment between the tags and the input sequence.
We show that taggers with in-order linearization
are the most accurate parsers, followed by their
pre-order and post-order counterparts, respectively.

Finally, we argue that the effect of the lineariza-
tion step on parsing performance can be explained
by the deviation between the resulting tag sequence
and the input sequence, which should be minimized.
We theoretically show that in-order linearizers
always generate tag sequences with zero deviation.
On the other hand, the deviation of pre- and
post-order linearizations in the worst case grows in
order of sentence length. Empirically, experiments
on a set of 9 typologically diverse languages show
that the deviation varies across languages and nega-
tively correlates with parsing performance. Indeed,
we find that the deviation appears to be the most
important factor in predicting parser performance.

2 Preliminaries

Before diving into the details of parsing as
tagging, we introduce the notation that is used
throughout the paper. We assume that we have
a weighted grammar in Chomsky normal form

G = 〈N ,S,Σ,R〉 where N is a finite set of
nonterminal symbols, S ∈ N is a distinguished
start symbol, Σ is an alphabet of terminal symbols,
and R is a set of productions. Each production
can take on two forms, either X → Y Z, where
X,Y,Z ∈ N , or X → x, where X ∈ N and
x ∈ Σ.1 Let w = w1w2 · · ·wN be the input se-
quence of N words, where wn ∈ Σ. Next, we give
a definition of a derivation tree dw that yields w.

Definition 1 (Derivation Tree). A derivation tree
dw is a labeled and ordered tree. We denote the
nodes in dw as ξ. The helper function ρ(·) returns
the label of a node. If the node is an interior node,
then ρ(ξ) = X where X ∈ N . If the node is a leaf,
then ρ(ξ) = w where w ∈ Σ.

Note that under Def. 1 a derivation tree dw must
have |w| = N leaves, which, in left-to-right order,
are labeled as w1, w2, . . . , wN . We additionally
define the helper function π that returns the produc-
tion associated with an interior node. Specifically,
if ξ is an interior node of dw in a CNF grammar,
then π(ξ) returns either ρ(ξ) → ρ(ξ′) ρ(ξ′′) if ξ
has two children ξ′ and ξ′′ or ρ(ξ)→ ρ(ξ′) if ξ has
one child ξ′. We further denote the non-negative
weight of each production in the grammar with
score ≥ 0.2 We now define the following distribu-
tion over derivation trees:

p(dw | w) ∝
∏

ξ∈dw
score(π(ξ)) (1)

where we abuse notation to use set inclusion ξ ∈
dw to denote an interior node in the derivation tree
dw. In words, Eq. (1) says that the probability of a
derivation tree is proportional to the product of the
scores of its productions.

3 Linearization

In this and the following two sections, we go
through the parsing-as-tagging pipeline and dis-
cuss the choice points at each step. We start with
the first step, which is to design a linearizer. The
goal of this step is to efficiently encode all we need
to know about the parse tree in a sequence of tags.

Definition 2 (Gómez-Rodríguez and Vilares
(2018)). A linearizer is a function Φw : Dw →
T M that maps a derivation tree dw to a sequence of

1We assume that the empty string is not in the yield of
G—otherwise, we would require a rule of the form S→ ε.

2Note that, for every w, we must have at least one deriva-
tion tree with a non-zero score in order to be able to normalize
the distribution.
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Linearizations

a
pre
w Φ

pre
w (dw) Φ

post
w (dw) Φin

w(dw)

REDUCE(S→PRPVP) 1 : ⇒(S) 2 : → 2 : →
SHIFT(PRP→She) 2 : → 4 : → 1 : ⇒(S)

REDUCE(VP→VVP) 3 : ⇒(VP) 6 : → 4 : →
SHIFT(V→enjoys) 4 : → 7 : → 3 : ⇒(VP)

REDUCE(VP→VN) 5 : ⇒(VP) 5 : ⇒(VP) 6 : →
SHIFT(V→reading) 6 : → 3 : ⇒(VP) 5 : ⇒(VP)
SHIFT(N→papers) 7 : → 1 : ⇒(S) 7 : →

Derivation Tree: dw

S 1

PRP 2

She

VP 3

V 4

enjoys

VP 5

V 6

reading

N 7

papers

Table 1: Examples of different linearizations for the derivation tree of the sentence She enjoys reading papers.
Note that apre

w is the action sequence of a shift–reduce parser, Φpre
w (dw) is the pre-order linearization, Φpost

w (dw) is
the post-order linearization, and Φin

w(dw) is the in-order linearization (tetratagger).

tags of length M , whereDw is the set of derivation
trees with yield w, T is the set of tags, M isO(N),
and N is the length of w. We further require that
Φw is a total and injective function. This means
that each derivation tree dw in Dw is mapped to a
unique tagging sequence t, but that some tagging
sequences do not map back to derivation trees.

We wish to contextualize Def. 2 by contrasting
parsing-as-tagging schemes, as formalized in
Def. 2, with classical transition-based parsers. As
written, Def. 2 subsumes many transition-based
parsers, e.g., Nivre’s (2008) arc-standard and
arc-eager parsers.3 However, in the case of most
transition-based parsers, the linearizer Φw is a
bijection between the set of derivation trees Dw

and the set of valid tagging sequences, which we
denote as Tw ⊂ T M . The reason for this is that
most transition-based parsers require a global
constraint to ensure that the resulting tag sequence
corresponds to a valid parse.

In contrast, in Def. 2, we require a looser
condition—namely, that Φw : Dw → T M is
an injection. Therefore, tagging-based parsers
allow the prediction of invalid linearizations, i.e.,
sequences of tags that cannot be mapped back to
a valid derivation tree. More formally, the model
can place non-zero score on elements in T M \ Tw.
However, the hope is that the model learns to place
zero score on elements in T M \ Tw, and, thus,
enforces a hard constraint. Therefore, parsing-as-
tagging schemes come with the advantage that
they make use of a simpler structure prediction

3Nivre (2008) discusses dependency parsers, but both arc-
standard and arc-eager can be easily modified to work for
constituency parsing, the subject of this work.

framework, i.e., tagging. Nevertheless, in practice,
they still learn a useful parser that only predicts
valid sequences of tags due to the expressive power
of the neural network backbone.

3.1 Pre-Order and Post-Order Linearization
In this section, we discuss how to define lineariz-
ers based on the actions that shift–reduce parsers
take. A shift–reduce parser gives a particular lin-
earization of a derivation tree via a sequence of
SHIFT and REDUCE actions. A top-down shift–
reduce parser enumerates a derivation tree dw in a
pre-order fashion, taking a SHIFT(X→ x) action
when visiting a node ξ with π(ξ) = X → x, and
a REDUCE(X → Y Z) action when π(ξ) = X →
Y Z. The parser halts when every node is visited.
As an example, consider the sentence: She enjoys
reading papers, with the parse tree depicted in Ta-
ble 1. The sequence of actions used by a top-down
shift–reduce parser is shown under the column a

pre
w .

Given the assumption that the grammar is in Chom-
sky normal form, the parser takes N SHIFT actions
andN−1 REDUCE actions, resulting in a sequence
of length M = 2N − 1. From this sequence of ac-
tions, we construct the tags output by the pre-order
linearization Φ

pre
w as follows:

1. We show reduce actions with double arrows

⇒, ⇒, and shift actions with →, →.

2. For SHIFT actions, we encode whether the
node being shifted is a left or a right child of
its parent.4 We show left terminals with →

4We assume that part-of-speech tags are given. Other-
wise, the identity of the non-terminal being shifted should be
encoded in →and → tags as well.
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and right terminals with →.

3. For REDUCE actions, we encode the identity
of the non-terminal being reduced as well as
whether it is a left or a right child. We denote
reduce actions that create non-terminals that
are left (right) children as ⇒ ( ⇒).

The output of such a linearization Φ
pre
w is shown

in Table 1. Similarly, a bottom-up shift–reduce
parser can be viewed as post-order traversal of the
derivation tree; see Φ

post
w in Table 1 for an example.

3.2 In-Order Linearization

On the other hand, the linearization function used
in tetratagger does an in-order traversal Liu and
Zhang (2017) of the derivation tree. Similarly to
the pre- and post-order linearization, when visiting
each node, it encodes the direction of the node rel-
ative to its parent in the tag sequence, i.e., whether
this node is a left child or a right child. For a given
sentence w, the tetratagging linearization t also
has a length of M = 2N − 1 actions. An example
can be found under the column Φin

w in Table 1. The
novelty of tetratagging lies in how it builds a fixed-
length tagging schema using an in-order traversal
of the derivation tree. While this approach might
seem intuitive, the connection between this partic-
ular linearization and shift–reduce actions is not
straightforward. The next derivation states that the
tetratag sequence can be derived by shift–reduce
parsing on a transformed derivation tree.

Derivation 1 (Informal). There exists a sequence
transformation function that transforms bottom-
up shift–reduce actions apost

w on the right-corner
transformed derivation tree to tetratags.

A similar statement holds for transforming
top-down shift–reduce actions on the left-corner5

derivation trees to tetratags; a more formal
derivation can be found in App. B.

3.3 Deviation

The output of the linearization function is a se-
quence of tags t. Next, we need to align this se-
quence with the input sequence w. Inspired by
Gómez-Rodríguez et al. (2020), we define an align-
ment function as follows.

Definition 3. The alignment function ΘK

maps each word in an input sequence of length

5We refer the reader to Johnson (1998) for a close read on
grammar transformations.

N to at most K tags in a tag sequence of
length M : ΘK(w, t) = t11, t12, . . . , t1K ,
. . . , tN1, tN2, . . . , tNK . We say wn is mapped to
tn1, . . . , tnK .

Because all of the aforementioned linearizers
generate tag sequences of length 2N − 1, a natu-
ral alignment schema, which we call paired align-
ment Θ2, is to assign two tags to each word, except
for the last word, which is only assigned to one tag.
Fig. 1 depicts how such an alignment is applied
to a sequence of pre-order linearizations with an
example input sequence.

Definition 4. We define deviation of ΘK(w, t) to
be the distance between a word and the tag corre-
sponding to shifting this word into the stack. For-
mally, for the nth word in the sequence, if tlk =
SHIFT(wn), then the deviation would be |n− l|. We
further call a sequence of shift–reduce tags shift-
aligned with the input sequence if and only if it has
zero deviation for any given word and sentence.

Note that if the paired alignment is used with an
in-order shift–reduce linearizer, as done in tetratag-
ger, it will be shift-aligned. However, such schema
will not necessarily be shift aligned when used with
pre- or post-order linearizations and leads to non-
zero deviations. More formally, the following three
propositions hold.

Proposition 1. For any input sequence w, the
paired alignment of this sequence with the in-
order linearization of its derivation tree, denoted
Θ2(w,Φ

in
w), has a maximum deviation of zero, i.e.,

it is shift-aligned.

Proof. In a binary derivation tree, in-order traver-
sal results in a sequence of tags where each shift
is followed by a reduce. Since words are shifted
from left to right, each word will be mapped to
its corresponding shift tag by Θ2, thus creating a
shift-aligned sequence of tags. �

Proposition 2. For any input sequence w of length
N , the maximum deviation of the paired alignment
applied to a pre-order linearization Θ2(w,Φ

pre
w ) in

the worst case is O(N).

Proof. The deviation is bounded above by O(N).
Now consider a left-branching tree. In this case,
Φ

pre
w starts with at most N − 1 reduce tags before

shifting the first word. Therefore, the maximum
deviation, which happens for the first word, is bN2 c,
which is O(N), achieving the upper bound. �
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Proposition 3. For any input sequence w with
length N, the maximum deviation of the paired
alignment applied to a post-order linearization
Θ2(w,Φ

post
w ) in the worst case is O(N).

Proof. The proof is similar to the pre-order case
above, but with a right-branching tree instead of a
left-branching one. �

Intuitively, if the deviation is small, it means
that the structural information about each word
is encoded close to the position of that word in
the tag sequence. Thus, it should be easier for
the learner to model this information due to the
locality. Therefore, we expect a better performance
from taggers with shift-aligned or low deviation
linearizations. Later, in our experiments, we
empirically test this hypothesis.

4 Learning

In this section, we focus on the second step in a
parsing-as-tagging pipeline, which is to score a tag
sequence. The parsers-as-taggers proposed in the
literature often simplify the probability distribution
over derivation trees, as defined in Eq. (1). We
first discuss various approximations we can make
to the score function score(X → Y Z). The
three approximations we identify each make the
model less expressive, but allow for more efficient
decoding algorithms (see §5). Then, we exhibit
how the crudest approximation allows for a fully
parallelized tagger.

4.1 Approximating the Score Function

We identify three natural levels of approximation
for score(X→ Y Z), which we explicate below.

Independent Approximation. The first approx-
imation is score(X→ Y Z)

def
= score(• → Y •)×

score(• → •Z), which we call the independent
approximation. We can enact the independent ap-
proximation under all three linearization schemes
Φ

pre
w , Φ

post
w , and Φin

w. In each scheme, the tag en-
codes the nonterminal and its position with respect
to its parent, i.e., whether it is a left child or a right
child. The independent approximation entails that
the score of each rule is the product of the scores
of the left child and the right child.

Left-Dependent Approximation. Second, we
consider the approximation score(X → Y Z)

def
=

score(X → Y•), which we call the left-
dependent approximation. The left-dependent ap-
proximation is only valid under the pre-order lin-
earization scheme. The idea is that, after gener-
ating a tag for a node ρ(ξ) = X as a part of the
production π(ξ) = X → Y Z, we immediately
generate a tag for its left child Y independent of Z.
Therefore, if we assume that the score of each tag
only depends on the last generated tag, we simplify
score(X→ Y Z) as score(X→ Y•).

Right-Dependent Approximation. The third
approximation is the right-dependent approxima-
tion, which takes the form score(X → Y Z)

def
=

score(X→ •Z). The right-dependent approxima-
tion is only valid under the post-order linearization
scheme. It works as follows: Immediately after
generating the tag for the right child, the tag for
its parent is generated. Again, if we assume that
the score of each tag only depends on the last gen-
erated tag, we simplify score(X → Y Z) here as
score(X→ •Z).

4.2 Increased Parallelism
One of the main benefits of modeling parsing as tag-
ging is that one is then able to fine-tune pre-trained
models, such as BERT (Devlin et al., 2019), to pre-
dict tags efficiently in parallel without the need
to design a task-specific model architecture, e.g.,
as one does when building a standard transition-
based parser. In short, the learner tries to predict
the correct tag sequence from pre-trained BERT
word representations and learns the constraints to
enforce that the tagging encodes a derivation tree.

Given these representations, in the independent
approximation, a common practice is to take K
independent projection matrices and apply them
to the last subword unit of each word, followed
by a softmax to predict the distribution over the
kth tag. Given a derivation tree dw for a sentence
w, our goal is to maximize the probability of the
tag sequence that is the result of linearizing the
derivation tree, i.e., Φw(dw) = t. The training
objective is to maximize the probability

p(t | w) =
∏

1≤n≤N,
1≤k≤K

p(Tnk = tnk | w) (2)

=
∏

1≤n≤N,
1≤k≤K

softmax(Wk · bert(wn | w))tnk

where p(Tnk = tnk | w) is the probability of
predicting the tag t for the kth tag assigned to wn,
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Figure 2: Decoding DAG templates for three linearization schemes.

and bert(wn | w) is the output of the last layer of
bert processing wn in the context of w, which is
a vector in Rd. Note that Eq. (2) follows from the
independence approximation where the probability
of each tag does not depend on the other tags in the
sequence. Due to this approximation, there exist
distributions that can be expressed by Eq. (1), but
which can not be expressed by Eq. (2).

Making a connection between Eq. (1) and
Eq. (2) helps us understand the extent to which we
have restricted the expressive power of the model
through independent assumptions to speed up
training. For instance, we can properly model tag-
ging sequences under a left- and right-dependent
approximation using a conditional random field
(CRF; Lafferty et al., 2001) with a first-order
Markov assumption. Alternatively, we can create
a dependency between the tags using an LSTM
(Hochreiter and Schmidhuber, 1997) model. In our
experiments, we compare these approximations
by measuring the effect of the added expressive
power on the overall parsing performance.

5 Decoding

In this section, we focus on the last step in a parsing-
as-tagging pipeline, which is to decode a tag se-
quence into a tree. The goal of the decoding step is
to find a valid sequence of tags t∗ that are assigned
the highest probability under the model for a given
sentence, i.e.,

t∗ def
= argmax

t∈Tw
p(t | w) (3)

where Tw is the set of tag sequences with a yield
of w. Again, we emphasize that not all sequences

of tags are valid, i.e., not all tagging sequences can
be mapped to a derivation tree, Therefore, in order
to ensure we always return a valid tree, the invalid
sequences must be detected and weeded out during
the decoding process. This will generally require
a more complicated algorithm.

5.1 Dynamic Programming

We extend the dynamic program (DP) suggested by
Kitaev and Klein (2020) for decoding an in-order
linearization to other variations of linearizers.
Kitaev and Klein’s (2020) dynamic program relies
on the fact that the validity of a tag sequence does
not depend on individual elements in the stack.
Instead, it depends only on the size of the stack
at each derivation point. We show that the same
observation holds for both Φ

post
w and Φ

pre
w , which

helps us to develop an efficient decoding algorithm
for these linearizations.

Decoding Φin
w. We start by introducing Kitaev

and Klein’s (2020) dynamic program for their Φin
w

model. Like many dynamic programs, theirs can be
visualized as finding the highest-scoring path in a
weighted directed acyclic graph (DAG). Each node
in the DAG represents the number of generated tags
i and the current stack size j. Each edge represents
a transition weighted by the score of the associated
tag predicted by the learner. Only sequences of
exactly 2N − 1 tags will be valid. The odd tags
must either be → or →,6 and the even tags must
be either ⇒ or ⇒. The only accepted edges when
generating the ith tag (1 < i ≤ 2N − 1) in the
sequence are shown in Fig. 2 left. The starting

6With the exception of the first tag that can only be →.
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Figure 3: Distribution of word-level deviation in a random sample of 5000 sentences. In most languages, pre-order
linearization gives a better alignment with the input sentence because the deviation peaks close to zero. However,
the shape and the distance between the two distribution varies across languages.

node is 〈1, 1〉, with → in the stack, and the goal is
to reach the node: 〈2N − 1, 1〉.

Decoding Φ
pre
w and Φ

post
w . To adapt the algorithm

introduced above to work with pre-order lineariza-
tion, we first investigate what makes a pre-order
tagging sequence valid:

• When a REDUCE tag ( ⇒ or ⇒) is generated,
there must be at least one node in the stack,
and after performing the REDUCE, the size of
the stack is increased by one.

• Immediately after shifting a node, we either
process (perform a SHIFT or REDUCE on) that
node’s right sibling or shift the right sibling.
Therefore, the only valid tags to generate sub-
sequently are →or ⇒.

• Immediately after reducing a node, we process
(perform a SHIFT or REDUCE on) its left child.
Therefore, it is only valid to generate either

→ or ⇒.

The above constraints suggest that if we know
the previous tag type (SHIFT or REDUCE) and the
stack size at each step of generation, we can form
the valid transitions from each node 〈i, j〉. Such
transitions are shown in Fig. 2 center. Similarly, the
valid transitions for decoding post-order lineariza-
tion are shown in the right part of Fig. 2.

Time Complexity. The complexity of the dy-
namic program to find the highest-scoring path
depends on the number of unique tags O(|N |), the
length of the tag sequence O(N), and the stack
size d. Linearization schemes derived from the
right-corner transform tend to have smaller stack
sizes (Abney and Johnson, 1991; Schuler et al.,
2010).7 As a result, one can often derive a faster,
exact decoding algorithm for such schemes. Please
refer to App. C for a more formal treatment of the
dynamic program for finding the highest-scoring
tag sequence using these transitions (Algorithm 1).

An O
(
dN |N |2

)
Algorithm. As discussed in §4,

one can break the independence assumption in
Eq. (2) by making each tag dependent on the previ-
ously generated tag. Consequently, when finding
the highest-scoring path in the decoding step, we
should remember the last generated tag. There-
fore, in addition to i and j, the generated tag must
be stored. This adds O(|N |) extra memory per
node, and increases the runtime complexity to
O
(
dN |N |2

)
. Please refer to App. C for a more

formal treatment of the dynamic program for find-
ing the highest-scoring tag sequence (Algorithm 2).

7For purely left- or right-branching trees, the left-corner
or right-corner transformations, respectively, provably reduce
the stack size to one (Johnson, 1998). These transformations
could increase the stack size for centered-embedded trees.
However, such trees are rare in natural language as they are
difficult for humans to comprehend (Gibson, 1998).
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5.2 Beam Search Decoding
We can speed up the dynamic programming algo-
rithms above if we forego the desire for an exact
algorithm. In such a case, applying beam search
presents a reasonable alternative where we only
keep track of h tag sequences with the highest score
at each step of the tag generation. Although no
longer an exact algorithm, beam search reduces the
time complexity to O(h log hN |N |).8 This can
result in a substantial speed-up over the dynamic
programs presented above when d, the maximum
required stack size, is much larger than the beam
size h. We empirically measure the trade-off be-
tween accuracy and speed in our experiments.

6 Experiments

In our experimental section we aim to answer two
questions: (i) What is the effect of each design
decision on the efficiency and accuracy of a tagger,
and which design decisions have the greatest
effect? (ii) Are the best design choices consistent
across languages?

Data. We use two data sources: the Penn Tree-
bank (Marcus et al., 1993) for English constituency
parsing and Statistical Parsing of Morphologically
Rich Languages (SPMRL) 2013/2014 shared
tasks (Seddah et al., 2013, 2014) for 8 languages:
Basque, French, German, Hebrew, Hungarian,
Korean, Polish, and Swedish. We provide the
dataset statistics in Table 5. We perform similar
preprocessing as Kitaev and Klein (2020), which
we explain in App. F. For evaluation, the EVALB

Perl script9 is used to calculate FMeasure of the
parse tree. We use only one GPU node for the
reported inference times. Further experimental
details can be found in App. G.

6.1 What Makes a Good Tagger?
Linearization. First, we measure the effect of
linearization and alignment on the performance of
the parser. We train BERT10 on the English dataset.
While keeping the learning schema fixed, we ex-
periment with three linearizations: Φin

w, Φ
post
w , and

Φ
pre
w . We observe that the in-order shift–reduce

linearizer leads to the best FMeasure (95.15), fol-
lowed by the top-down linearizer (94.56). There
is a considerable gap between the performance of

8This can be improved to O(hN |N |) with quick select.
9http://nlp.cs.nyu.edu/evalb/

10We use BERT-LARGE-UNCASED from the Huggingface
library (Wolf et al., 2020).

a tagger with the post-order linearizer (89.23) and
other taggers, as shown in Table 3. The only dif-
ference between these taggers is the linearization
function, and more specifically, the deviation be-
tween tags and the input sequence as defined in
Def. 4. This result suggests that deviation is an
important factor in designing accurate taggers.

Learning Schema. Second, we measure the
effect of the independence assumption in scoring
tagging sequences. We slightly change the scoring
mechanism by training a CRF11 and an LSTM
layer12 to make scoring over tags left- or right-
dependent. We expect to see improvements with
Φ

pre
w and Φ

post
w , since in these two cases, creating

such dependencies gives us more expressive
power in terms of the distributions over trees
that can be modeled. However, we only observe
marginal improvements when we add left and right
dependencies (see Table 3). Thus, we hypothesize
that BERT already captures the dependencies
between the words.

Decoding Schema. Third, we assess the trade-
off between accuracy and efficiency caused by
using beam search versus exact decoding. We take
h = 10 as the beam size. As shown in Table 3,
taggers with post-order linearization take longer
to decode using the exact dynamic program. This
is largely due to the fact that they need deeper
stacks in the decoding process (see App. E for
a comparison). In such scenarios, we see that
beam search leads to a significant speed-up in
decoding time, at the expense of a drop (between
3 to 6 points) in FMeasure. However, the drop in
accuracy observed with the pre-order linearization
is less than 1 point. Therefore, in some cases,
beam search may be able to offer a sweet spot
between speed and accuracy. To put these results
into context, we see taggers with in-order and
pre-order linearizations achieve comparable
results to state-of-the-art parsers with custom
architectures, where the state-of-the-art parser
achieves 95.84 FMeasure (Zhou and Zhao, 2019).

6.2 Multilingual Parsing

As shown in the previous experiment, linearization
plays an important role in constructing an accurate

11We use our custom implementation of CRF with pytorch.
12We use a two-layered biLSTM network, with the hidden

size equal to the tags vocabulary size |T | (approximately 150
cells). For further details please refer to App. G.
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Basque French German Hebrew Hungarian Korean Polish Swedish

Kitaev et al. (2019) 91.63 87.42 90.20 92.99 94.90 88.80 96.36 88.86
Kitaev and Klein (2018) 89.71 84.06 87.69 90.35 92.69 86.59 93.69 84.45

in-order-[INDEP.] 89.86 84.54 88.34 91.40 93.81 84.89 95.20 86.66
pre-order-[INDEP.] 87.98 84.76 88.18 89.45 90.69 81.81 94.84 84.65
post-order-[INDEP.] 81.05 56.97 78.07 64.21 76.24 86.64 86.91 58.44

Table 2: Comparison of FMeasure of different tagging schemata on the SPMRL test set

Beam Search DP

FMeasure Sents/s FMeasure Sents/s

in-order?

[INDEP.]
91.59 156 95.15 128

pre-order
[INDEP.]

93.57 114 94.56 51

pre-order
[LEFT DEP. CRF]

93.65 110 94.47 21

pre-order
[LEFT DEP. LSTM]

93.78 110 94.38 20

post-order
[INDEP.]

85.38 108 89.23 29

post-order
[RIGHT DEP. CRF]

82.28 108 88.28 5

post-order
[RIGHT DEP. LSTM]

85.25 103 89.61 5

Table 3: Comparison of parsing metrics on the WSJ test
set. ?This is the exact equivalent setup to tetratagger.
However, because we neither use the exact same code
nor the hardware, the numbers do not exactly match
with what is reported in the original paper.

tagger. Moreover, we observe that in-order lineariz-
ers yield the best-performing taggers, followed by
the pre-order and post-order linearizers. In our sec-
ond set of experiments, we attempt to replicate this
result in languages other than English. We train
BERT-based learners13 on 8 additional typologi-
cally diverse languages. As the results in Table 2
suggest, in general, taggers can achieve compet-
itive FMeasures relative to parsers with custom
architectures (Kitaev and Klein, 2018).

Similar to results in English, in most of the other
eight languages, taggers with in-order linearizers
achieve the best FMeasure. We note that the gap
between the performance of post and pre-order lin-
earization varies significantly across languages. To
further investigate this finding, we compute the dis-
tribution of deviation in alignment at the word level
(based on Def. 4). For most languages, the devia-
tion of the pre-order linearizer peaks close to zero.
On the contrary, in French, Swedish, and Hebrew,

13We use BERT-BASE-MULTILINGUAL-CASED.

the post-order linearizers do not align very well
with the input sequence. Indeed, we observe deriva-
tions of up to 30 for some words in these languages.
This is not surprising because these languages tend
to be right-branching. In fact, we observe a large
gap between the performance of taggers with pre-
and post-order linearizers in these three languages.

On the other hand, for a left-branching language
like Korean, post-order linearization aligns nicely
with the input sequence. This is also very well
reflected in the parsing results, where the tagger
with post-order linearization performs better than
taggers using in-order or pre-order linearization.

Our findings suggest that a tagger’s performance
depends on the deviation of its linearizer. We mea-
sure this via Pearson’s correlation between parsers’
FMeasure and the mean deviation of the linearizer,
per language. We see that the two variables are
negatively correlated (−0.77) with a p value of
0.0001.We conclude that the deviation in the
alignment of tags with the input sequence is highly
dependent on the characteristics of the language.

7 Conclusion

In this paper, we analyze parsing as tagging, a
relatively new paradigm for developing statisti-
cal parsers of natural language. We show many
parsing-as-tagging schemes are actually closely re-
lated to the well-studied shift—reduce parsers. We
also show that Kitaev and Klein’s (2020) tetratag-
ging scheme is, in fact, an in-order shift–reduce
parser, which can be derived from bottom-up or
top-down shift–reduce parsing on the right or
left-cornered grammars, respectively. We further
identify three common steps in parsing-as-tagging
pipelines and explore various design decisions at
each step. Empirically, we evaluate the effect of
such design decisions on the speed and accuracy of
the resulting parser. Our results suggest that there is
a strong negative correlation between the deviation
metric and the accuracy of constituency parsers.
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Ethical Concerns

We do not believe the work presented here further
amplifies biases already present in the datasets and
the algorithms that we experiment with because
our work is primarily a theoretical analysis of
existing work. Therefore, we foresee no ethical
concerns in this work.

Limitations

This work only focuses on constituency parsing.
Therefore, the results might not fully generalize
to other parsing tasks, e.g., dependency parsing.
Furthermore, in our experiments, we only focus on
comparing design decisions of parsing-as-tagging
schemes, and not on achieving state-of-the-art re-
sults. We believe that by using larger pre-trained
models, one might be able to obtain better parsing
performance with the tagging pipelines discussed
in this paper. In addition, in our multilingual analy-
sis, the only left-branching language that we had ac-
cess to was Korean, therefore, more analysis needs
to be done on left-branching languages.
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A Related Work

We provide a comparative review of parsing as tagging works on both dependency and constituency
parsing, focusing on their design decisions at different steps of the pipeline.

A.1 Dependency Parsing as Tagging
Previous work on dependency parsing as tagging linearizes the dependency tree by iterating through
the dependency arcs and encoding the relative position of the child with respect to its parent in the tag
sequence (Li et al., 2018; Kiperwasser and Ballesteros, 2018). Each word is then aligned with the tag
indicating its relative position with respect to its head. At the decoding step, to prevent the model from
generating dependency arcs that do not form valid dependency trees, a tree constraint is often applied (Li
et al., 2018). Similarly, Vacareanu et al. (2020) employ contextualized embeddings of the input with the
same tagging schema. Strzyz et al. (2019) provide a framework and train and compare various dependency
parsers as taggers. See also Strzyz (2021) for further comparison.

Closest to our work, Gómez-Rodríguez et al. (2020) suggest a linearization and alignment scheme that
works with any transition-based parser to create a sequence of tags from a sequence of actions. Therefore,
their method applies to both constituency and dependency parsing. For instance, turning a shift–reduce
parser into a tag sequence requires creating a tag for all the REDUCE actions up to each SHIFT action.
While this construction results in exactly N tags, there are in general an exponentially large number of
tags. To compare this approach with the linearizations discussed in this paper, we must note that while
such a schema is shift-aligned, it might not evenly align the tags with the input sequence. Moreover, the
in-order linearization scheme discussed here has a small number of tags.

A.2 Constituency Parsing as Tagging
Gómez-Rodríguez and Vilares (2018) provide an in-order linearization of the derivation tree, where
they encode nonterminals and their depth as a tagging sequence. Since the depth is encoded in the tags
themselves, the tag set size is unbounded and is dependent on the input. Kitaev and Klein (2020) improve
upon Gómez-Rodríguez and Vilares’s (2018) encoding by discovering a similar tagging system that has
only four tags. In Kitaev and Klein’s (2020) linearization step, they encode both terminals and nonterminals
in the tag sequence, as well as the direction of a node with respect to its parent. Using a pretrained BERT
model to score tags, they show that their approach reaches state-of-the-art performance despite being
architecturally simpler. Furthermore, the parser is significantly faster than competing approaches.

B Derivations

The following derivation provides the exact map and merge functions for transforming shift–reduce action
sequences to tetratags.

Derivation 2. Let drc
w be the derivation tree after the right-corner transformation for the sentence w,

and let apost-rc
w be the sequence of SHIFT or REDUCE actions taken by a bottom-up shift–reduce parser

processing drc
w. Then, we have that

Φin
w(dw) = merge

(
map (apost-rc

w )
)

(4)

where map applies to each element in the action sequence and maps each action to:

map(REDUCE(N→ N/N1 N2)) = →
map(REDUCE(N/N1 → N/N2 N3)) = ⇒(N2)

map(REDUCE(N/N1 → ε N2)) = ⇒(N)

map(SHIFT(•)) = →
The merge function reads the sequence of tags from left to right and whenever it encounters a → tag
followed immediately by a →, it merges them to a →tag.
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N′/N1 Xi

wi

N/.

ε N1

N1/. Xi

wi

N′/.

N′/N N1

N1/. Xi

wi

S

S/. Xi

wi

Φ
post
w

→
⇒(N1/.→εXi)

→
⇒(N′/.→N′/N1 Xi)

→
⇒(N1→N1/.Xi)

⇒(N/.→εN1)

→
⇒(N1→N1/.Xi)

⇒(N′/.→N′/NN1)

→
⇒(S→S/.Xi)

map → ⇒(N1) → ⇒(N1) → →⇒(N) → → ⇒(N) → →
merge → ⇒(N1) → ⇒(N1) →⇒(N) → ⇒(N) →

Table 4: Equivalence of tetratags and bottom-up shift–reduce tags on the right-cornered derivation tree

Proof. We split tetratags Φin
w(dw) into n groups, where the first n − 1 groups consist of two tags and

the last group consists of only one tag. Let’s focus on a specific split. According to the definition of
tetratagger, this split starts with either → or →, each of which corresponds to a terminal node, i.e. a word
in the input sequence: wi with part-of-speech Xi. Depending on the topology of dw, there are five distinct
ways to position wi in the derivation tree, each of which corresponds to unique tetratags for the split.
These configurations are shown in the first row of Table 4. Now we apply the right-corner transformation
to the derivation trees and we obtain the trees shown in the second row of Table 4. Next, we generate
bottom-up shift–reduce linearizations for the transformed trees and split them at SHIFT actions. We see
that after applying map and merge on each of the splits, we obtain the exact same tetratags for all of the
five possible configurations, as shown in the last row of Table 4. �

Derivation 3. Let dlc
w be the left-corner transformed derivation tree for the sentence w, and apre-lc

w be the
sequence of SHIFT or REDUCE actions took by a top-down shift–reduce parser processing dlc

w. Then:

Φin
w(dw) = merge

(
map

(
apre-lc
w

) )
(5)

where map applies to each element in the action sequence and maps each action to:

map(REDUCE(N→ N2 N/N1)) = →
map(REDUCE(N/N1 → N3 N/N2)) = ⇒(N2)

map(REDUCE(N/N1 → N2 ε)) = ⇒(N)

map(SHIFT(•)) = →

And merge function reads the sequence of tags from left to right and whenever it encounters a → tag
followed immediately by a →, it merges them to a → tag.

Proof. The proof is similar to the proof of right-corner and bottom-up shift–reduce. �
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C Decoding Algorithms

Proposition 4. Given a scoring function with independent approximation, score(X→ Y Z)
def
= score(• →

Y •)× score(• → •Z), over derivation trees, we can find the highest-probability derivation inO(dN |N |)
using Algorithm 1.

Proof sketch. We give an outline of the construction. First, consider a grammar in Chomsky normal
form G. Next, apply the standard shift–reduce transformation to G in order to construct a pushdown
automaton (PDA). Finally, note that under the independence assumption score(X→ Y Z)

def
= score(• →

Y •) × score(• → •Z) we can reduce the runtime of the dynamic program that sums over all runs in
the PDA from O

(
N3|N |3

)
(Lang, 1974; Butoi et al., 2022) to O(dN |N |) because we only need to keep

track of the height of the stack d and not which elements are in it. Note that d = N in the worst case.
This can be viewed as using Algorithm 1 to find the valid tagging sequence with the highest score in a
directed acyclic graph, as shown in Fig. 2. �

Proposition 5. Suppose we are given a scoring function with left- or right-dependent approximation,
score(X→ Y Z)

def
= score(X→ Y•) or score(X→ Y Z)

def
= score(X→ •Z), over derivation trees. We

can find the derivation tree with the highest score in O
(
dN |N |2

)
using Algorithm 2.

Proof sketch. We give an outline of the construction. First, consider a grammar in Chomsky normal
form G. Next, apply the standard shift–reduce transformation to G in order to construct a pushdown
automaton (PDA). Finally, note that under the left- or right-dependent approximation, score(X→ Y Z)

def
=

score(X → Y•) or score(X → Y Z)
def
= score(X → •Z), we can reduce the runtime of the dynamic

program that sums over all runs in the PDA from O
(
N3|N |3

)
to O

(
dN |N |2

)
because we only need to

keep track of the height of the stack d, and the top element on the stack, but not the remaining elements in
the stack. This can be viewed as using Algorithm 2 to find the valid tagging sequence with the highest
score in a directed acyclic graph, as shown in Fig. 2. �

Algorithm 1 Dynamic program for decoding with independent scores
1: procedure DP(score)
2: W = 0 . initialize the DP chart to zero
3: W [1, 1] = log score( →) . pre-order: W [1, 2] = log score( ⇒(S))
4: for i = 2, . . . , 2N − 1 :
5: for j = 0, . . . , d : . d: maximum size of the stack
6: shift_score = max

〈i−1,j+1〉 t−→〈i,j〉
{W [i− 1, j + 1] + log score(t)}

7: reduce_score = max
〈i−1,j−1〉 t−→〈i,j〉

{W [i− 1, j − 1] + log score(t)}

8: W [i, j] = max(shift_score, reduce_score)

9: return W [2N − 1, 1] . pre-order: W [2N − 1, 0]

Algorithm 2 Dynamic program for decoding with left- or right-dependent scores
1: procedure DP(score)
2: W = 0 . initialize the DP chart to zero
3: W [1, 1, →] = log score( →) . pre-order: W [1, 2, ⇒(S)]
4: for i = 2, . . . , 2N − 1 :
5: for j = 0, . . . , d :
6: for t = 1, . . . , |T | :
7: shift_score = max

〈i−1,j+1,t′〉 t−→〈i, j, t〉
{W [i− 1, j + 1, t′] + log score(t′, t)}

8: reduce_score = max
〈i−1,j−1,t′〉 t−→〈i,j,t〉

{W [i− 1, j − 1, t′] + log score(t′, t)}

9: W [i, j, t] = max(shift_score, reduce_score)

10: return W [2N − 1, 1, ⇒(S)] . pre-order: W [2N − 1, 0, →]
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Language # Sentences

Train Dev Test

English 39832 1700 2416
Basque 7577 948 946
French 14759 1235 2541
German 40472 5000 5000
Hebrew 5000 500 716
Hungarian 8146 1051 1009
Korean 23010 2066 2287
Polish 6578 821 822
Swedish 5000 494 666

Table 5: Dataset Statistics

D Dataset Statistics

We use Penn Treebank for English and SPMRL 2013/2014 shared tasks for experiments on other languages.
We further use available train/dev/test splits, the number of sentences in each split can be found in Table 5.

E Stack Size

We empirically compare the stack size needed to parse English sentences using different linearizations in
Fig. 4.
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Figure 4: With Φin
w and stack size of 6, all the trees in WSJ test set can be linearized, thus the coverage is 1. On the

other extreme, in order to cover all the trees with Φpost
w , we need a stack of size 29.

F Preprocessing

Since our linearization works for binary trees, we do the following preprocessing: we collapse the unary
rules by concatenating the nonterminal labels. We then binarize the tree using the nltk library. For
in-order linearization, we first perform right-corner transformation of the tree and then run bottom-up shift
reduce parsing on the transformed tree followed by the map and merge function introduced in App. B.14

G Experimental Setup

We experiment on 3 NVIDIA GeForce GTX 1080 Ti nodes. The batch size is 32 and sentences in each
epoch are sampled without replacement. We use gradient clipping at 1.0 and learning rate 3e-5 with a
warmup over the course of 160 training steps. We calculate FMeasure of the development set 4 times per
epoch and cut the learning rate in half, whenever the FMeasure fails to improve. We set the initial epochs
to 20, however, after 3 consecutive decays in the learning rate, training is terminated. The checkpoint with

14We empirically test these map and merge functions, and verify that the sequence of transformed shift–reduce actions
perfectly matches the original tetratags.
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Recall Precision FMeasure

Φ
pre
w + 2-layered BiLSTM 93.76 94.5 93.9

Φ
pre
w + 3-layered BiLSTM 93.93 94.45 94.19

Table 6: The effect of increasing BiLSTM layers on parsers’ performance.

the best development FMeasure is used for reporting the test scores. The stack depth for the decoding step
is set to the maximum depth of the stack in the training set. In experiments with the LSTM model, we use
a two-layered BiLSTM network. We observe in Table 6 that adding more layers has a minimal effect on
parsers’ performance.
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