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Abstract

Document-level natural language inference
(DOCNLI) is a new challenging task in natural
language processing, aiming at judging the en-
tailment relationship between a pair of hypoth-
esis and premise documents. Current datasets
and baselines largely follow sentence-level set-
tings, but fail to address the issues raised by
longer documents. In this paper, we estab-
lish a general solution, named Retrieval, Read-
ing and Fusion (R2F) framework, and a new
setting, by analyzing the main challenges of
DOCNLI: interpretability, long-range depen-
dency, and cross-sentence inference. The basic
idea of the framework is to simplify document-
level task into a set of sentence-level tasks, and
improve both performance and interpretabil-
ity with the power of evidence. For each hy-
pothesis sentence, the framework retrieves ev-
idence sentences from the premise, and reads
to estimate its credibility. Then the sentence-
level results are fused to judge the relationship
between the documents. For the setting, we
contribute complementary evidence and entail-
ment label annotation on hypothesis sentences,
for interpretability study. Our experimental
results show that R?F framework can obtain
state-of-the-art performance and is robust for
diverse evidence retrieval methods. Moreover,
it can give more interpretable prediction re-
sults. Our model and code are released at
https://github.com/phoenixsecularbird/R2F.

1 Introduction

Natural Language Inference (NLI) is the task of
determining whether a hypothesis is entailed or not
in a premise. While earlier works (Bowman et al.,
2015; Williams et al., 2018; Wang et al., 2019;
Nie et al., 2020) assume that both hypothesis and
premise are single sentences, recent research pays
more attention on document-level task, namely
Document-level NLI (DOCNLI) (Yin et al., 2021).
The task can enlarge the task scope to judge the
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variability of semantic expression for many Natural
Language Processing (NLP) tasks, e.g., exposure
bias (Bengio et al., 2015; Arora et al., 2022) alle-
viation for text summarization (Sandhaus, 2008;
Narayan et al., 2018), and human-manipulated
news articles recognition for automatic fake news
detection (Jawahar et al., 2022; Huang et al., 2022).
Compared with sentence-level NLI, DOCNLI
poses many new challenges, while there are only
a few datasets and models. In terms of datasets,
Yin et al. (2021) reformat some mainstream NLP
tasks, e.g., text summarization and question answer-
ing, and build the first large scale dataset DOCNLI
with over 1 million document pairs'. However, the
dataset does not provide evidence annotation about
how the labels are inferred, i.e., which hypothesis
sentences lead to semantic inconsistency, or which
premise sentences help to decide the entailment
relationship. As shown in Figure 1, although the
sample is annotated as not entailment, most of the
hypothesis sentences are actually entailed. By con-
trast, the detailed disinformation of “in 1989 in
the third hypothesis sentence eventually decides
the entailment relationship between the documents.
For each hypothesis sentence, only several premise
sentences are enough to serve as the exact evidence
to judge its own sentence-level entailment label.
In this paper, we argue that evidence discovery
is important and challenging for DOCNLI. Our pi-
lot experiments in Section 4.3 and 4.5 show that
randomly selected evidences can still contribute to
comparable performance. Thus, only the black-box
models may be not so convincing. However, to
annotate evidence for evaluation is non-trivial. For
each hypothesis sentence, on one hand, it may refer
to multiple premise sentences. On the other hand,
there may be several evidence groups, where each
group can independently serve the label prediction.
We highlight this as interpretability challenge.

"Yin et al. (2021) propose the task and annotate the dataset
with the same name DocNLI.
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Label: not_entailment

Hypothesis: ®US cities along the Gulf of Mexico from Alabama to eastern Texas were on alert last night as Hurricane Andrew headed west after hitting
southern Florida leaving at least eight dead, causing severe property damage, and leaving 1.2 million homes without electricity. @Gusts of up to 165
mph were recorded. @It is the fiercest hurricane to hit the US in 1989. @As Andrew moved across the Gulf there was concern that it might hit New
Orleans, which would be particularly susceptible to flooding, or smash into the concentrated offshore oil facilities. ®President Bush authorized federal
disaster assistance for the affected areas.

Premise: @US CITIES along the Gulf of Mexico from Alabama to eastern Texas were on storm watch last night as Hurricane Andrew headed west
after sweeping across southern Florida, causing at least eight deaths and severe property damage. ®The hurricane was one of the fiercest in the US in
decades and the first to hit Miami directly in a quarter of a century. - - - @However, Hurricane Andrew gathered fresh strength as it moved across the
Gulf of Mexico and there was concern last night that it might head towards New Orleans, which is especially low lying and could suffer severe flood
- -+ @Andrew, the first Caribbean

damage. - - - @It could threaten the large concentration of offshore oil production facilities in the Gulf of Mexico.

hurricane of the season, hit the eastern coast of Florida early yesterday, gusting up to 165mph. - - - @The Florida Power and Light company said that

about 1.2m of its customers, or 32 per cent, were without power. - -

made plans for an inspection tour of the state. - - -

- ®President Bush authorized federal disaster assistance for the affected areas and

Figure 1: A sample of DOCNLI dataset. For each sample, only the entailment label between the documents is
annotated. For display, we mark each hypothesis sentence and its corresponding premise sentences (namely the
evidences, not annotated in the original dataset) with the same number and color. The sample is annotated as not
entailment due to the disinformation of “in /989" in the third hypothesis sentence. The premise is partly omitted.

In term of models, current baselines (Yin et al.,
2021; Zhong et al., 2020) still largely follow
sentence-level NLI. They either concatenate two
documents for mutual information interaction for
classification, or encode them separately for se-
mantic match with document-level representations.
However, except for the interpretability issue, they
will leave the following challenges unexplored:

¢ Long-range Dependency Modeling The task
requests to handle a pair of long documents at the
same time, where we observe that 29.81% samples
of DOCNLI dataset (Yin et al., 2021) contain more
than 500 words®, while 10.47% samples contain
more than 1000 words. This will not only exceed
the input limit of Pre-trained Language Models
(PLMs), but also make it far more difficult to cap-
ture long-range dependency. Necessary informa-
tion interaction between the hypothesis and some
key premise sentences may not be guaranteed. Be-
sides, most contexts are uninformative for entail-
ment inference and will only serve as noise.

e Cross-sentence Inference To judge the rela-
tionship between the documents, it is supposed to
consider all hypothesis sentences, where the de-
tailed disinformation issue still remains unsolved.
Besides, the verification of one hypothesis sen-
tence may request to combine multiple and distant
premise sentences, different from the sentence pair
mode in sentence-level NLI. As shown in Figure 1,

2A word may correspond to multiple tokens for PLMs.

to process the first one, it needs to take both the
first and sixth premise sentences (all in red fonts).

In this paper, we establish a general solution,
named Retrieval, Reading and Fusion (R?F) frame-
work, and a new setting for the task. The basic
idea of the framework is to simplify document-
level classification task into a set of sentence-level
tasks, and then improve both performance and inter-
pretability with the power of evidence. Specifically,
the framework splits the hypothesis document into
sentences. Then for each hypothesis sentence, it
retrieves evidence sentences from the premise, and
reads to estimate its credibility score upon the evi-
dences. Finally, it fuses the sentence-level results
and judge the entailment relationship between the
two documents. For the setting, we contribute
complementary fine-grained annotations for inter-
pretability study. For each hypothesis sentence,
we manually annotate entailment label and several
evidence groups, where each group is enough to
independently infer the label. In summary, our
contributions are as follows:

e We propose a Retrieval, Read and Fusion
framework as a general solution for DOCNLI task.

e We contribute complementary evidence and
entailment label annotation for each hypothesis
sentence on a subset of DOCNLI dataset for inter-
pretability study.

e Our experimental results on DOCNLI dataset
indicate that the framework obtains state-of-the-
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Figure 2: R?F framework. For each hypothesis sentence, the framework firstly retrieves evidence sentences from
the premise, and then reads to estimate the credibility upon the evidences. Finally it fuses the sentence-level
results, and judges the entailment relationship between these two documents. ¢; and ¢z p are the credibility score
of the i-th hypothesis sentence and the sample, while Evi;; is the j-th evidence of the i-th hypothesis sentence.

art performance. Besides, it is robust for diverse
retrieval methods. Moreover, the framework can
give more interpretable prediction results.

2  R*F Framework

Our R2F framework aims at a general solution for
DOCNLI task with interpretability, i.e., to obtain
corresponding evidence and predict entailment la-
bel for each hypothesis sentence. As shown in
Figure 2, the framework consists of 3 components,
namely evidence retrieval, reading for credibility
estimation, and credibility fusion. For efficiency,
the retrieval component is an independent unit to
provide evidence input for the other two compo-
nents, which are optimized jointly.

2.1 Task Formulation

Similar to previous sentence-level NLI tasks, for
each sample in DOCNLI task, given a hypothe-
sis document H and a premise document P, it is
requested to judge the entailment relationship R
between these two documents. Here, R € {“entail-
ment”, “not_entailment”} for DOCNLI dataset, but
may not be restricted to binary classification.

2.2 Evidence Retrieval

Given each sample, we split the hypothesis into
sentences and retrieve evidence sentences from the
premise. Formally, we split the hypothesis H and
the premise P into single sentences { Hy, Ha, - - -,
H,,}and { P}, P,, - - -, P,}, through NLTK tool.
Here, m and n are the sentence numbers.

For each hypothesis sentence H;, we respec-
tively utilize the following retrieval methods to
calculate the relevance score with all premise sen-
tences. Then according to the scores, we remain top

*https://www.nltk.org/

K sentences as the corresponding evidence. The
value of K is a trade-off between evidence recall
and precision. A lower value pursues higher evi-
dence precision, but may lead to evidence missing,
while a higher value guarantees higher evidence
recall, but may introduce too many uninformative
sentences as noise. Moreover, to keep and utilize
contextual information, for each hypothesis sen-
tence, we reorder the evidence sentences according
to their original order in the premise.

To calculate the relevance score, we take several
sparse and dense retrieval methods into considera-
tion:

e ROUGE-1 Inspired by Mao et al. (2022)
and Zhang et al. (2022), we adopt ROUGE-1 re-
trieval. For a pair of sentences, this sparse retrieval
method focuses on n-gram match of the pair to cal-
culate ROUGE-1 score as the relevance metric. We
take it as the main retrieval method.

e BM25* BM25 is one of the most advanced
sparse retrieval methods. We take all premise
sentences as the corpus. For a pair of sentences,
BM25 involves not only the pair itself but also the
whole corpus, to count term frequency and inverse-
document frequency to obtain the relevance score.

¢ SimCSE’ Inspired by Gao et al. (2021), we uti-
lize SimCSE (Gao et al., 2021), a strong sentence
embedding model, as dense retrieval method for
semantic match. For a pair of sentences, we take
the cosine similarity of the sentence embeddings
as the relevance score.

Except for above retrieval methods, we also
adopt another simple but effective strategy. If a
hypothesis sentence is a substring of the premise,

*We adopt the implementation from https://github.com/
dorianbrown/rank_bm?25.

SWe adopt unsupervised and supervised version of
RoBERTapqse.-
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then it is naturally entailed in the premise through
string match and does not need further study.

2.3 Reading & Credibility Estimation

For each hypothesis sentence, we concentrate in-
formative premise sentences and filter out most
noisy ones through evidence retrieval. Then this
component aims to estimate its credibility, which
involves the hypothesis sentence itself and several
evidence sentences. This is different from con-
ventional sentence-level NLI, which studies the
relationship between a pair of sentences. Hence
we adopt reading models. Our general R?F frame-
work is compatible to any arbitrary reading models,
which may be enhanced by several advanced learn-
ing technologies, e.g., graph neural network (Kipf
and Welling, 2017; Velickovic et al., 2018), com-
monsense knowledge injection (Zhang et al., 2019;
Wang et al., 2021), and syntactic structure analy-
sis (Kitaev et al., 2022). Herein, we adopt a simple
and straightforward one without loss of generality.
Specifically, for a hypothesis sentence H;, and
its corresponding evidence {Fvi;;, FEvip, ---,
FEvi;k }, we concatenate them all as the input:

[CLS] Hi [SEP] Evz’il E’Uiig ce E'UiiK [SEP]
(1
Then we leverage transformer-based pre-trained
language model, i.e., ROBERTa (Liu et al., 2019),
to encode the input sequence. Through the multi-
head self-attention mechanism (Vaswani et al.,
2017), token-level information interaction among
the hypothesis sentence and all its evidences is con-
ducted. Besides, since evidence are concentrated,
it is much easier to handle the multiple evidence
combination issue for cross-sentence inference.
Then the credibility score is calculated through
a Multi Layer Perceptron (MLP) with sigmoid acti-
vation function:

9; = Sigmoid(MLP(h;)) ()

where h; is the hidden state of the special [CLS]
token, and is taken as the inference vector of H;.
Besides, y; € [0.0, 1.0] is the credibility score of
H;, and a higher score means that the sentence is
more likely to be entailed by the premise.

2.4 Credibility Fusion

After reading, the inference vector h; and credi-
bility score ¢; of each hypothesis sentence H; is
obtained. Nevertheless, the reading model cannot
be trained directly since the detailed entailment

label of H; is not available. To this end, we fuse
the sentence-level results to judge the entailment
relationship between the documents, and indirectly
train the model through document-level entailment
label. Besides, the fusion process is also expected
to solve the detailed disinformation issue for cross-
sentence inference, and expand the interpretability
of the framework. Herein, we design three fusion
methods for comparison.

e Credibility Score Minimum Pooling The
logic basis for this method is that if the premise
entails the hypothesis, then it will entail all the hy-
pothesis sentences, even the one with the lowest
credibility score. By contrast, if the premise does
not entail the hypothesis, then it will conflict to at
least one hypothesis sentence. This one is expected
to be assigned with the lowest credibility score.

Formally, for a pair of documents H and P, the
credibility scores of the hypothesis sentences are
{91, U2, - - -, Ym }. Then the credibility score of the
sample is calculated as:

,Um}) 3)

gap = min({g1, Y2, - - -

For this fusion method, the sample prediction re-
sult comes from that of the least credible hypothesis
sentence, i.e., with the lowest credibility score. The
framework is requested to conduct internal contrast
among the hypothesis sentences to decide the least
credible one. Thus, it is forced to understand the
entailment relationship between each hypothesis
sentence and its corresponding evidences although
without direct entailment label. During prediction,
the credibility score ¢; is utilized to predict the en-
tailment label of hypothesis sentence H;. We take
this as the main fusion method.

e Inference Vector Minimum Pooling For this
method, we conduct minimum pooling on the in-
ference vector h; rather than the credibility score
1;. For the inference vector of the sample hy p, the
J-th dimension is:

by p = min({h], hd, - -

D} @
Then the credibility score of the sample is:
:ng = Sigmoid(MLP(th)) (5)

Many conventional neural models tend to adopt
this fusion method for better performance, but suf-
fer from low interpretability, since the practical
meaning of each dimension of the inference vector
can hardly be probed.
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e Gaussian Kernel Pooling To further explore
the influence of fusion methods, we adopt Gaus-
sian Kernel Pooling (Xiong et al., 2017; Liu et al.,
2020; Sheng et al., 2022). Specifically, we utilize C
Gaussian kernels { K }5’;1. For a credibility score
7i, the output of the j-th kernel is:

~ (9 — 1j)”
Vi = exp(——55") (6)
J
where j1; and o, are respectively the mean and
width of the j-th kernel. In this way, the score ¥; is
projected to a kernel vector V; € RC. The kernel
vector of the sample is:

_ 1 _ C
va_mZMER (7)

And the credibility score of the sample is:
?;HP = Sigmoid(MLP(VHp)) (8)

This is a mean pooling method, which conducts
mean pooling on the corresponding kernel vectors,
rather than the credibility scores.

During training, the loss function of the sample
is set as binary cross entropy loss:

L =ynplog(yup)+(1—ymp)log(1—gup) (9)

where ygp is the sample entailment label, 1 for
entailment samples while O for not entailment ones.
During prediction, we set a threshold on the sample
credibility score ¢z p to obtain the result.

3 Experiment

3.1 Dataset

We conduct our experiments on DOCNLI
dataset (Yin et al., 2021), which is a newly
proposed and the only large scale dataset in the
field. The detailed statistic information is shown
in Table 1. The training set comes with balanced
label distribution, while the development and test
sets come with pretty unbalanced ones.

Set Entailment Not_Entailment Total

train 466,653 475,661 942,314
dev 28,890 205,368 234,258
test 33,128 233,958 267,086

Table 1: Statistic information of DOCNLI dataset.

3.2 Complementary Annotation

For interpretability study, we contribute comple-
mentary annotation®. The hypothesis sentences
may involve cross-sentence inference and request
multiple evidences. Besides, they may also cor-
respond to several evidence groups, where each
group itself is enough to independently infer the en-
tailment label. Thus the annotation process needs
heavy workload and comes with great complexity.
Herein, we adopt a proposal and correction anno-
tation strategy. Specifically, for each hypothesis
sentence, we firstly retrieve candidate evidences
through the diverse methods in Section 2.2. Then
we manually check, remove repeated or unrelated
ones and add missing ones, and combine several
evidence groups. Finally, we decide the entailment
label according to the evidences.

Label: entailment

Hypothesis Sentence: Tony Abbott will withdraw Australia’s am-
bassador to Indonesia.

Evidence Group 1: Prime Minister Tony Abbott said Australia will
withdraw its ambassador to Indonesia in an unprecedented diplo-
matic response to the executions of Myuran Sukumaran and An-
drew Chan.

Evidence Group 2: Mr Prasetyo shrugged off diplomatic backlash
from Australia after Prime Minister Tony Abbott slammed the exe-
cutions as “cruel and unnecessary” and announced he would with-

draw Australia’s ambassador to Indonesia Paul Grigson.

Figure 3: Annotation example for hypothesis sentence.
The hypothesis sentence is annotated as entailment
with two evidence groups.

Due to the heavy workload and great complexity,
we manually annotate 100 longer samples (all over
800 words) randomly selected from the test set,
which contain more than 350 hypothesis sentences
in total. An annotation example is shown in Fig-
ure 3. The hypothesis sentence is annotated as en-
tailment with two evidence groups. More detailed
statistic information is summarized in Appendix A.

3.3 Evaluation Metric

For DOCNLI task, we adopt micro and macro F1
scores, and attach more importance to the latter.
Due to the unbalanced label distribution, even ma-
jority guess model will obtain high micro F1 score,
but pretty low macro F1 score. For sentence-level

The annotation is also released.
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Model Entailment Not_Entailment Total
P R F1 P R F1 Micro F1 Macro F1

Concatenation-Longformery, . & - - 44 .42 - - - - -
Concatenation-Longformery,,.# 29.73 80.32 43.39 96.33 73.11 83.13 74.01 63.26
Concatenation-RoBERTay,..# 39.73 91.57 5541 98.54 80.33 88.51 81.72 71.96
Semantic Match-RoBERTa,,./AA 31.60 8549 46.15 97.29 73.80 83.93  75.25 65.04

ours R?F-RoBERTa,s¢ 43.52 87.04 58.02 97.86 84.01 90.41 84.38 74.22
Concatenation-RoBERTa;q,.g. 4515 94.99 61.21 99.16 83.66 90.75  85.06 75.98
Concatenation-RoBERTa;4,.4.#  44.70 94.74 60.74 99.11 83.40 90.58  84.81 75.66

ours RQF—ROBERTalaTge 50.61 88.07 64.28 98.11 87.82 92.68 87.86 78.48

Table 2: Model performance on the fest set. & and # denote the original and reproduced results of the model
from Yin et al. (2021). A denotes the reproduced results of the model modified from Zhong et al. (2020).

evaluation, we adopt evidence precision, recall and
F1 for retrieval, while micro and macro F1 scores
for label prediction. Moreover, inspired by Thorne
et al. (2018), we propose a more strict metric full
accuracy. Herein, evidence recall requests to find
at least one complete evidence group, and full ac-
curacy further requests correct label prediction.

3.4 Experiment Setup

Our R?F framework is implemented through Py-
torch 1.8.0. We adopt AdamW optimizer, keep a
random number seed of 42, set max input length as
256, and set mini batch size as 8 with gradient ac-
cumulation step as 4. For base encoder, we choose
initial learning rate of le-5, while for large encoder,
we choose 5e-6. For evidence retrieval, we set K as
5. During prediction, we adopt a threshold of 0.5.
More setup is shown in Appendix B.

3.5 Baseline

Since DOCNLI is still a new task, we adopt the
concatenation model from Yin et al. (2021), and
modify the semantic match model from Zhong et al.
(2020) for comparison. Please refer to the original
papers and Appendix C for detailed information.

4 Results
4.1 Main Results

Main results of our framework on the test set are
displayed in Table 2. The framework obtains the
best performance with the highest micro and macro
F1 scores, with both base and large encoders, indi-
cating its strength. The situation is similar on the
development set in Appendix D.

All models show far better performance (higher
F1 score) on not entailment samples than entail-
ment samples, while entailment samples still come

with even higher recall. This may be due to the
label distribution difference among different sets
(in Table 1). Among the baselines, semantic match
model conducts coarse-grained information inter-
action between the hypothesis and premise through
document-level vector representations. Thus it
shows pretty low performance although it can avoid
possible key information missing caused by the
truncation of overlong samples. This indicates that
fine-grained information interaction is essential for
this task. Besides, concatenation model with Long-
former encoder, although it is able to handle much
longer inputs, shows much lower performance than
that with RoBERTa encoder, which truncates the
inputs. The simplified multi-head self-attention
mechanism in Longformer encoder (Beltagy et al.,
2020) seems not competent for fine-grained infor-
mation interaction in the task.

4.2 Performance vs Sample Length

To examine the ability of our framework on pro-
cessing long inputs, the performance with vary-
ing sample length on the test set is shown in Fig-
ure 4. Here, the length of a sample is counted in
the number of words. Both models obtain far better
performance on shorter samples than longer ones
(more than 10% absolute difference on both mi-
cro F1 and macro F1 scores). Hence it is still a
relatively difficult problem to process longer sam-
ples. Moreover, our R?F framework consistently
and greatly outperforms the strongest concatena-
tion baseline on samples with varying length. Espe-
cially, it shows much higher performance on longer
samples. These indicate the framework is able to
handle longer ones efficiently through breaking the
document-level task into sentence-level task with
the retrieval, reading and fusion process. On the de-
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velopment set, the tendency is similar, and detailed
results are displayed in Appendix D.
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Figure 4: Model performance with varying sample
length on the fest set. Concatenation baseline and R2F
framework with RoBERTa,s. encoder are compared.
The horizontal axis is the sample length in the number
of words. The vertical axis is the performance.

4.3 Influence of Evidence Retrieval

To investigate the influence of evidence retrieval,
we focus on different retrieval methods, and take
those mentioned in Section 2.2 for comparison.
Besides, we also adopt a random baseline, which
adopts K randomly selected premise sentences as
the evidences.

Retrieval Dev Set Test Set
Method MiF1 MaFl1 MiFl1 MaF1
Random 83.27 71.77 8245 7098

ROUGE-1 85.58 75.44 84.38 74.22

BM25 85.55 7536 8398 73.71

SimCSE* 86.13 75.57 85.34 74.74

SimCSE# 84.87 7433 83.65 73.28

Table 3: DOCNLI performance with different evidence
retrieval methods. * and 7 respectively denote unsuper-
vised and supervised version, and the same below.

As shown in Table 3, the random baseline can
still obtain relatively high performance although
it cannot outperform the concatenation baseline.
This may be due to the evidence dependency bias
discussed in Section 4.5. Besides, for shorter sam-
ples with only a few premise sentences, evidence
retrieval will show less importance. All other re-
trieval methods can contribute to higher perfor-
mance than the concatenation baseline, indicating
the strength of the framework on the task and its

robustness for diverse retrieval methods. However,
supervised SimCSE, although trained on human-
annotated NLI benchmarks, shows the lowest per-
formance, which may suffer transfer issue caused
by the domain difference between its own training
data and DOCNLI dataset.

4.4 Influence of Fusion Method

Performance of different fusion methods are com-
pared in Figure 5. Gaussian kernel pooling tends to
incorrectly predicts all samples as not entailment
and can hardly recognize entailment samples. Thus
it comes with much higher micro F1 score but far
lower macro F1 score under the pretty unbalanced
label distribution (in Table 1). This mean pool-
ing fusion method seems not feasible for the task.
On both sets, credibility score minimum pooling
outperforms all other fusion methods. This fusion
method also comes with clear logic basis to expand
the interpretability of the framework.

95

90.50 90.44
90

5.5
85.58 84.39 84.38

85 ‘ 83.06
80 ‘
75.44
74.62
75 ‘ 7422 7329
. I I ‘
66.76 66.65
65

Micro F1 (Dev)  Micro F1 (Test) Macro F1 (Dev) Macro F1 (Test)

® Credibility Score = Inference Vector Gaussian Kernel

Figure 5: DOCNLI performance with different fusion
methods.

4.5 Interpretability Study

To investigate the interpretability of our framework,
we conduct sentence-level evaluation on the subset
annotated by ourselves. As shown in Table 4, we
focus on evidence retrieval and entailment label
prediction for hypothesis sentences.

¢ Evidence Retrieval For these longer samples
(all over 800 words), the random baseline can
hardly obtain the evidence, with extremely low evi-
dence recall. All other retrieval methods can find at
least one complete evidence group for most of the
hypothesis sentences, with relatively high evidence
recall around 85%. However, with pretty low ev-
idence precision and F1 score, all these methods
will introduce plenty of uninformative sentences as
noise. Thus, the evidence retrieval component may
need further improvement.
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Figure 6: Case study on the sample in Figure 1. For each hypothesis sentence, the elements in the bracket denote
whether at least one complete evidence group is obtained, 7 for True while F for False, and entailment label
prediction result, E for entailment while NE for not entailment. Wrong predictions are in red. The number below
is credibility score. The Golden branch denotes the groundtruth.

Retrieval  Evi. Retri. Label Pre. FA
Method P R F1 MiF1MaF1
Random 6.83 17.21 9.78 66.94 63.32 13.11
ROUGE-1 31.5387.4346.35 76.23 73.92 68.85
BM25 31.5387.1646.31 73.22 70.46 66.12
SimCSE* 30.38 84.97 44.76 76.50 74.69 67.49
SimCSE# 31.31 84.9745.76 73.50 70.48 65.03

Table 4: Sentence-level evaluation results. Evi. Re-
tri., Label Pre., and FA respectively denote Evidence
Retrieval, Label Prediction and Full Accuracy.

o Entailment Label Prediction Regardless of
poor retrieval performance, the random baseline
still shows relatively high performance on entail-
ment label prediction. This is due to evidence de-
pendency bias. Entailment samples strictly request
at least one complete evidence group. However,
not entailment samples are insensitive to evidence
retrieval. With complete evidence group obtained,
they are taken as conflict to the premise, while with
evidence missing, they will be taken as not men-
tioned. Both situations are considered as not entail-
ment. This kind of bias will also contribute to the
high document-level performance of the random
baseline in Table 3. All other retrieval methods
obtain much higher performance with the power of
evidence. However, it seems that high evidence re-
call is not promising for more accurate entailment
label prediction for hypothesis sentences. This may
be also due to evidence dependency bias. Besides,
with evidence precision at only around 30%, evi-
dence noise is also an important issue, the influence
of which is difficult to estimate. Moreover, the high
full accuracy score means for more than 65% hy-
pothesis sentences, our framework can find at least

one complete evidence group and correctly pre-
dict their entailment label. Therefore, taking that
sentence-level annotation is not available during
training, our R%F framework is able to give more
interpretable prediction results and help to locate
the semantic inconsistency.

4.6 Case Study

To further display the interpretability of our frame-
work, we conduct case study on the sample in Fig-
ure 1. As shown in Figure 6, for this long sample
(about 667 words in total), the random baseline
is pretty weak and cannot find complete evidence
group for any hypothesis sentence, although it can
obtain correct prediction for the sample. This also
demonstrates the importance of evidence discov-
ery for interpretability study. By contrast, all other
retrieval methods can obtain complete evidence
groups, and contribute to correctly predict sentence-
level entailment label for most of the hypothesis
sentences. Thus the framework can give more in-
terpretable prediction results, and accurately locate
the semantic inconsistency in the third hypothe-
sis sentence. Furthermore, with the two sparse
retrieval methods, our framework can even success-
fully handle all the hypothesis sentences. However,
the two dense methods fail to obtain complete evi-
dence group for the first hypothesis sentence. As
shown in Figure 1, this one requests two evidences,
whose most words are related to the first evidence
while only a few words are related to the second
one. Moreover, it rephrases the second one with
totally different expressions. Therefore, it is diffi-
cult to find the second one. This may be the exact
situation that leads to the lower evidence recall of
dense retrieval methods than sparse ones in Table 4.
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5 Related Work

Natural language inference is a fundamental yet
important task in natural language processing. For
sentence-level NLI, several benchmarks (Bowman
et al., 2015; Williams et al., 2018; Wang et al.,
2019; Nie et al., 2020) have been proposed and
they have been attracting research attention. More-
over, Koreeda and Manning (2021) propose Con-
tract NLI targeting the legal and business domain,
which is a small scale benchmark. The premises
are long contract documents while the hypotheses
are actually single sentences. Besides, Tian et al.
(2022) suggest to debias natural language inference
and understanding models through causal interven-
tion and counterfactual reasoning. Lin et al. (2022)
adopt commonsense inference to enhance future
event generation. For document-level NLI, Yin
et al. (2021) propose the first large scale bench-
mark DOCNLI based on a set of early benchmarks.
Current models for the task still largely follow
sentence-level NLI. Differently, in this paper, we
emphasize the importance of evidence discovery
and aim at a general solution for the task.

6 Conclusion

In this paper, we propose R?F framework as a gen-
eral solution for DOCNLI task and contribute com-
plementary annotation on DOCNLI dataset. Our
experimental results show that our framework can
obtain state-of-the-art performance. Besides, the
framework is robust for diverse retrieval methods,
and consistently obtains higher performance on
samples with varying length, especially longer sam-
ples. Moreover, the framework can give more in-
terpretable prediction results and help to locate the
semantic inconsistency. In the future, we will ex-
plore an end-to-end framework for the task.

Limitations

The main limitation of our R%F framework is that
the framework is a pipeline one rather than an
end-to-end one. For efficiency, the evidence re-
trieval component is an independent unit, which
provides evidence input for the jointly trained read-
ing and fusion components. However, the evidence
retrieval component in our pipeline framework will
not bring additional heavy computation. First, it
can be conducted offline efficiently. The sparse re-
trieval methods only involve item frequency count-
ing, and the dense ones are based on pretrained

sentence embeddings without further fine-tuning.
Second, there are many acceleration techniques for
retrieval in industrial field.

Furthermore, we will try to improve the evidence
retrieval component in the future. On one hand,
we will try to utilize document-level entailment
label to improve sentence-level evidence retrieval.
On the other hand, we will also explore an effi-
cient end-to-end model, which may benefit from
reinforcement learning (Williams, 1992; Lei et al.,
2016), reparameterization trick (Maddison et al.,
2017; Jang et al., 2017), or Expectation-Maximum
algorithm (Dempster et al., 1977). However, the
evidence dependency bias issue, discussed in Sec-
tion 4.5, will pose a great challenge. That is, entail-
ment samples strictly request complete evidence
groups, while not entailment samples are insensi-
tive to evidence retrieval.
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Model Entailment Not_Entailment Total
P R F1 P R F1 Micro F1 Macro F1

Concatenation-Longformery, . & - - 46.18 - - - - -
Concatenation-Longformery,,.# 31.09 81.33 44.99 96.60 74.64 8422  75.47 64.60
Concatenation-RoBERTa;,..# 42.27 90.82 57.69 98.45 82.55 89.81 83.57 73.75
Semantic Match-RoBERTa,,./AA 31.01 84.32 4534 97.09 73.61 83.74 74.93 64.54

ours R?F-RoBERTa,s¢ 45.54 86.43 59.66 97.82 85.46 91.22 85.58 75.44
Concatenation-RoBERTa;q,g.  47.15 95.09 63.04 99.19 85.01 91.55 86.25 77.30
Concatenation-RoBERTa;,,.4.#0  47.04 94.82 62.89 99.15 84.99 91.52  86.20 77.21

ours RQF—ROBERTalaTge 53.70 87.10 66.43 98.01 89.43 93.53 89.15 79.98

Table 5: Model performance on the dev set. & and # denote the original and reproduced results of the model from
Yin et al. (2021). A denotes the reproduced results of the model modified from Zhong et al. (2020).

not entailment, while 16% are annotated as entail-
ment. However, among the hypothesis sentences,
about 43% are annotated as not entailment, while
about 57% are annotated as entailment. The great
label distribution difference is natural. For entail-
ment samples, all hypothesis sentences are entailed
by the premise. However, not entailment sam-
ples can still contain entailed hypothesis sentences.
Besides, about 47% hypothesis sentences involve
cross-sentence inference and request multiple evi-
dence sentences. Moreover, about 17% hypothesis
sentences are annotated with more than one evi-
dence groups. These also indicate the great com-
plexity of fine-grained sentence-level annotation.

B Detailed Experiment Setup

Our R2F framework is implemented through Py-
torch 1.8.0 and hugging face transformers’. All
experiments are conducted on a computation node
with Nvidia 40G A100 GPUs. For evidence
retrieval, we set K as 5 to remain top 5 sen-
tences as evidences during retrieval. We adopt
RoBERTa (Liu et al., 2019) as encoder, including
base and large version. For all experiments, we
adopt AdamW optimizer, keep a random number
seed of 42, set max input length as 256, and set mini
batch size as 8 with gradient accumulation step as
4. For base encoder, we choose initial learning rate
as le-5, while for large encoder, we choose initial
learning rate as Se-6. We train 5 epochs, evaluate
each 3750 steps, and choose the model parameters
with the highest performance on the development
set. For Gaussian Kernel Pooling, we keep 11 ker-
nels with the same width of 0.01. However, the
mean values of the kernels come from a uniform

"https://huggingface.co/

distribution within the interval of [0.0, 1.0]. During
prediction, we adopt a threshold of 0.5.

C Detailed Baseline

Since DOCNLI is still a new task, we adopt the
concatenation model from Yin et al. (2021), and
modify the semantic match model from Zhong et al.
(2020) for comparison.

e Concatenation We concatenate the hypothe-
sis and the premise documents into a sequence as
input. Overlong samples will be truncated to max
input length. Then we adopt the hidden state of the
special [CLS] token as the sample representation
for binary classification.

¢ Semantic Match We respectively encode the
hypothesis and premise documents to obtain their
own document-level vector representation. For doc-
uments exceeding the max input length, we split
them into chunks with sliding window. Then in-
spired by Chen et al. (2017), we enhance the vector
representations of these two for classification.

D Performance on Development Set

The detailed model performance on the develop-
ment set are shown in Table 5 and Figure 7. The
situations are similar to those on the text set. Our
framework obtains the highest performance on the
development set. Furthermore, except for the slight
performance decrease on samples no longer than
150 words, it greatly and consistently outperforms
the strongest concatenation baseline on samples
with varying length, especially on longer samples.
These also show the strength of our R?F framework
on the task.
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Figure 7: Model performance with varying sample
length on the dev set. Concatenation baseline and R%F
framework with RoBERTa,,s. encoder are compared.
The horizontal axis is the sample length in the number
of words. The vertical axis is the performance.

E Influence of K Value

To investigate the influence of evidence retrieval,
we also pay attention to the value of K, which is
the hyperparameter about how many sentences to
remain during retrieval. As shown in Table 6, the
framework is pretty sensitive to the value. Specif-
ically, the highest performance is obtained with
K as 5. Besides, with K as 3, 6 or 7, the frame-
work can also obtain promoted performance than
the concatenation baseline. However, with K as 4,
it shows similar performance with the baseline. As
discussed in Section 2.2, K is to balance evidence
precision and recall. Lower values pursue higher
evidence precision, but may lead to evidence miss-
ing, while higher values guarantee higher evidence
recall, but may introduce too much noise. Besides,
the choice of the value is also closely related to
data distribution. The high sensitivity to the value
indicates that the evidence retrieval process will
need further improvement, where a possible way
is to utilize the document-level entailment label to
improve it.

F Related Work on Long Document Pro-
cessing

For long document processing, two common meth-
ods are to truncate the input sequence to the max-
imum length, or cut into several independent seg-
ments with sliding window. Dai et al. (2019) pro-
pose segment-level recurrence mechanism for in-
formation interaction among segments. Beltagy
et al. (2020) simplify the self-attention mecha-

K Dev Test
MiF1 MaFl MiFl1 MacFl
3 8479 7450 83.05 72.65
4 8368 73.14 81.68 71.30
5 8558 7544 8438 74.22
6 8464 7450 8350 73.39
7 8434 7395 8250 72.31

Table 6: DOCNLI performance with varying values of
K.

nism (Vaswani et al., 2017) to reduce memory
overhead to handle longer input sequence. More-
over, Ding et al. (2020) suggest to introduce two in-
dependent iteratively trained models, respectively
for neural evidence retrieval and semantic infer-
ence. Wu et al. (2021) propose hierarchical in-
teractive transformer structure with stacked trans-
formers respectively for sentence and document
encoding. However, a recent study (Park et al.,
2022) on text classification task indicates that none
of these models will consistently outperform other
models across datasets. The situation is similar
to the famous No Free Lunch principle (Wolpert
and Macready, 1997). Therefore, long document
processing may need further exploration.
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