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Abstract

We propose an ACT-R cue-based retrieval
model of the real-time gender predictions dis-
played by second language (L2) learners. The
model extends a previous model of native (L1)
speakers according to two central accounts in
L2 sentence processing: (i) the Interference
Hypothesis, which proposes that retrieval inter-
ference is higher in L2 than L1 speakers; (ii) the
Lexical Bottleneck Hypothesis, which proposes
that problems with gender agreement are due
to weak gender representations. We tested the
predictions of these accounts using data from
two visual world experiments, which found that
the gender predictions elicited by German pos-
sessive pronouns were delayed and smaller in
size in L2 than L1 speakers. The experiments
also found a “match effect”, such that when the
antecedent and possessee of the pronoun had
the same gender, predictions were earlier than
when the two genders differed. This match ef-
fect was smaller in L2 than L1 speakers. The
model implementing the Lexical Bottleneck
Hypothesis captured the effects of smaller pre-
dictions, smaller match effect and delayed pre-
dictions in one of the two conditions. By con-
trast, the model implementing the Interference
Hypothesis captured the smaller prediction ef-
fect but it showed an earlier prediction effect
and an increased match effect in L2 than L1
speakers. These results provide evidence for
the Lexical Bottleneck Hypothesis, and they
demonstrate a method for extending computa-
tional models of L1 to L2 processing.

1 Introduction

Although the world population is quickly becoming
bilingual, there are very few computational models
of bilingual sentence processing. Because most
of these models were developed for technological
applications—e.g., automatic translation—, this re-
sults in a scarcity of models that are cognitively
realistic or even evaluable with human data (Frank,
2021; Frank et al., 2016; Hinaut et al., 2015; Hen-

driks and Vogelzang, 2020). However, such mod-
els are crucial to develop computational research
that is informed by state-of-the-art psycholinguistic
work. With this goal, we propose a computational
cognitive model of bilingual processing built in an
architecture, ACT-R, which is designed to model
human cognition and can be evaluated with human
data (Anderson, 2007; Ritter et al., 2019). The
ACT-R architecture has also been used to model a
number of linguistic phenomena, such as retrieval
interference effects in linguistic dependency resolu-
tion (Vasishth et al., 2008), the influence of promi-
nence on pronoun resolution (Patil et al., 2016b;
Patil and Schumacher, 2022), the effect of memory
load on sentence processing (van Rij et al., 2013),
sentence processing in patients with aphasia (Cres-
centini and Stocco, 2005; Patil et al., 2016a), the
interaction of sentence processing and eye move-
ments (Engelmann et al., 2013), and incremental
formal semantic processing (Brasoveanu and Dot-
lačil, 2020).

Accounts of bilingual processing can be divided
in terms of how they explain differences between
native (L1) and non-native (L2) processing. Here
we focus on two different explanations of L1–L2
differences. The first, the Interference Hypothesis
(IH), makes reference to the cue-based retrieval
theory (Cunnings, 2017b,a). The Interference Hy-
pothesis stipulates that memory retrieval is key for
different parts of sentence processing, including
the processing of non-local pronoun-antecedent de-
pendencies like “John noticed that Richardi had
cut himselfi with a knife”. When “himself ” is
encountered, speakers attempt to retrieve an an-
tecedent matching the pronoun features. Retrieval
success requires suppressing interfering elements
that match some but not all of the relevant features
(e.g., “John” has the appropriate gender and num-
ber features but not the syntactic ones, because it
is outside the clause of the pronoun). The Interfer-
ence Hypothesis proposes that L1 and L2 speakers
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are similar in their likelihood of initiating retrieval
operations, but that L2 speakers are more prone
to interference, yielding more misretrievals (e.g.,
wrongly recovering “John” as the pronoun’s an-
tecedent).

By contrast, the Lexical Bottleneck Hypothesis
(LBH) is framed within so-called capacity-based
accounts, which propose that L1–L2 differences
arise because speakers process an L2 in a nois-
ier cognitive architecture, resulting in slower and
more error-prone parsing (Just and Carpenter, 1992;
McDonald, 2006; Hopp, 2022). The Lexical Bot-
tleneck Hypothesis proposes that L1–L2 parsing
differences are due to variability in the bilingual
lexicon. Specifically, because lexical processing
“precedes and feeds into syntactic processing, key
characteristics of bilingual lexical processing may
cause aspects of non-target parsing” (Hopp, 2018,
pp. 6). With regard to grammatical features like
gender—the focus of this paper—the claim is that
L2 speakers fail to use this information for syn-
tactic processing because L2 words have weaker
or more unstable gender representations, making
the retrieval of gender information less robust in
L2 than in L1. An additional factor—not modeled
here—is L1 transfer, such that L2 gender process-
ing may be harder in syntactic contexts that differ
between the L1 and the L2.

We evaluate the Interference Hypothesis and
the Lexical Bottleneck Hypothesis by using their
claims to modify an ACT-R model that was pre-
viously shown to capture L1 predictive process-
ing (Patil and Lago, 2021). The predictions of
the modified ACT-R models are evaluated against
the results of two eye-tracking experiments that
examined how L1 and L2 speakers use gender fea-
tures to do memory retrieval and to predict up-
coming referents (Stone et al., 2021b; Lago et al.,
under review). We show that the ACT-R version
that implements the Lexical Bottleneck Hypothesis
does a better job at capturing L2 gender predic-
tions. Our results—although currently limited to
gender—suggest that the Lexical Bottleneck Hy-
pothesis provides a suitable framework to model
the predictive use of morphosyntactic information
in L2, and could be extended to other features such
as number, case and animacy.

2 Modeling L2 processing

2.1 Starting point: The L1 model

We consider Patil and Lago’s (2021) model of pro-
cessing possessive pronouns as our starting point.
They modeled visual-world eye-tracking data from
Stone et al. (2021b) in ACT-R and the cue-based
retrieval framework (CBR, henceforth) (Lewis and
Vasishth, 2005; Lewis et al., 2006). Our goal is to
model the L2 visual-world eye-tracking data from
Lago et al. (under review) by modifying the model
to reflect the processing assumptions of the IH and
the LBH. The model has the following structure
most of which is inherited from ACT-R and CBR.

Sentence processing takes place as an incremen-
tal word-by-word left-corner parsing. Parsing rules
are part of ACT-R’s procedural memory, whereas
the lexical entries, syntactic phrases and the incre-
mental parse tree (NP, DP, VP, IP, etc.) are part
of ACT-R’s declarative memory. Each declarative
memory element, called a chunk, has an activa-
tion associated with it which is determined by the
equation 1.1 At each input word, parsing rules are
applied on chunks that are available in short-term
memory to process the word. If a required chunk is
not available in short-term memory, it is retrieved
from declarative memory by specifying a set of
cues as feature-value pairs, a cue-based retrieval
mechanism.

The speed, accuracy and success of retrieving a
chunk depends on its current activation level. The
activation of chunki is influenced by its usefulness
in the past (the base level activation Bi), relevance
in the current context (the spreading activation re-
ceived through retrieval cues which is determined
by the first summation component in eq. 1), de-
gree of match with the retrieval request (the par-
tial matching determined by the second summation
component in eq. 1) and stochastic noise (ϵi). The
strength of association Sji is calculated by eq. 2
which is influenced by fanj , the number of chunks
matching cuej . The value for Mji is calculated by
the degree of match between a retrieval cue (cuej)
and chunki. The values for W (the maximum
spreading activation), P (the partial match scale)
and S (the maximum associative strength) in the
calculation of Ai are constants across all simula-

1This is a simplified version of ACT-R’s activation equa-
tion and it represents how activation is calculated in CBR. The
equation can be simplified further to have only one summation
term but for comparability with the original ACT-R equation
we have kept the two summations separate.
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tions and are set as ACT-R’s parameter values.

Ai = Bi +
∑

cuej

WSji +
∑

cuej

PMji + ϵi (1)

Sji = S − ln(fanj) (2)

For modeling the visual-world eye-tracking task
from Stone et al. (2021b), Patil and Lago (2021) ex-
tended the existing architecture with the following
new assumptions: (i) the model predicts the target
picture at each input word, (ii) prediction of the
target picture is implemented as a cue-based mem-
ory retrieval, and (iii) the probability of fixating an
object is determined by the activation of the chunk
representing that object. To incorporate the vari-
able influence of different retrieval cues, Patil and
Lago (2021) also proposed a cue-weighting mecha-
nism as a modification to the strength of association
equation (as in eq. 3) such that the amount of acti-
vation spreading from cuej to chunki is influenced
by the importance of that cue.

Sji = weightjS − ln(fanj) (3)

The next two sections describe two possible mod-
ifications of the L1 model to implement two theo-
ries of L2 processing: (i) the Interference Hypothe-
sis, and (ii) the Lexical Bottleneck Hypothesis.

2.2 The IH model

IH proposes that L2 speakers are prone to higher in-
terference compared to L1 speakers and that leads
L2 speakers to misretrieve non-target elements
more often during sentence processing. Although
IH is not a computationally implemented theory, it
is described in terms of the CBR framework of sen-
tence processing, and, hence, an L1 model imple-
mented in CBR can be straightforwardly extended
to L2 processing. In ACT-R and CBR, misretrievals
due to interference take place through the mecha-
nism of partial matching (the second summation
term in eq. 1). Partial matching enables non-target
chunks (chunks that match some of the cues from
the retrieval request but not all) to be considered
in the retrieval process. Due to random fluctuation
in the activation of chunks (the random noise ϵi
eq. 1), partially matching chunks can get retrieved
instead of the target chunk in some of the retrieval
requests (a misretrieval). Misretrievals happen in
L1 speakers as well. In fact, in psycholinguistics
misretrievals due to partial matching have been sug-
gested to explain some of the grammatical illusions

such as agreement attraction and spurious NPI li-
censing (Wagers et al., 2009; Vasishth et al., 2008).
But as per IH, misretrievals happen more often in
L2 speakers.

In ACT-R the frequency of misretrievals is con-
trolled by defining the penalty to the activation of a
chunk when its feature doesn’t match the retrieval
cue. The penalty is specified through a parame-
ter called maximum difference, the highest penalty
for a perfect mismatch. By default the value of
maximum difference is -1.2 This means that the
activation penalty increases as a function of the
number of cues mismatched by a chunk, making
its retrieval less likely. The value of maximum dif-
ference can be changed to calibrate the penalty of
a mismatch. Reducing this penalty leads the non-
target chunks to get retrieved more often, i.e. higher
misretrievals. We propose that reducing the value
of maximum difference would be the way of ex-
tending the L1 model to L2 processing in terms of
IH.

2.3 The LBH model
LBH proposes that L2 speakers fail to use grammat-
ical features such as gender in syntactic processing
because the gender representations of L2 words are
weaker or more unstable, and speakers process an
L2 in a noisier cognitive architecture. Although
LBH is not specified in connection with a specific
cognitive or sentence processing architecture, it can
be realized in CBR. A possible implementation of
LBH in the ACT-R and CBR frameworks could
be done by: (i) having weaker representation of
the gender feature in chunks representing various
referents present in the input, and (ii) making the
representations of the referents noisier compared
to their representations in the L1 model.

In a typical CBR model the gender features
have discrete values (e.g. feminine, masculine and
neuter), and chunks denoting various referents have
a certain, relatively low, activation noise associated
with them (ϵi eq. 1). We propose the following two
modifications to the L1 model for implementing
LBH.

First, the gender features have values that are
encoded as weaker than corresponding L1 values –
feminine-weak, masculine-weak and neuter-weak.
This leads the corresponding chunk to only weakly
match a retrieval cue for a specific gender. For

2Conversely, ACT-R also provides a parameter called max-
imum similarity that specifies the least penalty for a perfect
match which is set to 0 by default.
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example, a chunk for a feminine referent encod-
ing gender as feminine-weak will weakly match a
retrieval request of type ‘gender = feminine’. As
a consequence, the chunk receives less spreading
activation from the retrieval cue than a chunk that
encodes gender clearly as feminine. This is equiva-
lent to saying that the referent does not have exactly
the same value of the feature as the parser expects
but is similar enough to be considered in the re-
trieval request.

We implement this behavior partly by using
ACT-R’s built-in functionality of setting similar-
ities between a retrieval cue and a feature value
(the Mji values in the partial matching component
of eq. 1), and partly by modifying the spreading ac-
tivation component in eq. 1. The partial matching
component in the activation equation sums to a neg-
ative value since Mji values vary between 0 (for a
perfect match between a retrieval cue and a feature)
and -1 (for a mismatch); effectively a penalty to
a chunk for not fully matching a retrieval request.
In ACT-R by default Mji’s are either equal to the
value of the parameter maximum similarity (0 by
default) or to the value of the parameter maximum
difference (-1 by default), but they can be set to any
value between 0 and -1 to reflect the degree of sim-
ilarity between a pair of values (e.g. feminine and
feminine-weak or red and maroon). We propose
that for the LBH model the similarity between an
expected gender and the weaker value lies between
the two extremes 0 and -1 but closer to 0 since a
weak gender is more similar than dissimilar to the
corresponding strong gender. Reciprocally, the sim-
ilarity between an expected gender and any other
weak gender (e.g. feminine and masculine-weak)
also lies between the two extremes and, in this case,
closer to -1 since it is more dissimilar than the same
weaker gender but less dissimilar than a different
strong gender (e.g. feminine and masculine).

We also propose that this graded similarity be-
tween a cue and a feature value also influences the
spreading activation component. This is not part
of the original ACT-R framework, so we consider
a further modification to the computation of the
strength of association, Sji, as in 4–6. The strength
of association now reflects how well the feature
value matches the retrieval cue. This modification
has influence on the calculations of activation only
when a cue and a value don’t perfectly match or
mismatch, when they do, the value of activation
is the same as in the original ACT-R framework.

When a value perfectly matches a requested cue
(i.e. Mji = 0) eq. 4 reduces to eq. 3, and when a
value perfectly mismatches (i.e. Mji = -1) it leads
to no activation spreading.

Sji = weightjsimjiS − ln(fanj) (4)

fanj =
∑

chunkk

simjk (5)

simjk = (1 +Mjk) (6)

To implement the LBH proposal that speakers
process an L2 in a noisier cognitive architecture, we
propose a second change to the L1 model in terms
of its activation noise. This change is more intrinsic
to ACT-R because the activation equation includes
a noise term that controls the random fluctuations
in the activation of chunks (ϵi in eq. 1). Higher
noise value makes the representation of chunks
noisier. We suggest that a noisier L1 model, along
with weaker gender representation, should be the
L2 model representing LBH.

Note that an alternative implementation of the
LBH could test if both weak gender and noisier rep-
resentations are necessary to capture the L2 data.
Moreover, ACT-R also assumes another type of
noise, the noise in procedural memory. It is con-
ceivable that the noisier representation proposed by
the LBH is realized as noisier procedural memory
(e.g. Patil et al. 2016a used the noise in procedural
memory to model data from patients with aphasia).
However, we consider that weak gender and acti-
vation noise are the closest realization of the LBH
in ACT-R, and a good starting point for modeling
LBH. We leave other possible implementations for
future research.

3 Human data

The human data was taken from two visual world
eye-tracking experiments with the same materials
and design but two different groups of participants:
74 L1 German speakers (Stone et al., 2021b, Ex-
periment 2) and 132 L2 German learners (Lago
et al., under review, Experiment 2). The L2 group
comprised native speakers of Spanish and English.
Because they did not differ behaviorally, the com-
parisons below consider a unified group of L2 par-
ticipants. We reanalyzed the two experiments to
directly compare L1 and L2 processing.

In the experiments, L1 and L2 participants were
asked to help find the belongings of two fictional
characters, Martin and Sarah. They were told that

342



they would see images and hear instructions, and
that their task was to select the object mentioned by
the instruction. The instructions always contained a
possessive pronoun doubly-marked for gender: the
gender of the pronoun stem (sein-/ihr-) agreed in
gender with the antecedent (Martin or Sarah). The
gender of the pronoun suffix agreed in gender with
the upcoming noun, which allowed participants to
predict the identity of the target object prior to hear-
ing it in the instruction, e.g.: ‘Click on his.MASC
blue.MASC button.MASC’.

The experimental trials showed 2 colored ob-
jects: a target object (e.g. a blue button.MASC)
and a competitor of a different gender (e.g. a blue
bottle.FEM). The 96 items were distributed in two
conditions (1). In the MATCH condition, the pos-
sessor and target noun had the same gender, i.e.,
both masculine or both feminine. In the MIS-
MATCH condition, the possessor mismatched the
gender of the target object but matched the com-
petitor’s. The results of the experiments showed
that the gender of the pronoun was used predic-
tively, such that participants showed a target-over-
competitor looking preference prior to hearing the
noun. In addition, there was a “match effect”, with
predictions starting earlier in the match than in
the mismatch condition (Figure 1). We examined
whether the size and onset of predictions and/or the
onset of match effects differed between L1 and L2.

(1) a. MATCH condition
Klicke auf seinen blauen Knopf!
Click on his.MASC blue.MASC
button.MASC

b. MISMATCH condition
Klicke auf ihren blauen Knopf!
Click on her.MASC blue.MASC but-
ton.MASC

The size of predictions was quantified as the
target-over-competitor looking preference in the en-
tire time-window before the target noun was heard
(i.e., from pronoun onset to noun onset plus 200ms
to account for saccade planning). The onset of pre-
diction was quantified as the earliest point in time
at which fixations to the target object significantly
differed from fixations to the competitor. This time-
point, together with a 95% confidence interval, was
taken as the prediction onset (Stone et al., 2021a).
Our L1–L2 comparisons revealed the following
differences: (i) The size of predictions was approx-

imately 9 percentage points smaller in L2 than in
L1 (henceforth SMALLER-PREDICTION). The
target-over-competitor advantage was 58 [56, 60]
% in the L2 group vs. 67 [65, 69] % in the L1
group. (ii) The onset of predictions was always
later in L2 than L1 (LATER-PREDICTION). In
the match condition, the difference in L1–L2 on-
sets was 211 [60, 320] ms. In the mismatch condi-
tion, the difference in L1–L2 onsets was 108 [60,
160] ms. (iii) The match effect—the difference
between mismatch vs. match onsets—occurred in
both groups: L1 match effect 303 [160, 400] ms
and L2 match effect 200 [120, 280] ms. The match
effect in onset times was numerically smaller in the
L2 group (SMALLER-MATCH), but the between-
group difference was not statistically reliable (as
evidenced by the 95% CI crossing 0): 103 [-40,
220] ms.

4 Computational models

4.1 Modeling details

We generate predictions of IH model and LBH
model based on the L2 modeling hypotheses and
extensions proposed in sections 2.2 and 2.3. We use
the L1 model reported in Patil and Lago (2021) and
extend the model to capture the effects of L2 pro-
cessing from Lago et al. (under review). The goal
is to capture the three L2 vs. L1 effects observed
in the data presented in section 3: (SMALLER-
PREDICTION) smaller size of predictions in L2,
(LATER-PREDICTION) later prediction onsets in
L2 for both MATCH and MISMATCH conditions,
and (SMALLER-MATCH) smaller match effect in
L2.

The IH and LBH models were used to generate
predicted fixation patterns from the onset of the
(possessive) pronoun to the onset of noun. From
these predicted fixation profiles, the three effects
concerning L1-L2 differences were calculated as
follows. The SMALLER-PREDICTION effect
was calculated by averaging the size of predictions
(i.e. mean fixation probability) in the temporal win-
dow between the onsets of the possessive pronoun
and the noun across match and mismatch condi-
tions. The effect of LATER-PREDICTION was
calculated by subtracting the onset predicted by
the L1 model from the onset predicted by each of
the two L2 models for each condition separately.
Finally, the SMALLER-MATCH effect was calcu-
lated by subtracting the prediction onsets of the
match vs. mismatch conditions. All model predic-
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Figure 1: Human data (top two rows): Fixation curves to the target and competitor object averaged across items
and participants. The predictive time-window extended from the onset of the pronoun to the onset of the noun,
shifted 200 ms to the right. The x-axis is time-locked to the pronoun. Estimated predictive onsets and their 95%
confidence intervals (in ms) are overlaid on the fixation curves in each condition. Model data (bottom two rows):
Predictions of the model for fixation probabilities to the target and competitor object in the L2 groups. The x-axis
reflects processing time in model-internal units. Vertical arrows show the model-predicted onsets.
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tions are generated by running 100,000 simulations
of each model including the L1 model. Due to
ACT-R’s stochastic noise component, some of the
predicted the values deviate from the ones reported
in Patil and Lago (2021), but the qualitative ef-
fects remain the same as reported by them. We
consider our calculations of L1 predictions as re-
liable as theirs because we calculated the values
by running a higher number of simulations (10,000
vs. 100,000). The ACT-R parameter values that
were changed to implement the assumptions of the
IH and LBH models are listed in Table 1. We also
tested how the predictions of the two models var-
ied as a function of variation in the values of these
parameters (see section 4.3).

4.2 Model predictions
The predictions of the two L2 models for predic-
tion onsets and fixation probabilities are shown in
Figure 1 (lower panels). The three effects observed
in the data and the corresponding predictions of the
two L2 models are summarized in Table 2. Both
L2 models capture the SMALLER-PREDICTION
effect — they show a smaller prediction size com-
pared to the L1 model; however, numerically, the
LBH model’s prediction is closer to the human
data. With regard to the LATER-PREDICTION
effect, it is only captured by the LBH model and
only in the match condition. While LBH also pre-
dicts a delayed L2 prediction onset in the mismatch
condition (18 ms), visual inspection of the data re-
vealed that the effect was driven by a few outlier
simulations (around 10% of the simulations). On
the other hand the IH model doesn’t capture the
LATER-PREDICTION effect in either the match
or mismatch conditions. The SMALLER-MATCH
effect is captured only by the LBH model but not
by the IH model, which predicts the effect to be in
the opposite direction. In both conditions the IH
model in fact predicts earlier prediction onsets for
L2 than L1 speakers (a negative effect).

4.3 Model predictions across parameter
variation

To test if the predictions of the two models were
restricted to the specific values selected for the pa-
rameters, we generated predictions of the models
by varying the parameter values around the values
we selected. We only varied the parameters that
were modified for implementing the IH and LBH,
and only within a range that was still meaningful
to represent the hypotheses that were implemented.

For parameter variation we randomly sampled 200
values from a uniform distribution with bounds
defining a range of values around a selected param-
eter value. For each random value of a parameter
we generated predictions by running 1000 simula-
tions of the model.

Figure 2: Distributions in terms of histograms of the
effects predicted by the IH and the LBH models. The y-
axis depicts the frequency of the predicted effects and it
has different heights for different panels. Black dots rep-
resent the mean effects observed in the L2 data. Predic-
tion distributions for the IH model are generated by vary-
ing ACT-R’s maximum difference parameter, whereas
those for the LBH model are generated by varying the
activation noise parameter and the similarity values be-
tween strong and weak genders. These are the same
parameters that were used to implement the respective
L2 hypothesis through those models (c.f. Table 1).

For the IH model we varied ACT-R’s maximum
difference (penalty) parameter between the values
of -0.7 to -0.3 (U(−0.7,−0.3)) because a value
higher than -0.3 would be too close to the value
of no penalty (i.e. 0) for a retrieval cue mismatch
and a value lower than -0.7 would be too close
to the default penalty (i.e. -1) in the L1’s model.
For the LBH model we varied ACT-R’s activation
noise parameter and the similarity values between
strong and weak genders. We varied the activa-
tion noise in the range 0.3 to 0.7 (U(0.3, 0.7)), and
the similarity between the strong and weak gender
values of the same gender in the range -0.4 to -0.1
(U(−0.4,−0.1)) and between the strong and weak
values of different genders in the range -0.9 to -0.6
(U(−0.9,−0.6)). Since the activation noise value
for the L1 model was 0.25 we chose values higher
than that, but at the same time if the activation
noise is too high, the activation has too high impact
of the random noise compared to other crucial com-
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Table 1: ACT-R parameters values that were modified to model the proposals of the IH and LBH of L2 processing.
The column “L1” show the original parameter values used in Patil and Lago (2021), while the columns “IH” AND
“LBH” show the values modified to model the L2 data. The values that were modified are in bold face. All other
ACT-R parameters had the same value as used in the L1 model.

ACT-R parameter L1 IH LBH
Activation noise (ANS) 0.25 0.25 0.5
Maximum difference (MD) -1 -0.5 -1
Similarity between weak & strong gender values of the same gender — — -0.25
Similarity between weak & strong gender values of different genders — — -0.75

Table 2: Comparison of effects of interest in the L2 human data and in the predictions of the IH and LBH models.

Effect Condition Human data IH model LBH model
SMALLER-PREDICTION 9% 3.2% 11.1%

LATER-PREDICTION
match 211 [60, 320] ms -58 ms 207 ms

mismatch 108 [60, 160] ms -1 ms 18 ms
SMALLER-MATCH 103 [-40, 220] ms -57 ms 189 ms

ponents influencing the activation and hence the
retrievals (see eq. 1). For similarity, values below
-0.4 would mean that the strong and weak genders
are 40% or more dissimilar, and values above -
0.1 would mean they are almost similar (less than
10% dissimilar). The range for similarity between
the strong and weak values of different genders
was just a mirror image of the range for similarity
between the strong and weak values of the same
gender in the interval [0,−1].3

The distribution of the three effects of inter-
est for above-mentioned range of parameter val-
ues for the two L2 models are shown in Figure
2, along with the mean effects observed in the
data. A visual inspection supports the generaliza-
tions drawn in section 4.2 — the LBH captures
the effects SMALLER-PREDICTION, LATER-
PREDICTION in the match condition (but not in
the mismatch condition) and SMALLER-MATCH
for most of the parameter combinations, whereas
the IH qualitatively (but not quantitatively) cap-
tures the SMALLER-PREDICTION effect (since
it predicts positive values for the effect) but barely
captures any of the other effects.

3As another approach one could also vary the values of
these three parameters for a broader range of the intervals. Al-
though these values might not represent either of the theories,
they are informative to find the broadest range of values for
which the current implementation does not break. Moreover,
it is also possible to test other parameters in ACT-R that do not
represent either of the L2 hypotheses, the “hyperparameters”,
to see if they influence predictions. Due to time constraints,
we restricted our simulations to narrower intervals around the
chosen values.

5 Discussion

We proposed computational cognitive models of
two main theories of L2 processing — the Inter-
ference Hypothesis and the Lexical Bottleneck Hy-
pothesis. Both are verbally stated theories of pro-
cessing differences between L2 and L1 speakers,
and ours is, to our knowledge, the first computa-
tional cognitive realization of those theories. The
theories were implemented by extending an exist-
ing L1 processing model (Patil and Lago, 2021).
We used visual-world eye-tracking data from a pre-
dictive sentence processing task to test the models.
The results showed that the LBH performed better
than IH in capturing the three key effects observed
in the data. With the exception of one effect, the
IH predicted effects that were opposite to the ones
observed in human speakers. Overall the LBH ap-
pears to be a more likely explanation of L2 sentence
processing as far as the predictive use of gender in
processing is concerned. Therefore, we propose
that the well-attested difficulty shown by L2 speak-
ers in using gender predictively (as compared to L1
speakers) is more likely attributable to problems in
how L2 speakers represent gender information in a
non-native language (Gollan et al., 2008; Kroll and
Gollan, 2014; Hopp, 2018) and/or to difficulties in
using this information as quickly as L1 speakers
(Grüter et al., 2017; Kaan, 2014).

An important qualification is that the two imple-
mentations evaluated here did not model the poten-
tial effect of L1 transfer. Recall that the L2 group
consisted of both Spanish and English learners of
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German. Because the majority of nouns used in
the human experiments had the same gender across
Spanish and German, and because there was no ev-
idence of between-group differences, we think that
the current dataset is not suitable for modeling L1
transfer effects. Research using other datasets will
be relevant to address the role of L1 transfer, which
is hypothesized to play a role in the Lexical Bottle-
neck Hypothesis (Hopp, 2018, 2022). The role of
L1 transfer in the IH is less clear, but it may affect
the current implementation if, for example, both
L1- and L2-based gender features are available for
retrieval in the memory chunks corresponding to
the objects on-screen.

The effects reported in the L1 and L2 data were
possibly born out of retrieval interference dur-
ing predictive processing (Patil and Lago, 2021).
Hence we expected the IH account to capture the
effects better as the IH is rooted in the cue-based
retrieval framework of sentence processing, and
cue-based retrieval theory has rendered explanation
to various psycholinguistic phenomenon through
retrieval interference. A possible reason for the IH
predicting opposite patterns to the ones observed in
the data could because retrieval interference as per
the cue-based retrieval theory can lead to two op-
posite processing phenomena — inhibitory vs. fa-
cilitory processing — depending on the context
(Dillon et al., 2013; Patil et al., 2016b; Parker et al.,
2017). The precise nature of the interference effect
in a given context can only be predicted through
an actual implementation of the model. Our results
emphasize the importance of computationally for-
malizing the predictions of the cue-based retrieval
theory in particular (Vasishth et al., 2019), and of
verbal theories in cognition in general (Guest and
Martin, 2021).

Although the LBH model captured crucial pat-
terns in the differences between L2 and L1 pro-
cessing, one serious limitation of the model (and
also of the IH model) was in terms of capturing
the effect of delayed prediction onsets (LATER-
PREDICTION) in the mismatch condition for L2
speakers. Since both the L2 models failed at cap-
turing this effect, we think it is also unlikely that
a combination of the two models would be able
to capture this effect. This also implies that the
gender prediction in L2 speakers possibly also in-
volves a process that cannot be explained by either
of the hypotheses. We think a computational im-
plementation of another L2 processing hypothesis,

in combination with the LBH model, might help
capture this effect.
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