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Formal constraints on crossing dependencies have played a large role in research on the formal
complexity of natural language grammars and parsing. Here we ask whether the apparent
evidence for constraints on crossing dependencies in treebanks might arise because of indepen-
dent constraints on trees, such as low arity and dependency length minimization. We address
this question using two sets of experiments. In Experiment 1, we compare the distribution of
formal properties of crossing dependencies, such as gap degree, between real trees and baseline
trees matched for rate of crossing dependencies and various other properties. In Experiment
2, we model whether two dependencies cross, given certain psycholinguistic properties of the
dependencies. We find surprisingly weak evidence for constraints originating from the mild
context-sensitivity literature (gap degree and well-nestedness) beyond what can be explained by
constraints on rate of crossing dependencies, topological properties of the trees, and dependency
length. However, measures that have emerged from the parsing literature (e.g., edge degree, end-
point crossings, and heads’ depth difference) differ strongly between real and random trees.
Modeling results show that cognitive metrics relating to information locality and working-
memory limitations affect whether two dependencies cross or not, but they do not fully explain
the distribution of crossing dependencies in natural languages. Together these results suggest
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that crossing constraints are better characterized by processing pressures than by mildly context-
sensitive constraints.

1. Introduction

The syntactic structure of natural language sentences can be captured to a large extent
using dependency trees: directed trees drawn over words indicating what words are
dependent on what other words (Tesniere 1959; Hays 1964; Mel ¢uk 1988; Hudson 1990;
Nivre 2015). An example is shown in Figure 1. A number of key formal questions in
linguistics boil down to questions about the structure of these dependency trees. In
particular, recent work has concluded that the characterization of natural language
in formal language theory depends on the constraints that can be placed on crossing
dependencies in dependency trees (Kuhlmann 2007).

Here we use recently available massively crosslinguistic dependency treebanks
(Nivre et al. 2015; Gerdes et al. 2018, 2019) to take up the question, what distinguishes
natural language dependency trees within the space of all possible tree structures, in
terms of crossing dependencies? We investigate two kinds of proposed constraints on
dependency trees. First, we investigate a set of graph-theoretic constraints originating
in the formal language theory and dependency parsing literatures, which have bearing
on the location of natural language within the Chomsky hierarchy. Comparing natural
language dependency trees to random trees of various kinds, we find little evidence
that linguistic trees are constrained by the kinds of formal properties studied in formal
language theory literature, but we do find strong evidence for under-studied constraints
originating from the parsing literature. Second, we explore a set of performance-based
and psycholinguistically motivated soft constraints, motivated in terms of empirically
measured human online processing difficulty, finding evidence that these constrain
crossing dependencies.

1.1 Background

The attempt to characterize the complexity of natural language in terms of formal
language theory has been an extraordinarily productive enterprise joining linguistics,
computer science, and mathematics (Chomsky 1956; Chomsky and Schiitzenberger
1963; Hopcroft and Ullman 1979). In recent decades, a consensus has emerged that the
syntactic structure of natural languages is well characterized in terms of the mildly
context-sensitive hierarchy of languages (Weir 1988; Joshi, Shanker, and Weir 1991;
Michaelis 1998; Kuhlmann 2013), a complexity class lying between context-free and
context-sensitive and characterized by formal restrictions on various kinds of discon-
tinuity in constituents. In dependency frameworks, these discontinuous constituents
correspond to crossing dependencies (see Figure 1 for a simple example). Therefore,
formal restrictions on discontinuous constituents correspond to formal restrictions on
crossing dependencies in the ordered dependency tree (Kuhlmann 2013).

A number of formal restrictions on crossing dependencies have been proposed
in the last 20 years, going beyond the simple observation that crossing dependencies
are rare (Havelka 2007; Ferrer-i-Cancho, Gémez-Rodriguez, and Esteban 2018). We call
these formal constraints on crossing dependencies crossing constraints. For example,
Kuhlmann (2013) has proposed that dependency trees have limited gap degree and
are usually well-nested (see Figure 2b). Pitler, Kannan, and Marcus (2013) propose that
crossing dependency configurations have a property called 1-end-point-crossing. Other
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V=

I think a person arrived who you know

Figure 1
An example dependency tree. Arrows point from heads to dependents. This tree has one
crossing dependency, marked in red.

Tt
X)) Xk X (X)) X

Gap degree 2

Figure 2
The gap degree of the tree above is 2.

formal restrictions such as edge degree, multiplanarity, and heads’ depth difference
have also been proposed (Yli-Jyrd 2003; Kuhlmann and Nivre 2006; Nivre 2007; Yadav,
Vaidya, and Husain 2017). Among these crossing constraints, the constraint on gap
degree is especially interesting, because gap degree defines the position of a formal
language in the mildly context-sensitive hierarchy: A mildly context-sensitive language
is defined by a finite upper bound on gap degree, with gap degree zero corresponding
to a context-free grammar (Kuhlmann 2013; Marcus 1965).

The empirical arguments that crossing dependencies are constrained by factors such
as gap-degree, and so forth, have typically come from demonstrations that crossing
dependencies in a large number of observed trees in dependency corpora violate the
constraints never or rarely (e.g., Kuhlmann and Nivre 2006; Havelka 2007). For example,
Kuhlmann and Nivre (2006) show that only 0.17% of analyses in a Danish Dependency
Treebank have gap-degree 2 and 99% of all non-projective structures are well-nested.
These findings do not rule out the possibility that crossing constraints might manifest
as epiphenomena of other, more general properties of dependency trees.

To appreciate this possibility, consider gap degree as an example. Gap degree is
defined as the number of discontinuities in the projection of a node (see Figure 2
for an example), so it is upper-bounded by the number of discontinuities in the
sentence. Given that crossing dependencies / discontinuous constituents are rare
(Ferrer-i-Cancho, Gémez-Rodriguez, and Esteban 2018), we might expect to measure
a low gap degree even if there is no true causally active constraint against gap degree.

This observation opens the possibility that crossing constraints such as gap degree,
edge degree, and so on, could be epiphenomena of generic graph-theoretic properties
of dependency trees, such as their height, arity, and so forth, and that together these
generic factors drive the observable formal properties of crossing dependencies in
natural language. If true, this would mean that apparent bounds on gap degree are
accidental, and that formalisms such as mildly context-sensitive grammars fit linguistic
data only because the structures that would violate them are rare by chance. It is this
possibility that we explore in depth in Section 2.

Formal constraints such as mild context-sensitivity are usually associated with a
competence-based approach to defining the generative capacity of language, where it
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is posited that there are (possibly innate) formal constraints on possible mental gram-
mars. Such an approach can be evaluated against a performance-based approach. For
example, a well-known cross-linguistic phenomenon termed syntactic islands is typ-
ically explained via constraints on structural configurations (Chomsky 1981). Broadly
construed, “islands” prohibit formation of certain crossing dependencies and hence are
important in circumscribing the formal domain of natural language. Notwithstanding
the competence-based explanation, it has been argued that island constraints arise
not due to structural ill-formedness, but rather due to constraints on human online
language processing (e.g., Hofmeister and Sag 2010).

In a similar vein, the distribution of crossing dependencies in natural languages
could also be understood in terms of processing-related constraints. It is a well known
fact that, cross-linguistically, simple linguistic codes are more frequent, while complex
linguistic codes are rare (e.g., Zipf 1949; Mahowald et al. 2013; Piantadosi 2014; Ferrer-
i-Cancho et al. 2013; Ferrer-i-Cancho, Bentz, and Seguin 2020). Such a pattern has been
argued to highlight the communicative efficiency of natural language (Jaeger and Tily
2011; Gibson et al. 2019). On this account, the restrictions on crossing dependencies
in natural language could arise because such syntactic configurations are difficult (but
not impossible) to produce and comprehend (Bresnan et al. 1982; Ades and Steedman
1982; Bach, Brown, and Marslen-wilson 1986; Joshi 1990; Ferrer-i-Cancho 2006, 2014;
Goémez-Rodriguez and Ferrer-i-Cancho 2017; Gémez-Rodriguez, Christiansen, and
Ferrer-i-Cancho 2019). For example, given the incremental nature of language produc-
tion (e.g., Ferreira and Henderson 1998), it could be assumed that production of cross-
ing dependencies, which necessarily involves a discontinuity in a phrasal boundary,
would incur an increased processing cost compared with non-crossing dependencies.
Although there has been some experimental work on investigating the processing cost
incurred during comprehension of sentences with crossing dependencies (e.g., Levy
et al. 2012; Staub et al. 2018), a corpus-based empirical study investigating the influence
of psycholinguistic factors beyond dependency distance on crossing dependencies is
lacking. If certain psycholinguistic factors (e.g., working-memory constraints) can ex-
plain the occurrence of crossing dependencies, that could suggest a functional motiva-
tion of why such dependencies are rare in natural language.

In this article, we conduct a cross-linguistic corpus investigation into crossing de-
pendencies both from the perspective of formal crossing constraints as well as from the
perspective of processing constraints. In the first set of experiments we investigate if
well-known crossing constraints (e.g., gap-degree, edge-degree) can account for cross-
ing dependencies attested in various dependency treebanks. In particular, Section 2
compares the formal properties of crossing dependencies in real dependency trees with
various random baselines matched in the number of crossing dependencies and other
global graph-theoretic factors. In the second set of experiments, we conduct preliminary
analyses to investigate whether certain psycholinguistic factors can account for crossing
dependencies attested in various dependency treebanks. In particular, Section 3 models
the tendency of two dependency arcs to cross given certain psycholinguistic metrics
that are computed using the local configuration of the two arcs.

2. Global Graph-Theoretic Factors
In this section we investigate evidence for global graph-theoretic constraints on cross-
ing dependencies originating from the literatures on formal language theory and de-

pendency parsing. Our goal is to determine which, if any, of these constraints really
distinguish natural language dependency trees from the space of all possible directed
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trees. To do so, we study how often these contraints are violated in (1) real dependency
trees and (2) a collection of random baseline trees controlling various properties of trees.

2.1 Background

Chomsky (1956, 1957) first posed the question of how to characterize grammars of
natural languages as computational objects, launching a research program that has at-
tempted to describe sets of grammatical sentences using tools from mathematical logic,
graph theory, and automaton theory. Since the late 1980s, a consensus has emerged that
natural language is well characterized as falling within the mildly context-sensitive
class of languages, a formal language class that is larger than the context-free lan-
guages, yet without taking advantage of the full expressive power of context-sensitive
languages (Weir 1988; Joshi, Shanker, and Weir 1991).

These mildly context-sensitive languages are defined by constraints which turn
out to be equivalent to constraints on crossing dependencies. Therefore, by answering
the question of what constrains crossing dependencies, we can make progress toward
understanding human languages at a computational level.

Crossing dependencies are related to formal language theory because they corre-
spond to displacement phenomena in languages—structures that cannot be captured
by a context-free grammar. Across grammatical formalisms, displacement phenomena
and are modeled using a distinct kind of structure from non-crossing dependencies. Dis-
placement phenomena (encompassing both extraposition and wh-dependencies) have
been modeled in various ways in different syntactic frameworks:

*  In the Minimalist tradition, non-crossing dependencies correspond to
structures that can be built by the computational operation MERGE (or
“external merge”), while crossing dependencies arise from the action of a
distinct structure-building operation MOVE (or “internal merge”)
(Chomsky 1995; Stabler 1997; Michaelis 1998). A grammar with only
MERGE would generate context-free languages and projective dependency
trees.

e In phrase structure-based frameworks such as Lexical Functional
Grammar (Bresnan 1982), Head-driven Phrase Structure Grammar
(Pollard and Sag 1994), and Combinatory Categorial Grammar (Steedman
and Baldridge 2011), displacement phenomena are handled using phrase
structure rules defined in a way that allows information to percolate
through a tree in a non-local manner, a mechanism called “slash-passing.”

*  Some theories of dependency grammar invoke the idea that each word in
a sentence has both a syntactic “head” and a syntactic “governor,” which
may coincide. Arcs drawn from governors to dependents may cross, but
arcs drawn from heads to dependents never cross (Grofs and Osborne
2009). Crossing dependencies correspond to cases where the syntactic
governor is distinct from the syntactic head. What we are calling “heads”
in this article would be “governors” in such theories.

These various formalisms allow for crossing dependencies by different mecha-
nisms, yet with constraints which turn out to be similar or equivalent across formalisms.
In particular, most mildly context-sensitive formalisms end up instantiating bounds
on a quantity called gap degree. This quantity goes by different names depending on
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the grammar formalism. It is equivalent (up to additive constants) to block degree or
fan-out in linear context-free rewriting systems (Kuhlmann 2007, 2013), the number of
components in multiple context-free grammars (Seki et al. 1991), the maximal rank of a
coupled context-free grammar (Hotz and Pitsch 1996), the number of licensee features in
Minimalist Grammars (Michaelis 1998; Boston, Hale, and Kuhlmann 2010), and others.
It was first introduced in a dependency framework by Holan et al. (1998), and shown
to relate to mild context-sensitivity by Kuhlmann (2007). Some mildly context-sensitive
formalisms also induce a constraint called well-nestedness, which can also be reduced
to constraints on crossing dependencies (Bodirsky, Kuhlmann, and Mo6hl 2005).

Crossing constraints have also been of interest for those studying the development
of efficient dependency parsing algorithms. Such algorithms are generally only avail-
able for trees with constrained crossings. For example, if we assume that all trees are
projective, then we can perform exact parsing in time cubic in the sentence length
(O(n?)) by reducing the dependency grammar to a lexicalized context-free grammar
(Eisner and Satta 1999). If we assume all trees are well-nested and gap degree is
bounded, then we can generally parse in polynomial time. Without the constraint of
well-nestedness, parsing becomes NP-hard (Satta 1992; Gémez-Rodriguez, Carroll, and
Weir 2011).

The parsing literature has also been the source of a number of new formal
constraints on crossing dependencies, beyond those introduced in the formal syntax
literature. For example, Pitler, Kannan, and Marcus (2013) propose a constraint called
1-end-point-crossing. If we assume that all dependency trees are 1-end-point-crossing,
then we can parse in quartic time (O(n%)) (see also Gémez-Rodriguez, Shi, and Lee 2018).

2.2 Constraints Considered

Our goal is to determine if there is really evidence for formal graph-theoretic crossing
constraints on crossing dependencies in depedency treebanks beyond what can be
explained in terms of more generic properties of dependency trees. Below, we list and
define the formal crossing constraints that we test. In our terminology we strive to
follow Kuhlmann and Nivre (2006).

Gap degree. The projection of a node X is the ordered list of all the nodes transi-
tively dominated by X plus X itself. For example, in the dependency tree in Figure 2,
[Xg, Xd,X;J is the projection of the node Xj. A projection is discontinuous if it forms
a discontinuous substring of the sentence. For example, the projection of Xj has two
discontinuities, one between X; and Xj, and another between X, and X;. The gap
degree of a tree is the largest number of discontinuities in the projection of any node
in the tree.

Well-nestedness. The subtree rooted at a node X is the set of all the transitive nodes
dominated by X plus X itself. For example, in the dependency tree (a) and (b) in
Figure 3, {X,, Xp, X, } is the subtree rooted at node X,, and {X,, X;} is the subtree rooted
at node X;. Two subtrees with nodes {P,Q} and {R, S} interleave if the nodes are in
linear order such that P < R < Q < S. A dependency tree is ill-nested if and only if
two of its disjoint subtrees interleave. For example, in (3a), {X,, Xp, X.} and {X,, X;}
are two disjoint subtrees but they do not interleave as the nodes are in the order
X, < Xp < Xe < X < X,. Therefore, tree (3a) is well-nested. In (3b), the disjoint subtrees
{X,, Xp, X, } and {X,, X;} interleave as the order of the nodesis X, < X, < X < Xy < X,.
The dashed red arc creates the ill-nestedness. Ill-nestedness implies gap degree > 1.
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(a) Well-nested, Gap degree 1 (b) lll-nested, Gap degree 2

Figure 3
Schematic of well-nested and ill-nested trees.

A m
X, X, X X, X, X, X

X4 v X X Xy v X X X

(a) Edge degree = 2, End-point crossing =1 (b) Edge degree = 2, End-point crossing = 2

Figure 4

Dependency schemas showing edge degree and end-point crossing. In both the dependency
trees, X;, — X, is a crossing dependency. The span of crossing dependency e consists of X;, X,
and X;. Nodes X; and X, are dominated neither by head Xj, nor by any node in span e. In (a) and
(b), different sets of nodes are modified by X; and X,

Edge degree. Let e be the span of dependency arc Xj;, — Xj;. The span e consists of nodes
between a head Xj, and its dependent X;, which are X;, X,, and X}, in Figure 4. The
edge degree of a dependency arc X, — X; is the number of nodes in the span ¢ that are
neither transitively dominated by some node in the span e nor transitively dominated
by the head X (Kuhlmann and Nivre 2006). For example, the arc X;, — X; in Figure 4a
and 4b has an edge degree of 2 because nodes X; and Xj are not dominated by any node
in the span e. In addition, they are also not dominated by the head X},. The edge degree
of a dependency tree is the highest edge degree among the arcs of the tree.

There are cognitive reasons to suspect that edge degree might be limited in natural
language. From an online processing perspective, higher edge degree in a subtree results
in a need to maintain an unresolved crossing dependency across a longer span of words,
which may result in online processing difficulty due to higher working memory load
(Gibson 1998).

End-point crossings. The end-point crossings of a dependency arc is the number of
distinct heads of all edges that cross the arc. More formally, given an arc X, — X; with a
span ¢, the end-point crossings of arc X;, — X; is defined as the number of distinct heads
of nodes in e that are not part of the projection of Xj nor of any element of e. The end-
point crossings of a tree is the maximum end-point crossings of any arc in the tree. For
example, in Figure 4a, the number of heads modified by X; and X}, is 1 (corresponding
to X;), therefore, the end-point crossing is 1. In Figure 4b, the number of heads modified
by X; and X, are 2 (corresponding to X; and X;, respectively); therefore, the end-point
crossing is 2.

It has been argued that natural language dependency trees tend to have not
more than one end-point crossing, which is called the 1-end-point-crossing constraint.
Pitler, Kannan, and Marcus (2013) argue that this constraint is related to the Phase
Impenetrability Condition from Minimalist syntax (Chomsky 2007). From a processing
based perspective, higher end-point crossings in a subtree should lead to multiple
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Figure 5

A schematic diagram for heads” depth difference (HDD).

heads/dependents being maintained/stored at the same time in the parse stack. This
should lead to increased storage cost (Gibson 1998). In addition, a longer span of the
crossing dependency could lead to similarity-based interference (Lewis and Vasishth
2005) at the head.

Heads’ depth difference. For a crossing dependency X;, — X, suppose X; is the node that
creates a discontinuity, that is, X; is not directly or indirectly dominated by Xj (see
Figure 5). For this configuration, we call X; the intervener, X the head of the intervener,
and Xj the head of the crossing dependency. The heads’ depth difference (HDD)
of an arc is defined as the difference between the depth of the head of the crossing
dependency X, and the depth of the head of the intervener X;. This is schematically
shown in Figure 5. Depth of a node is computed as the hierarchical position of that
node in a projection chain. The depth of Xj is 2 while the depth of X; is 0, making
the HDD for this configuration equal to 2. Thus, HDD for a crossing dependency
X, — X;is:

HDD(X}, X4) = depth(X;,) — depth(X;) (1)

where depth(X},) is the hierarchical position of the head of the non-projective depen-
dency (X)) and depth(X;) is the hierarchical position of the head of the intervening
element (X;). The HDD of a dependency tree is the maximum HDD among the HDDs
of the arcs in the tree.

In terms of formal syntax, HDD can correspond to the hierarchical depth between
a filler and a gap in a long distance dependency (e.g., wh movement). Based on the
theoretical syntax literature, HDD should be unbounded, at least for leftward wh-
dependencies (Sag, Wasow, and Bender 1999). However, increasing HDD seems to
correlate with increased online processing difficulty for humans (Phillips, Kazanina,
and Abada 2005). More generally, HDD has been proposed (see Yadav, Vaidya, and
Husain 2017) to formalize the experimental findings that increased embedding depth
leads to processing difficulty (e.g., Yngve 1960; Gibson and Thomas 1999). Therefore, it
is possible that HDD is restricted in dependency trees due to cognitive constraints.
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tudtam

ROOT Az  édesanyam  Micurinak becézett, én (csak  Mituinak

DET mother-1SG  Micuri-DAT  nicknamed  which I only Mitui-DAT could pronounce

“My mother nicknamed me Micuri, which I could only pronounce as Mitui.”

Figure 6

Dependency tree of a Hungarian sentence from the Szeged Dependency Treebank in UD 2.8
(punctuation removed from the dependency structure). The SUD parse is the same. The
projection of the final verb kiejteni is shown in boxes.

2.2.1 Example Tree. In order to demonstrate our crossing constraints, Figure 6 shows an
example of a complex dependency tree in Hungarian, drawn from the Szeged Depen-
dency Treebank. The tree has 3 crossing dependencies, with gap degree 2: The projection
from kiejteni has two discontinuities. The tree has edge degree 2, end-point crossings 2,
and HDD 2. It has sentence length 10, arity! 2, and tree height? 6.

2.3 Methods

To test if crossing constraints (e.g., gap degree, edge degree) can account for crossing
dependencies attested in natural language treebanks, we compare the distribution of
crossing constraints in natural languages with the random baselines matched in number
of crossing dependencies and other tree properties. For example, to test if gap degree
is a constraint—over and above the constraint on number of crossings and dependency
lengths—we compare the distribution of gap degree in natural languages with the ran-
dom baseline matched in number of crossings and dependency lengths. We describe the
random baselines and statistical method used for comparison next (cf. Yadav, Husain,
and Futrell 2019).

2.3.1 Random Baselines. We use four random baselines to assess whether crossing con-
straints occur independent of rate of crossing dependencies and other tree properties
like tree height or dependency lengths in natural languages. They include random trees,
random linear arrangements, dependency length (DL)-controlled random trees, and DL-
controlled RLAs. Each baseline controls a particular set of tree properties as shown in
Table 1.

In order to generate a random tree corresponding to a real language tree of sentence
length n, we first sample from a uniform distribution over tree structures with n nodes
using Priifer codes (Priifer 1918), and then use rejection sampling to obtain a tree that
matches the real tree in the number of crossing dependencies. The resulting distribution
is uniform over all tree structures with the specified length and number of crossing
edges. A DL-controlled random tree must match a real tree both in terms of its number
of crossings and in terms of the distribution of dependency lengths within the tree (for

1 We define arity of a tree as maximum of out-degree of its nodes.
2 Tree height is maximum distance from the root to a leaf node of the tree.
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Table 1
Properties of random baselines: Each baseline matches in certain properties with the natural
language trees. The tree properties controlled in baseline are indicated by v

Baseline Controlled tree properties

Number of crossings  Tree topology = Dependency length

Random trees v

RLAs v v

DL-controlled random trees v v
DL-controlled RLAs v v v

details, see Yadav, Husain, and Futrell 2021). This procedure samples from the uniform
distribution on trees with specified length, number of crossings, and distribution of
dependency lengths.

Random linear arrangements (RLAs) are generated by permuting the linear order
of nodes in a real languages tree. A reordered tree that matches in number of crossings
with a real tree is accepted as a valid sample for RLAs. To generate DL-controlled RLAs,
we sample from RLAs that match in the distribution of dependency lengths with the real
trees.

These baseline trees are all generated by a rejection sampling procedure that rejects
the vast majority of samples. As such, it is only possible to generate sentences with
length up to 11 using this method given currently available computing resources.

All baselines studied in this article control for the number of crossings per sentences.
For baselines that control for dependency lengths but not the number of crossings, see
Yadav, Husain, and Futrell (2021).

2.3.2 Data. For natural languages data, we use treebanks from Surface-syntactic Univer-
sal Dependencies (SUD) v.2.4 (Gerdes et al. 2018, 2019). We test on treebanks from 56
languages, excluding treebanks with less than 500 sentences and ancient languages.

The data used for the analysis contained 9 head-final and 47 head-initial languages
for the analysis, as determined by Yadav et al. (2020), which focuses on verb—object
relations. The head-final languages were: Afrikaans, Dutch, German, Hindi, Japanese,
Korean, Persian, Tamil, and Urdu. The head-initial languages were: Amharic, Arabic,
Bulgarian, Bambara, Catalan, Czech, Danish, Greek, English, Spanish, Estonian, Basque,
Finnish, Faroese, French, Irish, Galician, Hebrew, Croatian, Upper Sorbian, Hungarian,
Armenian, Indonesian, Italian, Kazakh, Northern Kurdish, Lithuanian, Latvian,
Maltese, Erzya, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian,
Northern Sami, Serbian, Swedish, Thai, Turkish, Uyghur, Ukrainian, Vietnamese, Wolof,
and Chinese.

The SUD treebanks have been converted from the Universal Dependencies (UD)
treebanks (Nivre 2015) to reflect syntactic dependencies rather than the more semantic
dependencies favored by UD. We also did an additional analysis on the corresponding
UD treebanks. We found that the rate of violating crossing constraints is lower in UD
trees but the overall pattern of results is the same as for SUD treebanks with two
exceptions: (1) the constraint on end-point crossings receives weaker evidence, and (2)
the constraint on well-nestedness receives stronger evidence. Regarding point (1), this
is likely due to UD’s flat structure, which means that many nodes share a head. See
supplementary materials S1 for a comparison of results obtained from SUD vs. UD data.
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We believe the SUD analysis is most appropriate because SUD reflects the syntactic
relationships and analyses that were used in the development of theories of formal
crossing constraints (Joshi 1985), including early work investigating dependency tree-
banks (Nivre 2006).

2.3.3 Statistical Method. To test whether real language trees differ from random baseline
trees in the distribution of crossing constraints, we fit mixed-effect Poisson regression
models. Poisson regression is appropriate for modeling nonnegative integer-valued
data such as the formal crossing properties. The dependent variables in the models are
the rate of violations of crossing constraints (gap degree, edge degree, etc.).

Suppose that Gj; is the gap degree for i sentence of the j language, Sij is the length

of i sentence of the j language, Rjj is a dummy variable that encodes whether the
sentence is a real tree (as 1) or a baseline tree (as 0), B¢ is the intercept term, 3; and
(3, are the slope terms for the main effect of sentence length and real /baseline variable,
respectively, 33 is the interaction term, and 1, is the random intercept adjustment for

j™ language. The model to predict gap degree, Gjj is:
log Gij = (Bo + uo) + B15i + B2Rij + B3S;Rii + € 2)

The above model predicts gap degree as a function of sentence length in real and
random baselines trees. A similar model is fit for other crossing constraints (well-
nestedness, edge degree, etc.). We also vary the predictor variable in place of sentence
length, such that a crossing constraint could be a function of sentence length, tree height,
or tree arity.

To evaluate evidence for the hypothesis whether gap degree is lower in real trees
compared with baseline trees, we compare the model in Equation (2) with a null model
that lacks the R;; term, using a likelihood ratio test. We report log-likelihood ratio values,
interpreting them as strength of evidence for a difference between real and random
trees.

The log-likelihood ratios can be interpreted as logarithmic Bayes factors comparing
two hypotheses with equal prior probability: Hy, that there is no distinction between
real and random trees; and H;, that there is a distinction as given by the regression
coefficients 3, and (33. A higher log-likelihood ratio indicates stronger evidence for H;.

2.4 Results

The distributions of the formal measures in real trees and random baselines are shown
in Figure 7. Table 2 summarizes results in terms of log-likelihood ratios. We find that
there is uniformly strong evidence that edge degree, end-point crossings, and HDD
are different between real and random trees. This means that the distribution of these
formal properties cannot be explained solely in terms of generic constraints on number
of crossings, tree topology, and dependency length.

However, for gap degree and well-nestedness, the picture is different. When com-
paring real trees against DL-controlled random linear arrangements, we do not find
substantial evidence for differences in well-nestedness or gap degree. When comparing
against random linear arrangements, we do not find substantial evidence for differences
in gap degree. These log-likelihood ratios are dramatically smaller than those for, for
example, HDD. If there is a distinction in gap degree between real and random trees,
the evidence for this distinction is dramatically small compared with other constraints.
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Figure 7

Distribution of graph-theoretical measures gap degree, edge degree, endpoint crossings, and
HDD in real trees and several random baselines’ trees. Projective trees are excluded from this
figure, but included in all regressions. The gradient from light to darker color represent the
distribution of a particular crossing constraint for given sentence length. Consider gap degree
plot for real trees. The number of trees with gap degree 4 for sentence length 11 is larger than
that for sentence length 10, represented by darker shade.

2.5 Discussion

We tested whether there is evidence for graph-theoretic constraints on crossing depen-
dencies beyond what can be explained in terms of other, generic properties of natural

language trees.
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Table 2

Graph-theoretic constraints on crossing dependencies. The table summarizes the degree of
evidence for graph theoretic constraints: To what extent several baselines controlling for the rate
of crossing dependencies provide support for graph theoretic constraints on crossing
dependencies. Here, the degree of evidence refers to the log-likelihood ratio of the model shown
in 2 against a null model that lacks the R;; term.

Baseline Evidence for constraint on
Gap degree Well-nestedness Edge degree End-point HDD
crossings
Random trees
Sentence length 4 24 740 240 663
Maximum arity 251 45 1,142 465 1,021
Tree height 66 28 296 37 139
Random linear
arrangements
Sentence length 1 8 446 161 590
Maximum arity 1 3 390 133 513
Tree height 3 5 431 167 642
DL-controlled
random trees
Sentence length 0.16 16 17 13 327
Maximum arity 43 21 83 75 498
Tree height 252 58 140 148 49
DL-controlled random
linear arrangements
Sentence length 0.01 2 11 7 181
Maximum arity 0.04 1 7 4 152
Tree height 0.02 2 9 5 164
We find two key results:
1. There is decisive evidence that edge degree, end-point crossings, and HDD

are different between real and random trees, suggesting that any
constraints on these quantities cannot be explained merely in terms of the
number of crossings, tree topology, and dependency length distribution in
natural language trees.

2. We find insubstantial evidence for gap degree and well-nestedness
constraint after controlling for the number of crossings, tree topology, and
dependency length.

Taken together, these results suggest that, despite the massive literature on gap
degree and well-nestedness and their connections to formal language theory, these
constraints are not the formal properties that most strongly characterize crossing de-
pendencies. In comparison, edge degree, end-point crossings, and HDD—measures
that have emerged from the parsing literature, not the formal language theory
literature—emerge as strongly characteristic of crossing dependencies. We addition-
ally note an important caveat that our results hold only in short trees, and might
be different in larger trees (cf. Ferrer-i-Cancho et al. 2021). The patterns for longer
sentences can only be confirmed by baseline generation, which will be taken up in
future work.
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Among the crossing constraints investigated in the current work, the evidence for
HDD as a crossing constraint is strongest. Recall that the HDD constraint is motivated
by the findings in the psycholinguistic literature that increased embedding leads to
processing difficulty. This suggests that constraints on crossing dependencies could be
driven by processing considerations. We turn next to a preliminary investigation where
this possibility is explored further.

3. Local Psycholinguistic Factors

In the previous section we investigated the role of formal graph-theoretic factors in
determining the distribution of crossing dependencies in natural language. As stated
earlier, these factors can be construed as capturing the competence-based constraints
on grammar. However, natural language grammar can, in principle, also be influenced
by processing-based constraints. One such early proposal can be found in Joshi (1985),
where efficient (asymptotic) parsing complexity is a key design requirement for natural
languages. More recent proposals include the role of efficient parsing in shaping word
order in natural language (see, e.g., Hawkins 2004, although his notion of “efficiency”
is quite different from Joshi’s). On this account, rarity of crossing dependencies across
languages could be assumed to reflect processing difficulty in handling such configura-
tions (also see Ferrer-i-Cancho 2014).

Given the incremental nature of language production (e.g., Ferreira and
Henderson 1998), it is reasonable to assume that production of crossing dependencies,
which necessarily involves a discontinuity in a phrasal boundary, would incur an
increased processing cost compared with non-crossing dependencies. Indeed, recent
work investigating filler-gap dependencies (Momma 2021) suggests that such crossing
dependencies might require additional cognitive resources in planning. Given the evi-
dence for the tight link between production and comprehension difficulty (MacDonald
2013; Scontras, Badecker, and Fedorenko 2017), it is therefore not far-fetched to assume
that comprehenders should also find crossing dependencies difficult to process (Levy
etal. 2012; Yadav, Vaidya, and Husain 2017; Husain and Vasishth 2015; Staub et al. 2018).
Indeed, it is well known that, given an unbounded dependency, the comprehension
system tries to resolve it as soon as possible, a constraint known as active-filler strategy
(Frazier 1987). The experiments discussed in this section, therefore, explore whether
processing factors such as working-memory constraints, predictability, and so on, could
play a role in determining the occurrence of a crossing dependency in the input.

3.1 Motivation

The key motivation of this preliminary study is to investigate if processing related
factors modulate the occurrence of a crossing dependency. We investigate two factors—
namely, working-memory constraints and prediction processes.

The influence of working-memory limitations on sentence comprehension as well
as production is well attested. Cross-linguistically, the linear distance between syn-
tactically related words (i.e., dependency length) has been found to be minimized, in
the phenomenon of dependency length minimization (for reviews, see Liu, Xu, and
Liang 2017; Temperley and Gildea 2018). This dependency length minimization has
recently been argued to be a manifestation of information locality (Futrell 2019; Hahn,
Degen, and Futrell 2021), the key idea being that words with high pointwise mutual
information (PMI) tend to be close to each other. The “closeness” between a pair of
words is usually operationalized as linear distance between them, but more generally
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“closeness” would mean the simplicity of the structure that intervene a pair of words
(see Yadav, Mittal, and Husain 2020). This generalized version of information locality
can be termed as information-simplicity: The words with high PMI tend to have simpler
intervening structure between them.

Together, dependency length minimization and information-simplicity have clear
implications for crossing dependencies. First, the information-simplicity hypothesis
predicts that a head-dependent pair with high PMI is less likely to be involved in
a crossing dependency. Second, dependency length minimization implies that long
phrases could be extraposed in order to avoid increased dependency distance in situ.
We call this heavy-phrase extraposition. The heavy-phrase extraposition hypothesis
predicts that dependencies with a heavy dependent, in terms of length of the phrase,
are more likely to be involved in a crossing dependency. Additionally, we expect a pos-
itive correlation between dependency length and crossing tendency: The dependencies
which are shorter in length are less likely involved in a crossing configuration (Ferrer-
i-Cancho 2014; Ferrer-i-Cancho and Gémez-Rodriguez 2016). We call this localized-
simplicity hypothesis: Localized words have simpler intervening structures between
them.

Apart from the role of working memory, another factor that has garnered much
attention in the processing literature is prediction. Sentence processing is known to
involve a robust top-down component that involves a preactivation of upcoming
linguistic material. Such predictions are known to facilitate comprehension (Levy
2008; Smith and Levy 2013) and to attenuate the cost of memory constraints (Husain,
Vasishth, and Srinivasan 2014). On this account, when the presence of a dependent is
highly expected, this high expectation could offset any cost incurred due to crossing
dependency (Levy et al. 2012). So, we test the expectation hypothesis that a crossing
configuration is more likely in situations where the upcoming dependent/head is
highly expected. Expectation of a dependent given a head is operationalized as the log
probability that a head has at least one outgoing dependency with that relation type.

Given the gap between the point at which prediction is made and the point at
which the concerned linguistic entity is received via input, linguistic predictions have
to be maintained in memory (Gibson 1998). This maintenance cost has been shown to
correspond to measurable processing difficulty (Husain, Vasishth, and Srinivasan 2015;
Ristic et al. 2021), that is, prediction maintenance over a longer period can be costly.
It is therefore expected that longer maintenance of dependencies involved in crossing
should be avoided. In this work we operationalize maintenance as (a) the number of
words between the heads of the crossing dependencies, and (b) the number of heads
between the heads of the crossing dependencies.> We expect that dependencies that
involve a crossing configuration tend to have shorter distance between their heads both
in terms of number of words and number of heads. We call this head-head locality
hypothesis: Two dependencies with their heads being far away from each other are less
likely to form a crossing configuration.

3.2 Methods

In order to assess the role of various processing factors mentioned above, we fit logistic
regression models to predict whether two dependencies cross.

3 The tendency to minimize the number of heads in such configuration could be related to a recent finding
that syntactic heads are avoided in the intervening regions of a dependency (Yadav, Mittal, and Husain
2020).
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Dependency j does not cross dependency i Dependency j crosses dependency i

Figure 8

Schematic showing dependency i and dependency j in two sentences (a) and (b). In (a),
dependency j does not cross dependency i; while in (b), j crosses i. We assume that certain
properties of dependency i and dependency j determine whether j crosses i or not. We call
dependency i a host dependency and dependency j a crosser dependency.

Given dependency i and dependency j in a sentence (see Figure 8), this model uses
the following predictors to predict whether dependency i is crossed by dependency j or
not. We call i a host dependency and j a crosser dependency.

1.  Head-dependent pointwise mutual information of dependency i and
dependency j, i.e., PMI; and PMI;

2. Expectation of seeing a dependency relation given head type for
dependency i and dependency j, i.e., EXP; and EXP;

3. Distance between head and dependent of dependency i and dependency j,
i.e, DD; and DD;

4. Weight of dependent of dependency i, W;, i.e., the number of nodes
transitively dominated by the dependent of i plus one

5. Linear distance between head of dependency i and head of dependency j,
LHD

6.  Hierarchical distance (number of heads) between head of dependency i
and head of dependency j, HHD

Given the variable mentioned above, suppose that C; indicates whether depen-
dency i is crossed by dependency j of a sentence or not. The model to predict C;; is:

logit(Cij) = Bo + B1PMI; + B2EXP; + B3DD; + B4W; + BsPMI; + BeEXP;  (3)
+ f57DD]' + BsLHD + BoHHD

Given the discussion in Section 3.1, we predict the following:

e The information-simplicity hypothesis predicts that a dependency with
high pointwise mutual information is less likely to get involved in a
crossing construction. Thus, it predicts a negative estimate for the
parameters 3; and f3s.

®  The heavy-phrase extraposition hypothesis predicts that if a dependency
has a heavy dependent, it is more likely to get crossed. Thus, a positive
estimate is predicted for 34.
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*  The localized-simplicity hypothesis predicts a positive correlation between
dependency length and crossing tendency, that is, a positive estimate for

B3 and B7.

*  The expectation hypothesis predicts that a dependency with high
expectation is more likely to involve a crossing construction, namely, a
positive estimate for (3, and P¢.

*  Finally, the head-head locality hypothesis predicts that two dependencies
with longer distance between their heads (i.e., higher LHD or HHD)
are less likely to cross each other, that is, Bg and 39 should show a negative
estimate.

3.2.1 Data. We choose 12 languages from the Surface-syntactic Universal Dependencies
(SUD v2.4) treebank, out of which 7 are head-initial and 5 are head-final languages. The
criteria for language selection is based on corpus size (>5,000 trees) and language typol-
ogy. Out of the 7 languages, Hindi, Dutch, Japanese, German, and Korean are head-final
languages; the remaining languages, English, Arabic, French, Spanish, Italian, Polish,
and Romanian, are head-initial.

3.3 Results

Table 3 summarizes results from the logistic regression model. Results show that all
the predictors, namely, pointwise mutual information, expectation, dependency length,
dependent weight, distance between the head of the host, and head of the crosser
dependency, have significant effect on crossings in the expected directions.

We find an effect of pointwise mutual information for most of the languages such
that two dependencies tend to cross each other if their head-dependent mutual infor-
mation is low. In other words, a dependency that has relatively low mutual information

Table 3

Effect of predictability, locality, inter-head distance on the tendency of two dependencies to
cross. The table shows logistic regression coefficients. The significant effects are shown in bold.
PMI stands for pointwise mutual information between the head and the dependent in a
dependency. DD stands for dependency distance.

Language Host dependency Crosser dependency LHD HHD
PMI EXP DD dep.Weight PMI EXP DD
English —-0.26 —0.11 0.09 0.014 —-0.27 —-0.09 0.09 —0.007 —0.147
Hindi —0.03 —-0.31 0.07 0.015 015 —-0.25 0.08 0.029 —-0.192
Dutch —0.08 —0.09 0.10 0.020 0.04 -0.12 0.11 —0.091 0.085
Arabic —0.23 0.02 0.06 0.045 017 —-0.23 0.08 —0.027 —-0.103
Japanese —0.40 0.02 0.05 0.031 —0.39 —0.08 0.04 —0.023 —-0.151
French —0.06 —0.30 0.08 0.018 —0.05 —-0.34 0.08 0.068 —0.278
German -0.20 —-0.17 0.11 0.031 —-0.03 -0.16 0.11 —0.069 0.061
Korean —0.05 —-0.07 0.12 0.082 —0.48 0.01 0.09 —0.04 —0.45
Spanish —-0.11 —-0.11 0.08 0.012 —-0.19 —-0.01 0.09 0.01 —0.21
Italian 0.05 -0.22 0.09 0.021 0.08 —-0.23 0.10 —0.02 —0.09
Polish —-0.09 —-0.11 0.11 0.010 —0.05 —-0.09 0.12 0.002 0.01
Romanian —-0.08 —-0.09 0.12 0.028 —0.05 —-0.09 0.14 —0.02 —0.06
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between its head and dependent is more likely to cross—and get crossed by—another
dependency. The result supports the information-simplicity hypothesis.

Additionally, all 12 languages show an effect of the dependent weight such that a
dependency with heavier dependent phrase is more likely to get crossed by another
dependency. The result supports the heavy-phrase extraposition hypothesis.

The results also support the localized-simplicity hypothesis, that is, dependency
distance is positively correlated with crossing tendency—a shorter dependency is less
likely to be involved in a crossing construction.

With regard to the role of prediction, results show that a dependency relation
that has relatively low expectation given a head type is more likely to cross—and get
crossed by—another dependency. The result does not support the expectation hypoth-
esis. Finally, we find that the linear and hierarchical distance between the heads of
two dependencies negatively influence whether they cross or not. Crossing tendency
reduces if the number of heads/words between the heads of the two dependencies
increases. This result holds for most of the languages (except Hindi, Spanish, Dutch, and
Polish). The LHD/HHD results support the head-head locality hypothesis motivated by
prediction maintenance account.

3.4 Extraposition in Noun Phrases

We also test a prediction by Levy et al. (2012) that a crossing dependency is easier to
comprehend if expectation of a dependency relation given a nominal head is higher.
We test whether expectation has a positive effect on crossing tendency of noun-headed
constructions (see Figure 9). In addition to expectation effect, we also test the effect of
weight of dependent of noun phrase—a noun-headed dependency is more likely to get
crossed if its dependency is heavier because the heavy dependent may move around to
minimize dependency length. To test the hypothesis, we fit a logistic regression similar
to 3 with two predictors, namely, expectation of dependency relation and dependent
weight.

Table 4 shows the estimates of effect of expectation and dependent weight on
crossing tendency of a noun-headed construction. The effect of expectation has a neg-
ative estimate (except Japanese), suggesting that if expectation of seeing a particular
dependency relation in a noun-headed dependency is higher, the dependency is less
likely to get crossed by another dependency.

The weight of dependent in a noun-headed construction positively affects its cross-
ing tendency (except Japanese)—a noun-headed construction has a higher tendency
to get crossed by another dependency if the weight of its dependent is higher. The
result supports the heavy-phrase extraposition hypothesis: A heavy dependent is more

root

[XmZ X Xd] XN

Figure 9

A noun-headed construction: the node Xyp is a noun phrase and is modified by a dependent X,.
The dependent X, has three nodes in its projection, namely, X,», X,1, and X;, so the weight of
the dependent X is 3.

392



Yadav, Husain, and Futrell Formal and Psycholinguistic Constraints on Nonprojectivity

Table 4
Effect of expectation and host dependent weight on the tendency of an noun-headed
construction to be a crossing.

Language Dependent weight Expectation D.weight x Expectation
B SE Z value B SE Z value B3 SE Z value

English 0.096  0.013 7.36* —0431 0.018  —22.81* 0.005  0.003 2.04%
Hindi 0.103  0.005 20.05* —0422  0.011 —39.09* 0.013  0.001 9.61*
Dutch 0.122  0.006 18.89 * —0444 0014  —3141* 0.005  0.001 3.77*
Arabic 0.064  0.006 10.78 * —0.250  0.025 —9.89* 0.004  0.001 2.85*
Japanese 0.046  0.002 2257 * —0.006  0.011 —0.61ns. —0.001  0.001 —1.22ns.
French 0.110  0.004 22.61* —0.486  0.011 —41.77* 0.008  0.001 8.96 *
German 0.198  0.005 36.29 * —0499 0016  —29.86* 0.016  0.001 13.93 *
Korean 0.009  0.012 0.82ns. 0.054  0.017 3.11*% —0.029  0.003 —9.70*
Spanish 0.102  0.005 19.39 * —0.067  0.026 —251*% 0.005  0.002 2.59*
Italian 0.092  0.006 14.34* —0400 0016  —2417* 0.003  0.001 2.60 *
Polish —0.016 0.011 —1.39ns. —0.051  0.016 —3.10* —0.008  0.002 —4.67*
Romanian 0.143  0.011 12.07* —0.212  0.034 —6.17* 0.018  0.005 3.76 *

likely to get extraposed—hence causing a crossing dependency—in order to minimize
dependency distance.*

We also find a significant interaction effect between dependent weight and ex-
pectation such that effect of dependent weight increases with increase in expectation.
This result suggests that high expectation facilitates crossing dependencies with heavy
dependent. In other words, a heavy dependent is more likely to get extraposed when
expectation is high. This pattern has some support for the hypothesis proposed by Levy
et al. (2012) that increased expectation facilitates the processing of right-extraposed
structures.

3.5 Comparison with Baseline Trees

One concern regarding the significant effect of formal measures like dependency dis-
tance, dependent weight, and inter-head distance could be that they do not capture any
linguistic or cognitive phenomenon, rather, their effect could be due to independent
reasons such as tree topology. For example, it is possible that an arc in any random
directed acyclic graph is more likely to get crossed by another arc if linear distance
between its nodes is larger (Ferrer-i-Cancho and Gémez-Rodriguez 2016).

To check whether some natural language phenomena underlies the effects of depen-
dency distance, dependent weight, and so forth, on crossing dependency, we fit a model
to predict crossing tendency in real vs. random trees. The model includes interaction
effect terms to test whether the expected effect of dependency distance, dependent
weight, and so on, is larger in real trees compared with the random trees generated as
part of Section 2. If the effect of these predictors arise due to some real psycholinguistic
phenomena, we expect a positive estimate for the interaction effect.

Table 5 shows the results of the model. We find a significant interaction effect for all
the predictors.

4 One can argue that effect of dependent weight in noun-headed constructions is only due to
right-extraposed relative clauses and hence the result should not be generalized to heavy-phrase
extraposition hypothesis. However, the results for noun-headed constructions remains the same when we
remove relative clause cases—implying that weight-expectation effect in noun-headed constructions is
not driven by relative clauses constructions alone.
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Table 5
Effect of dependency distance, dependent weight, and inter-head distance on crossing tendency
in real trees compared with random trees.

Predictor Estimate Std. Error z value
Effect of predictors in random trees
DD (host dependency) 0.27 0.003 89.91 *
DD (crosser dependency) 0.21 0.003 69.45 *
LHD —0.06 0.006 —9.82 *
HHD 0.05 0.014 3.53 *
Host dependent weight —0.28 0.005 —51.03 *
Interaction effects: Effect of predictors

in real trees compared with random trees
DD: Real (host dependency) 0.15 0.015 10.17 *
DD: Real (crosser dependency) 0.18 0.015 11.77 *
LHD: Real 0.35 0.025 13.84 *
HHD: Real —0.30 0.052 —5.78 *
Host dependent weight: Real 0.31 0.022 13.75 *

*  The effect of dependency distance on crossing tendency is larger in real
language trees, such that longer dependencies are more likely to cross or
get crossed by another dependency in real trees compared to random trees.

e The effect of dependent weight is driven by real trees, such that a
dependency with heavy dependent is more likely to get crossed in real
trees, but not in random trees (the main effect is in opposite direction).

3.6 Discussion

The results from the logistic regression models provide compelling evidence for the role
of working-memory constraints and information-locality on the occurrence crossing
dependencies. To summarize, we find support for:

1.  Information simplicity: The words with high mutual information are less
likely to form crossing configurations.

2. Localized simplicity: The words that are close to each other are less likely
to involve a crossing dependency.

3.  Heavy-phrase extraposition: A dependency with a heavy dependent is
more likely to get crossed by another dependency.

4.  Head-head locality: Two dependencies with their heads being far away
from each other are less likely to form a crossing configuration.

However, the results were only partly consistent with the expectation hypothesis:
High expectation for the presence of a dependent correlates with a higher rate of
crossing only when that dependent is heavy, as indicated by the presence of a positive
interaction of weight and expectation in Table 5 for most languages, but a negative
main effect of expectation. Overall, we found evidence for working-memory based
and information-locality based accounts, but limited evidence for expectation-based
accounts.
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An interesting result that should be interpreted in the light of previous findings is
the effect of dependency lengths on the occurrence of crossing dependencies. Recent
work has shown that a constraint on dependency length alone cannot fully explain
the low rate of crossing dependencies in natural languages (Yadav, Husain, and Futrell
2021). In contrast, our results show an effect of dependency length on crossing tendency
such that longer dependencies are more likely to cross—or get crossed by—other depen-
dencies. Additionally, our results in Section 2 show that dependency lengths can explain
ill-nestedness distribution in natural languages. Together, these findings suggest that
although dependency length affects the occurrence of crossing dependencies, it cannot
fully explain the observed quantitative distribution of crossings in natural languages.

4. General Discussion

The current work investigated crossing dependencies from two perspectives. These
were (a) the role of certain global graph-theoretic factors in determining the distribution
of crossing dependencies in natural language, and (b) the role of certain local psycholin-
guistic factors in determining if two dependencies cross. Results from Experiment 1
provide strong evidence that edge-degree, end-point crossings, and HDD determine
the distribution of crossing dependencies in natural language, while they provide weak
to insubstantial evidence that other factors such as gap-degree and well-nestedness
constrain crossing dependencies. This suggests that the apparent bounds on gap-degree
and well-nestedness arise as a consequence of factors such as number of crossings, tree
topology, and dependency length.

In particular, the results from Experiment 1 provide the strongest evidence in fa-
vor of cognitively motivated crossing constraints (such as HDD), suggesting a pars-
ing/processing driven constraint on crossing dependencies. This proposal was further
substantiated through the results from Experiment 2 that show that certain psycholin-
guistically motivated factors such as information locality, dependency weight, as well
as inter-head distance can determine if a pair of dependency will cross, even when com-
pared against random trees. These results provide evidence for a functional motivation
for distribution of crossing dependencies in natural language. The key contribution of
this work is to (a) provide a method to quantify the evidence for a particular graph
theoretic constraint beyond what can be explained in terms of tree topology, number of
crossings, and dependency distance, and (b) to highlight that crossings can be predicted
through processing factors beyond dependency distance.

Together, the two findings suggest that graph-theoretic constraints on crossing
dependencies could be driven by processing considerations (also see Ferrer-i-Cancho
and Goémez-Rodriguez 2016). The idea that formal properties in grammar could be
determined by processing consideration is not new. As stated earlier, Joshi (1985) pro-
posed the MCS hypothesis, which required grammars to be efficiently parseable, in the
sense of worst-case asymptotic complexity of exact parsing. Similarly, the performance-
grammar correspondence hypothesis by Hawkins (2004) proposes that processing
strategies get grammaticalized for efficiency considerations. We note that, on these
accounts, efficiency in grammar is understood as efficiency in online comprehension
of the utterances licensed by the grammar.

There is evidence that humans find crossing dependencies to be difficult during
comprehension. One piece of evidence for this comes from processing of filler—gap
dependencies. A filler-gap dependency typically involves a crossing dependency and,
in order to resolve it, the human processing system is known to operate with the
principle of immediacy, namely, the parser tries to resolve it sooner rather than later
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(De Vincenzi 1991). There is also evidence that, if possible, such dependencies are
avoided (Staub et al. 2018). More recently, Husain and Yadav (2020) show that in Hindji,
crossing dependencies are avoided during comprehension of participle clauses and that
such dependencies lead to processing difficulty. Processing of crossing dependency
necessarily involves maintenance of unresolved structure and a processing strategy
to avoid building such complex configuration is consistent with the parser’s bias for
building simple structures (Frazier 1985). In the domain of computational parsers, limits
on quantities such as edge-degree, end-point crossings, and so forth, have been previ-
ously shown to lead to efficiency in terms of both asymptotic complexity and practical
accuracy (Pitler, Kannan, and Marcus 2013), but there has not yet been any systematic
investigation on whether these factors affect human online processing. If it is true
that constraints on crossing dependencies are motivated by processing efficiency for
humans, then formal factors such as end-point crossings might also lead to observable
processing difficulty for humans.

The research discussed above suggests that the distribution of crossing dependen-
cies may arise due to comprehension difficulty, but processing efficiency is not limited
to comprehension only: Production and learning may also play a role. For example,
it is known that difficulty during comprehension could be a consequence of pressures
during production (MacDonald 2013); in this view, ease of production determines the
distribution of linguistic patterns in a language community, and this distribution in turn
makes certain structures either easy or difficult to comprehend. Learning may also play
a role: Given that crossing dependencies are difficult to produce and comprehend, it
is possible that such dependencies are also difficult to learn and that their rarity could
be independently driven by learning biases (Chang 2009). Teasing apart the role (and
extent) of how various processing factors affect crossing dependencies will require a
dedicated research effort. We hope that our work is a step in that direction.

If crossing dependencies are difficult to process, then why do they exist at all?
To answer this question, we need to appreciate that processing cost due to crossings
could be just one of the many sources that lead to processing difficulty. Decades of
research on comprehension and production has shown that processing complexity
can be understood as a trade-off between various countervailing factors related to
sentence encoding/decoding (e.g., Trueswell, Tanenhaus, and Garnsey 1994; Kaiser
and Trueswell 2004; Altmann and Kamide 1999; Frazier 1979; Gibson 1998; Lewis and
Vasishth 2005; Levy 2008). For example, syntactic configurations leading to clausal
embeddings are known to be quite complex and under such configurations creating
a crossing dependency (for example, by right-extraposition) could in fact lead to a
relatively less complex structure (Yngve 1960). This, of course, implies that in certain con-
text, other syntactic configurations could be costlier. Similarly, requirements at different
levels of linguistic encoding (discourse, pragmatics, etc.) could require positioning of
words that could lead to creation of crossing dependencies. Finally, during production,
accessibility-related pressures (e.g., Ferreira and Dell 2000; Branigan, Pickering, and
Tanaka 2008) could lead to creation of crossing dependencies. In short, formation of
crossing dependencies could be due to (a) creation of less costly structures, (b) extra-
sentential requirements, and (c) production pressures such as accessibility.

Could crossing dependencies arise due to non-functional reasons? It is possible that
a language-wide grammatical constraint (e.g., on the position of heads) could lead to
existence of certain crossing dependencies. For example, in English, the presence of wh
crossing dependencies could be a consequence of a fixed word order in the language.
Compare this to wh dependencies in a free word order language like Hindi where the
wh phrase can appear in situ, thereby creating a non-crossing dependency. For such
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cases, avoiding a crossing dependency in a language like English is not possible due to

language-wide grammatical constraints.

We hope this work stimulates future work studying the functional bases for restric-
tions on crossing dependencies using experimental and corpus methods.
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