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Abstract

Existing auto-regressive pre-trained language
models (PLMs) like T5 and BART, have been
well applied to table question answering by
UNIFIEDSKG and TAPEX, respectively, and
demonstrated state-of-the-art results on mul-
tiple benchmarks. However, auto-regressive
PLMs are challenged by recent emerging nu-
merical reasoning datasets, such as TAT-QA,
due to the error-prone implicit calculation.
In this paper, we present TACUBE, to pre-
compute aggregation/arithmetic results for the
table in advance, so that they are handy and
readily available for PLMs to answer numeri-
cal reasoning questions. TACUBE systemat-
ically and comprehensively covers a collec-
tion of computational operations over table seg-
ments. By simply concatenating TACUBE to
the input sequence of PLMs, it shows signifi-
cant experimental effectiveness. TACUBE pro-
motes the F1 score from 49.6% to 66.2% on
TAT-QA and achieves new state-of-the-art re-
sults on WikiTQ (59.6% denotation accuracy).
TACUBE ’s improvements on numerical reason-
ing cases are even more notable: on TAT-QA,
TACUBE promotes the exact match accuracy
of BART-large by 39.6% on sum, 52.5% on
average, 36.6% on subtraction and 22.2%
on division. We believe that TACUBE is a
general and portable pre-computation solution
that can be potentially integrated into various
numerical reasoning frameworks. Data and
code will be available at https://github.com/
microsoft/TaCube.

1 Introduction

There are numerous recent works on table-text
joint reasoning, e.g., answering questions over ta-
bles (Yu et al., 2018; Pasupat and Liang, 2015;
Zhong et al., 2017). Meanwhile, pre-trained lan-
guage models (PLMs), which have demonstrated
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Figure 1: Augmenting auto-regressive PLMs with
TACUBE. By simply concatenating TACUBE to the
input sequence, TACUBE significantly mitigates the cal-
culation challenge in numerical reasoning over tables.

great success on various natural language (NL)
tasks, are also well applied to table-text joint rea-
soning and show great effectiveness (Yin et al.,
2020; Herzig et al., 2020; Cheng et al., 2021a; Liu
et al., 2021; Xie et al., 2022; Dong et al., 2022).

Recently, numerical reasoning (NR) over tabular
data has raised increasing attention and a bunch of
table QA datasets targeting numerical reasoning
have been collected (Chen et al., 2021b; Zhu et al.,
2021; Zhao et al., 2022b; Cheng et al., 2021b),
promoting NR to be a hot challenge in table QA.
However, faced with flexible calculations such as
addition, comparison and aggregation over semi-
structured context, PLMs encounter great obstacles
(Liu et al., 2021; Zhu et al., 2021), especially when
calculation skills have not been fully exploited dur-
ing large-scale pre-training on NL corpora.

Existing approaches to mitigate this gap can be
mainly concluded into two families. One is logical-

2278

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2278-2291
December 7-11, 2022 ©2022 Association for Computational Linguistics


https://github.com/microsoft/TaCube
https://github.com/microsoft/TaCube

form-based method, which formulates table QA as
a semantic parsing task. The method first generates
the logical form and then applies a post-execution
on the logical form to produce the final answer. The
answer generation process is much more trackable
and explainable than directly decoding answers, but
it also has deficiencies. (1) Human annotations of
logical forms are expensive and error-prone (Herzig
et al., 2020; Cheng et al., 2021a). (2) There lacks
a dominant formulation of logical forms for table
reasoning: (Pasupat and Liang, 2015; Liang et al.,
2018; Guo et al., 2019; Gao et al., 2019; Cheng
et al., 2021b) design their own logical forms and
semantic parsers; (Herzig et al., 2020; Zhu et al.,
2021) simplify the logical form design and use spe-
cific classification heads for cell selection, operator
prediction and unit prediction, to produce the an-
swer. (3) Due to the representation limitation of
logical forms, it lacks sufficient flexibility to gener-
ate free-form answers or answers matching special
conditions, e.g., “2 million” that augments a nu-
meric value ‘“2” with its textual scale “million” and
“2022” that is a part of a cell string “2022/05/20”.

The other popular way is directly generating
the answer using auto-regressive PLMs. UNIFIED-
SKG (Xie et al., 2022) leverages TS5 (Raffel et al.,
2020) and achieves promising and even state-of-
the-art performance on a series of datasets, show-
ing the power of directly fine-tuning large LMs
on table-text joint reasoning. TAPEX (Liu et al.,
2021), which is based on BART (Lewis et al., 2020)
and pre-trained by learning a neural SQL executor,
surprisingly outperforms prior works by a large
margin. TAPEX provides a new way of using clean
and synthetic data for efficient pre-training and
shows its promising capacity on several numeri-
cal reasoning types, e.g., count and comparison.
However, when it comes to numerical calculations
involving sum, subtraction, or division, the
accuracy falls to the bottom, showing that implicit
numerical calculation is brittle and error-prone. To
make things worse, when auto-regressive PLMs
produce a wrong number, e.g., “1.7” in Figure 1,
it’s hard to uncover where the number comes from
and improve the model accordingly, because all
calculations are implicitly done in transformers.

To address the above shortcomings, we propose
to pre-compute aggregation/arithmetic results for
the target table in advance, so that they are handy
and readily available for answering numerical rea-
soning questions. This idea is inspired by an impor-

tant data cube (Gray et al., 1997; Han et al., 2011)
concept in the data mining field to facilitate the
online analytical processing of multi-dimensional
data, so we name our pre-computed aggrega-
tion/arithmetic results as TACUBE. TACUBE sys-
tematically covers a collection of computational
operations over table segments in a comprehen-
sive way. TACUBE can not only be fully materi-
alized, but also be partially materialized for effi-
ciently application to existing models. We propose
rule-based and neural-based methods to produce
efficient TACUBE while maintaining high coverage
on ground truth numerical reasoning. In this paper,
we applied TACUBE to auto-regressive PLMs, for
their flexibility in decoding answers by leveraging
both the original table and TACUBE (as fast access)
to avoid most error-prone implicit calculations. We
believe that TACUBE is a general pre-computation
solution that can be helpful to various numerical
reasoning frameworks.

Our experiments show that, by directly augment-
ing the original table with sequenced TACUBE:
(1) on TAT-QA, TACUBE significantly improves
BART-large by 18.3% in F1 score and TAPEX by
16.6% in F1 score, and outperforms the logical-
form-based state-of-the-art method TagOP by 3.5%
in F1 score; (2) on WikiTQ, TACUBE also achieves
new state-of-the-art denotation accuracy of 59.6%
(+2.1%). In addition to the overall improve-
ments, we analyze TACUBE’s EM improvements
by different calculation operators on TAT-QA
based on BART-large: sum increased by 39.6%,
average increased by 52.5%, subtraction in-
creased by 36.6%, and division increased by
22.2%, and comparable improvements are also
found in TAPEX.

2 Preliminary

2.1 Data Cube As Pre-computation

The concept of data cube is proposed in data min-
ing, which can provide fast access to pre-computed,
summarized data and thus benefit the analysis pro-
cess (Gray et al., 1997; Halevy, 2001; Han et al.,
2011). A data cube, which is defined by dimensions
and facts, allows stored data records to be modeled
and viewed in multiple dimensions. Each dimen-
sion corresponds to an attribute or a set of attributes,
usually the perspectives or entities with respect to
which an organization wants to keep records. Each
fact is a numeric measure, organized by fact tables
containing the name of the fact, usually the value
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Figure 2: Illustration of the relationship between cube, cube., and cube-uncovered cases.

of some aggregate measure such as count and sum.
Data cube inherently supports operations includ-
ing drill-down and roll-up, which allow the user to
view the data at differing degrees. Also, the roll-up
operation can be used to perform controllable data
summarization along specified dimension(s).

Semi-structured tables also share part of the fea-
tures of stored records to generate a data cube. The
numeric values stored in table cells can be treated
as the stored records, while the header names or
textual cell values can be treated as different dimen-
sions corresponding to the records. Take the cross
table in Figure 1 for example. Numeric values in
the table represent the annual accounts of one cor-
poration. The top row serves as the column header,
and the first column serves as the row header. Thus,
there are two dimensions for the data cube: time
dimension and account type dimension.

The data cube naturally reflects some of the fac-
tual numerical statistics of a given table, and can
potentially help tackle numerical reasoning prob-
lems over tabular data as a pre-computation.

2.2 Datasets

TAT-QA dataset (Zhu et al., 2021) includes 16,552
samples with hybrid context of both tables and
textual content from real-world financial reports.
Over 40%(7,341 of 16,552) of the data requires
numerical-reasoning skills including addition, sub-
traction, multiplication, division, count, compari-
son, and compositional operations. TAT-QA com-
bines the correct scale together with the string or
numerical value to make up the final answer, which
is a unique challenge compared to other datasets.

WikiTQ (Pasupat and Liang, 2015) includes
22,033 samples focusing on table-only QA. Wik-

iTQ does not have annotations for numerical rea-
soning cases. The author randomly picked 200
examples and classified them based on the types
of operations required to answer the question. The
case study reflects that WikiTQ contains consider-
able cases of complicated reasoning. The Squall
dataset (Shi et al., 2020) manually annotates SQL
query on approximately 80% of WikiTQ cases,
transferring the unsupervised task into a super-
vised semantic parsing task. According to Squall,
WikiTQ contains multiple types of operations, e.g.,
count, sum, max, min, group, abs and avg.

Apart from the above two datasets studied in this
paper, numerous tabular datasets are also closely
related to numerical reasoning. Fin-QA (Chen
et al., 2021b) collects tables and context from fi-
nancial domain, and raises financial-related ques-
tions including complex numerical reasoning. Mul-
tiHiertt (Zhao et al., 2022b) and HiTAB (Cheng
et al., 2021b) include numerical reasoning exam-
ples on hierarchical table question answering. For
table fact verification tasks (Chen et al., 2019; Aly
et al., 2021), the numerical reasoning skills are also
required for verifying whether the given statement
about the table is entailed or refuted.

However, the performance of existing methods
tackling such tasks is still far from human perfor-
mance, which indicates the numerical reasoning
problems as an emerging challenge in tabular data.

2.3 PLMs for Table QA

PLMs have been widely leveraged in dealing with
table QA tasks. Recent works also prove that pow-
erful PLMs with decoders can be well applied
to the table-text joint representation. On a well-
recognized table QA benchmark WikiTQ, UNI-
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FIEDSKG (Xie et al., 2022) achieves state-of-the-
art denotation accuracy of 49.3% among methods
without extra pre-training; TAPEX (Liu et al., 2021)
with pre-training on SQL corpus surpasses the pre-
vious methods by a large margin, obtaining denota-
tion accuracy of 57.5%.

Represented as a form of pre-computed data

cube, TACUBE can be easily integrated at the input
phase and is theoretically suitable for most of the
PLMs. Due to the shortcomings discussed in Sec-
tion 1, in this paper, we mainly choose PLMs with
decoders and apply the generator-based method in
follow-up experiments over table QA tasks. The
generator-based method can effectively leverage
the weakly-supervised data, and flexibly organized
the cell value to generate the answer accordingly,
e.g., to produce a piece of text inside a cell, or to
produce a numeric value with its unit.
Model Input/Output For semi-structured tables,
TAPEX (Liu et al., 2021) designs a table lineariza-
tion to feed the flattened sequence into the model
directly. A flattened sequence is denoted as

T* =[HEAD] | c1 | -+ | e
(D
(ROWI 1|7y | CROWI 2| 7o |- | ryp

Notably, TAPEX uses a vertical bar “I” to separate
headers or cells in different columns. The final
input will concatenate the textual context and the
table sequence, and will then be fed into the model.
The expected output of TAPEX is the concatena-
tion of answer(s) separated by a comma which is
generated autoregressively by the model. It is also
simple to extend to more complex answer forms,
e.g., using “2 | million” to represent the answers
with scale in TAT-QA. TAPEX proved to be effec-

tive in finding the factual supporting cells.
We take the above model input/output setting.
The pre-computed TACUBE will also be flattened
into a sequence, which is discussed in Section 3.2.

3 TACUBE

In this section, we first discuss how pre-computed
data cubes help answer numerical reasoning ques-
tions over tables. Secondly, we point out that plain
implementation via brute force is not favored due to
explosive increasing cube size and time consump-
tion. Conventional cube techniques such as iceberg
cube and cube shell (Han et al., 2011) are mainly
designed for data mining and data analysis and are
not applicable to the current QA tasks on numerical
reasoning. Thus, we need to design new efficient
methods to generate cubes.

Following such observation, we present our ap-
proach for cube generation and cube candidate se-
lection. First, we introduce cube, which only con-
tains aggregation operators. Second, we further
propose cubeeyxt, which extends the operators to
non-aggregation operators. Furthermore, based on
cubeeyt, Wwe develop cubey to reduce the cube size
when feeding to the PLMs. We adopt two ranking
methods to perform effective filtering to pick out
the most likely candidate cube items. The selected
cube items of a cube make up cubey, which will be
finally fed to the model.

We will show that the generated cube can cover
a large portion of numerical reasoning cases and
remains efficient in search space at the same time.

3.1 Data Cube Application in Table QA

Following the definition of the cube, to apply data
cube in table QA, we need to decide on dimension
and arithmetic/aggregation operator types. Semi-
structure tables contain rich information not only
in cell values but also in structural arrangement
through headers or hierarchy (Dong et al., 2022;
Wang et al., 2021). For example, cells under the
same header, or cells in the same table row are most
likely to represent the same type of information.

Thus, a data cube for the table can be sets of ag-
gregations over cells under the same column head-
ers or row headers. We denote such aggregation
results over table headers as cube, which include
operations such as sum, count and average.

Nevertheless, such pre-computed results can’t
cover answers requiring non-aggregation opera-
tions, e.g., question asking the difference(diff) of
two cell values or asking the summation result(add)
of certain cells with specific filtering conditions. In
fact, the proportion of non-aggregation operations
is even higher in some of the numerical reasoning
datasets (Zhu et al., 2021; Zhao et al., 2022b; Chen
et al., 2021b). Based on such observation, We ex-
tend the operation types for pre-computed results,
making it cover more operation types.

We denote the total extended pre-computed re-
sults(including cube) as cubeeyt. The newly in-
troduced operators contain non-aggregation com-
putation, such as add, subtraction, division
and change ratio. Notably, add and sum are in
different groups of operators. We use sum to repre-
sent an aggregation operator which sums up all the
numeric values under one or many dimensions, and
use add to represent an extended operator which
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Operator aggr /ext Calculation

count aggr |cellselected|

sum aggr > cellselected

average aggr 1/|cellserected]| = Y cellselected
add ext cell; + - -+ + cellk

diff ext cell; — celly

div ext celly /cella

change ratio  ext (celly — cellz) /celly

(a) Operators for cube generation

Pattern Selected operand cells

Same column  cells in one candidate column and all candidate rows

Same row cells in one candidate row and all candidate columns
All row all cells in one candidate column and all rows

All column all cells in one candidate row and all columns

Top-k row top-k rows’ cells in one candidate column

(b) Computing patterns for cube generation
Table 1: Operator types and computing patterns to gen-
erate cubeeyt. We divide operators into two groups:
aggr stands for aggregation (types) and ext stands for
extended (types).

adds up candidate numeric values after filtering.
As Figure 2 shows, in this paper, we only extend
to first-order cube, i.e., we do not further per-
form an operation over the generated cube items,
which may include more compositional computa-
tion cases. We also conclude some computing
pattern templates, e.g., same row pattern which
indicates the operands are all in the same row. Such
templates further shrink the generation space. The
extended operator types and the computing pat-
terns are listed in Table 1. The computing patterns
are concluded based on observations of numerical
reasoning cases and can help select operands for
pre-computation in a restricted manner.

We will show that cubegyt can cover a signif-
icant portion of the numerical reasoning cases in
the following sections.

3.2 Cube Generation

We aim to provide pre-computed results in the
model input phase so that the model can generate
answers based on table cells as well as augmented
cube information, bridging the gap in numerical
reasoning. Also, to reduce the cube size, the cube
generation is question-sensitive, i.e., for a given
question and table pair, we generate the correspond-
ing cube where cube items are most related to the
question. For future work, we may try question-
insensitive cube generation if the length of the cube
is not a burden to the sequence length.

Brute Force Generation It is straightforward to
use the brute force method to traverse the whole

search space and generate all the candidate results
for the cubegyt of a given table. If the opera-
tion type and computing pattern to generate the
expected answer are included in Table 1, then the
correct answer must exist in the generated cubeeyt.

But brute force leads to two problems in the gen-
eration phase and model training phase. First, the
explosive time consumption and space consump-
tion for a large table. Suppose a table with m rows
and n columns is given and we understand little
about its structure, the theoretical search space will
be up to O(n - 2™ + m - 2™) for an aggregation
operation, and O(n - m? + m - n?) for a 2-operand
operation. Even if we rigorously follow the defini-
tion to generate the cube, we can still see from the
Figure 2 that the cube size will easily exceed the
size of the table itself. Note this is just the situation
where the simple matrix table contains only two di-
mensions(time dimension and country dimension),
five rows, and four columns. For a multi-dimension
table with much more columns and rows, the time
consumption and the search space will be intoler-
ably large. Secondly, too many candidates can be
a burden on the model input length and make it
difficult for the model to leverage.

Rule-based Generation Due to the high expense
and potential problems of brute force generation,
it is worth exploring the possibility of efficiently
generating pre-computed results for the Question-
Table pair. We want the cube to be streamlined so
that it can save the input sequence’s length. Mean-
while, it should cover most of the common numeri-
cal reasoning cases in the tasks.

First, We restrict the cube to be computed using
same-row or same-column operands following Ta-
ble 1b. Secondly, we require the generated cube to
be question-sensitive, i.e., to generate specific cube
items closely related to the question. For instance,
given a question answering “what is the difference
in passengers between Los Angles and Toronto”,
the cube should better not to conclude items with
irrelevant operators, such as count and sum. We
decide the candidate operators, headers, and cells
based on an aligned mention in the question. We
conclude the template for computing patterns of our
rule-based generation in Table 1b. The template for
computing patterns also reduces the search space
of cube generation.

The rule-based generation process can be con-
cluded in three steps in general: (i) Decide operator
type(s) by textual mention in questions. (ii) Find
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candidate columns and candidate rows by matching
column headers, row headers, and cell values with
aligned mention in questions. (iii) Try all the com-
binations using (1) operator; (2) k., candidate
rows and kojymn candidate columns; (3) comput-
ing patterns. Each computation result serves an
item in the cube.

Such heuristic methods significantly shrink the
time complexity to polynomial while sacrificing
the coverage within a tolerable range. If a pre-
computed cube for a given question and table pair
contains one item that generates the correct nu-
meric value to the answer, we treat it as a correct
cube. The coverage is the correct cubes’ proportion
of total extracted cubes. (i) On the TAT-QA dev set,
we achieve coverage of approximately 70% over
all cases involving aggregation/arithmetic opera-
tion; (ii)) On WikiTQ, we achieve coverage of 68%
over all arithmetic-involved cases on the dev set
and 62% on the train set.

Cube Serialization The pre-computed and ranked
cube will be flattened as a sequence in the end and
this leads to designing cube serialization. As shown
in Figure 1, we present one item in the cube with
its operator, the row header, the column header, the
selected cell value, and the pre-computed answer.
We design a naive cube linearization similar to the
table linearization. And a flattened cube sequence
is denoted as C*.

C™ =[CUBE], OPERATOR,

Yy RHk'r‘, (2)
, OPm , LANSWER] : answer

CHy, * + +, CHge, RHy, -
Oop1, 0p2, * * -

Here [cuBE] and [ANSWER] are special tokens indi-
cating the start of the TACUBE and the answer; CH,
RH and op stands for Column Header, Row Header
and Operand; kc, kr are numbers of the headers of
all the operands.

Notably, in Table 1 we concluded all the com-
puting patterns for a pre-computed result. So all
the operands in one TACUBE must share either the
same column headers or same row headers.

3.3 Cube Ranking

Although the extracted pre-computed cube results’
size is within a polynomial level, it still can
be non-trivial and causes the same dilemma as
the brute force generation. To overcome the
problem, we propose two methods for ranking the
cube results, including a heuristic method and a
neural-based method. We denote the top % picked
pre-computed cube items as cubey.
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5 8 Random Selection
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Figure 3: Coverage on validation data of TAT-QA,
where K stands for picking top k pre-computed items
as input.

Heuristic Ranking We use the proposed cube lin-
earization method to generate cube sequences and
calculate the text similarity (Ramos et al., 2003)
between the question and the flattened cube se-
quences. The ranks of pre-computed results are
decided by the similarity, i.e., the result with a
higher similarity will have a higher rank.
Neural-based Ranking We first train a binary clas-
sifier following table fact verification tasks. Given
a question, a cube item in the cube, and a table,
the classifier needs to predict whether the pre-
computed result is the correct answer. We employ a
BART-base architecture and use the similar config-
uration of TAPEX’s experiments on TabFact (Chen
et al., 2019). We use the output logits as the confi-
dence score to rank the candidates.

Both heuristic ranking and neural-based ranking
method use cubey as input and more details are
provided in Appendix C.1.

3.4 Coverage Discussion

To prove that our method covers most of the reason-
ing cases, we test the coverage of extracted cubes
on validation data of TAT-QA(Zhu et al., 2021).

As is shown in Figure 3, increasing the num-
ber of pre-computed cube items will result in a
greater coverage, eventually reaching about 70%.
Additionally, with a neural ranker, the coverage
under the same number k for cubey has increased
significantly.

We also analyze cases that our cube fails to cover.
We randomly pick 100 samples of WikiTQ dev set.
We observe that the upper bound of cube generation
does not outperform the current rule-based cube
generation method by a large margin: only 15% of
the fail-to-cover cubes are caused by current rules.
For more details, please check Appendix A.
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Models EM F1

TagOP 55.2 62.7
BART-Large 38.8 46.7
w. TACUBE + HR 55.2 63.7
w. TACUBE + NR 57.1 65.6
TAPEX-Large 41.5 49.6
w. TACUBE + HR 56.9 65.8
w. TACUBE + NR 57.7 66.2

Table 2: Exact match and F1 scores on TAT-QA dev set.

4 Experimental Results and Analysis

In this section, we describe the details of TACUBE
and evaluate the effectiveness of TACUBE on table-
related questions answering benchmarks.

4.1 Experimental Setup

Datasets We evaluate TACUBE effectiveness on
TAT-QA (Zhu et al., 2021) and WikiTQ (Pasupat
and Liang, 2015). On TAT-QA, We apply the offi-
cial evaluation metrics: exact match(EM) and F1
score. On WikiTQ, we choose denotation accuracy
as the evaluation metric which is used in TAPEX
and UNIFIEDSKG.

Baselines We mainly adopt TAPEX (Liu et al.,
2021) and BART (Lewis et al., 2020) as our base-
lines. On TAT-QA, we also compare with state-
of-the-art logical-form-based method TagOP (Zhu
etal., 2021). TagOP uses Roberta (Liu et al., 2019)
as its encoder and designs multiple classification
heads to generate the answer.

Serialization We adopt the same serialization in
TAPEX, which concatenates the input questions
and the linearized table. For extracted and ranked
cube items, we use cube serialization discussed
in Section 3.2. Like TAPEX, we also separate
different cube items using a vertical bar “I”. Ap-
pendix C.3 presents examples for our serialization.
Implementation Details For WikiTQ, the fine-
tuning is set up to 50 epochs with batch size of
128. For TAT-QA, we set 50 epochs and batch size
equal as 24. The beam size is 4 for both datasets.
We set the initial learning rate as 3 x 10> on Wik-
iTQ and 5 x 10~ on TAT-QA for TAPEX models,
and the learning rate as 5 x 10~° for BART models.
Selection of k For pre-computed cube item number
k for cubey, we mainly select it according to cube-
generation results(basically from Figure 3). When
cube’s coverage of current k is high, we decide such
k a proper choice. Moreover, in Appendix C.3, we
provide an ablation study on k and results show a
large k does not significantly perturb the model’s

Models Dev Test
BART-Large 37.2 38.0
w. TACUBE + HR 42.1 40.0
w. TACUBE + NR 42.9 40.3
TAPEX-Large 58.9% 57.5
w. TACUBE + HR 59.7 59.6
w. TACUBE + NR 59.3 59.2

Table 3: Denotation accuracies on WikiTQ dev set and
test set. We reimplement the TAPEX on WikiTQ and
surpass the reported results on the dev set in TAPEX
paper(57.0% — 58.9%).

performance, i.e., the model is insensitive with in-
creasing k. We choose k£ = 5 for WikiTQ, and
k = 10 for TAT-QA. Appendix C.2 presents more
details about our experimental configuration, in-
cluding an ablation study on different choices of
cube item number k. In all, we think TACUBE is
simple but effective.

4.2 Main Results

Table 2 and Table 3 present the evaluation results
of various models’ performance, where HR and
NR are abbreviations for Heuristic Ranking and
Neural-based Ranking. Across all instances, we
observe a marginal increase in performance. (i) On
the dev set of TAT-QA, TACUBE registers the EM
of 57.7% and the F1 score of 66.2%, surpassing the
baseline TAPEX by 16.6% and TagOP by 3.5%. (ii)
On both dev and test set of WikiTQ, TACUBE also
achieves new state-of-the-art denotation accuracy
of 59.7%(+0.8%) and 59.6%(+2.1%).

On each benchmark, we also study TACUBE’s
effect over arithmetic/aggregation cases. For TAT-
QA, we test over all the annotated arithmetic cases
Moreover, on TAT-QA, the F1 score is always equal
to EM on arithmetic/aggregation involved cases,
thus we only report EM in the table. For WikiTQ,
we extract a subset of the original dataset using
annotations in the Squall (Shi et al., 2020) dataset,
which manually annotates SQL query correspond-
ing to the question and table, covering 80% exam-
ples for train and dev set of the WikiTQ. Please
check Appendix B for more details.

The results are presented in Table 4 and Table 5.
The models with TACUBE substantially outperform
on each operator. Again, TAPEX shows its power
in aggregation operator: among extracted count
operations, TAPEX without TACUBE achieves de-
notation accuracy of 64.0%, which outperforms the
BART baseline by over 30%.

Further, because the proportion and the abso-
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Models CR. Avg Sum Diff Div Arith.

BART-Large 00 28 1.8 43 56 26
w. TACUBE+HR 69.7 624 263 387 56 44.0
w. TACUBE + NR  78.7 553 40.4 409 27.8 47.5

TAPEX-Large 06 35 18 60 56 35
w. TACUBE+HR 78.1 532 333 519 333 50.0
w. TACUBE+NR 794 539 33.3 485 27.8 49.6

Table 4: Exact match on arithmetic/aggregation in-
volved cases of TAT-QA dev set. Arith. represents
all cases involving arithmetic operations. CR. stands
for the change-ratio operator.

Models Diff Sum Avg Count Total

BART-Large 24 25 10.0 33.6 30.2
w. TACUBE+HR 214 20.0 40.0 46.1 43.5
w. TACUBE+NR 333 150 40.0 457 435

TAPEX-Large 190 100 100 640 584
w. TACUBE+HR 333 225 20.0 654 61.0
w. TACUBE+NR 333 175 10.0 653 60.6

Table 5: Denotation accuracy on different operators of
WikiTQ dev set.

lute number of WikiTQ samples requiring sum,
average, diff and other operations are quite
small, it is not conducive to TACUBE’s train-
ing. Despite such negative factors, using TACUBE
still brings performance boost on each operator.
On TAT-QA that contains more arithmetic cases,
TACUBE outperforms baselines by a larger margin.

4.3 Further Exploration

Experiments on Higher-order Operations Al-
though current heuristic cube generation is effec-
tive for the two datasets, it may result in combi-
nation explosion for higher-order operations, mak-
ing the generated cubes too heavy to be fed into
the input sequence. Thus, we attempt to gener-
ate cubes using a neural-based model. We test on
FinQA (Chen et al., 2021b) which contains high-
order operations. We simply use the retrieval re-
sults of FinQANet (Chen et al., 2021b) and use
a BART-large model to generate Top-5 programs.
We augment TAPEX with the generated programs
as cubes. The Top-1 cube execution accuracy
is 65.9%((on dev set); the execution accuracy of
TACUBE is 66.9%(on dev set). TACUBE outper-
forms FinQANet by about 2%(compared to results
on FinQA leaderboard after official bug fix).

5 Related Work

Table QA with PLMs There are a variety of works
applying PLMs on table QA. To perform ques-
tion answering over semi-structured tabular data,

prior work formulated the problem into a seman-
tic parsing task and adopted semantic parsers to
operate over tables (Yin et al., 2020; Shi et al.,
2018; Liang et al., 2018; Cheng et al., 2021a).
To better encode and represent the tabular data,
work also focused on: (i) table input featuriza-
tion, which may conclude extra information about
tabular data, e.g., column/row embeddings based
on cell location (Wang et al., 2021; Herzig et al.,
2020; Eisenschlos et al., 2021); (ii) structural-
aware encoding, which designs visualization ma-
trix for structure-pruned attention of transform-
ers (Wang et al., 2021; Eisenschlos et al., 2021)
or produce row-wise/column-wise embedding (Yin
et al., 2020); (iii) table pre-training using collected
tabular data corpus (Yin et al., 2020; Liu et al.,
2021; Herzig et al., 2020; Eisenschlos et al., 2021).
Recent work has shown the potential of directly
using auto-regressive PLMs for table QA. The de-
coders of PLMs are expected to autoregressively
generate the answers without extra architecture
design (Liu et al., 2021; Xie et al., 2022) , and
such practice achieves competable performance on
multiple table QA benchmarks. There are also
works focusing on table augmentation such as col-
umn expansion, to provide extra information at
the input phase (Suadaa et al., 2021; Zhao et al.,
2022a) and thus to enhance the semantic parsing or
table-to-text task. In this paper, we introduce the
pre-computed data cube to provide information for
numerical reasoning in a systematic way, and we
adopt auto-regressive PLMs to decode the answer.

Numerical Reasoning over tabular data Nu-
merical reasoning is important in different NL
tasks (Dua et al., 2019; Zhu et al., 2021; Zhao
et al., 2022b). For tables, they usually contain
well-organized numeric values. Moreover, in sev-
eral end-user tools, the spreadsheet formulas in
cells imply the numerical relationships among the
table cells (Dong et al., 2022). Therefore, a wide
range of tasks require numerical reasoning over tab-
ular data, such as table-to-text (Suadaa et al., 2021;
Cheng et al., 2021b), formula prediction (Cheng
et al., 2021a; Chen et al., 2021a) and table fact
verification (Chen et al., 2019; Aly et al., 2021)
and table question answering (Pasupat and Liang,
2015). Recently, various benchmarks are proposed
to solve table QA problems and contain a large
proportion of numerical reasoning examples (Chen
et al., 2021b; Zhu et al., 2021; Zhao et al., 2022b).
Moreover, datasets like CubeQA (Hoffner et al.,
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2016) directly collects QA samples on generic RDF
data which require aggregation operations.
Retrieval-based ODQA Most existing methods
deals with open-domain QA(ODQA) by retriev-
ing evidence over documents (Chen et al., 2017),
knowledge graph triples (Verga et al., 2021) and
collection of question-answer pairs (Chen et al.,
2022; Xiao et al., 2021) to aggregate the answer us-
ing retrieved evidence. Different from these works,
our method does not directly transform the table
QA into a retrieval problem; instead, the model
needs to leverage the pre-computed cube and may
perform post-processing during answer decoding,
such as adding a scale string and further computa-
tion based on the cube items.

6 Conclusion

In this paper, we focus on numerical reasoning
problems over tabular question answering. We pro-
pose our method, namely TACUBE, which auto-
matically extracts pre-computed results for a given
question and a table following the designed cube
generation rules. The pre-computed cube is se-
rialized and fed to the model in the input phase,
mitigating the gap in numerical reasoning skills
for PLMs. TACUBE is tested over multiple table
QA benchmarks using an encoder-decoder architec-
ture and achieves new SOTA performance on each
of them. Further analysis shows the performance
boost mainly comes from the numerical reasoning
examples in the benchmarks.

Limitations

The performance of TACUBE on downstream tasks
is constrained by the following issues: (i) the cov-
erage of TACUBE, i.e., the pre-computed results
should be accurate enough (ii) the ability of the
model, i.e., the model should be capable to de-
cide which numeric value provided in the input
sequence is the answer to the question.

For (i), although we propose a general method
for TACUBE generation, the coverage can still be
improved through other designs, e.g., to include
more operators, and to support higher-order data
cubes. Moreover, we believe the generation can
also be realized through a neural-based method,
which may result in higher accuracy and produce
an automatic generation pipeline. For (ii), we think
it can be improved in two directions: First, to bet-
ter represent a cube item, e.g., to use more accu-
rate textual information in the table to describe

each operand; Secondly, to leverage more unsuper-
vised data in the pre-training phase to learn to use
TACUBE to improving numerical reasoning skills.

Ethics Statement

In this work, we propose a pre-computing method
to generate candidate answers for numerical reason-
ing questions over tabular data. We do not collect
additional tabular data for this work. The datasets
we use are all collected from Wikipedia or publicly
available websites in English. WikiTQ (Pasupat
and Liang, 2015) is available under the CC BY-SA
4.0 license and TAT-QA (Zhu et al., 2021) is under
the MIT license. Both datasets permit us to modify
and publish.
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A Failed-to-extract cases

We categorize cases of failed extraction into four
categories: (i) Outside Knowledge: We need to
have both the knowledge provided by the form
as well as external knowledge in order to answer
such questions. Take nt-7969 as an instance, the
question answering the times of an athlete compete
in the game. While in the original table(which is
shown in Figure 4), one row is denoted as “DNF”
which means “do not finish”. Such cases need
outside knowledge in sports terminology and are
hard to generate the answer. (ii) Non-number Pat-
tern: The answers to these questions contain non-
number patterns, while the pre-computed cube re-
sults are limited to numerical data only. (iii) Rule-
uncovered Cases: As stated in Section 3.1, current
designed rule for cube generation only considers
naive first-order data cubes. Thus, the extracted
cubes can not include compositional computation.
Moreover, for unusual numeric formats, such dates,
length in ft., or magnitude, it is non-trivial to de-
sign a general rule and currently such cases are
not covered. (iv) Other Cases: Answers are either
incorrectly annotated or the reasoning process is
unclear.

A.1 OQOutside Knowledge

Question: how many times did imma clopes com-
pete?

Table: See Figure 4

Answer: 5

Analysis: The question answering the times of an
athlete compete in the game. While in the origi-
nal table(which is shown in Figure 4), one row is
denoted as “DNF” which means “do not finish”.
Such cases need outside knowledge in sports termi-
nology and are hard to generate the answer.

A.2  Non-number Pattern

Question: what is the difference between the time
air uganda commenced operations and skyjet air-
lines commenced operations?

Table: See Figure 5

Answer: 4 years

Analysis: The answer to the question includes a
non-number pattern. Thus, the value “4” is in-
cluded in our precomputed cube results, however,
the answer “4 years” is not.

A.3 Rule-uncovered Case

Question: what was the average time for the amer-
icans?
Table: See Figure 6

Outside e.g., nt-7969

Knowledge question: how many times

(9%) did imma clopes compete?
answer: 5

Non-number e.g., nt-6701

Pattern
(1%)

question: what is the difference
between the time air uganda

commenced operations and

skyjet airlines commenced operations?
answer: 4 years

e.g., nt-2401

Rule-uncovered

Case question: what was the average time
(15%) for the americans?
answer: 4:19:41
Other e.g. nt-10206
Case question: how many years ago
(3%) did ne-yo play as mixx?
answer: 8
Correct Case (72%) -

Table 6: Detailed analysis on TACUBE fail-to-cover
cases. We randomly pick 100 samples in WikiTQ dev
set and manually check the extraction results.

Year Competition Venue Position  Notes

1995 World Indoor Championships Barcelona, Spain 11th Pentathlon
1996 Olympic Games Atlanta, Georgia, USA | 24th Heptathlon
1997 World Championships Athens, Greece 16th Heptathlon

Pentathlon
Heptathlon
Heptathlon

1998 European Indoor Championships | Valencia, Spain 7th
1998 European Championships Budapest, Hungary 14th
2000  Olympic Games Sydney, Australia DNF

Figure 4: outside knowledge

AIRLINE ICAQC IATA CALLSIGN COMMENCED
OPERATIONS
2007
1994

2008

UGA U7
EGU H7
FUL

UGANDA
AFRICAN EAGLE
ORANGE CRANE
PEARL SERVICES
DARLINES
SKYJET

ASA

UGANDA CARGO

Air Uganda

Eagle Air (Uganda)
Fly540 Uganda
Pearl Air Services PBY
Royal Daisy Airlines | KDR 6D
Skyjet Airlines SJU uQ
Africa Safari Air ASA AS
Uganda Air Cargo ucc
United Airlines Limited

2005
2003
2013
1994

Figure 5: non-number pattern

Name Nationality Time
Janelle Atkinson Jamaica 4:16.89
Kaitlin Sandeno United States 4:18.97
Julia Stowers United States 4:19.84

Rank Notes

o ~N oo W N =
0000 L0L PO

Figure 6: rule-uncovered case

Answer: 4:19.41

Analysis: Due to the fact that the data format in the
table is a date, the calculation of the result requires
parsing complex data.

A.4 Other Case

Question: how many years ago did ne-yo play as
mixx? Table: See Figure 7 Answer: 8
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Year Title Role Notes

2008 Save the Last Dance 2 Mixx Direct to video

2007 Nick Cannon/Wild 'N Out Himself Improv Comedy

2007 Stomp the Yard Rich Brown Film

2011 GSI: NY The hitman Episode 7.14 "Smooth Criminal"
2011 The Fresh Beat Band Himself Special episode "Band in a Jam"
2011 Battle: Los Angeles Specks Film

2012 Empire Girls: Julissa & Adrienne Himself Reality-Show

2012 Red Tails Andrew 'Smoky' Salem Film

2012 | Heart Tuesdays None (TV), creator

2012 The X Factor Guest Mentor

2012 Never Mind the Buzzcocks Guest Host

2012 90210 Guest star

Figure 7: other cases

Analysis: The question answering “how many
years ago” and the answer is 8, which implies such
sample is annotated in the year 2014. However,
it is too hard to know such information, making
reasoning almost impossible.

B Numerical Reasoning Case Study
Details

TAT-QA TAT-QA annotates whether a question
needs arithmetic operations. But TAT-QA does
not directly annotate the operation. We extract the
operator following the baseline method TagOP’s
practice, which conclude common operators from
the derivation, facts and answer annotations in
TAT-QA including sum, count, average, multiplica-
tion, division, difference and change ratio.

WikiTQ For WikiTQ, the original dataset contains
few available information about numerical reason-
ing cases. Meanwhile, the Squall dataset (Shi et al.,
2020) manually annotates SQL query correspond-
ing to the question and table, covering 80% ex-
amples for train set and dev set of WikiTQ. With
Squall annotations, We determine the operator by
the aggregation/arithmetic keywords appearing in
the SQL query and get the performance over each
operator.

Moreover, for operator sum, we find that the an-
swer can be already in the original table without
additional need to compute. Take the cases in Fig-
ure § and Figure 9 for example: Both questions ask
the total / overall number, but the answers are al-
ready concluded in the original table under “Total”
row / column. It is ambiguous to determine for such
cases whether cube information is well leveraged,
and we remove such cases manually.

Finally we get the number of each operator. We
get 41 cases of difference, 40 of summation, 10 of
average and 709 of count respectively. We report
the corresponding denotation accuracy on these
extracted cases in Table 5.

Season Team Country Competition Matches Goals
1999 Djurgardens IF~ Sweden Allsvenskan 15 1
2000 Djurgardens [IF Sweden Superettan 15 3
2001 Djurgardens IF Sweden Allsvenskan 22 T
2002-2003 Grazer AK Austria  Bundesliga 24 6
2003 Denizlispor Turkey  Siper Lig 3 0
2003 Landskrona BolS Sweden Allsvenskan 11 3
2004 Landskrona BolS Sweden Allsvenskan 22 4
2005 Djurgardens [F Sweden Allsvenskan 24 12
2006 Djurgardens IF Sweden Allsvenskan 17 6
2007 Djurgardens IF Sweden Allsvenskan 23 4
2008 Djurgardens IF Sweden Allsvenskan 29 6
2008-09  Esbjerg fB Denmark  Superliga 6 0
2010 AaB Denmark  Superliga 3 1
2011 Assyriska FF Sweden Superettan 19 5
Total Total Total Total 233 58

nt-3135

how many matches overall were there?

233

Figure 8: Manually deleted sum case 1
Rank Nation Gold Silver Bronze Total
1 Cuba 4 3) 2 9
2 Canada 4 2 1 7
3 United States 2 0 2 4
4 Mexico 1 1 0 2
5 Ecuador 1 0 0 1
6 Argentina 0 4 3 7
7 Brazil 0 2 2 4
8 Chile 0 0 1 1
8 Venezuela 0 0 1 1
Total Total 12 12 12 36

nt-7291

how many total medals were there all together?

36

Figure 9: Manually deleted sum case 2

C Implementation Details

C.1 Ranking Methods

The neural ranking implementation is similar to
the BART’s practice on sequence classification
tasks (Lewis et al., 2020). We adopt TAPEX-base,
and feed the same input in both encoder and de-
coder. We use the last token’s hidden state of the
decoder, and feed it into a binary classifier. We
rank all the cube item according to the output log-
its of the binary classifier, no matter whether the
prediction label is positive or negative.

C.2 More on Experimental Configuration

We mainly follow the TAPEX and UNIFIEDSKG
for hyperparameter selection, including batch size
and initial learning rate. The main result is achieved
using BART/TAPEX large-sized model, which con-
tains 406M parameters. Moreover, We use Adafac-
tor optimizer and linear learning rate decay on all
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Figure 10: Ablation study on different choices of cube
item number k. We use TAPEX as the base model, and
evaluate EM and F1 score on TAT-QA dev set.

fine-tuning tasks. All fine-tuning experiments is
done on 4 NVIDIA Tesla V100 GPUs. The re-
implemented denotation accuracy of TAPEX on
WikiTQ surpasses the officially reported results
and we present the higher score in Table 3.

We also made an ablation study on the choice
of number k, which decides the maximum number
of cube items in one cube fed to the model input.
Figure 10 presents the EM and F1 performance on
TAT-QA dev set.

C.3 Serialization Example

As discussed in Section 4.1, we will concatenate
the cube sequence with the question sequence and
tabular sequence. Here we present some real cases
in TAT-QA dataset and WikiTQ dataset.

TAT-QA The input contains both table and text
sequence. We append the cube sequence after the
table sequence. The example sequence is shown as
below, which contains a question sequence, a table
sequence, a cube sequence and a textual sequence.

what was the change in the amount for appliances
in 2019 from 2018? table: col : | | fiscal |
row 1 | 2019 | 2018 | 2017 row 2 : | | (in
millions) | row 3 : transportation solutions: |
| | row 4 : automotive | $ 5,686 | $ 6,092 | $
5,228 row 5 : commercial transportation | 1,221
| 1,280 | 997 row 6 : sensors | 914 | 918 | 814
row 7 : total transportation solutions | 7,821 |
8,290 | 7,039 row 8 : industrial solutions: | |
| row 9 : industrial equipment | 1,949 | 1,987
| 1,747 row 10 : aerospace, defense, oil, and
gas | 1,306 | 1,157 | 1,075 row 11 : energy |
699 | 712 | 685 row 12 : total industrial
solutions | 3,954 | 3,856 | 3,507 row 13 :

communications solutions: | | | row 14 : data
and devices | 993 | 1,068 | 963 row 15 :
appliances | 680 | 774 | 676 row 16 : total

communications solutions | 1,673 | 1,842 | 1,639

row 17 : total | $ 13,448 | $ 13,988 | $ 12,185
cube: change Appliances Fiscal 2018 (in millions
) $ 6,092 2019 $ 5,686 answer : 94 | change

Appliances 2019 $ 5,686 Fiscal 2018 (in millions
) $ 6,092 answer : -94 | change Appliances 2017
$ 5,228 Fiscal 2018 (in millions) $ 6,092 answer
: -98 | percentage change Appliances Fiscal
2018 (in millions) $ 6,092 2019 $ 5,686 answer :
-12.14 | percentage change Appliances 2019 $
5,686 Fiscal 2018 (in millions) $ 6,092 answer :
13.82 | percentage change Appliances 2017 $
5,228 Fiscal 2018 (in millions) $ 6,092 answer :
14.5 | passage: (1) Industry end market
information is presented consistently with our
internal management reporting and may be revised
periodically as management deems necessary. |
Net sales by segment and industry end market(1)
were as follows:

WikiTQ We append the cube sequence after the
table sequence for WikiTQ. The input sequence
contains three parts: a question sequence, a table
sequence and a cube sequence.

what is the difference in runners-up from
coleraine academical institution and royal
school dungannon? table: col : school | location
| outright titles | shared titles | runners-up
| total finals | last title | last final row 1
methodist college belfast | belfast | 35 | 2 |
25 | 62 | 2014 | 2014 row 2 : royal belfast
academical institution | belfast | 29 | 4 | 21 |
54 | 2007 | 2013 row 3 : campbell college |
belfast | 23 | 4 | 12 | 39 | 2011 | 2011 row 4 :
coleraine academical institution | coleraine |
9|1 @ | 24 | 33 | 1992 | 1998 row 5 : the royal
school, armagh | armagh | 9 | @ | 3 | 12 | 2004
| 2004 row 6 : portora royal school |
enniskillen | 6 | 1 | 5| 12 | 1942 | 1942 row 7
: bangor grammar school | bangor | 5 | @ | 4 |
9 | 1988 | 1995 row 8 : ballymena academy |
ballymena | 3 | @ | 6 | 9 | 2010 | 2010 row 9 :
rainey endowed school | magherafelt | 2 | 1 | 2
| 5] 1982 | 1982 row 10 : foyle college |
londonderry | 2 | @ | 4 | 6 | 1915 | 1915 row 11

: belfast royal academy | belfast | 1 | 3 | 5 |
9 | 1997 | 2010 row 12 : regent house grammar
school | newtownards | 1 | 1 | 2 | 4 | 1996 |

2008 row 13 : royal school dungannon | dungannon
| 1T 1@ ] 4] 5] 1907 | 1975 row 14 : annadale
grammar school (now wellington college) |

belfast | 1 | @ | 1 | 2 | 1958 | 1978 row 15 :
ballyclare high school | ballyclare | 1 | @ | 1
| 2 ] 1973 | 2012 row 16 : belfast boys’ model
school | belfast | 1] @ | @ | 1 | 1971 | 1971

row 17 : grosvenor high school | belfast | 1 | @
| @ ] 1 ] 1983 | 1983 row 18 : wallace high
school | lisburn | @ | @ | 4 | 4 | n/a | 2007
row 19 : derry academy | derry | @ | @ | 2 | 2 |
n/a | 1896 row 20 : dalriada school |
ballymoney | @ | @ | 1 | 1 | n/a | 1993 row 21
galway grammar school | galway | @ | @ | 1 | 1
| n/a | 1887 row 22 : lurgan college | lurgan |
@@ | 1] 1] n/a] 1934 row 23 : omagh
academy | omagh | @ | @ | 1 | 1 | n/a | 1985 row
24 : sullivan upper school | holywood | @ | @ |
11 1| n/a | 2014 ; cube : difference school
runners-up royal school dungannon coleraine
academical institution answer : 20 | difference
location runners-up dungannon coleraine answer :
20 ;
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