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Abstract

Aiming to ensure chatbot quality by predicting
chatbot failure and enabling human-agent col-
laboration, Machine-Human Chatting Handoff
(MHCH) has attracted lots of attention from
both industry and academia in recent years.
However, most existing methods mainly focus
on the dialogue context or assist with global sat-
isfaction prediction based on multi-task learn-
ing, which ignore the grounded relationships
among the causal variables, like the user state
and labor cost. These variables are significantly
associated with handoff decisions, resulting in
prediction bias and cost increase. Therefore,
we propose Causal-Enhance Module (CEM) by
establishing the causal graph of MHCH based
on these two variables, which is a simple yet
effective module and can be easy to plug into
the existing MHCH methods. For the impact
of users, we use the user state to correct the
prediction bias according to the causal relation-
ship of multi-task. For the labor cost, we train
an auxiliary cost simulator to calculate unbi-
ased labor cost through counterfactual learning
so that a model becomes cost-aware. Exten-
sive experiments conducted on four real-world
benchmarks demonstrate the effectiveness of
CEM in generally improving the performance
of existing MHCH methods without any elabo-
rated model crafting.

1 Introduction

In recent years, with the rapid development of deep
learning (He et al., 2016; Ren et al., 2015), more
and more service-oriented organizations have de-
ployed chatbots to alleviate the problem of limited
service resources. Although these chatbots can re-
spond in real-time and save labor cost, they suffer
from inappropriate responses and invalid conversa-
tions due to the limited quantity of available high-
quality training data and the inherent biases (Xu
et al., 2019; Liang et al., 2022) of neural networks.
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I want to buy a ticket to Chicago.

Hi,what can I do for you? 

Hi, what can I do for you? 
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User

User

I have to go today! 

Chatbot
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Customer
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Normal Transferable

Chatbot

Chatbot

Figure 1: An example of MHCH. Handoff label includes
two types "normal" & "transferable", which denotes
whether the chatbot should be transferred to human
service.

Moreover, human utterances sometimes are elu-
sive since they are rich in acronyms, slang words,
and even content without logic or grammar, which
are too obscure for a chatbot to comprehend. To
alleviate these drawbacks, researchers introduced
a human-agent collaboration mechanism named
Machine-Human Chatting Handoff (MHCH) to al-
low a human to take over the dialogue while a robot
agent feels confused so that a dialogue can be con-
tinued to avoid a bad user experience and reduce
the risk of customer churn (Liu et al., 2021a,b). As
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shown in Fig.1, when a chatbot tries to address the
user’s needs by giving an inappropriate response,
the user will feel disappointed and give a low global
satisfaction score for the current dialogue, which
means a service failure and may lead to customer
loss. If deploying with the MHCH mechanism, a
human can take over the dialogue and give a sat-
isfactory response to meet the user’s needs, thus
ensuring the user experience and service quality
(Radziwill and Benton, 2017).

A high-quality MHCH service should consider
multiple factors, such as dialogue context, local
sentiments, global satisfaction, user state, labor
cost, etc. However, most existing MHCH methods
are mainly concerned with the dialogue context
(Liu et al., 2021a) or assisting with global satisfac-
tion prediction under the multi-task learning setting
(Liu et al., 2021b), ignoring the grounded relation-
ships among the other causal variables of MHCH,
like the user state and human cost.

To address above issues and improve the perfor-
mance of MHCH, we propose a general Causal-
Enhance Module (CEM), which can be plugged
into existing MHCH networks (Liu et al., 2021a,b),
to incorporate the considerations of other potential
causal variables of MHCH. Specifically, we first
analyzes MHCH task based on causal graph by
mining all potential causal variables and deduce
that user states and labor cost are the other two
causal variables that should be considered for high-
quality customer service. Then, to incorporate the
consideration of user state, we train a user state
network mainly driven by local sentiments to main-
tain the changes of user state during the dialogue
and adjust the handoff predictions by correcting the
prediction bias according to the causal relationship
between user states and handoff decisions. To con-
sider the labor cost of customer service and reduce
it as much as possible while maintaining the same
service quality, we construct a counterfactual-based
cost simulator to regress the cost of a dialogue as
an auxiliary task which can make the MHCH back-
bone become cost-aware and minimize the labor
cost as much as possible.

The contributions of our CEM can be summa-
rized as follows:

• We conduct causal analysis based on causal
graph for MHCH and identify the other two
causal variables: user state and human cost,
which should be considered to build high-
quality MHCH service.

• To consider the impact of user state, the user
state is applied to correct the handoff predic-
tion bias according to the causal relationship
between user states and handoff decisions.

• To minimize the labor cost of customer ser-
vice while maintaining the same service qual-
ity, we construct a counterfactual-based cost
simulator to regress the cost of a dialogue as
an auxiliary task, which can make the MHCH
backbone become cost-aware.

We release our code to help other researchers to
reproduce the results of CEM 1.

2 Related Work

Machine-Human Chatting Handoff. The re-
search on MHCH is originated in 2018. Using
the idea of reinforcement learning, Huang et al.
(2018) proposed a dialogue robot to choose an as-
sistant. Rajendran et al. (2019) utilize a reinforce-
ment learning framework to maximize success rate
and minimize human workload. Liu et al. (2021a,b)
regraded the MHCH as a classification problem and
focused on identifying which sentence should be
transferred to the human service.
Causal inference and counterfactual learning.
For structural causal models (Halpern et al., 2005),
related studies (Heskes, 2013; Claassen et al., 2014;
Xia et al., 2021) utilize graph neural networks for
directed acyclic graph structure learning. For Ru-
bin causal models, Rubin (2006) and Bengio et al.
(2019) use neural networks to approximate the
propensity scores, matching weights, etc., which
can satisfy the covariate balancing (Kallus, 2020;
Kuang et al., 2017); The representation learning
(Huang et al., 2020b; Liang et al., 2020) can also
be used to matched the covariate balance between
the test group and the reference group (Shalit et al.,
2017; Louizos et al., 2017; Lu et al., 2020). Several
studies (Yoon et al., 2018; Yuan et al., 2019; Liu
et al., 2020) uses counterfactual methods based on
the generative models over the observed distribu-
tions for causal inference.
Multi-task learning in dialogue systems. Xu et al.
(2020) uses multi-task learning for auxiliary pre-
training tasks of dialogue data. Qin et al. (2020)
combines dialogue behavior recognition and sen-
timent classification. Ide and Kawahara (2021)
proposes a model which includes generation and
classification tasks.

1https://github.com/Qrange-group/CEM
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Figure 2: Causal graphs and model structures. D: Dialog, Y: prediction of MHCH, LS: local sentiment, GS: global
satisfaction, US: user state, C: labor cost. The solid lines represent causality, the dashed line is adjustment, and the
dotted line outlines the part that MHCH classification models doesn’t have. a, b, c are the causal graphs of MHCH,
traditional multi-task methods and CEM based on multi-task learning, respectively. d is the original model structure
based on b (Song et al., 2019; Liu et al., 2021a,b). e, f and g are the model structures enhanced by CEM (U), CEM
(C) and CEM (full).

3 Preliminary

A given dialogue D = [u1, u2, . . . , uL] contains
L utterances and have a label sequence Y h =
[yh1 , . . . , y

h
L], where yht is the handoff label of

ut,1 ≤ t ≤ L. The handoff labels Γ have two
kinds of labels, i.e.,"normal" and "transferable",
where "normal" means that the utterance is no need
to transfer, and "transferable" means that the utter-
ance needs to be transferred to the manual service.
The dialogue D also have a global satisfaction label
{"satisfactory", "neutral", "dissatisfied"}. Then,
the local sentiment of each utterance ut is measured
by an open-source tool SnowNLP, which includes
three labels {"positive", "neutral", "negative"} .

4 Methodology

In this section, we analyse the impact of variables
on MHCH from a fundamental view of causality.
Then we present our CEM framework that elimi-
nates the bad effect of ignored causal variables.

4.1 Causal analysis of MHCH

Causal graph is a directed acyclic graph where
a node denotes a variable and an edge denotes a
causal relation between two nodes (Pearl, 2009).
It is widely used to describe the process of data,
which can guide the design of predictive models
(Zhang et al., 2021). Fig.2(a) shows the causal
graph of MHCH. The rationality of this causal
graph is explained as follows:

• D denote the dialogue D = [u1, . . . , uL].

• Y = [p1, p2, ..., pL] is the prediction of MHCH,
where pt, 1 ≤ t ≤ L is the probability of that
the handoff label of ut is "transferable".

• LS is the local sentiments of each utterance in
a dialogue.

• GS represents the user’s subjective evaluation
of the current dialogue.

• US is a state for a given dialogue. Unlike
GS, it is a variable that describes the objective
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state of the user. We can model US through
local sentiments.

• C is the labor cost caused by the wrong pre-
diction of MHCH.

• Edge D → Y : The MHCH can judge when
to transfer to manual service according to the
dialogue content. Therefore, the dialogue can
affect the prediction of MHCH.

• Edge Y → C: The labor cost depends on the
prediction of MHCH. If we do not need to
transfer to human service, there will not be
labor cost.

• Edges D → LS → GS: The dialogue quality
of chatbot will affect users’ sentiment, and
then affect users’ evaluation of the services.

• Edge LS → US: The user state can be mod-
eled from local sentiments.

• Edge US → Y : In Fig.1, the user state can
affect MHCH to judge whether the service
should be transferred to a manual service.

However, instead of Fig.2(a), the existing com-
mon solutions, which are mainly based on multi-
task methods, e.g., service satisfaction analysis
(SSA) (Song et al., 2019), adopt the causal graph
as Fig.2(b), which models the relationship of D →
LS → GS. Specifically, they consider two neural
networks for a multi-task of SSA and MHCH, i.e.,
train a user network (UN) for SSA and a MHCH
network for MHCH as shown in Fig.2(d). Since
there is an encoder network that share weights be-
tween the two tasks to integrate information, the
local sentiment can assist MHCH network by shar-
ing dialogue features. Although such modeling is
simple and has good performance on MHCH tasks,
it is established through a simplified causal graph
without considering the factors of user and cost,
so it can not completely show the overall picture
as shown in Fig.2(a). Therefore, we design a new
causal graph as seen in Fig.2(c) to consider fur-
ther factors, e.g. user state and labor cost to bridge
the MHCH network and UN. Based on the new
causal graph, a novel CEM (full) model (Fig.2(g))
as well as its variants CEM (U) and CEM (C) will
be introduced in the following sections.

4.2 User State
As shown in Fig.2(e), we can use local sentiment,
which is the output of UN, to restore user state.

Since user state has a strong correlation with rela-
tive time (Ding and Li, 2005), we can measure the
user state of ut by Eq.(1) with local sentiment.

USt = βtUN(D), (1)

where UN(D) ∈ RL×3 is the local sentiment from
UN when given D as input. And the weight βt ∈
RL is

βt = softmax([1, . . . , t− 1, t, 0, . . . , 0]), (2)

Soft Adjustment. In Fig.2(a), if we establish the
causal relationship between user state and MHCH
task directly, D will become a confounder to Y
due to the intervention of user state. To solve this
problem, a simple way is to ignore the causal rela-
tionship US → Y .

However, the utterance sometime can not affect
directly whether it is necessary to transfer to human
service since the complexity of the language. And
the user state restored by the local sentiment can
help decision of MHCH. For example,in Fig.1, the
information of the sentiment is more important
than those of utterance. Therefore, we can use
another strategy to use user state for adjustment the
decision of MHCH network. In particular, we can
mask the neutral local sentiment since the neutral
sentiments are confusing and therefore not highly
recognizable, which means that neutral sentiment’s
impact on MHCH Song et al. (2019) task is lower.

Moreover, the dimension of US is three, which
does not match the two-dimension output Y of the
MHCH network. While masking the neutral senti-
ments, we can propose de-neutral soft adjustment
shown in Fig.2(e), whose specific operation is as
follows:

yhD = softmax(Maskn(USD)⊙ MHCH(D)), (3)

where Maskn is the masking operator for neutral
sentiment.MHCH is the model using to modeling
the causal relationship of D → Y . yhD is the pre-
dicted result of D. ⊙ represents a product opera-
tion at the element level, which makes the probabil-
ity of "positive" times the probability of "normal"
and makes the probability of "negative" times the
probability of "transferable". This adjustment can
modify the normal probability with positive senti-
ment and the transferable probability with negative
sentiment.
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Table 1: Comparison of classification performance (%) in Clothing and Makeup1. Bold indicates the best result,
underlined indicates the second best result. CEM-DAMI (C) refers to the model without the part in dashed box in
Fig.2(f). We don’t use full CEM to enhance DAMI for the reason that CEM cannot restore US from pure MHCH
models.

Models
Clothing Makeup1

F1 Mac.F1 GT-I GT-II GT-III F1 Mac.F1 GT-I GT-II GT-III

HRN (Lin et al., 2015) 57.3 73.5 62.3 71.8 76.5 58.2 74.1 62.3 72.5 78.1
HAN (Yang et al., 2016) 58.2 74.1 62.9 72.2 76.7 60.1 75.3 65.4 74.9 79.9
BERT (Devlin et al., 2018) 56.0 72.9 59.3 68.1 73.1 57.0 73.3 61.5 71.0 76.5
CRF-ASN (Chen et al., 2018) 57.6 73.4 61.5 72.6 78.0 56.8 73.6 63.7 74.2 79.8
HBLSTM-CRF (Kumar et al., 2018) 59.0 74.4 63.6 73.7 78.8 60.1 75.4 67.0 76.3 81.2
DialogueRNN (Majumder et al., 2019) 59.0 74.3 63.1 73.8 79.0 61.3 76.1 66.3 76.0 81.2
CASA (Raheja and Tetreault, 2019) 59.7 74.7 64.8 74.9 79.7 60.4 75.7 67.8 77.0 81.8
LSTMLCA (Dai et al., 2020) 61.8 76.1 66.4 76.3 81.1 62.1 76.6 67.8 76.9 81.7
CESTa (Wang et al., 2020) 60.5 75.2 64.0 74.6 79.6 60.2 75.2 65.2 75.9 81.5
DAMI (Liu et al., 2021a) 67.3 79.7 70.3 79.1 83.9 67.1 79.5 67.8 76.9 82.1
CEM-DAMI (C) 67.5 79.7 69.7 77.6 81.5 67.5 79.9 70.4 78.1 82.2

4.3 Cost Simulator
Using US can adjust MHCH models, eliminate
the bias caused by not considering user factors, and
obtain Y that is closer to the ground truth. Based on
this, we conduct counterfactual modeling of labor
cost. Labor cost can be divided into two types, one
is effective cost and the other is invalid cost. The
effective cost refers to incurring the cost for the
utterances that must be transferred to human, and
the invalid cost refers to incurring the cost for the
utterances that do not need to transfer to human,
i.e., the cost caused by the wrong prediction. Note
that we can not change the effective cost, and we
can only reduce invalid cost. The network which
models the causal relationship of D → Y → C is
named as cost simulator. We first define the cost
simulator as follows:

{
Y h ∼ PY h(Y h|D)

C = Fc(Y
h, D),

(4)

where Y h represents the ground truth of the MHCH
task and C denotes the labor cost of D. PY h is
the probability calculation function for MHCH. Fc

represents the cost calculation function. PY h can
be defined as follows:

PY h(Y h|D) =

L∏

t=1

P (ŷht = yht |ut), (5)

where ŷht is the prediction of MHCH network for
ut, and yht is the ground truth of MHCH network
for ut. Then let ζ represent the upper limit of
the cost of one utterance in human service. Since
we only need to estimate the relative cost, which

means that it does not need to obtain a specific and
accurate estimated value. Therefore, ζ is set to 1
by default. Fc can be defined as follows:

Fc(Y
h, D) =

L∑

t=1

ζ · P (ŷht = 1|ut). (6)

In datasets, if the label corresponding to the data
ut is "transferable", P

(
yht = 1

∣∣ut
)
= 1, otherwise

P
(
yht = 1

∣∣ut
)
= 0. Next, we pretrain the cost

simulator based on Eq.(10), so that the predicted
cost measured by the output of the MHCH network
is close to the real labor cost.

Lcpre = MSE
(
Ĉ − C

)
, (7)

where Ĉ represents the cost predicted by the sim-
ulator, and C represents the ground truth of cost.
After supervised pre-training, the cost simulator
can become cost-aware and can give a counterfac-
tual cost.

On the trained cost simulator, we begin to train
the MHCH model, and calculate the counterfactual
cost of each D through Fc. Since we want to make
labor cost as low as possible, the loss function Lc

of the counterfactual cost simulator is defined as:

Lc =

|Ψ|∑

i=1

Ĉ

=
1

L

|Ψ|∑

i=1

L∑

t=1

ζ · P (yhi,t = 1|ui,t),
(8)

where |Ψ| is the dataset size. Overall, the total loss
L(Θ) of CEM for the multi-task MHCH is:

L(Θ) = Lh + ηs · Ls + ηc · Lc + δ||Θ||22, (9)

3246



Table 2: Overall statistics of the datasets.

Statistics items Clothing Makeup1 Clothes Makeup2

# (Dialogues) 3500 4000 10000 3540
# (Dissatisfied dialogues) - - 2302 1180
# (Neutral dialogues) - - 6399 1180
# (Satisfactory dialogues) - - 1299 1180
# (Transferable utterances) 6713 7446 16921 7668
# (Normal utterances) 28901 32488 237891 86778
Avg # (Utterances per dialogues) 10.18 9.98 25.48 26.68

where Lh and Ls are the loss function of MHCH
task and SSA task, which are based on previous
studies (Liu et al., 2021b). ηc and ηs ∈ R+ are the
weight parameters for multi tasks. the ℓ2 regulariza-
tion δ||Θ||22 is used to mitigate model overfitting.

5 Experiments

5.1 Dataset and Experimental Settings

We evaluate our approach on four datasets in-
cluding Clothing(Liu et al., 2021a), Makeup1(Liu
et al., 2021a), Clothes(Liu et al., 2021b), and
Makeup2(Liu et al., 2021b). The statistics of the
data are shown in Table 2. To verify the effective-
ness of CEM and fairly compare with the baselines
on the same datasets, we evaluate the performance
of our CEM on the classification model DAMI
(Liu et al., 2021a) by using Clothing and Makeup1
while testing the performance of CEM on the multi-
task model RSSN (Liu et al., 2021b) with Clothes
and Makeup2, for the reason that these models are
state-of-the-art. Because DAMI only models the
relationship of D → Y , not D → LS → GS,
it is not possible to use DAMI to get US, so we
only add cost adjustment on DAMI named as CEM-
DAMI (C).

5.2 Evaluation Metrics

Following prior works (Liu et al., 2021a,b), we
adopt F1, Macro F1 (Mac.F1) and GT-T (Golden
Transfer within Tolerance) as accuracy metrics for
evaluating the MHCH task. GT-T takes into ac-
count the tolerance property of the MHCH task
through a tolerance range T, which allows for "bi-
ased" predictions. The T can be ranged from 1 to 3
corresponding to GT-I, GT-II, and GT-III.

Furthermore, to verify that CEM can effectively
control the cost, we compare the labor cost of dif-
ferent models. It is obvious that the higher the
accuracy, the lower the labor cost. To eliminate
the impact of model accuracy, we only compare
the invalid cost which is more meaningful than the
full cost. Therefore, we compute the invalid cost

as follows:

IC =
∑|Ψ|

i=1

∑L
t=1(ŷ

h
i,t!=yhi,t, ŷ

h
i,t="transferable")

∑|Ψ|
i=1

∑L
t=1(ŷ

h
i,t!=yhi,t)

(10)

where IC is the abbreviation of invalid cost.

5.3 Implementation Details

We use TensorFlow2 to implement our method with
one RTX2080 GPU card. Back-propagation is
used to compute gradients and the Adam optimizer
(Kingma and Ba, 2014) is used for parameter up-
dates. The dimension of word embedding is set
as 200. The total vocabulary size of datasets is
48.5K. Other trainable model parameters are ini-
tialized by sampling values from initializer. Hyper-
parameters of CEM and baselines are tuned on
the validation set. ηs is set as 0.3. The sizes of
model units are based on the baselines setting and
remain the same in the comparison experiments.
The L2 regularization weight is 10−4 in DAMI and
3× 10−5 in RSSN. The batch size is set as 32. The
number of epochs is set as 30 in DAMI and CEM-
DAMI(C), and set as 80 in RSSN, CEM-RSSN(C),
CEM-RSSN(U) and CEM-RSSN. Finally, we train
the models with a learning rate of 7.5 × 10−3 in
DAMI and 1.5×10−3 in RSSN. Following the data
processing setting (Liu et al., 2021a), the datasets
are divided into training sets, validation sets, and
test sets with a ratio of 8:1:1.

5.4 Results on Clothing and Makeup1

The experimental results of models on Clothing and
Makeup1 are shown in Table 1. In Clothing, CEM-
DAMI outperforms most baselines, and is slightly
weaker than DAMI on GT-T metrics. In Makeup1,
CEM-DAMI is the best performing model. This
experimental result shows that incorporating cost
into models does not reduce model accuracy.
IC of DAMI with the adjustment of CEM is sig-

nificantly reduced in both Clothing and Makeup1 as
shown in Table 4. We can conclude based on Table
1 and Table 4 that CEM-DAMI(C) can achieve com-
petitive performance with lower labor cost, which
means that our cost simulator can reduce labor cost
while maintaining the model performance.

5.5 Results on Clothes and Makeup2

The experimental results of the methods on Clothes
and Makeup2 are shown in Table 3. The cost re-
sults are shown in Figure 3. From Table 3, we can

2https://www.tensorflow.org/
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Table 3: Comparison of classification performance (%) in Clothes and Makeup2. Bold indicates the best result,
underlined indicates the second best result. CEM-RSSN (U) refers to the model in Fig.2(e), CEM-RSSN (C) refers
to the model in Fig.2(f), and CEM-RSSN (full) refers to the model in Fig.2(g).

Models
Clothes Makeup2

F1 Mac.F1 GT-I GT-II GT-III F1 Mac.F1 GT-I GT-II GT-III

HAN (Yang et al., 2016) 59.8 78.7 71.7 73.1 74.0 54.3 75.4 68.5 70.1 71.3
BERT+LSTM (Devlin et al., 2018) 60.4 78.9 73.4 74.9 75.9 42.2 84.2 72.9 66.4 77.6
HEC (Kumar et al., 2018) 59.8 78.7 71.2 72.3 73.0 57.1 76.8 68.0 69.5 70.5
DialogueRNN (Majumder et al., 2019) 60.8 79.2 73.1 74.6 75.6 58.3 77.4 68.8 70.5 71.6
CASA (Raheja and Tetreault, 2019) 62.0 79.8 73.6 75.0 75.9 58.4 77.5 70.6 72.7 73.9
LSTMLCA (Dai et al., 2020) 62.6 80.1 72.4 73.9 74.8 57.4 77 70.2 71.7 72.6
CESTa (Wang et al., 2020) 60.6 79.1 73.4 74.8 75.6 59.3 78.0 69.6 71.2 72.2
DAMI (Liu et al., 2021a) 66.7 82.2 74.2 75.9 77.1 61.1 79.0 73.3 74.4 75.2

MT-ES (Ma et al., 2018) 61.7 79.7 74.6 75.9 76.8 57.1 76.9 69.9 71.7 72.8
JointBiLSTM (Bodigutla et al., 2020) 62.0 79.9 75.0 76.1 76.9 59.3 78.0 70.1 72.0 73.1
DCR-Net (Qin et al., 2020) 62.1 79.9 71.4 72.8 73.7 58.8 77.7 70.0 72.1 73.4
RSSN (Liu et al., 2021b) 67.1 82.5 75.8 77.1 78 63.5 80.2 74.9 76.5 77.7

CEM-RSSN (U) 66.6 82.4 79.8 80.5 81.0 67.6 82.8 80.2 81.1 81.8
CEM-RSSN (C) 66.1 82.1 78.6 79.6 80.2 65.2 81.6 77.3 78.2 78.9
CEM-RSSN (full) 67.9 82.9 79.6 80.7 81.4 64.8 80.9 79.4 81.1 82.3

Table 4: Comparison of IC (%) in Clothing and
Makeup1.

Models Clothing Makeup1

DAMI 59.0 56.6
CEM-DAMI (C) 53.4 54.2

observe that our CEM can effectively improve the
performance of RSSN, especially on GT-I, GT-II,
and GT-III.

5.6 Performance Analysis
Ablation Test. We investigate the effects of user
state and cost simulator through ablation exper-
iments. According to the experimental results
shown in Table 3, CEM-RSSN (U) can effectively
improve model performance by modeling and track-
ing user state which is highly-correlated with user’s
tolerances for invalid responses. Besides, sim-
ilar with the results on Clothing and Makeup1,
CEM-RSSN (C) still can achieve competitive per-
formance even the cost simulator is not designed
to improve the accuracy of the model.
Analysis of Generality. In order to evaluate the
generality of the proposed CEM, we conduct ad-
ditional experiments for HAN and BERT with
CEM(C) on Clothes and Makeup2. Compared to
HAN, the average improvements of CEM-HAN(C)
are 2.03%, 0.83%, and 4.15% in terms of F1, Mac.
F1 and IC respectively; Compared to BERT, the av-
erage improvements of CEM-BERT(C) are 2.11%,

1.32%, and 5.74% respectively in terms of F1, Mac.
F1 and IC respectively. Experimental results fur-
ther illustrate the proposed CEM can be easily
plugged into different models and get performance
improvements.

Analysis of IC metrics. The total error predictions
of RSSN and CEM-RSSN(full) are 937 and 900
on Clothes respectively, the error predictions cor-
responding to IC among the total are 358 and 326,
and the error predictions corresponding to (1-IC)
are 579 and 574. Similarly, the total error predic-
tions, error predictions for IC, and (1-IC) of RSSN
are 487, 221, and 266 on Makeup2. These values
of CEM-RSSN are 466, 205, and 261. From these
results, we can conclude that although IC declines,
the error predictions corresponding to (1-IC) will
not be larger since our CEM can also reduce total
error predictions. This indicates that the error pre-
dictions corresponding to both IC and (1-IC) are all
decreasing, but the decrease of IC is larger. There-
fore, the increase of (1-IC) is a relative value com-
pared to the decrease of IC, which indicates that
the service quality of chatbots can be guaranteed,
and declining IC will not impact user experience.

Analysis of Cost. We also compare the cost of
RSSN and CEM-RSSN through multiple experi-
ments, and perform two sided t-test to verify the
whether the significant difference between RSSN
and CEM-RSSN over metrics. The results shown
in Fig.3 mean that CEM can significantly reduce
labor cost while improving model performance.
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Figure 3: Comparison of labor cost (%) and GT-T in Clothes and Makeup2. Cost is IC defined in Eq.(10). We obtain
multiple sets of results of RSSN and CEM-RSSN through multiple experiments, draw the box plots of Cost and
GT-T, and perform two sided t-test to verify the whether the significant difference between RSSN and CEM-RSSN
over four metrics.

Running Efficiency. On one RTX2080, we check
the training speed and inference effectiveness for
RSSN and CEM-RSSN(full) under the same set-
ting on 10 runs: For training speed, they need
38.86s (standard deviation=1.14s) and 39.2s (stan-
dard deviation=1.80s), respectively; For inference
effectiveness, they need 2.38s (standard devia-
tion=0.63s) and 2.50s (standard deviation=0.50s).
Although CEM takes more time than RSSN, the
additional computational consumption is not large.
Case Analysis. To help evaluate the results of the
experiments, studies were conducted using repre-
sentative cases from the datasets. For example, in
some dialogues in which users always make talk in
a neutral or positive tone, the model can pinpoint
locations that require manual switching based on
semantic understanding. While other baselines,
such as RSSN, tend to perform the manual switch-
ing operation several steps ahead of the optimal
switching point. Such as the 28th, 29th, and 30th
utterances of dialogue 23 on Clothes dataset; the
23rd, 24th, and 25th utterances of dialogue 1 on
Makeup2 dataset. The reasons may be that due
to the complexity of language expressions, RSSN
may confuse some semantic information reflected
in user utterances and make an incorrect decision
in some cases. The proposed CEM model can solve
the problem by incorporating confounding factors
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Figure 4: The impact of the cost simulator over differ-
ent ηc ∈ [0, 1]. This experiment is about CEM-RSSN
on Clothes and Makeup2 dataset. Cost is IC which is
defined in Eq.(10). F1 and GT-I is the metrics about the
MHCH accuracy.

and a soft adjustment mechanism. In addition, the
counterfactual framework can help the model find
appropriate reference cases in the historical dia-
logues, thus further reducing the error rate.

5.7 Parameter Sensitivity

We compare different ηc in Eq.9 to explore the im-
pact of the cost simulator on MHCH models. We
take the value of ηc from 0 to 1, and the experi-
mental results about CEM-RSSN on Clothes and
Makeup2 are shown in Fig.4. It can be seen that
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the different ηc has little effect on the green (GT-I)
and orange lines (F1), which indicates the stability
of CEM in cost control.

Comparing the metric values under different ηc
on both two datasets, it can be found that when
the weight exceeds a certain threshold, the larger
the weight, the higher the labor cost and the lower
the accuracy, indicating the labor cost is associated
with the accuracy of models. Besides, it also shows
that the trade-off between the accuracy and labor
cost can be achieved by adjusting the loss weight,
so as to obtain a model with low cost and high
accuracy. Meanwhile, when the ηc is lower than a
certain threshold, the effect of the cost simulator
can be ignored, which will affect the performance
of CEM. Finally, we chose 0.01 as the value of ηc
to make a better trade-off in our experiments.

6 Conclusions

In this paper, we propose a novel CEM module
for the MHCH task where we use causal infer-
ence to enhance the models of the MHCH task
and take into account the labor cost. And the em-
pirical results on four datasets and two types of
models indicate that CEM improves model accu-
racy consistently and effectively saves invalid labor
cost. Since there are minor modifications to the
model architecture and loss function on the existing
MHCH method and achieve significant improve-
ment, CEM can be easily plugged into the different
MHCH methods.

7 Future works

Based on CEM, we can consider the following
future work:
(1) When CEM is used to enhance the existing
MHCH method, there is no additional parameters.
From the perspective of inference speed and model
deployment, this is the advantage. However, the
consideration of user state and labor cost in CEM
is mainly based on intuition to construct explicit
transformations, which can not ensure good enough
performance. Therefore, we can consider adding
neural networks to CEM in the future.
(2) For MHCH task, conventional neural networks
are generally used, such as fully connected neu-
ral networks, LSTM, BiLSTM, etc. This makes
the structure of the model lack careful considera-
tion, which has the potential to greatly improve the
performance of MHCH. Specifically, we should
consider a lot of fine-tuning methods for the neural

network to ensure their performance, including the
use of structure search techniques (He et al., 2021;
Liu et al., 2018; Huang et al., 2020a), elaborate
modules (Hu et al., 2018; Huang et al., 2020b),
specific parameters (Liang et al., 2020), etc.
(3) Compared with other artificial intelligence
fields, such as image segmentation and image clas-
sification, the data volume shown in Table.2 is not
very large. However, the quality and quantity of
data have a huge impact on their training, so the
data-driven cost simulator may have a bias in its
estimation of labor cost. Therefore, we can con-
sider data augment methods(Cubuk et al., 2018; Lin
et al., 2021) to effectively improve model training.

Limitations

Although we have fully demonstrated the effec-
tiveness of CEM experimentally, we ignore the
analysis of CEM from the mathematical point of
view of causal inference. This makes it impossi-
ble for us to guarantee that CEM can be used in
more complex and sophisticated MHCH methods
in the future or other applications in more extensive
fields. Moreover, since the cost simulator is trained
by neural networks, we can not ensure whether the
cost given by the simulator can not have a well
enough performance to reflect the true labor cost.
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A The detail of baselines

We compare our proposed approach with the fol-
lowing state-of-the-art dialogue classification mod-
els and multi-task models, which mainly come
from MHCH, SSA and other similar tasks. We
briefly categorize these baselines and introduce
them below.

Baselines for the MHCH task. HRN (Lin et al.,
2015): It uses a bidirectional LSTM to encode
utterances and then fed these utterance features
into a standard LSTM for context representation.
HAN (Yang et al., 2016): HAN is a hierarchical
network with two levels of attention mechanisms
on word-level and utterance-level. BERT (Devlin
et al., 2018): It uses a pre-trained BERT model to
construct the single utterance representations for
classification. HEC (Kumar et al., 2018): It builds
a hierarchical recurrent neural network using bidi-
rectional LSTM as a base unit and the conditional
random field (CRF) as the top layer to classify each
utterance into its corresponding dialogue act. CRF-
ASN (Chen et al., 2018): It extends the structured
attention network to the linear-chain conditional
random field layer, which takes both contextual
utterances and corresponding dialogue acts into ac-
count. HBLSTM-CRF (Kumar et al., 2018): It is
a hierarchical recurrent neural network using bidi-
rectional LSTM as a base unit and two projection
layers to combine utterances and contextual infor-
mation. DialogueRNN (Majumder et al., 2019):
It is a method based on RNNs that keeps track of
the individual party states throughout the conver-
sation and uses the information for emotion clas-
sification. CASA (Raheja and Tetreault, 2019): It
leverages the effectiveness of a context-awar self-
attention mechanism to capture utterance level se-
mantic text representations on prior hierarchical
recurrent neural network. LSTMLCA (Dai et al.,
2020): It is a hierarchical model based on the re-
vised self-attention to capture intra-sentence and
inter-sentence information. CESTa (Wang et al.,
2020): It employs LSTM and Transformer to en-
code context and leverages a CRF layer to learn the
emotional consistency in the conversation. DAMI
(Liu et al., 2021a): It utilizes difficulty-assisted en-
coding to enhance the representations of utterances,

and a matching inference mechanism is introduced
to capture the contextual matching features.

Multi-task baselines. MT-ES (Ma et al., 2018):
It proposes a joint framework that unifies the two
highly pertinent tasks. JointBiLSTM (Bodigutla
et al., 2020): It minimizes an adaptive multi-task
loss function in order to jointly predict turn-level
Response Quality labels provided by experts and
explicit dialogue-level ratings provided by end
users. DCR-Net (Qin et al., 2020): It considers
the cross-impact and model the interaction between
the two tasks by introducing a co-interactive rela-
tion layer. RSSN (Liu et al., 2021b): It integrates
both dialogue satisfaction estimation and handoff
prediction in one multi-task learning framework.

3253


