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Abstract

Evidence from psycholinguistic studies sug-
gests that the human brain builds a hierarchi-
cal syntactic structure during language compre-
hension. However, it is still unknown whether
the neural basis of such structures is univer-
sal across languages. In this paper, we first
analyze the differences in language structure
between two diverse languages: Chinese and
English. By computing the working memory
requirements when applying parsing strategies
to different language structures, we find that
top-down parsing generates less memory load
for the right-branching English and bottom-
up parsing is less memory-demanding for Chi-
nese. Then we use functional magnetic reso-
nance imaging (fMRI) to investigate whether
the brain has different syntactic adaptation
strategies in processing Chinese and English.
Specifically, for both Chinese and English, we
extract predictors from the implementations of
different parsing strategies, i.e., bottom-up and
top-down. Then, these predictors are separately
associated with fMRI signals. Results show
that for Chinese and English, the brain utilizes
bottom-up and top-down parsing strategies sep-
arately. These results suggest that the brain
adopts parsing strategies with less memory load
according to different language structures.

1 Introduction

A hallmark of human language ability is combin-
ing linear sequential word inputs into a hierarchical
structure using abstract syntactic rules. This abil-
ity enables us to create infinite expressions from
finite words. Previous studies have shown that
several brain regions are involved in building the
hierarchical syntactic structure (Hagoort and Inde-
frey, 2014; Zaccarella et al., 2017). However, the
parsing strategies that the brain uses to build such
structures are less discussed. Moreover, most of
these studies only have been conducted on one lan-
guage. It is still unknown whether the neural basis
of such structures is universal across languages.

This paper investigates the neural basis of syn-
tactic structure-building, particularly the parsing
strategies that the brain uses, in two diverse lan-
guages: Chinese and English. We focus on two
parsing strategies: top-down and bottom-up. Since
existing work has demonstrated that a parsing strat-
egy requires different memory space when pro-
cessing sentences with different branching direc-
tions(Resnik, 1992), we first analyze the branching
structures and the memory load generated by two
parsing strategies for Chinese and English. Re-
sults show that the dominant branching directions
and the memory space required by parsing strate-
gies are both different between the two languages.
For the right-branching English, the top-down pars-
ing needs less memory space than bottom-up pars-
ing. Whereas for Chinese, which is more mixed in
branching directions, the bottom-up parsing is less
memory-demanding than the top-down parsing.

Therefore, we have two hypotheses about how
the brain processes different languages:

• H1:The brain mechanism of syntactic process-
ing is universal across different languages.
Even though Chinese and English have dif-
ferent dominant structures, the brain uses the
same parsing strategy no matter what structure
of the language they are processing.

• H2: The brain mechanism of syntactic pro-
cessing is relatively flexible across different
languages. The parsing strategy adopted by
the brain is regulated by cognitive resources
and the strategy with less cognitive load would
be preferred. That is, the brain uses different
strategies when processing Chinese and En-
glish.

To test these two hypotheses, we associate the
complexity predictors derived from different pars-
ing strategies with the brain imaging data collected
when native speakers were listening to stories. The
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complexity predictors are the number of parsing
operations when using a parsing strategy to inte-
grate each word into the tree. The key assumption
is that brain regions engaged in syntactic structure-
building would show increased activity as the num-
ber of parsing operations increases. Therefore, if a
brain region builds trees following a parsing strat-
egy, then the complexity predictors of this strategy
would be able to predict the activation of this brain
region. By comparing the prediction performances
of different predictors, we can evaluate which pars-
ing strategy better accounts for the brain activity in
Chinese and English.

From the comparative study, we have the fol-
lowing interesting findings: the dominant predictor
for Chinese is bottom-up but for English it is top-
down, which is consistent with the less-memory-
demanding strategies for each language. The brain
regions with significant effects are also different
between Chinese and English. However, in further
analysis, we find that the data size gap and the cor-
rectness of constituency trees both contribute to
the brain-region differences. These results support
the second hypothesis that the brain adopts pars-
ing strategies with less cognitive load for different
languages.

In conclusion, our main contributions include:

• We investigated the brain mechanism of hi-
erarchical structure building for Chinese and
English by exploring the relationship between
parsing strategies, language branching direc-
tions, and brain activation.

• We found that the processing load of parsing
strategies correlates with the branching direc-
tions and the brain adopts the less-demanding
parsing strategies for each language.

• Our results help to further understand how the
brain processes language and would hopefully
inspire artificial neural models to process or
represent language more efficiently.

2 Related Work

Building hierarchical syntactic structures is an im-
portant sub-process of language understanding. Ex-
isting work that has investigated this sub-process
can be categorized into two groups. One is often
called controlled experiments that design artificial
stimuli to separate the brain activation, such as
comparing structured complex sentences or phrases

with word lists (Pallier et al., 2011; Matchin et al.,
2017; Sheng et al., 2018; Wu et al., 2019; Matchin
and Hickok, 2019). These studies have many valu-
able findings and have identified several brain re-
gions, including the left temporal lobe and the left
frontal lobe, that are involved in syntactic struc-
ture building (Zaccarella et al., 2017; Wu et al.,
2019). However, as designing artificial stimuli can
only separate situations with or without structure-
building, these controlled paradigms can hardly be
used to further study the parsing strategies that the
brain uses to build syntactic structures.

As a complement to controlled experiments, an-
other line of work used naturalistic experimental
paradigms and explored the brain mechanism us-
ing encoding models(Huth et al., 2016; Wang et al.,
2020; Zhang et al., 2022a; Sun et al., 2021). By
represent the structure-building process with syn-
tactic predictors, Brennan et al. (2012) explored
how the brain builds syntactic structure by using
encoding models to predict brain activation with
these predictors. This paradigm using syntactic
predictors can conveniently incorporate different
languages into the same framework. But most of
these studies only focused on one language, mainly
English(Hale et al., 2015; Brennan et al., 2016; Nel-
son et al., 2017). Less attention has been paid to
other languages and cross-language comparisons.
Moreover, little work has investigated the underly-
ing reasons that drive the brain to utilize a parsing
strategy.

This paper follows the naturalistic experimental
paradigm and aims to explore the structural differ-
ences between Chinese and English and whether
these differences drive the brain to use different
parsing strategies in structure-building.

3 Materials

The English and Chinese fMRI datasets we use
were both collected when native speakers were lis-
tening to narrative stories. All these audio stories
are naturalistic stimuli and highly representative of
the language that humans encounter in everyday
life.

English fMRI data The English fMRI data we
use comes from Zhang et al. (2020)1, which was
collected from 19 human subjects. The stimuli in-
cluded 52 stories downloaded from the Moth Radio
Hour2 and each story lasts from 4 to 13 minutes.

1https://osf.io/eq2ba/
2https://themoth.org/radio-hour
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Figure 1: (a) A tree structure example. For the root node NP, the subtrees in the green box and the yellow box are its
complete subtrees, but the subtree in the blue box is not a complete subtree because the right child of node DNP is
not included in the box. (b) The number of left-branching and right-branching phrases in the Chinese and English
stimuli corpora.

Chinese English
left right left right

embedded 3882 7258 300 712
total 8995 15072 1744 24381

percent(%) 43.16 48.16 17.20 2.92

Table 1: The number and percentage of embedded struc-
tures in left-branching and right-branching phrases in
Chinese and English

While being scanned for fMRI, each subject lis-
tened to a subset of the audio stories. In total, the
story stimuli include 47,356 words, and the vocabu-
lary size is 5,228 words (duplicates were excluded).

Chinese fMRI data We collected the Chinese
fMRI data from 12 Chinese native speakers when
they were listening to a total of 60 stories. Each
of the subjects listened to all 60 stories, and each
story was listened to once by one subject. During
the scanning of fMRI, subjects were instructed to
stay still and pay attention to the story they were
hearing. All stories were downloaded from the Ren-
min Daily Review website3 and each of them lasts
from 4 to 7 minutes. The 60 stories contain 52,269
words, forming a vocabulary of 9,153 words. This
fMRI dataset is publicly available at https://
openneuro.org/datasets/ds004078. More de-
tails about fMRI acquisition and technical valida-
tion can be found in Wang et al. (2022).

Both the Chinese and English fMRI data were

3https:/www.ximalaya.com/toutiao/30917322/

Figure 2: An example of the embedded tree structure in
Chinese.

preprocessed following the HCP pipeline (Glasser
et al., 2013).

4 Language Structure Analysis

Chinese and English are two very diverse languages
and differ in many aspects. We focus on the branch-
ing direction, which is directly correlated with the
tree structure.

4.1 The Branching Directions of Languages
The branching direction of language is about
the presented order of the head and the mod-
ifier in sentences. In English, sentences are
largely left-headed and right-branching, which
means the heads usually come before the modi-
fiers. Whereas Chinese is more mixed with right-
branching and left-branching categories (Levy and
Manning, 2003). When the branching direction
reflects on the trees, the right-branching structure
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Figure 3: An Chinese example of the implementation of different parsing strategies, as well as the number of
incomplete nodes and node count for each word.

top-down bottom-up top-down>bottom-up bottom-up>top-down

Chinese avg 4.69 4.29 65.59% 32.22%
max 20 20 54.16% 23.74%

English avg 4.59 5.32 16.21% 80.58%
max 33 33 14.65% 59.52%

Table 2: The third and fourth columns are the average and maximum number of incomplete nodes generated during
parsing. The fifth and the sixth columns are the percentage of sentences where the top-down or bottom-up parsing
has a larger average and maximum number of incomplete nodes.

creates parse trees that grow down to the right and
the left-branching structure creates parse trees that
grow down to the left. Previous work has sug-
gested that the branching direction of a language
affects native speakers in working memory and
the way they parse information (Friederici et al.,
2017; Amici et al., 2019). Therefore, we analyzed
the branching directions of all the language stim-
uli used in the fMRI collection and quantified the
working memory load of top-down and bottom-up
parsing.

We first computed the proportion of the left and
right branching structures of the stimuli to see
whether there is a real branching-direction differ-
ence. To better classify the branching direction of
a syntactic tree, we define a subtree as complete if
it has at least two nodes and the children of each
node in this subtree are also included in this sub-
tree (see Figure 1a). And a tree is left-branching
if its root node only has two children and there are
more complete subtrees on its left side. Conversely,
a tree is right-branching if its root node only has
two children and its right side has more complete
subtrees than the left.

With this definition, we computed the branching
direction of each phrase node in the English and
Chinese stimuli corpora. The results, as shown in
Figure 1b, are consistent with previous findings
(Levy and Manning, 2003). The majority of the

phrases in English, regardless of the phrase type,
are right-branching. The branching directions of
phrases in Chinese are rather mixed, with most of
the VP phrases being right-branching and most of
the NP and DNP phrases being left-branching. We
also found that in Chinese, sometimes the branch-
ing structures are embedded, which means that
the tree does not consistently grow in one direc-
tion. For example, as shown in Figure 2, the root
node VP is left-branching because its left side has
more complete subtrees. But its left child PP is
right-branching and PP has a left-branching child
LCP. We then computed the proportion of embed-
ded phrases in Chinese and English. As shown in
Table 1, nearly half of the phrases in Chinese are
embedded, whereas in English, little phrases are
embedded. These results prove the existence of a
structural difference between Chinese and English,
at least in the experimental stimuli corpus used in
the fMRI collection.

4.2 The Correlation Between Parsing
Strategies and Branching Directions

In the building process of a hierarchical con-
stituency tree, each word in the sentence is parsed
following the syntactic rules. A parsing strategy de-
fines the specific parsing directions, whether mov-
ing from the words to abstract structures such as
phrases and sentences, or starting at the abstract
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level and working down to the words. Here, we
adopt two parsing strategies: top-down parsing,
where the parsing begins from the most abstract
level (root) to the word level (leaves); and bottom-
up parsing, where the parsing begins from the word
level to the abstract level. The parsing process of
top-down and bottom-up parsing is illustrated in
Figure 3 with an example Chinese phrase.

To further investigate the correlation between
the branching direction and the parsing strategy,
we computed the required working memory space
when applying different parsing strategies to the
stimuli corpus of the two languages. We used
the incomplete node defined in Resnik (1992) and
computed the number of incomplete nodes during
parsing with each parsing strategy. A node is in-
complete if either its parent or its children have
not been established, in which case the brain must
store it until it can be attached to a parent node or
its child can be attached. Resnik (1992) demon-
strated that a top-down parser requires O(1) space
for right-branching sentences and O(n) space for
left-branching sentences. A bottom-up parser re-
quires O(n)space for right-branching sentences
and O(1)space for left-branching sentences. The
branching directions of Chinese and English, al-
though not completely left-branching or right-
branching, may affect the memory load of different
parsing strategies. As the human brain processes
language fast and accurately, a parsing strategy
with less memory load may be more psychologi-
cally plausible for the brain to use.

The results are shown in Table 2. In general,
although the branching directions in Chinese are
mixed, the top-down parsing generates more in-
complete nodes than the bottom-up parsing, and
more than 65% of the sentences have more incom-
plete nodes when using top-down parsing. This
means that top-down parsing is more memory-
demanding than bottom-up parsing in the case of
Chinese. Whereas in English, bottom-up parsing
becomes more memory-demanding than top-down
parsing because the average number of incomplete
nodes generated by bottom-up parsing is larger
than top-down parsing and more than 80% of the
sentences have more incomplete nodes when us-
ing bottom-up parsing. This finding demonstrates
that the distributions of branching directions of
languages cause different processing loads for dif-
ferent parsing strategies.

5 fMRI Experiments

To test the two hypotheses, whether the brain uses
the same parsing strategy regardless of language
structures or whether the brain chooses a strategy
with less cognitive load when processing different
structures, we conducted an fMRI experiment as
follows.

The overall framework is shown in Figure 4
We first computed the syntactic predictors from
the parsing process of different parsing strategies.
Then, we trained the voxel-wise encoding models
to predict the fMRI signals from these syntactic pre-
dictors and compare their prediction accuracy in
different brain regions and languages. The method-
ology for English and Chinese is the same, which
makes the results of these two languages more com-
parable.

5.1 Syntactic Predictors

In the building process of a constituency tree, node
count is the number of paring operations needed to
integrate each word into the tree structure. There-
fore, the syntactic node count is directly related to
the process of syntactic structure building (Bren-
nan et al., 2012). Following different parsing strate-
gies, the number of parsing operations for each
word would be different. As illustrated in Fig-
ure 3, for the four words in this VP-phrase, the
top-down parsing performs [2, 2, 2, 1] operations to
integrate each word into the tree. Therefore, the
top-down node count values for these three words
are [2, 2, 2, 1]. Similarly, the bottom-up node count
values are [1, 1, 1, 4]. For each sentence in the Chi-
nese and English stimuli, we computed the node
count values of each word with both top-down and
bottom-up parsing strategies.

Apart from the node count predictors, we also
compute two low-level linguistic features: sound
envelope and word rate, to control for the confound-
ing effects. The sound envelope is computed to rep-
resent how the amplitude and frequency of speech
sound change over time. And the word rate, fol-
lowing the Brennan et al. (2012), identifies the end-
point of each word, where a value of 1 is labeled at
the end time of each word and 0 at other times.

5.2 Constituency Trees

For the English stimuli, only the transcribed text
for all the stories is provided in the dataset. To
annotate the constituency trees of the story text,
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Figure 4: The overall framework of the fMRI experiment.

we used the Stanford CoreNLP parser4. For the
Chinese stimuli, the text was downloaded from
the Renmin Daily Review website and manually
corrected to ensure the alignment of the audio and
text. The constituency trees for each story were
manually annotated.

The node count predictors were extracted from
these annotated constituency trees using different
parsing strategies.

5.3 Voxel-wise Encoding
We investigate the mapping between the structure-
building process and brain activation using voxel-
wise encoding models; that is, using node count
features x to predict brain activation y. In practice,
fMRI measures the blood-oxygen-level-dependent
(BOLD) signal, which changes slowly after the neu-
rons fire. Besides, the frequency of fMRI collection
is comparatively slow compared to the speech rate
of words. To account for the influence of these two
factors, the node count values of words are con-
volved with a canonical hemodynamic response
function (HRF)5 and then down-sampled to the
same sampling rate as the fMRI collection.

To control the low-level linguistic effects repre-
sented by the word rate wr and the sound envelope
snd, we adopt a stepwise ridge regression method
as the formalization of encoding models. Specif-
ically, we perform a two-step regression. In the
first step, we train the encoding models with word

4https://nlp.stanford.edu/software/
stanford-dependencies.html

5The canonical HRF describes how BOLD signals would
theoretically respond to a neural impulse

rate wr and sound envelope snd features, which
are also convolved with HRF and down-sampled to
the fMRI sampling rate.

y = β11wr + β12snd (1)

In the second step, the node count predictor x ex-
tracted from a parsing strategy, is added to the
regression model.

y = β21wr + β22snd+ β23x (2)

The regression weights β are trained on the train-
ing set. After training, the prediction performance
is evaluated on the test set with the Pearson corre-
lation between the predicted and the actual voxel
signal.

R = Pearson(ytest, ŷtest) (3)

After the two-step training and test, a significance
test is conducted to find voxels where the prediction
performance is significantly improved by each node
count predictor.

5.4 Training Details
The voxel-wise encoding and subsequent signifi-
cance test are conducted for the voxels in the fol-
lowing brain regions of interest (ROIs) previously
associated with syntactic processing (Hagoort and
Indefrey, 2014; Zaccarella et al., 2017): left supe-
rior temporal gyrus (LSTG), left posterior superior
temporal sulcus (LpSTS), and left inferior frontal
lobe (LIFL) (see Figure 5a). The brain atlas we use
comes from Fan et al. (2016).
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(a) ROIs (b) Chinese bottom-up (c) English top-down

(d) Chinese-small bottom-up (e) Chinese-parser bottom-up

Figure 5: (a). Brain regions of interest. (b)-(e). Significant brain regions under different circumstances, −log(q),
FDR corrected, q < 0.05

All fMRI signals and the linguistic predictors
of each story are z-scored before training and test-
ing. Both the training and the significance testing
are followed by the advice in Zhang et al. (2022b).
Specifically, for both two steps of ridge regression,
we run a nested cross-validation training which con-
tains two loops: the inner loop and the outer loop.
Both the inner-loop and the outer loop are 10-fold
standard cross-validation. The inner loop chooses
the best hyper-parameters (uniformly selected from
the log-space from 10−5 to 105) and computes the
regression weights for each outer loop, and the
outer loop tests the computed regression weight.
After the two-step regression, we conduct a paired
t-test on the outer loop results to extract voxels
where adding each parsing node count can signifi-
cantly improve the prediction accuracy.

6 Results

After brain encoding and the significance test, Fig-
ure 5b and Figure 5c are the brain regions that can
be significantly predicted by different node count
predictors.

6.1 Parsing Strategies with Significant Effects

In both Chinese and English, only one parsing strat-
egy has significant effects, and the significant pars-
ing strategies are different between the two lan-
guages. For Chinese, bottom-up parsing involves
significant brain regions in the left temporal lobe
and the left frontal lobe. Whereas for English, only
the top-down parsing shows significant effects. The
significant parsing strategy for each language is
consistent with the one of less working-memory
load as described in section 4.2. These results of

fMRI experiments support the second hypothesis
that the brain adopts parsing strategies with less
cognitive load during the hierarchical structure-
building process.

The memory constraint during language under-
standing has been discussed in existing work. As
a sentence unfolds, new words rapidly obliterate
previous words (Christiansen and Chater, 2015).
The brain must process language efficiently under
time and memory constraints. Liu et al. (2017)
pointed out that to reduce the memory burden, hu-
man languages may have evolved to minimize the
dependency distance. Futrell et al. (2015) provide
quantitative evidence for dependency length min-
imization in 37 languages. The results of our ex-
periments suggest that the brain utilizes the pars-
ing strategies with less memory load for different
branching languages, which can be seen as a com-
plement to how the brain processes constituency
structures under memory constraints.

6.2 Brain Regions for Structure-building

As shown in Figure 5b and Figure 5c, for both lan-
guages, the node count predictors show significant
effects in the left cortex, which is consistent with
previous findings. However, the involved brain
regions, although overlapped to some extent, are
different between Chinese and English.

For Chinese, the bottom-up predictor shows sig-
nificant effects in the LSTG, the LpSTS, and the
LIFG, as shown in Figure 5b. The brain regions
for English top-down parsing, as shown in Figure
5c, only include a small area in the LSTG. How-
ever, we do not take these results to indicate that
the LpSTS and the LIFG are not involved in syn-
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tactic computation. In fact, much of the previous
work also finds that the LIFG and the LpSTS are
involved in hierarchical syntactic computation in
English(Zaccarella et al., 2017). In the next section,
we conducted a detailed analysis of the possible
explanations for these results.

7 Analysis

In this section, we investigate the possible reasons
for the cross-language differences in the correlated
brain regions. Our analysis is conducted on two ex-
perimental aspects, including the data size and the
correctness of constituency trees between Chinese
and English.

7.1 The Effects of Data Size

As a data-driven method, the results of encoding
models would inevitably be affected by data size.
The size of our Chinese fMRI data is remarkably
larger than the English fMRI data. Therefore, we
tested whether the cross-language brain-region dif-
ferences related to the gap in data size by reducing
the size of the Chinese fMRI data to the same level
as the English data.

As described in section 3, the English fMRI data
includes 51 naturalistic stories and 19 subjects,
with each subject listening to a subset of the au-
dio stories, and each story being listened to twice.
To reduce the Chinese fMRI data to a similar size
as the English fMRI data, we randomly divided
all subjects into 6 groups with 2 subjects in each
group. The fMRI response to each story is aver-
aged within each group. Then, we randomly chose
the averaged fMRI response of 55 stories across all
groups to form a reduced fMRI dataset, which is ap-
proximately the size of the English fMRI data. The
same voxel-encoding and significance test were
conducted on this Chinese-small dataset.

The results are shown in Figure 5d. As shown,
only the bottom-up parsing shows significant ef-
fects in a small area in the LIFG and the LSTG,
which is very similar to the English brain areas
significant in top-down parsing. Therefore, it is
possible that the difference in data size results in
the brain-region difference between Chinese and
English. However, this needs to be tested with a
larger English fMRI dataset in the future.

7.2 The Effects of the Correctness of
Constituency Trees

Apart from the data size, the correctness of con-
stituency trees may also influence the encoding
results of node count predictors. As mentioned in
section 5.2, the constituency trees are manually-
labelled for Chinese stimuli but annotated by the
trained Stanford CoreNLP parser for English stim-
uli. Therefore, the Chinese trees are correct, and
the English trees inevitably have mistakes. These
mistakes may further affect the encoding perfor-
mance of node count predictors.

To test whether the correctness of constituency
trees affects the encoding results, we conduct en-
coding for Chinese with node count values ex-
tracted from the constituency trees annotated by
the Stanford CoreNLP parser. Results are shown
in Figure 5e. As shown, it indeed affects the signif-
icant brain regions, for the significant brain regions
are much smaller than those in Figure 5b.

In conclusion, the size and quality of data both
affect the significant brain regions that the encoding
models can find, which also highlights the impor-
tance of large-scale high-quality data. Reducing
the data size or quality of Chinese data makes the
significant brain regions more similar to the sig-
nificant brain regions in English top-down parsing.
However, none of these experimental factors af-
fects the dominant parsing strategy for Chinese,
which further supports that the different branching
directions are the reason for the different dominant
parsing strategies between Chinese and English.

8 Conclusion

To investigate whether the brain mechanism for
hierarchical structure building is universal across
languages, this work investigated the correlation
between language branching directions, parsing
strategies, and brain activation. By comparing the
fitness of the complexity metrics extracted from dif-
ferent parsing strategies in two diverse languages,
i.e., Chinese and English, we find experimental re-
sults supporting the hypothesis that the language
structure may play an important role in determin-
ing the parsing strategy that the brain uses. That is,
the brain may use different parsing strategies for
different language structures to reduce the cogni-
tive load. Our results demonstrate the flexibility of
the brain mechanism for language processing and
highlight the importance of cross-language studies
in studying the brain language comprehension.
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Limitations

This work has several limitations, which may re-
strict the generalization of our findings.

Although we speculate that the language branch-
ing direction affects the parsing strategy the brain
uses and try to prove it through working memory
demand, we cannot directly verify it using an en-
coding framework. Because the Chinese experi-
mental stimuli are rather mixed, the fMRI response
of left-branching phrases can hardly be separated
from the right ones. Future research can carefully
design language stimuli with left-branching and
right-branching structures separated, or use a met-
ric other than node count to study the relationship
between the brain parsing strategy and the language
branching direction.

In addition, node count is only associated with
parsing difficulty. More detailed information dur-
ing the tree-building process, such as the phrase
nodes to be generated, or the specific parsing op-
eration to be performed, cannot be represented by
such a simple metric. Therefore, more powerful
representations of the parsing process and the in-
formation in the hierarchical tree are needed if we
wish to further uncover the mechanism of bran
syntactic computation. Future work can use neu-
ral language models like BERT to generate more
powerful representations.
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