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Abstract

In this work, we provide a literature review of
active learning (AL) for its applications in natu-
ral language processing (NLP). In addition to a
fine-grained categorization of query strategies,
we also investigate several other important as-
pects of applying AL to NLP problems. These
include AL for structured prediction tasks, an-
notation cost, model learning (especially with
deep neural models), and starting and stopping
AL. Finally, we conclude with a discussion of
related topics and future directions.

1 Introduction

The majority of modern natural language process-
ing (NLP) systems are based on data-driven ma-
chine learning models. The success of these models
depends on the quality and quantity of the avail-
able target training data. While these models can
obtain impressive performance if given enough su-
pervision, it is usually expensive to collect large
amounts of annotations, especially considering that
the labeling process can be laborious and challeng-
ing for NLP tasks (§3.2). Active learning (AL), an
approach that aims to achieve high accuracy with
fewer training labels by allowing a model to choose
the data to be annotated and used for learning, is
a widely-studied approach to tackle this labeling
bottleneck (Settles, 2009).

Active learning has been studied for more than
twenty years (Lewis and Gale, 1994; Lewis and
Catlett, 1994; Cohn et al., 1994, 1996) and there
have been several literature surveys on this topic
(Settles, 2009; Olsson, 2009; Fu et al., 2013; Aggar-
wal et al., 2014; Hino, 2020; Schroder and Niekler,
2020; Ren et al., 2021; Zhan et al., 2022). Nev-
ertheless, there is still a lack of an AL survey for
NLP that includes recent advances. Settles (2009)
and Olsson (2009) provide great surveys covering
AL for NLP, but these surveys are now more than
a decade old. In the meantime, the field of NLP
has been transformed by deep learning. While
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Figure 1: Counts of AL (left) and “neural” (right) pa-
pers in the ACL Anthology over the past twenty years.

other more recent surveys cover deep active learn-
ing, they are either too specific, focused only on
text classification (Schroder and Niekler, 2020), or
too general, covering Al applications more broadly
(Ren et al., 2021; Zhan et al., 2022). Moreover,
applying AL to NLP tasks requires specific consid-
erations, e.g. handling complex output structures
and trade-offs in text annotation cost (§3), which
have not been thoroughly discussed.

In order to provide an NLP-specific AL survey,'
we start by searching the ACL Anthology for AL-
related papers. We simply search for the keyword
“active” in paper titles and then perform manual
filtering. We also gradually include relevant papers
missed by keyword search and papers from other
venues encountered by following reference links
throughout the surveying process.” The distribution
of AL-related papers in the ACL Anthology over
the past twenty years is shown in Figure 1, which
also includes rough counts of works concerning
neural models by searching for the word “neural”
in titles. The overall trend is interesting. There is
a peak around the years of 2009 and 2010, while
the counts drop and fluctuate during the mid-2010s,
which corresponds to the time when neural models
became prominent in NLP. We observe a renewed
interest in AL research in recent years, which is

!"The descriptions in this survey are mostly brief to provide
more comprehensive coverage in a compact way. We hope
that this work can serve as an index for corresponding works.

2Appendix C describes more details of the process.
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Algorithm 1 A typical active learning procedure.

Input: An unlabeled data pool U.

Output: The final labeled dataset £ and trained model M.
1: L, U + seed(U) > Start (§5.1)
2t M« train(L, U) > Model Learning (§4)
3: while not stop_criterion() do > Stop (§5.2)
4 Z <« query(M, U) > Query (82, §3)
5: T’ <+ annotate(Z) > Annotate (§3)
6 U+~ U-T;, L+ LuT

7 M <+ train(L, U) > Model Learning (§4)

8

: return £, My

primarily focused on deep active learning (Ren
et al., 2021; Zhan et al., 2022).

1.1 Overview

We mainly examine the widely utilized pool-based
scenario (Lewis and Gale, 1994), where a pool of
unlabeled data is available and instances are drawn
from the pool to be annotated. Algorithm 1 illus-
trates a typical AL procedure, which consists of a
loop of instance selection with the current model
and model training with updated annotations. The
remainder of this survey is organized correspond-
ing to the main steps in this procedure:

* In §2, we discuss the core aspect of AL: Query
strategies, with a fine-grained categorization over
informativeness (§2.1), representativeness (§2.2)
and the combination of these two (§2.3).

* In §3, we cover the two additional important
topics of querying and annotating for NLP tasks:
AL for structured prediction tasks (§3.1) and the
cost of annotation with AL (§3.2).

* In §4, we discuss model and learning: the query-
successor model mismatch scenario (§4.1) and
AL with advanced learning techniques (§4.2).

* In §5, we examine methods for starting (§5.1)
and stopping (§5.2) AL.

In §6, we conclude with related and future direc-

tions. We also include representative AL works for

various NLP tasks in Appendix A and some other

aspects of AL for NLP in Appendix B.

2 Query Strategies

2.1 Informativeness

Informativeness-based query strategies mostly as-
sign an informative measure to each unlabeled in-
stance individually. The instance(s) with the high-
est measure will be selected.

2.1.1 Output Uncertainty

Uncertainty sampling (Lewis and Gale, 1994)
is probably the simplest and the most commonly

utilized query strategy. It prefers the most un-
certain instances judged by the model outputs.
For probabilistic models, entropy-based (Shannon,
1948), least-confidence (Culotta and McCallum,
2005) and margin-sampling (Scheffer et al., 2001;
Schein and Ungar, 2007) are three typical uncer-
tainty sampling strategies (Settles, 2009). Schroder
et al. (2022) revisit some of these uncertainty-based
strategies with Transformer-based models and pro-
vide empirical results for text classification. For
non-probabilistic models, similar ideas can be uti-
lized, such as selecting the instances that are close
to the decision boundary in an SVM (Schohn and
Cohn, 2000; Tong and Koller, 2001).

Another way to measure output uncertainty is
to check the divergence of a model’s predictions
with respect to an instance’s local region. If an
instance is near the decision boundary, the model’s
outputs may be different within its local region. In
this spirit, recent works examine different ways to
check instances’ local divergence, such as nearest-
neighbour searches (Margatina et al., 2021), adver-
sarial perturbation (Zhang et al., 2022b) and data
augmentation (Jiang et al., 2020).

2.1.2 Disagreement

Uncertainty sampling usually considers the outputs
of only one model. In contrast, disagreement-
based strategies utilize multiple models and se-
lect the instances that are most disagreed among
them. This is also a widely-adopted algorithm, of
which the famous query-by-committee (QBC; Se-
ung et al., 1992) is an example. The disagreement
can be measured by vote entropy (Engelson and Da-
gan, 1996), KL-divergence (McCallum and Nigam,
1998) or variation ratio (Freeman, 1965).

To construct the model committee, one can train
a group of distinct models. Moreover, taking a
Bayesian perspective over the model parameters is
also applicable (Houlsby et al., 2011). Especially
with neural models, (Gal and Ghahramani, 2016)
show that dropout could approximate inference and
measure model uncertainty. This deep Bayesian
method has been applied to AL for computer vi-
sion (CV) tasks (Gal et al., 2017) as well as various
NLP tasks (Siddhant and Lipton, 2018; Shen et al.,
2018; Shelmanov et al., 2021).

2.1.3 Gradient

Gradient information can be another signal for
querying, with the motivation to choose the in-
stances that would most strongly impact the model.
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In this strategy, informativeness is usually mea-
sured by the norm of the gradients. Since we do
not know the gold labels for unlabeled instances,
the loss is usually calculated as the expectation
over all labels. This leads to the strategy of ex-
pected gradient length (EGL), introduced by Set-
tles et al. (2007) and later applied to sequence label-
ing (Settles and Craven, 2008) and speech recog-
nition (Huang et al., 2016). Zhang et al. (2017)
explore a variation for neural networks where only
the gradients of word embeddings are considered
and show its effectiveness for text classification.

2.1.4 Performance Prediction

Predicting performance can be another indicator for
querying. Ideally, the selected instances should be
the ones that most reduce future errors if labeled
and added to the training set. This motivates the
expected error reduction strategy (Roy and McCal-
lum, 2001), which chooses instances that lead to
the least expected error if added to retrain a model.
This strategy can be computationally costly since
retraining is needed for each candidate.

Recently, methods have been proposed to learn
another model to select instances that lead to the
fewest errors, usually measured on a held-out de-
velopment set. Reinforcement learning and im-
itation learning have been utilized to train such
policy models (Bachman et al., 2017; Fang et al.,
2017; Liu et al., 2018a,b). This learning-to-select
strategy may have some constraints. First, it re-
quires labeled data (maybe from another domain)
to train the policy. To mitigate this reliance, Vu
et al. (2019) use the current task model as an imper-
fect annotator for AL simulations. Moreover, the
learning signals may be unstable for complex tasks,
as Koshorek et al. (2019) show for semantic tasks.

A similar and simpler idea is to select the most
erroneous or ambiguous instances with regard to
the current task model, which can also be done
with another performance-prediction model. Yoo
and Kweon (2019) directly train a smaller model
to predict the instance losses for CV tasks, which
have been also adopted for NLP (Cai et al., 2021;
Shen et al., 2021). In a similar spirit, Wang et al.
(2017) employ a neural model to judge the correct-
ness of the model prediction for SRL and Brantley
et al. (2020) learn a policy to decide whether expert
querying is required for each state in sequence la-
beling. Inspired by data maps (Swayamdipta et al.,
2020), Zhang and Plank (2021) train a model to
select ambiguous instances whose average correct-

ness over the training iterations is close to a pre-
defined threshold. For machine translation (MT),
special techniques can be utilized to seek erroneous
instances, such as using a backward translator to
check round-trip translations (Haffari et al., 2009;
Zeng et al., 2019) or quality estimation (Logacheva
and Specia, 2014a,b).

2.2 Representativeness

Only considering the informativeness of individ-
ual instances may have the drawback of sampling
bias (Dasgupta, 2011; Prabhu et al., 2019) and the
selection of outliers (Roy and McCallum, 2001;
Karamcheti et al., 2021). Therefore, representa-
tiveness, which measures how instances correlate
with each other, is another major factor to consider
when designing AL query strategies.

2.2.1 Density

With the motivation to avoid outliers, density-based
strategies prefer instances that are more represen-
tative of the unlabeled set. Selecting by n-gram
or word counts (Ambati et al., 2010a; Zhao et al.,
2020b) can be regarded as a simple way of density
measurement. Generally, the common measure-
ment is an instance’s average similarity to all other
instances (McCallum and Nigam, 1998; Settles and
Craven, 2008). While it may be costly to calculate
similarities of all instance pairs, considering only
k-nearest neighbor instances has been proposed as
an alternative option (Zhu et al., 2008c, 2009).

2.2.2 Discriminative’

Another direction is to select instances that are dif-
ferent from already labeled instances. Again, for
NLP tasks, simple feature-based metrics can be uti-
lized for this purpose by preferring instances with
more unseen n-grams or out-of-vocabulary words
(Eck et al., 2005; Bloodgood and Callison-Burch,
2010; Erdmann et al., 2019). Generally, similarity
scores can also be utilized to select the instances
that are less similar to the labeled set (Kim et al.,
2006; Zhang et al., 2018; Zeng et al., 2019). An-
other interesting idea is to train a model to discrim-
inate the labeled and unlabeled sets. Gissin and
Shalev-Shwartz (2019) directly train a classifier for
this purpose, while naturally adversarial training
can be also adopted (Sinha et al., 2019; Deng et al.,
2018). In domain adaptation scenarios, the same

3Some works also use the word “diversity,” however we
specifically preserve this word for batch-diversity in §2.2.3.
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motivation leads to the usage of a domain separator
to filter instances (Rai et al., 2010).

2.2.3 Batch Diversity

Ideally, only one most useful instance would be
selected in each iteration. However, it is more effi-
cient and practical to adopt batch-mode AL (Set-
tles, 2009), where each time a batch of instances
is selected. In this case, we need to consider the
dissimilarities not only between selected instances
and labeled ones but also within the selected batch.

To select a batch of diverse instances, there
are two common approaches. 1) Iterative selec-
tion collects the batch in an iterative greedy way
(Brinker, 2003; Shen et al., 2004). In each itera-
tion, an instance is selected by comparing it with
previously chosen instances to avoid redundancy.
Some more advanced diversity-based criteria, like
coreset (Geifman and El-Yaniv, 2017; Sener and
Savarese, 2018) and determinantal point processes
(Shi et al., 2021), can also be approximated in a sim-
ilar way. 2) Clustering-based methods partition
the unlabeled data into clusters and select instances
among them (Tang et al., 2002; Xu et al., 2003;
Shen et al., 2004; Nguyen and Smeulders, 2004;
Zhdanov, 2019; Yu et al., 2022). Since the chosen
instances come from different clusters, diversity
can be achieved to some extent.

For the calculation of similarity, in addition to
comparing the input features or intermediate neu-
ral representations, other methods are also inves-
tigated, such as utilizing model-based similarity
(Hazra et al., 2021), gradients (Ash et al., 2020;
Kim, 2020), and masked LM surprisal embeddings
(Yuan et al., 2020).

2.3 Hybrid

There is no surprise that informativeness and repre-
sentativeness can be combined for instance query-
ing, leading to hybrid strategies. A simple combi-
nation can be used to merge multiple criteria into
one. This can be achieved by a weighted sum (Kim
et al., 2006; Chen et al., 2011) or multiplication
(Settles and Craven, 2008; Zhu et al., 2008c¢).

There are several strategies to naturally inte-
grate multiple criteria. Examples include (uncer-
tainty) weighted clustering (Zhdanov, 2019), di-
verse gradient selection (Ash et al., 2020; Kim,
2020) where the gradients themselves contain un-
certainty information (§2.1.3) and determinantal
point processes (DPP) with quality-diversity de-
composition (Shi et al., 2021).

Moreover, multi-step querying, which applies
multiple criteria in series, is another natural hybrid
method. For example, one can consider first fil-
tering certain highly uncertain instances and then
performing clustering to select a diverse batch from
them (Xu et al., 2003; Shen et al., 2004; Mirroshan-
deletal., 2011). An alternative strategy of selecting
the most uncertain instances per cluster has also
been utilized (Tang et al., 2002).

Instead of statically merging into one query strat-
egy, dynamic combination may better fit the AL
learning process, since different strategies may ex-
cel at different AL phases. For example, at the
start of AL, uncertainty sampling may be unreliable
due to little labeled data, and representativeness-
based methods could be preferable, whereas in later
stages where we have enough data and target finer-
grained decision boundaries, uncertainty may be
a suitable strategy. DUAL (Donmez et al., 2007)
is such a dynamic strategy that can switch from a
density-based selector to an uncertainty-based one.
Ambati et al. (2011b) further propose GraDUAL,
which gradually switches strategies within a switch-
ing range. Wu et al. (2017) adopt a similar idea
with a pre-defined monotonic function to control
the combination weights.

3  Query and Annotation

3.1 AL for Structured Prediction

AL has been widely studied for classification tasks,
while in NLP, many tasks involve structured pre-
diction. In these tasks, the system needs to output
a structured object consisting of a group of inter-
dependent variables (Smith, 2011), such as a label
sequence or a parse tree. Special care needs to be
taken when querying and annotating for these more
complex tasks (Thompson et al., 1999). One main
decision is whether to annotate full structures for
input instances (§3.1.1), or allow the annotation of
only partial structures (§3.1.2).

3.1.1 Full-structure AL

First, if we regard the full output structure of an in-
stance as a whole and perform query and annotation
at the full-instance level, then AL for structured pre-
diction tasks is not very different than for simpler
classification tasks. Nevertheless, considering that
the output space is usually exponentially large and
infeasible to explicitly enumerate, querying may
require further inspection.

Some uncertainty sampling strategies, such as
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entropy, need to consider the full output space.
Instead of the infeasible explicit enumeration,
dynamic-programming algorithms that are simi-
lar to the ones in decoding and inference processes
can be utilized, such as algorithms for tree-entropy
(Hwa, 2000, 2004) and sequence-entropy (Mann
and McCallum, 2007; Settles and Craven, 2008).

Instead of considering the full output space, top-
k approximation is a simpler alternative that takes
k-best predicted structures as a proxy. This is also a
frequently utilized method (Tang et al., 2002; Kim
et al., 2006; Rocha and Sanchez, 2013).

For disagreement-based strategies, the measure-
ment of partial disagreement may be required,
since full-match can be too strict for structured
objects. Fine-grained evaluation scores can be rea-
sonable choices for this purpose, such as F1 score
for sequence labeling (Ngai and Yarowsky, 2000).

Since longer instances usually have larger uncer-
tainties and might be preferred, length normaliza-
tion is a commonly-used heuristic to avoid this bias
(Tang et al., 2002; Hwa, 2000, 2004; Shen et al.,
2018). Yet, Settles and Craven (2008) argue that
longer sequences should not be discouraged and
may contain more information.

Instead of directly specifying the full utility of an
instance, aggregation is also often utilized by gath-
ering utilities of its sub-structures, usually along
the factorization of the structured modeling. For ex-
ample, the sequence uncertainty can be obtained by
summing or averaging the uncertainties of all the
tokens (Settles and Craven, 2008). Other aggrega-
tion methods are also applicable, such as weighted
sum by word frequency (Ringger et al., 2007) or
using only the most uncertain (least probable) one
(Myers and Palmer, 2021; Liu et al., 2022).

3.1.2 Partial-structure AL

A structured object can be decomposed into smaller
sub-structures with different training utilities. For
example, in a dependency tree, functional relations
are usually easier to judge while prepositional at-
tachment links may be more informative for the
learning purpose. This naturally leads to AL with
partial structures, where querying and annotating
can be performed at the sub-structure level.
Factorizing full structures into the finest-
grained sub-structures and regarding them as the
annotation units could be a natural choice. Typical
examples include individual tokens for sequence
labeling (Marcheggiani and Artieres, 2014), word
boundaries for segmentation (Neubig et al., 2011;

Li et al., 2012b), syntactic-unit pairs for depen-
dency parsing (Sassano and Kurohashi, 2010) and
mention pairs for coreference (Gasperin, 2009;
Miller et al., 2012; Sachan et al., 2015). The query-
ing strategy for the sub-structures can be similar
to the classification cases, though inferences are
usually needed to calculate marginal probabilities.
Moreover, if full structures are desired as anno-
tation outputs, semi-supervised techniques such
as self-training (§4.2) could be utilized to assign
pseudo labels to the unannotated parts (Tomanek
and Hahn, 2009b; Majidi and Crane, 2013).

At many times, choosing larger sub-structures
is preferable, since partial annotation still needs
the understanding of larger contexts and frequently
jumping among different contexts may require
more reading time (§3.2.1). Moreover, increasing
the sampling granularity may mitigate the missed
class effect, where certain classes may be over-
looked (Tomanek et al., 2009). Typical examples
of larger sub-structures include sub-sequences for
sequence labeling (Shen et al., 2004; Chaudhary
et al., 2019; Radmard et al., 2021), word-wise
head edges for dependency parsing (Flannery and
Mori, 2015; Li et al., 2016), neighborhood pools
(Laws et al., 2012) or mention-wise anaphoric
links (Li et al., 2020; Espeland et al., 2020) for
coreference, and phrases for MT (Bloodgood and
Callison-Burch, 2010; Miura et al., 2016; Hu and
Neubig, 2021). In addition to increasing granu-
larity, grouping queries can also help to make
annotation easier, such as adopting a two-stage se-
lection of choosing uncertain tokens from uncertain
sentences (Mirroshandel and Nasr, 2011; Flannery
and Mori, 2015) and selecting nearby instances in
arow (Miller et al., 2012).

For AL with partial structures, output model-
ing is of particular interest since the model needs
to learn from partial annotations. If directly us-
ing local discriminative models where each sub-
structure is decided independently, learning with
partial annotations is straightforward since the an-
notations are already complete to the models (Neu-
big et al., 2011; Flannery and Mori, 2015). For
more complex models that consider interactions
among output sub-structures, such as global mod-
els, special algorithms are required to learn from
incomplete annotations (Scheffer et al., 2001; Wan-
varie et al., 2011; Marcheggiani and Artieres, 2014;
Li et al., 2016). One advantage of these more com-
plex models is the interaction of the partial labels
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and the remaining parts. For example, considering
the output constraints for structured prediction
tasks, combining the annotated parts and the con-
straints may reduce the output space of other parts
and thus lower their uncertainties, leading to better
queries (Roth and Small, 2006; Sassano and Kuro-
hashi, 2010; Mirroshandel and Nasr, 2011). More
generally, the annotation of one label can interme-
diately influence others with cheap re-inference,
which can help batch-mode selection (Marcheg-
giani and Artieres, 2014) and interactive correction
(Culotta and McCallum, 2005).

In addition to classical structured-prediction
tasks, classification tasks can also be cast as struc-
tured predictions with partial labeling. Partial
feedback is an example that is adopted to make
the annotating of classification tasks simpler, espe-
cially when there are a large number of target labels.
For example, annotators may find it much easier to
answer yes/no questions (Hu et al., 2019) or rule
out negative classes (Lippincott and Van Durme,
2021) than to identify the correct one.

3.2 Annotation Cost

AL mainly aims to reduce real annotation cost and
we discuss several important topics on this point.

3.2.1 Cost Measurement

Most AL works adopt simple measurements of unit
cost, that is, assuming that annotating each instance
requires the same cost. Nevertheless, the annota-
tion efforts for different instances may vary (Settles
et al., 2008). For example, longer sentences may
cost more to annotate than shorter ones. Because
of this, many works assume unit costs to tokens
instead of sequences, which may still be inaccurate.
Especially, AL tends to select difficult and ambigu-
ous instances, which may require more annotation
efforts (Hachey et al., 2005; Lynn et al., 2012). It
is important to properly measure annotation cost
since the measurement directly affects the evalua-
tion of AL algorithms. The comparisons of query
strategies may vary if adopting different cost mea-
surement (Haertel et al., 2008a; Bloodgood and
Callison-Burch, 2010; Chen et al., 2015).
Probably the best cost measurement is the actual
annotation time (Baldridge and Palmer, 2009).
Especially, when the cost comparisons are not that
straightforward, such as comparing annotating data
against writing rules (Ngai and Yarowsky, 2000)
or partial against full annotations (§3.1; Flannery
and Mori, 2015; Li et al., 2016, 2020), time-based

evaluation is an ideal choice. This requires actual
annotating exercises rather than simulations.

Since cost measurement can also be used for
querying (§3.2.2), it would be helpful to be able to
predict the real cost before annotating. This can
be cast as a regression problem, for which several
works learn a linear cost model based on input
features (Settles et al., 2008; Ringger et al., 2008;
Haertel et al., 2008a; Arora et al., 2009).

3.2.2 Cost-sensitive Querying

Given the goal of reducing actual cost, the query-
ing strategies should also take it into considera-
tion. That is, we want to select not only high-
utility instances but also low-cost ones. A natu-
ral cost-sensitive querying strategy is return-on-
investment (ROI; Haertel et al., 2008b; Settles
et al., 2008; Donmez and Carbonell, 2008). In
this strategy, instances with higher net benefit per
unit cost are preferred, which is equivalent to divid-
ing the original querying utility by cost measure.
Tomanek and Hahn (2010) evaluate the effective-
ness of ROI together with two other strategies, in-
cluding constraining maximal cost budget per in-
stance and weighted rank combination. Haertel
et al. (2015) provide further analytic and empirical
evaluation, showing that ROI can reduce total cost.
In real AL scenarios, things can be much more
complex. For example, there can be multiple an-
notators with different expertise (Baldridge and
Palmer, 2009; Huang et al., 2017; Cai et al., 2020),
and the annotators may refuse to answer or make
mistakes (Donmez and Carbonell, 2008). Being
aware of these scenarios, Donmez and Carbonell
(2008) propose proactive learning to jointly select
the optimal oracle and instance. Li et al. (2017)
further extend proactive learning to NER tasks.

3.2.3 Directly Reducing Cost

In addition to better query strategies, there are other
ways of directly reducing annotation cost, such as
computer-assisted annotation. In AL, models and
annotators usually interact in an indirect way where
models only query the instances to present to the
annotators, while there could be closer interactions.

Pre-annotation is such an idea, where not only
the raw data instances but also the model’s best
or top-k predictions are sent to the annotators to
help them make decisions. If the model’s pre-
dictions are reasonable, the annotators can sim-
ply select or make a few corrections to obtain the
gold annotations rather than creating from scratch.
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This method has been shown effective when com-
bined with AL (Baldridge and Osborne, 2004; Vla-
chos, 2006; Ringger et al., 2008; Skeppstedt, 2013;
Caiiizares-Diaz et al., 2021). Post-editing for MT
is also a typical example (Dara et al., 2014).

Moreover, the models could provide help at real
annotating time. For example, Culotta and Mc-
Callum (2005) present an interactive AL system
where the user’s corrections can propagate to the
model, which generates new predictions for the
user to further refine. Interactive machine transla-
tion (IMT) adopts a similar idea, where the anno-
tator corrects the first erroneous character, based
on which the model reproduces the prediction. AL
has also been combined with IMT to further reduce
manual efforts (Gonzalez-Rubio et al., 2012; Peris
and Casacuberta, 2018; Gupta et al., 2021).

3.2.4 Wait Time

In AL iterations, the annotators may need to wait
for the training and querying steps (Line 3 and 4 in
Algorithm 1). This wait time may bring some hid-
den costs, thus more efficient querying and training
would be preferable for faster turnarounds.

To speed up querying, sub-sampling is a simple
method to deal with large unlabeled pools (Roy
and McCallum, 2001; Ertekin et al., 2007; Tsvigun
et al., 2022). For some querying strategies, pre-
calculating and caching unchanging information
can also help to speed up (Ashrafi Asli et al., 2020;
Citovsky et al., 2021). In addition, approximation
with k-nearest neighbours can also be utilized to
calculate density (Zhu et al., 2009) or search for
instances after adversarial attacks (Ru et al., 2020).

To reduce training time, a seemingly reason-
able strategy is to apply incremental training across
AL iterations, that is, continuing training previous
models on the new instances. However, Ash and
Adams (2020) show that this type of warm-start
may lead to sub-optimal performance for neural
models and many recent AL works usually train
models from scratch (Hu et al., 2019; Ein-Dor et al.,
2020). Another method is to use an efficient model
for querying and a more powerful model for final
training. However, this might lead to sub-optimal
results, which will be discussed in §4.1.

Another idea to reduce wait time is to simply
allow querying with stale information. Actually,
batch-mode AL (§2.2.3) is such an example where
instances in the same batch are queried with the
same model. Haertel et al. (2010) propose parallel
AL, which maintains separate loops of annotating,

training, and scoring, and allows dynamic and pa-
rameterless instance selection at any time.

4 Model and Learning

4.1 Model Mismatch

While it is natural to adopt the same best-
performing model throughout the AL process, there
are cases where the query and final (successor)
models can mismatch (Lewis and Catlett, 1994).
Firstly, more efficient models are preferable for
querying to reduce wait time (§3.2.4). Moreover,
since data usually outlive models, re-using AL-
base data to train another model would be desired
(Baldridge and Osborne, 2004; Tomanek et al.,
2007). Several works show that model mismatch
may make the gains from AL be negligible or even
negative (Baldridge and Osborne, 2004; Lowell
et al., 2019; Shelmanov et al., 2021), which raises
concerns about the utilization of AL in practice.

For efficiency purposes, distillation can be uti-
lized to improve querying efficiency while keep-
ing reasonable AL performance. Shelmanov et al.
(2021) show that using a smaller distilled version
of a pre-trained model for querying does not lead
to too much performance drop. Tsvigun et al.
(2022) combine this idea with pseudo-labeling and
sub-sampling to further reduce computational cost.
Similarly, Nguyen et al. (2022) keep a smaller
proxy model for query and synchronize the proxy
with the main model by distillation.

4.2 Learning

AL can be combined with other advanced learning
techniques to further reduce required annotations.

Semi-supervised learning. Since AL usually as-
sumes an unlabeled pool, semi-supervised learning
can be a natural fit. Combining these two is not
a new idea: (McCallum and Nigam, 1998) adopt
the EM algorithm to estimate the outputs of un-
labeled data and utilize them for learning. This
type of self-training or pseudo-labeling technique
is often utilized in AL (Tomanek and Hahn, 2009b;
Majidi and Crane, 2013; Yu et al., 2022). With a
similar motivation, (Dasgupta and Ng, 2009) use
an unsupervised algorithm to identify the unam-
biguous instances to train an active learner. For
the task of word alignment, which can be learned
in an unsupervised manner, incorporating supervi-
sion with AL can bring further improvements in a
data-efficient way (Ambati et al., 2010b,c).
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Transfer learning. AL can be easily combined
with transfer learning, another technique to reduce
required annotations. Utilizing pre-trained models
is already a good example (Ein-Dor et al., 2020;
Yuan et al., 2020; Tamkin et al., 2022) and con-
tinual training (Gururangan et al., 2020) can also
be applied (Hua and Wang, 2022; Margatina et al.,
2022). Moreover, transductive learning is com-
monly combined with AL by transferring learn-
ing signals from different domains (Chan and Ng,
2007; Shi et al., 2008; Rai et al., 2010; Saha et al.,
2011; Wu et al., 2017; Kasai et al., 2019; Yuan
et al., 2022) or languages (Qian et al., 2014; Fang
and Cohn, 2017; Fang et al., 2017; Chaudhary et al.,
2019, 2021; Moniz et al., 2022). In addition to the
task model, the model-based query policy (§2.1.4)
is also often obtained with transfer learning.

Weak supervision. AL can also be combined
with weakly supervised learning. Examples include
learning from inputs and execution results for se-
mantic parsing (Ni et al., 2020), labeling based on
identical structure vectors for entity representations
(Qian et al., 2020), learning from gazetteers and
dictionaries for sequence labeling (Brantley et al.,
2020) and interactively discovering labeling rules
(Zhang et al., 2022a).

Data augmentation. Augmentation is also appli-
cable in AL and has been explored with iterative
back-translation (Zhao et al., 2020b), mixup for
sequence labeling (Zhang et al., 2020) and phrase-
to-sentence augmentation for MT (Hu and Neubig,
2021). As discussed in §2.1.1, augmentation can
also be helpful for instance querying (Jiang et al.,
2020; Zhang et al., 2022b). Another interesting
scenario involving augmentation and AL is query
synthesis, which directly generates instances to be
annotated instead of selecting existing unlabeled
ones. Though synthesizing texts is still a hard prob-
lem generally, there have been successful applica-
tions for simple classification tasks (Schumann and
Rehbein, 2019; Quteineh et al., 2020).

5 Starting and Stopping AL
5.1 Starting AL

While there are cases where there are already
enough labeled data to train a reasonable model
and AL is utilized to provide further improvements
(Bloodgood and Callison-Burch, 2010; Geifman
and El-Yaniv, 2017), at many times we are facing
the cold-start problem, where instances need to be

selected without a reasonable model. Especially,
how to select the seed data to start the AL process
is an interesting question, which may greatly influ-
ence the performance in initial AL stages (Tomanek
et al., 2009; Horbach and Palmer, 2016).

Random sampling is probably the most com-
monly utilized strategy, which is reasonable since
it preserves the original data distribution. Some
representativeness-based querying strategies (§2.2)
can also be utilized, for example, selecting points
near the clustering centroids is a way to obtain rep-
resentative and diverse seeds (Kang et al., 2004;
Zhu et al., 2008c; Hu et al., 2010). Moreover, some
advanced learning techniques (§4.2) can also be
helpful here, such as transfer learning (Wu et al.,
2017) and unsupervised methods (Vlachos, 2006;
Dasgupta and Ng, 2009). In addition, language
model can be a useful tool, with which Dligach and
Palmer (2011) select low-probability words in the
context of word sense disambiguation and Yuan
et al. (2020) choose cluster centers with surprisal
embeddings by pre-trained contextualized LMs.

5.2 Stopping AL

When adopting AL in practice, it would be desir-
able to know the time to stop AL when the model
performance is already near the upper limits, before
running out of all the budgets. For this purpose,
a stopping criterion is needed, which checks cer-
tain metrics satisfying certain conditions. There
can be simple heuristics. For example, AL can
be stopped when all unlabeled instances are no
closer than any of the support vectors with an SVM
(Schohn and Cohn, 2000; Ertekin et al., 2007) or
no new n-grams remain in the unlabeled set for MT
(Bloodgood and Callison-Burch, 2010). Neverthe-
less, these are specific to the underlying models or
target tasks. For the design of a general stopping
criterion, there are three main aspects to consider:
metric, dataset and condition.

For the metric, measuring performance on a de-
velopment set seems a natural option. However,
the results would be unstable if this set is too small
and it would be impractical to assume a large de-
velopment set. Cross-validation on the training set
also has problems since the labeled data by AL is
usually biased. In this case, metrics from the query
strategies can be utilized. Examples include un-
certainty or confidence (Zhu and Hovy, 2007; Vla-
chos, 2008), disagreement (Tomanek et al., 2007;
Tomanek and Hahn, 2008; Olsson and Tomanek,
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2009), estimated performance (Laws and Schiitze,
2008), expected error (Zhu et al., 2008a), confi-
dence variation (Ghayoomi, 2010), as well as ac-
tual performance on the selected instances (Zhu
and Hovy, 2007). Moreover, comparing the predic-
tions between consecutive AL iterations is another
reasonable option (Zhu et al., 2008b; Bloodgood
and Vijay-Shanker, 2009a).

The dataset to calculate the stopping metric re-
quires careful choosing. The results could be un-
stable if not adopting a proper set (Tomanek and
Hahn, 2008). Many works suggest that a separate
unlabeled dataset should be utilized (Tomanek and
Hahn, 2008; Vlachos, 2008; Bloodgood and Vijay-
Shanker, 2009a; Beatty et al., 2019; Kurlandski and
Bloodgood, 2022). Since the stopping metrics usu-
ally do not rely on gold labels, this dataset could
potentially be very large to provide more stable
results, though wait time would be another factor
to consider in this case (§3.2.4).

The condition to stop AL is usually compar-
ing the metrics to a pre-defined threshold. Ear-
lier works only look at the metric at the current
iteration, for example, stopping if the uncertainty
or the error is less than the threshold (Zhu and
Hovy, 2007). In this case, the threshold is hard
to specify since it relies on the model and the
task. (Zhu et al., 2008b) cascade multiple stopping
criteria to mitigate this reliance. A more stable
option is to track the change of the metrics over
several AL iterations, such as stopping when the
confidence consistently drops (Vlachos, 2008), the
changing rate flattens (Laws and Schiitze, 2008) or
the predictions stabilize across iterations (Blood-
good and Vijay-Shanker, 2009a; Bloodgood and
Grothendieck, 2013).

Pullar-Strecker et al. (2021) provide an empiri-
cal comparison over common stopping criteria and
would be a nice reference. Moreover, stopping AL
can be closely related to performance prediction
and early stopping. Especially, the latter can be of
particular interest to AL since learning in early AL
stages need to face the low-resource problem and
how to perform early stopping may also require
careful considerations.

6 Related Topics and Future Directions

6.1 Related Topics

There are many related topics that could be ex-
plored together with AL. Other data-efficient learn-
ing methods such as semi-supervised and transfer

learning are naturally compatible with AL (§4.2).
Curriculum learning (Bengio et al., 2009), which
arranges training instances in a meaningful order,
may also be integrated with AL (Platanios et al.,
2019; Zhao et al., 2020a; Jafarpour et al., 2021).
Uncertainty (Gawlikowski et al., 2021), outlier de-
tection (Hodge and Austin, 2004) and performance
prediction (Xia et al., 2020) can be related to in-
stance querying. Crowdsourcing can be adopted
to further reduce annotation cost (§B). Model ef-
ficiency (Menghani, 2021) would be crucial to re-
duce wait time (§3.2.4). AL is a typical type of
human-in-the-loop framework (Wang et al., 2021),
and it will be interesting to explore more human-
computer interaction techniques in AL.

6.2 Future Directions

Complex tasks. AL is mostly adopted for simple
classification, while there are many more complex
tasks in NLP. For example, except for MT, genera-
tion tasks have been much less thoroughly explored
with AL. Tasks with more complex inputs such as
NLI and QA also require extra care when using
AL; obtaining unlabeled data is already non-trivial.
Nevertheless, preliminary work has shown that AL
can be helpful for data collection for such tasks
(Mussmann et al., 2020).

Beyond direct target labeling. In addition to
directly annotating target labels, AL can also be uti-
lized in other ways to help the target task, such as
labeling features or rationales (Melville and Sind-
hwani, 2009; Druck et al., 2009; Sharma et al.,
2015), annotating explanations (Liang et al., 2020),
evaluation (Mohankumar and Khapra, 2022) and
rule discovery (Zhang et al., 2022a).

AL in practice. Most AL works simulate anno-
tations on an existing labeled dataset. Though this
method is convenient for algorithm development, it
ignores several challenges of applying AL in prac-
tice. As discussed in this survey, real annotation
cost (§3.2.1), efficiency and wait time (§3.2.4), data
reuse (§4.1) and starting and stopping (§5) are all
important practical aspects which may not emerge
in simulation. Moreover, since the AL process usu-
ally cannot be repeated multiple times, how to se-
lect the query strategy and other hyper-parameters
remains a great challenge. It will be critical to ad-
dress these issues to bring AL into practical use
(Rehbein et al., 2010; Attenberg and Provost, 2011;
Settles, 2011; Lowell et al., 2019) and make it more
widely utilized (Tomanek and Olsson, 2009).
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Limitations

There are several limitations of this work. First, we
mainly focus on AL works in the context of NLP,
while AL works in other fields may also present
ideas that could be utilized for NLP tasks. For ex-
ample, many querying strategies originally devel-
oped with CV tasks could be naturally adopted to
applications in NLP (Ren et al., 2021). We encour-
age the readers to refer to other surveys mentioned
in §1 for additional related AL works. Moreover,
the descriptions in this survey are mostly brief in
order to provide a more comprehensive coverage
within page limits. We mainly present the works
in meaningful structured groups rather than plainly
describing them in unstructured sequences, and we
hope that this work can serve as an index where
more details can be found in corresponding works.
Finally, this is a pure survey without any exper-
iments or empirical results. It would be helpful
to perform comparative experiments over different
AL strategies, which could provide more meaning-
ful guidance (Zhan et al., 2022). We leave this to
future work.
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A Tasks

In this section, we list representative works for
different NLP tasks. According to the output struc-
tures, the tasks are further categorized into four
groups: classification, sequence labeling, complex
structured prediction, and generation.

Classification denotes the tasks whose output
consists of only one variable. Text classification
that assigns a target label to an input text sequence
is a typical example. Pairwise classification and
word-level classification are also commonly seen
in NLP.

» Text classification: Please refer to the paper
table mentioned in (§C) for related works. We
do not list them here since there are too many.

» Pairwise classification: (GriefShaber et al., 2020;
Bai et al., 2020; Mussmann et al., 2020)

* Word sense disambiguation (WSD): (Fujii
et al., 1998; Chen et al., 2006; Chan and Ng,
2007; Zhu and Hovy, 2007; Zhu et al., 2008c;
Imamura et al., 2009; Martinez Alonso et al.,
2015)

Sequence labeling is probably the most com-
monly seen structured prediction task in NLP. It
aims to predict a sequence of labels, among which
there may be interactions and constraints.

¢ Part-of-speech (POS): (Engelson and Dagan,
1996; Ringger et al., 2007; Haertel et al., 2008a;
Marcheggiani and Artieres, 2014; Fang and
Cohn, 2017; Brantley et al., 2020; Chaudhary
et al., 2021)

¢ (Named) entity recognition (NER/ER): (Shen
et al., 2004; Culotta and McCallum, 2005; Kim
et al., 2006; Settles and Craven, 2008; Tomanek
and Hahn, 2009b; Marcheggiani and Articres,
2014; Chen et al., 2015; Li et al., 2017; Shen
etal., 2018; Siddhant and Lipton, 2018; Erdmann
et al., 2019; Chaudhary et al., 2019; Brantley
et al., 2020; Hazra et al., 2021; Shelmanov et al.,
2021; Radmard et al., 2021)

* Segmentation: (Ngai and Yarowsky, 2000; Sas-
sano, 2002; Neubig et al., 2011; Li et al., 2012b;
Marcheggiani and Artieres, 2014; Cai et al.,
2021)

* Natural language understanding (NLU): (Ha-
dian and Sameti, 2014; Deng et al., 2018; Peshter-
liev et al., 2019; Zhu et al., 2020)

Complex structure prediction in this work de-
notes the structure prediction tasks that are more
complex than sequence labeling, and have explicit
connections (alignments) between inputs and out-
puts. They usually aim to extract relational struc-
tures among input elements.

e Parsing: (Hwa, 2000; Tang et al., 2002;
Baldridge and Osborne, 2003, 2004; Hwa, 2004;
Reichart and Rappoport, 2009; Sassano and
Kurohashi, 2010; Atserias et al., 2010; Mir-
roshandel and Nasr, 2011; Majidi and Crane,
2013; Flannery and Mori, 2015; Li et al., 2016;
Shi et al., 2021)

¢ Semantic role labeling (SRL): (Roth and Small,
2006; Wang et al., 2017; Ikhwantri et al., 2018;
Siddhant and Lipton, 2018; Koshorek et al., 2019;
Myers and Palmer, 2021)

e Coreference: (Gasperin, 2009; Miller et al.,
2012; Laws et al., 2012; Zhao and Ng, 2014;
Sachan et al., 2015; Li et al., 2020; Espeland
et al., 2020; Yuan et al., 2022)

¢ Relation-related: (Roth and Small, 2008; Blood-
good and Vijay-Shanker, 2009b; Mirroshandel
et al., 2011; Fu and Grishman, 2013; Caifiizares-
Diaz et al., 2021; Mallart et al., 2021; Seo et al.,
2022; Zhang et al., 2022a)

¢ Event-related: (Cao et al., 2015; Shen et al.,
2021; Lee et al., 2022)

e Word alignment: (Ambati et al., 2010b,c;
Rocha and Sanchez, 2013)

* Entity alignment/resolution:
2019; Liu et al., 2021)

(Kasai et al.,

Generation refers to the tasks that aim to gen-
erate a sequence of tokens. We differentiate them
from plain structured prediction tasks since there
are usually no explicit alignments between input
and output sub-parts in the supervision and such
alignments are usually implicitly modeled, espe-
cially in recent sequence-to-sequence neural mod-
els. MT is a typical generation task, where we
further separate traditional statistical machine trans-
lation (SMT) and recent neural machine translation
(NMT). We also include semantic parsing here,
since recent works usually cast it as a sequence-to-
sequence generation task.

¢ SMT: (Eck et al., 2005; Haffari et al., 2009; Haf-
fari and Sarkar, 2009; Ananthakrishnan et al.,
2010b; Bloodgood and Callison-Burch, 2010;
Ambati et al., 2010a; Ananthakrishnan et al.,
2010a; Gonzalez-Rubio et al., 2012; Rocha and
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Sanchez, 2013; Logacheva and Specia, 2014a,b;
Miura et al., 2016)

e NMT: (Peris and Casacuberta, 2018; Liu et al.,
2018b; Zhang et al., 2018; Zeng et al., 2019;
Zhao et al., 2020b; Hu and Neubig, 2021; Gupta
et al., 2021; Zhou and Waibel, 2021; Hazra et al.,
2021; Mendoncga et al., 2022)

* Semantic parsing: (Duong et al., 2018; Ni et al.,
2020; Sen and Yilmaz, 2020)

* Others: (Mairesse et al., 2010; Deng et al., 2018)

B Other Aspects

We describe some other aspects that are frequently
seen when applying AL to NLP.

Crowdsourcing and Noise. Crowdsourcing is
another way to reduce annotation costs by includ-
ing non-expert annotations (Snow et al., 2008). Nat-
urally, AL and crowdsourcing may also be com-
bined with the hope to further reduce cost (Ambati
et al., 2010a; Laws et al., 2011; Yan et al., 2011;
Fang et al., 2014; Zhao et al., 2020c). One spe-
cific factor to consider in this case is the noises
in the crowdsourced data, since noisy data may
have a negative impact on the effectiveness of AL
(Rehbein and Ruppenhofer, 2011). Cost-sensitive
querying strategies (§3.2.2) can be utilized to select
both annotators and instances by estimating label-
ers’ reliability (Yan et al., 2011; Fang et al., 2014).
Requiring multiple annotations per instance and
then consolidating is also applicable (Laws et al.,
2011). Lin et al. (2019) provide a framework that
enables automatic crowd consolidation for AL on
the tasks of sequence labeling.

Multiple Targets. In many cases, we may want
to consider multiple targets rather than only one,
for example, annotating instances in multiple do-
mains (Xiao and Guo, 2013; He et al., 2021; Long-
pre et al., 2022) or multiple languages (Haffari
and Sarkar, 2009; Qian et al., 2014; Moniz et al.,
2022). Moreover, there may be multiple target
tasks, where multi-task learning (MTL) can inter-
act with AL (Reichart et al., 2008; Ambati et al.,
2011a; Rocha and Sanchez, 2013; Ikhwantri et al.,
2018; Zhu et al., 2020; Rotman and Reichart, 2022).
In these scenarios with multiple targets, naturally,
strategies that consider all the targets are usually
more preferable. Reichart et al. (2008) show that a
query strategy that considers all target tasks obtains
the overall best performance for MTL. Moniz et al.
(2022) suggest that joint learning across multiple

languages using a single model outperforms other
strategies such as equally dividing budgets or allo-
cating only for a high-resource language and then
performing the transfer.

Data Imbalance. Imbalance is a frequently oc-
curring phenomenon in NLP and AL can have in-
teresting interactions with it. On the one hand,
as in plain learning scenarios, AL should take
data imbalance into considerations, with modifica-
tions to the model (Bloodgood and Vijay-Shanker,
2009b), learning algorithm (Zhu and Hovy, 2007)
and query strategies (Tomanek et al., 2009; Escud-
eiro and Jorge, 2010; Li et al., 2012a). On the other
hand, AL can be utilized to address the data imbal-
ance problem and build better data (Ertekin et al.,
2007; Tomanek and Hahn, 2009a; Attenberg and
Ertekin, 2013; Mottaghi et al., 2020; Mussmann
et al., 2020).

C Surveying Process

In this section, we provide more details of our sur-
veying process:

* For the ACL Anthology, we search for pa-
pers with the keyword ““active” in titles (by
grepping the “Full Anthology BibTeX file”*).
There can be related papers that are missed
from this simple keyword search, but as we
read along the filtered list, we gradually in-
clude the notable missing ones.

* We also include papers outside the ACL An-
thology. First, we look for papers by search-
ing with the key phrase “active learning” on
Arxiv (in the field of c¢s.CL, excluding those
already appearing in ACL Anthology). More-
over, we also collect related works in other
venues, such as AI/ML conferences and jour-
nals. For these venues, we do (can) not per-
form extensive searches due to high volume
(and that many are unrelated to our focus on
NLP). We mainly collect related papers in
these adjacent venues by following the refer-
ences from the papers already surveyed.

We also create a table for the related
papers (with  detailed categorizations),
which can be found at this link: https:

//github.com/zzsfornlp/zmsp/blob/
main/msp2/docs/aldnlp/readme.md.

*nttps://aclanthology.org/anthology.
bib.gz

6190


https://github.com/zzsfornlp/zmsp/blob/main/msp2/docs/al4nlp/readme.md
https://github.com/zzsfornlp/zmsp/blob/main/msp2/docs/al4nlp/readme.md
https://github.com/zzsfornlp/zmsp/blob/main/msp2/docs/al4nlp/readme.md
https://aclanthology.org/anthology.bib.gz
https://aclanthology.org/anthology.bib.gz

