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Abstract

Position Embedding (PE) is essential for trans-
former to capture the sequence ordering of in-
put tokens. Despite its general effectiveness
verified in Natural Language Processing (NLP)
and Computer Vision (CV), its application in
cross-modal tasks remains unexplored and suf-
fers from two challenges: 1) the input text to-
kens and image patches are not aligned; 2) the
encoding space of each modality is different,
making it unavailable for feature comparison.
In this paper, we propose a unified position
embedding method for these problems, called
AnChor-basEd Relative Position Embedding
(ACE-RPE), in which we first introduce an
anchor locating mechanism to bridge the se-
mantic gap and locate anchors from different
modalities. Then we conduct the distance cal-
culation of each text token and image patch by
computing their shortest paths from the located
anchors. Last, we embed the anchor-based
distance to guide the computation of cross-
attention. In this way, it calculates cross-modal
relative position embeddings for cross-modal
transformer. Benefiting from ACE-RPE, our
method obtains new SOTA results on a wide
range of benchmarks, such as Image-Text Re-
trieval on MS-COCO and Flickr30K, Visual
Entailment on SNLI-VE, Visual Reasoning on
NLVR2 and Weakly-supervised Visual Ground-
ing on RefCOCO+.

1 Introduction

Transformer (Vaswani et al., 2017) has shown ex-
cellent performance in Natural Language Process-
ing (NLP), Computer Vision (CV) as well as cross-
modal tasks, including natural language inference
(Devlin et al., 2018), image classification (Wu et al.,
2021), visual question answering (Wu et al., 2017)
and visual entailment (Xie et al., 2019), etc. Never-
theless, transformer module lacks the capability to
capture the ordering information of the input tokens

∗ : equal contribution

because of the limitation of its self-attention mech-
anism. Therefore, incorporating explicit position
representations is crucial to improve the perfor-
mance of transformer-based models (Devlin et al.,
2018; Dosovitskiy et al., 2020).

Generally, there are two mainstream position en-
coding methods in transformer-based NLP and CV
models, i.e., absolute position embedding (APE)
and relative position embedding (RPE). APE meth-
ods (Vaswani et al., 2017; Devlin et al., 2018; Doso-
vitskiy et al., 2020) encode absolute positions of
the input tokens with either trainable (Devlin et al.,
2018) or fixed embedding (Vaswani et al., 2017).
These position embeddings are added with the to-
ken embeddings, which are then passed to the self-
attention layer to calculate the token relationship
considering their positional information. It has
been verified effective in a variety of NLP (Wang
et al., 2020; Devlin et al., 2018) and CV (Wu et al.,
2021) tasks. On the other hand, RPE methods (Chu
et al., 2021; Shaw et al., 2018) encode the pair-
wise distances of every two tokens. Commonly, it
directly interacts with the calculation of attention
mechanism in different ways (Wu et al., 2021; Chu
et al., 2021). Compared with APE, RPE methods
are superior to modeling the positional information
of extremely long or variant-length sequences. As
a result, in some span prediction tasks of NLP, RPE
methods are shown to achieve more performance
gains than APE ones (Wang et al., 2020).

Despite the success of the position embedding
methods in unimodal tasks, its exploration in the
field of cross-modal modeling is still limited. Re-
cent works on cross-modal tasks (Cho et al., 2021;
Li et al., 2021) could be classified into two frame-
works, 1) One-stage methods (Fig. 1(a)) which ex-
tract the cross-modal representation with a unified
cross-modal encoder; 2) Two-stage methods (Fig.
1(b)), which have additional text encoder and image
encoder. Both of them adopt the position embed-
dings in a separate way, where the text and image
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position representations are embedded individually.
In this way, the models can only learn position em-
bedding in each modality separately while ignoring
positional information between two tokens from
different modalities. However, it is challenging to
raise a unified method for cross-modal position em-
bedding. Firstly, the inputs from two modalities are
embedded into different spaces, making the input
embedding not comparable. Secondly, since the
text tokens and image patches are not aligned, the
relative positions between two units from different
modalities are meaningless.

In this paper, we advocate a new perspective for
effective cross-modal position encoding (shown
in Fig. 1(c)), called AnChor-basEd Relative Po-
sition Embedding (ACE-RPE). It first computes
alignment between text and image tokens to locate
aligned pieces, which are called anchors in this
paper. Subsequently, the token-to-token (t2t) and
patch-to-patch (p2p) relative position is calculated
for unimodal ordering information. The relative
position searching of arbitrary text token and image
patch is then considered as a shortest path problem,
containing three steps: 1) routing from given token
and its nearby anchors; 2) routing from anchors and
their located image patches, and 3) routing from
the located patches to the given image patch. As
illustrated in Fig. 2, the relative position of “A”
and the image patch of the man is derived from
three terms: the t2t relative position between “A”
and the anchor “man”, the relative position from
anchor “man” to the image patch matching “man”,
and the relative position from the located image
patch to the patch of human (obviously, 0 in this
case). Finally, we embed the anchor-based relative
position to the self-attention calculation. Further,
we conduct extensive experiments to verify the ef-
fectiveness of the proposed ACE-RPE compared
to many strong baselines. The results demonstrate
that our method can boost the performance of cross-
modal transformers with a large margin.

The main contributions of this work can be sum-
marized as follows,

• We propose the ACE-RPE method to incorpo-
rate positional information into cross-modal
transformers and bridge the gap of different
modalities. As we know, it is the first work to
model relative position in cross-modal tasks.

• We give an anchor-based RPE method to get
relative positions according to the located an-

chors between two modalities. Extensive ex-
periments compared with strong baselines re-
veals the effectiveness of this method.

• Our method achieves new SOTA in 5 cross-
modal benchmarks, including Flickr30K
(Plummer et al., 2015), MS-COCO (Lin et al.,
2014), SNLI-VE (Xie et al., 2019), NLVR2
(Suhr et al., 2018) and RefCOCO+ (Yu et al.,
2016). In addition, it also surpasses baseline
methods significantly on VQA (Goyal et al.,
2017).

2 Related Work

2.1 Position Embedding for NLP

Currently, Transformer (Vaswani et al., 2017) plays
a major role in the field of NLP. It shows superiority
in many real-world tasks, such as natural language
inference (Devlin et al., 2018) and question answer-
ing (Devlin et al., 2018; Rajpurkar et al., 2016).
However, the self-attention of transformer lacks
the ability to capture ordering information of input
tokens in a sequence. Such that, additional explicit
representations for token positions are crucial to
the performance of the transformer.

The position embedding in NLP could be catego-
rized into two classes: APE and RPE. APE encodes
the absolute position of tokens in a sequence. Each
position has its individual embedding, which are
generated with specific functions, like sinusoidal
operator (Vaswani et al., 2017) or learnable encod-
ing (Devlin et al., 2018). Usually, the generated
APE is added with the input text tokens for an
explicit perspective view of token positions. There-
fore, the same token in different positions will have
different embedding. Currently, various works on
APE are proposed to further boost the performance
of transformer-based methods.

RPE (Dai et al., 2019; Devlin et al., 2018; Raf-
fel et al., 2019) encodes the pairwise relative to-
ken position via interacting with the query, key or
value in self-attention modules (Shaw et al., 2018).
Compared to APE, RPE is translation-invariant and
could encode variable lengths of input sequences.
Therefore, it is shown to surpass APE on some
long-sequence tasks (Wang et al., 2020).

2.2 Position Embedding for CV

With the great success of Visual Transformer (ViT)
(Dosovitskiy et al., 2020) on large-scale dataset,
the transformer-based methods have also become
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Figure 1: Conceptual comparison of three position embedding methods. The output blocks in green, orange and
blue present the [CLS] token, text and image embedding. (a) The One-stage method (Tsai et al., 2019), which
has a unified cross-modal encoder. Only APE is utilized in this method. (b) Two-stage method (Li et al., 2021),
containing extra text and image encoders. Both AFE and RPE are injected in the backbone, but they are embedded
modality-separately. (c) Our ACE-RPE method. Except for unimodal AFE and RPE, ACE-RPE is proposed to
leverage the cross-modal encoder with the relative position information from different modalities.
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Figure 2: A case from MS-COCO (Lin et al., 2014) to
illustrate ACE-RPE. The proposed Anchor-based Rel-
ative Position is calculated with the located anchors
(words in red) and t2t relative position. “M” is the
masked relative position.

an important paradigm in the area of CV (Doso-
vitskiy et al., 2020; Wu et al., 2021). Following
the transformer-based methods in NLP tasks, the
position embedding is also considered as a key com-
ponent to obtain better performance on CV tasks.
Though common RPE on images could outperform
APE methods in some tasks (Dosovitskiy et al.,
2020), it is demonstrated by some works (Doso-
vitskiy et al., 2020; Srinivas et al., 2021) that the
superiority of RPE is not solid. To handle this issue,
some follow-up works (Chu et al., 2021; Wu et al.,
2021; Zhang and Yang, 2021) present significant
improvement on RPE methods, which could over-
pass APE counterparts by more robust margins.

In summary, position embedding has been
proved to have a significant effect on the perfor-
mance of transformer-based models in both NLP
and CV. However, the exploration on cross-modal
tasks is still vacant. One of the most important
reasons is that it is challenging to find a meaningful
“position” between different modalities. For exam-
ple, it is not available for us to define the position
of the word “are” in a text and the corresponding
patches in an image. To this end, we propose an
anchor-based method, which bridges the gap be-
tween the text and image modalities and makes it
possible to calculate position embeddings of differ-
ent modalities.

3 Methods

The overview of our backbone network is presented
in Fig. 3, which contains a 6-layer visual trans-
former (Dosovitskiy et al., 2020) as the image
encoder, a 6-layer linguistic transformer (Devlin
et al., 2018) as the text encoder and a 6-layer cross-
modal transformer. The AnChor-basEd Position
Embedding (ACE-RPE) is proposed to leverage the
cross-modal encoder with cross-modal positional
information. It involves two key procedures: 1)
learning the locating of cross-modal anchors; 2)
ACE-RPE calculation by incorporating anchor lo-
cating and t2t/i2i relative position. In this section,
we first present the above procedures in detail (Sec.
3.1 and Sec. 3.2). Then, we present the overall
pre-training objectives of our method.
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Figure 3: The overall architecture of our ACE-RPE method. It contains a text encoder, an image encoder and an
extra cross-modal encoder to extract cross-modal features. Firstly, it learns the cross-modal locating of anchors
in an unsupervised manner. Then, the cross-modal position embedding is calculated by interacting with the input
embedding of text tokens and image patches (detailed in the right part), which serves as the RPE of the following
cross-modal encoder. The model pre-training follows four objectives: Image-Text Matching (ITM), Masked
Language Modeling (MLM), Masked Image Modeling (MIM) and Anchor Loss.

3.1 Cross-modal Locating of Anchors

Considering an image x and its corresponding text
y, the “anchor” in this paper refers to the prominent
tokens of y, which can be located to some patches
of x. An illustration of cross-modal anchors is
depicted in Fig. 2. Naturally, the word “man” is
associated with the image patch containing the hu-
man, and “blue” can be located to the blue patches.
Then, the words “tie” and “cat” are called anchors
in this paper.

In this part, we propose an unsupervised
method to figure out the cross-modal anchors ef-
fectively. It uses a token-wise loss to search
for anchors without any additional annotations.
Formally, the raw image x is segmented into
M + 1 image patches (Dosovitskiy et al., 2020),
i.e., x = {cx, x1, x2, · · · , xm, · · · , xM}, where
each of them is embedded with a normalized D-
dimensional vectors, cx is an image [CLS] token.
Similarly, the text y is tokenized to N + 1 text to-
kens, y = {cy, y1, y2, · · · , yn, · · · , yN}, where cy
is a text [CLS] token. The token-wise similarity
between the image patch xm and text token yn is
computed by a specific similarity function (cosine
similarity in this paper) f . We then introduce an

anchor loss to maximize the similarity of the an-
chors and their matching image patches, without
changing the similarity of unmatched pairs, e.g.,
“blue” and patches of the “horse” in Fig. 2. Accord-
ingly, the proposed anchor loss is formulated based
on contrastive learning and log-sum-exp trick1:

Lace =
1

2
E(x,y)

[
Hi2t(x,Oy) +Ht2i(y,Ox)

− 1

λ
log

∑

m,n

eλf(xm,yn)
] (1)

where λ is a scale parameter. Oy and Ox indicate
the dynamic dictionaries (He et al., 2020), contain-
ing one positive sample y and K − 1 negative sam-
ples, that is only text y in Oy matches image x. K
is 65, 536 in this paper, following (Li et al., 2021).
f presents the similarity function (cosine similar-
ity in this paper). Hi2t(X,Oy) and Ht2i(Y,Ox)
denote the image-to-text and text-to-image con-

1Inspired by (Nielsen and Sun, 2016), log-sum-exp is a
soft-smoothing version of maximum operation. It is used to
output some maximum values (the number is adjusted by a
scale parameter), while small values tend to zero
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trastive losses based on K-pairs, respectively

Hi2t(x,Oy) =−min
{
0, f(x, y)− δ

− 1

λ
log

∑

z∈Oy ,z ̸=y

eλf(x,z)
} (2)

here δ is the margin between positive and negative
samples, which is empirically set to 0.05 in our
experiments. Ht2i(y,Ox) is defined accordingly.

3.2 Calculation of ACE-RPE
The calculation of ACE-RPE refers to three ma-
jor components: 1) the locating of anchors with
multi-group relative position; 2) the computation
of anchor-based cross-modal relative position be-
tween text tokens and image patches; 3) cross-
modal relative position embedding. Each step is
elaborated as follows.

3.2.1 Locating of Anchors
The relative position between anchors and their rel-
ative image patches is dynamically generated with
a proposed multi-group cross-modal similarity,

SG(xm, yn) =
[
f(x̂1

m, ŷ1
n), f(x̂

2
m, ŷ2

n), · · · , f(x̂G
m, ŷG

n )
]

(3)

where G is the number of groups, x̂m ∈
RGD

G , ŷn ∈ RGD
G are the reshaped versions of xm

and x̂jm ∈ R
D
G , ŷjn ∈ R

D
G , Note that our proposed

multi-group cross-modal similarity is not a scalar
but a vector of length G.

Shown in Eqn. 3, the multi-group cross-modal
similarity functions on all text tokens and image
patches. We then introduce a post-locating for an-
chors with a soft shrinking operator,

ŜG(xm, yn) =

{
SG(xm, yn), SG(xm, yn) ≥ δ

δeτ(SG(xm,yn)−δ), SG(xm, yn) < δ

(4)

where δ is a hyper-parameter. τ is a large enough
scalar, set to 104 is this paper.

The set of anchors is then defined as

AG(x, y) = {xm | ∃ yn, s.t. ŜG(xm, yn) ≥ δ}
(5)

where “≥” is calculated element-wisely by each
group of ŜG. Hence, the AG(x, y) is a collection of
G anchor sets, which may be different in different
groups. As indicated in Eqn. 8 and analyzed in
Sec. A.2, the multi-group anchor sets instead of a
single one can enhance the flexibility of position
embeddings.

Finally, the distance between anchors and their
relative image patches is,

DG(xm, yn) =
1

ŜG(xm, yn)
(6)

3.2.2 Anchor-based Cross-modal Relative
Position Calculation

Given an arbitrary text token and an image patch,
we consider the calculation of their relative position
as a shortest path problem, where the path is split
into three steps: 1) route from the given text token
to nearby anchors; 2) route from anchors to their
located image patches and 3) route from the located
image patches to the given image patch. Formally,
the anchor-based relative distance is,

Pace(xm, yn) =min
i,j

{
Dp2p(xm, xi)⊕

DG(xi, yj)⊕Dt2t(yj , yn)
} (7)

where “⊕” is the broadcasting addition of scalars
and vectors. “min(·)” is executed in an inner-
group manner, i.e., the values are compared in
each group. Therefore, the output Pace(xm, yn)
keeps a vector of length G. Here Dp2p and Dt2t are
the common image patch-to-patch and text token-
to-token physical distance, respectively. For effi-
ciency, we only consider neighborhood of Bp to-
kens in Dt2t and a square neighborhood of Bt im-
age paths in Dp2p. It should be noted that, the ma-
trix of all text tokens and image patches Pace(x, y)
can be implemented efficiently by Pointwise Con-
volution (Howard et al., 2017), reducing the compu-
tation complexity to O(MNBpBtG), which can
be omitted since Bp, Bt and G are small enough.

3.2.3 Cross-modal Relative Position
Embedding

Sec. 3.2.2 provides the multi-group relative po-
sition of each text token and image patch. The
pairwise anchor-based relative position is then em-
bedded with a learnable matrix W ∈ RG×D,

Eace(xm, yn) = Pace(xm, yn)W (8)

Which is called ACE-RPE in this paper. Obviously,
the proposed ACE-RPE is a specific case of RPE,
where the distance of the images and texts is cal-
culated with an anchor strategy and represented by
a G-dimensional vector. Then, the distances are
projected to learnable position embedding and the
same distance enforces the same position embed-
ding. Consequently, the t2t RPE in NLP, p2p RPE
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in CV and t2p/p2t RPE in cross-modal tasks are
united in a unified form, as formulated in Eqn. 7.

Detailedly presented in Sec. A.3, we propose
two different cross-attention modes interacting
with ACE-RPE, i.e., the bias mode and the con-
textual mode. By default, we use the contextual
mode in this paper.

3.3 Pre-training Objectives

The pre-training of our models involves optimizing
four objectives jointly, i.e., the proposed anchor
loss for anchor locating, Masked Language Mod-
eling (MLM) for text embedding, Masked Image
Modeling (MIM) for image embedding, Image-
Text Matching (ITM) for cross-modal matching, as
shown in Fig. 3.
Anchor Loss is optimized during pre-training for
better anchor locating. Noted in Eqn. 1, it en-
hances the similarity of anchors and their matching
image patches by token-wise contrastive learning,
exclusively ignores unmatched pairs through log-
sum-exp trick.
Masked Language Modeling (MLM) predicts the
masked words with both contextual text tokens and
image patches. It aims to learn better text embed-
ding by injecting extra contextual information in
image patches. In this part, we conduct the MLM
with a masking probability of 15% and take the
output text embedding of cross-encoder to predict
the masked tokens.
Masked Image Modeling (MIM) predicts raw
pixel values of the randomly masked image patches
by a lightweight one-layer head. Following (Xie
et al., 2021), we implement this task by optimizing
the ℓ1 loss between raw pixel values and the output
of the prediction head.
Image-Text Matching (ITM) is to predict whether
an image-text pair is positive (matched) or negative
(unmatched), and further capture the contextual
correlation between vision and language. It is a bi-
nary classification task while taking the embedding
of the [CLS] token as a joint representation of the
image-text pair.

4 Experiments

In this section, we first provide numerical analyses
of the proposed ACE-RPE method compared with
widely used baselines on 5 cross-modal tasks, in-
cluding 6 benchmarks. Then, we make a detailed
ablation study to analyze the contribution of each
component of the proposed ACE-RPE method.

4.1 Pre-training Setup

Pre-training Datasets Following ALBEF (Li et al.,
2021), the pre-training datasets are constructed
with four public-released datasets, including two
web datasets (Conceptual Captions (Sharma et al.,
2018), SBU Captions (Ordonez et al., 2011)), and
two in-domain datasets (MS-COCO (Lin et al.,
2014) and Visual Genome (Krishna et al., 2017)).
The entire pre-training dataset contains about 4.0M
unique images and 5.1M image-text pairs.
Implementation Details Our ACE-RPE method
contains 163.7M parameters, including a text en-
coder of 66.6M linguistic transformer (Devlin et al.,
2018), an image encoder of 43.8M ViT-B/16 (Doso-
vitskiy et al., 2020) and a cross-modal encoder of
53.3M transformer (Devlin et al., 2018). It is no-
table that, the text encoder is constructed with the
first 6 layers of the original BERTbase. Presented in
Fig. 3, the pre-trained objectives are composed of
three tasks: Masked Language Modeling (MLM)
(Li et al., 2021) for text embedding, Masked Im-
age Modeling (MIM) (Xie et al., 2021) for im-
age embedding (Li et al., 2021), and Image-Text
Matching (ITM) for cross-modal modeling. Our
model is pre-trained for 30 epochs with a batch
size of 512 on 8 NVIDIA A100 GPUs. We use
AdamW (Loshchilov and Hutter, 2017) setting the
weight decay as 0.02. The initial learning rate is
10−4 and decayed to 10−6, using a cosine schedule
(Loshchilov and Hutter, 2016). We use RandAug-
ment (Cubuk et al., 2020) as the image augmenta-
tion strategy, and then scale the augmented image
to the resolution of 256 × 256. We also utilize
the momentum distillation proposed in ALBEF (Li
et al., 2021) and the queue size is 65, 536. By
default, the hyper-parameters are set as Bt = 5,
Bp = 9, λ = 2, δ = 0.05 and G = 8, respectively.

4.2 Downstream Cross-modal Tasks

We conduct comprehensive experimental compar-
ison on 5 cross-modal tasks, including: 1) Image-
Text Retrieval on MS-COCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2015); 2) Visual En-
tailment on SNLI-VE (Xie et al., 2019); 3) Visual
Reasoning on NLVR2 (Suhr et al., 2018); 4) Vi-
sual Question Answering on VQA (Goyal et al.,
2017) and 5) Weakly-supervised Visual Grounding
on RefCOCO+ (Yu et al., 2016).
Image-Text Retrieval Image-Text Retrieval refers
to retrieving the most relative images given a query
text, and vice versa. We evaluate our methods on
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Cross-modal
Position Embedding

Pre-trained
Images

Flickr30K (1K test set) MS-COCO (5K test set)
TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
None 4M 94.3 99.5 99.8 83.0 96.8 98.4 72.6 91.2 95.7 56.5 81.3 89.1
APE 4M 94.5 99.6 99.9 83.2 97.0 98.4 73.0 91.3 95.8 56.7 81.5 89.2
RPE 4M 94.4 99.5 99.9 83.2 97.1 98.4 73.2 91.4 95.9 56.7 81.7 89.3
APE + RPE 4M 94.5 99.6 99.9 83.3 97.2 98.5 73.2 91.5 96.0 56.9 81.8 89.3
Uniform† 4M 94.6 99.6 99.9 83.3 97.3 98.5 73.3 91.6 96.0 56.9 81.9 89.4
ACE-RPE 4M 95.2 99.6 99.9 83.5 97.3 98.6 73.9 92.0 96.5 57.6 82.0 90.1
ACE-RPE+Lace 4M 95.4 99.7 99.9 84.0 97.6 98.9 74.2 92.2 96.8 57.9 82.4 90.2
ACE-RPE+ Lace 14M∗ 96.7 99.9 100.0 87.0 97.8 99.1 78.9 95.2 97.7 61.4 85.3 91.0
† : calculates the distance of all words and patches by a uniform distance without the guidance of “anchor”.
∗ : extended with extra pre-training dataset CC12M (Changpinyo et al., 2021).

Table 1: Comparison in the Image-Text Retrieval task on Flickr30K and MS-COCO. For text retrieval (TR) and image retrieval
(IR), we report the Top-1 Recall (R@1), Top-5 Recall (R@5) and Top-10 Recal (R@10). The FLOPs of our ACE-RPE model is
122G, which has just 6.1% computational overhead compared with “None” version (115G FLOPs).

two benchmarks MS-COCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2015). Following AL-
BEF (Li et al., 2021), the resolution of image crops
is increased to 384 × 384 for more fine-grained
retrieval. During finetuning, we employ ITM in
Fig. 3 to predict whether the input images and texts
are matched.
Visual Entailment Visual Entailment is to pre-
dict the relationship of image-text pairs, i.e., en-
tailment, neutral, or contradictory. The SNLI-VE
(Xie et al., 2019) dataset is taken as our Visual En-
tailment benchmark. We follow UNITER (Chen
et al., 2020a) and consider Visual Entailment as
a three-way classification problem and predict the
class probabilities using a multi-layer perceptron
on the [CLS] token.
Visual Reasoning The goal of Visual Reasoning
is also to predict the relationship of the given texts
and images. However, each input pair contains two
images and one text, where the text is correlated
with both of the images. The model should learn
to identify the statement of the text for the given
images is right or not. It is conducted on NLVR2
(Suhr et al., 2018) in this paper.
Visual Question Answering Given an image, Vi-
sual Question Answering requires the model to pre-
dict the answer of a question. For fair comparison
with ALBEF (Li et al., 2021), we consider this task
as an answer generation task on the VQA (Goyal
et al., 2017) benchmark. In detail, an additional
6-layer transformer is applied to generate the an-
swer, while receiving the cross-modal embeddings
through the cross-modal encoder in Fig. 3.
Weakly-supervised Visual Grounding Visual
Grounding (in RefCOCO+ (Yu et al., 2016)) is
to localize the region of an image that correspond-
ing to a given textual description. We follow a

weakly-supervised setting (Li et al., 2021), where
the model is finetuned with the same strategy as
image-text retrieval task, and outputs the heatmaps
by Grad-CAM (Selvaraju et al., 2017).

4.3 Comparison with Baseline Methods

In this part, we conduct 4 downstream cross-modal
tasks (except for RefCOCO+) to compare the pro-
posed ACE-RPE with the baseline methods, includ-
ing 1) APE method (Dosovitskiy et al., 2020); 2)
RPE method (Dosovitskiy et al., 2020); 3) a unified
method combining APE and RPE (Wu et al., 2021).
It is remarkable that among all methods, our ACE-
RPE is the only cross-modal position embedding.
The mentioned APE, RPE and their combined ver-
sion are all conducted for each modality separately.
They are simply concatenated together, and then in-
jected into the cross-modal encoder. Furthermore,
we also conduct a uniformed version of our ACE-
RPE, where the distances of all words and patches
are naively calculated by a uniform distance with-
out the guidance of “anchor”.

Cross-modal
Position Embedding

VQA SNLI-VE NLVR
dev std dev test dev test

None 73.2 73.6 79.2 79.5 79.9 80.5
APE 73.9 74.1 80.2 80.7 80.6 81.0
RPE 73.8 73.9 79.4 79.6 80.3 80.7
APE+RPE 73.9 74.1 80.1 80.9 80.5 80.8
Uniform† 74.1 74.2 80.3 81.0 80.5 80.9
ACE-RPE 74.9 75.1 81.1 81.4 81.3 81.7
ACE-RPE + Lace 75.4 75.7 81.4 82.0 81.7 81.9
ACE-RPE + Lace

∗ 76.8 76.9 82.0 82.5 83.1 83.6
† : calculates the distance of all words and patches by a

uniform distance without the guidance of “anchor”.
∗ : pretrained on CC12M (Changpinyo et al., 2021).

Table 2: Evaluation of the proposed methods on VQA (Goyal
et al., 2017), Visual Entailment (SNLI-VE (Xie et al., 2019))
and Visual Reasoning (NLVR (Suhr et al., 2018)) tasks. “dev”
and “std” in VQA are the test-dev and test-std datasets.

Numerical results are presented in Table 1 and
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Methods Pre-trained
Images

Flickr30K (1K test set) MS-COCO (5K test set)
TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA 4M 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR 4M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
ALIGN 1.2B 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8
ALBEF 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
ALBEF 14M 95.9 99.8 100.0 85.6 97.5 98.9 77.6 94.3 97.2 60.7 84.3 90.5
Ours 4M 95.4 99.7 99.9 84.0 97.6 98.9 74.2 92.2 96.8 57.9 82.4 90.2
Ours 14M 96.7 99.9 100.0 87.0 97.8 99.1 78.9 95.2 97.7 61.4 85.3 91.0

Table 3: Experimental results of Image-Text Retrieval on Flickr30K and MS-COCO.

Table 2. It is shown that, in the task of Image-
Text Retrieval (Table 1), our proposed ACE-RPE
could enhance the performance of backbones by
large margins. Specifically, compared with base-
line cross-modal position embedding, i.e., None
position embedding counterparts, our methods im-
prove the performance over 1.1% and 1.0% R@1
in the “TR” and “IR” on Flickr30K. Similar gains
in “TR” and “IR” on MS-COCO are up to 1.6%
and 1.4%. It is worth noting that, these gains
are achieved with the same backbone networks
and same pre-training dataset. Meanwhile, while
trained on a larger dataset with 14M samples, our
model achieves two new SOTA performances on
both Flickr30K and MS-COCO.

Method VQA SNLI-VE NLVR
dev std dev test dev test

VisualBERT (Li et al., 2019) 70.8 71.0 - - 67.4 67.0
VL-BERT (Su et al., 2020) 71.2 - - - - -
LXMERT (Tan and Bansal, 2019) 72.4 72.5 - - 74.9 74.5
12-in-1 (Lu et al., 2020) 73.2 - - 77.0 - 78.9
UNITER (Chen et al., 2020b) 72.7 72.9 78.6 78.3 77.2 77.9
VL-BART/T5 (Cho et al., 2021) - 71.3 - - - 73.6
ViLT (Kim et al., 2021) 70.9 - - - 75.2 76.2
OSCAR (Li et al., 2020) 73.2 73.4 - - 78.1 78.4
VILLA (Gan et al., 2020) 73.6 73.7 79.4 79.0 78.4 79.3
ALBEF (Li et al., 2021) (4M) 74.5 74.7 80.1 80.3 80.2 80.5
ALBEF (Li et al., 2021) (14M) 75.8 76.0 80.8 80.9 82.6 83.1
ACE-RPE(4M) 74.9 75.1 81.1 81.4 81.3 81.7
ACE-RPE + Lace (4M) 75.4 75.7 81.4 82.0 81.7 81.9
ACE-RPE + Lace (14M) 76.8 76.9 82.0 82.5 83.1 83.6

Table 4: Comparison with SOTA works on VQA, SNLI-VE
and NLVR benchmarks. “dev” and “std” in VQA are the test-
dev and test-std datasets.

For the tasks of Visual Question Answering on
VQA, Visual Entailment on SNLI-VE and Visual
Reasoning on NLVR , the proposed ACE-RPE also
outperforms baseline methods robustly, as shown
in Table 2. Furthermore, the comparison between
“ACE-RPE” and “ACE-RPE + Lace” reveals that
the proposed Lace is key for the performance im-
provement of ACE-RPE.

4.4 Comparison with SOTA Methods

Table 3, Table 4 and Table 5 report the results of
the proposed ACE-RPE and previous SOTA meth-
ods. Pretrained on the dataset with 4M images,

our methods achieve absolute improvements over
ALBEF of 1.1% R@1 in “TR” and 1.2% R@1 in
“IR” on Flickr30K. Similar gains in R@1 “TR” and
“IR” on MS-COCO are up to 1.1% and 1.1%. For
Visual Entailment, Visual Reasoning and Weakly-
supervised Visual Grounding tasks, ACE-RPE also
outperforms existing methods by substantial mar-
gins. With the 14M pre-trained dataset, which is
also used in ALBEF, our method achieves 5 new
SOTA results on all benchmarks 1, which presents
the superiority and robustness of our ACE-RPE.

Method Val TestA TestB
ARN (Liu et al., 2019) 32.8 34.4 32.1
CCL (Zhang et al., 2020) 34.3 36.9 33.6
ALBEF (Li et al., 2021) 58.5 65.9 46.3
ACE-RPE(4M) 59.4 66.6 47.1
ACE-RPE + Lace (4M) 60.1 67.5 47.9
ACE-RPE + Lace (14M) 60.5 67.9 48.2

Table 5: Weakly-supervised visual grounding on RefCOCO+
benchmark.

4.5 Visualization of ACE-RPE

In order to reveal the inherent ability of the pro-
posed ACE-RPE to model the cross-modal posi-
tional information, we provide Grad-CAM visual-
ization (Selvaraju et al., 2017; Li et al., 2021) of
the anchor-based relative position in the last cross-
modal transformer. Fig. 4 shows some examples in
MS-COCO. The visualization of cross-modal locat-
ing is highly correlated with human priors, which
indicates the correctness of our ACE-RPE.

5 Conclusion

In this paper, we present a cross-modal position
embedding method, called ACE-RPE, in which
we first utilize an anchor locating method to learn
to match the text words and the image patches.

1Except for VQA, where the champion achieved the
best score of 82.78 according to https://eval.ai/web/
challenges/challenge-page/830/leaderboard/2278.
But we think it is not fair to compare the methods in Table 4
with the champion because of different pretrained datasets
and great finetuning gap.
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A man in blue is sitting on a fake horse.

A man in blue is

sitting on a fake horse

The man is reading a

newspaper while carrying umbrellaan

the man is reading a newspaper while carrying a umbrella.

Figure 4: The Grad-CAM (Selvaraju et al., 2017) visualiza-
tion of cross-modal distance on the last cross-attention layer.
The words in red are the anchors.

Then, we compute physical distances between an-
chors and tokens from different modalities, which
are applied for cross-modal fusion. We conduct
comprehensive experiments to analyze the effec-
tiveness of different components of ACE-RPE as
well as the performance under different modes
and hyper-parameter settings. As we know, this
work is the first to present position embeddings
for cross-modal tasks, and the experimental results
also demonstrate the superiority of our method.

Limitations

Though the proposed ACE-RPE method achieves
significant and substantial performance on 6 bench-
marks. However, it has two major limitations:
1) the ACE-RPE is injected into backbone model
during both pretraining and finetuning procedures.
As we know, pretraining is much more time-
consuming than finetuning. It will be more efficient
to be implemented if it can maintain comparable
results by simply initializing our models with a
public released pretrained model, and only finetun-
ing our models in downstream tasks. That is to say,
the ACE-RPE is only employed in the finetuning
model. We think it is worthy of more experimental
results to study this kind of implementation. 2)
The experiments in this paper are conducted on
8 NVIDIA A100 GPUs, which is expensive for
personal researchers.
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A Appendices

A.1 Shared V.S. Unshared
ACE-RPE could also be used in a shared mode for
fewer parameters. In this part, we conduct exper-
iments with shared ACE-RPE and compared the
results with the unshared version. Table 6 shows
that shared ACE-RPE would result in a slight per-
formance drop on Image-Text Retrieval and Visual
Reasoning task.

Mode Flickr30K MS-COCO NLVR
TR IR TR IR dev test

Shared 98.1 93.2 87.4 76.7 81.2 81.5
Unshared 98.3 93.5 87.7 76.8 81.7 81.9

Table 6: Ablation study on Image-Text Retrieval and Visual
Reasoning task. The average recall on the test set is reported
on Flickr30K and MS-COCO.

A.2 Robustness on Hyper-parameters
The default hyper-parameters of the proposed
method are: λ = 2, δ = 0.05 and G = 8. Table 7
presents the performance comparison of different
choice of these hyper-parameters. Anchor loss with
larger λ (Eqn. 1) forces the model to learn more
about the most similar anchor, while smaller ones
reduce to predict more possible anchors. δ serves as
the threshold parameter to select the anchors, and
G is the number of groups in the proposed multi-
head distance. It is shown that, λ and G influence
the performance more significantly compared with
δ. It is also indicated that as G is greater than 8,
the performance of ACE-RPE maintains almost
unchanged.

MS-COCO λ δ G
1 2 3 4 0.01 0.05 0.1 0.2 1 4 8 16 32

TR 85.9 87.7 87.6 87.5 87.5 87.7 87.5 87.6 87.1 87.6 87.7 87.7 87.6
IR 75.0 76.8 76.6 76.6 76.5 76.8 76.7 76.7 76.3 76.6 76.8 76.9 76.8

Table 7: Ablation study on Image-Text Retrieval task on MS-
COCO. The average recall on the test set is reported.

A.3 Bias V.S. Contextual Modes
ACE-RPE presents the position embedding of each
text word and image patch. In this part, we pro-
pose two different cross-attention modes interact-
ing with ACE-RPE, i.e., the bias mode and the
contextual mode.

Bias Mode In this mode, ACE-RPE has no ex-
plicit interaction with the query, key or value in the
transformer block. Instead, it functions as the bias
of the cross-attention block. Formally,

{
Fi2t(x, y) =

(xWQ)(yWK)T+Eace(x,y)WE√
D

Ft2i(y, x) =
(yWQ)(xWK)T+Eace(x,y)WE√

D

(9)

where Fi2t and Ft2i are the image-to-text
and text-to-image cross-attention, respectively.
Eace(x, y) ∈ RM×N×D is a 3-dimensional ten-
sor, denoting the ACE-RPE between all text tokens
and image patches. WQ and WK are learnable
matrices. WE ∈ RD is a learnable vector, which
maps Eace(x, y) into a 2-dimensional matrix.

Contextual Mode ACE-RPE in contextual mode
is first flatten into 2-dimension by average pooling,
then added with the token/patch embedding,

{
xi = xi + EN

j=1Eace(xi, yj)

yi = yi + EM
i=1Eace(xi, yj)

(10)

The cross-attention is then,



Fi2t(x, y) =

(xWQ)(yWK)T√
D

Ft2i(y, x) =
(yWQ)(xWK)T√

D

(11)

In this case, ACE-RPE interacts with the queries,
keys in a cross-attention block. Besides, it can also
be applied to value embeddings,

{
Zi2t(x, y) = σ(Fi2t(x, y))(yW

V + Eace)
T

Zt2i(y, x) = σ(Ft2i(y, x))(xW
V + Eace)

T (12)

Here, σ(·) presents the softmax function, and W V

is a learnable matrix. Eace is Eace(x, y) for short.

Experimental Result In this part, we compare
the performances of two cross-modal modes, i.e.,
“Bias” and “Contextual” modes. Table 8 illustrates
the numerical results in Image-Text Retrieval and
Visual Reasoning task. Using the proposed ACE-
RPE in contextual mode is demonstrated to be a
better way.

Mode Flickr30K MS-COCO NLVR
TR IR TR IR dev test

Bias 98.1 93.4 87.4 76.6 81.5 81.6
Contextual 98.3 93.5 87.7 76.8 81.7 81.9

Table 8: Ablation study on Image-Text Retrieval and Visual
Reasoning task. The average recall on the test set is reported
on Flickr30K and MS-COCO.

A.4 Component-wise Analysis
Inspired by (Wu et al., 2021), in the field of im-
age processing, the position embedding interacts
with the calculation of the query, key and value in
the self-attention layer. Accordingly, we analyze
the result of each choice in cross-modal modeling,
and the results are shown in Table 9. It is shown
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that ACE-RPE calculated on values could only get
slight gains over the version without ACE-RPE, but
the ones embedded on queries and values would
result in significant performance gains.

Position Flickr30K MS-COCO NLVR
query key value TR IR TR IR dev test
× × × 97.8 92.7 86.5 75.6 79.9 80.5
✓ × × 98.1 93.3 87.4 76.6 81.4 81.6
× ✓ × 98.1 93.2 87.5 76.7 81.4 81.5
× × ✓ 97.8 92.8 86.7 76.0 80.7 81.0
✓ ✓ × 98.2 93.3 87.5 76.6 81.6 81.8
✓ ✓ ✓ 98.3 93.5 87.7 76.8 81.7 81.9

Table 9: Ablation study on Image-Text Retrieval and Visual
Reasoning. The average recall on the test set is reported on
Flickr30K and MS-COCO.

5413


