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Abstract

We investigate the extent to which verb alter-
nation classes, as described by Levin (1993),
are encoded in the embeddings of Large Pre-
trained Language Models (PLMs) such as
BERT, RoBERTa, ELECTRA, and DeBERTa
using selectively constructed diagnostic clas-
sifiers for word and sentence-level prediction
tasks. We follow and expand upon the exper-
iments of Kann et al. (2019), which aim to
probe whether static embeddings encode frame-
selectional properties of verbs. At both the
word and sentence level, we find that contextual
embeddings from PLMs not only outperform
non-contextual embeddings, but achieve aston-
ishingly high accuracies on tasks across most
alternation classes. Additionally, we find evi-
dence that the middle-to-upper layers of PLMs
achieve better performance on average than the
lower layers across all probing tasks.

1 Introduction

We investigate the extent to which verb alternation
classes are represented in word and sentence em-
beddings produced by Pre-trained Language Model
(PLM) embeddings (Qiu et al., 2020). As first com-
prehensively cataloged by Levin (1993), verbs pat-
tern together into classes according to the syntactic
alternations in which they can and cannot partic-
ipate. For example, (1) illustrates the causative-
inchoative alternation. Break can be a transitive
verb in which the subject of the sentence is the
agent and the direct object is the theme, as in ex-
ample (1a). It can also alternate with the form in
(1b), in which the subject of the sentence is the
theme and the agent is unexpressed. However, (2)
demonstrates that cut cannot participate in the same
alternation, despite its semantic similarity.

(1) a. Janet broke the cup.
b. The cup broke.
2) a. Margaret cut the bread.
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b. *The bread cut.

(3) demonstrates an alternation of a different
class — namely, the spray-load class, in which the
theme and locative arguments can be syntactically
realized as either direct objects or objects of the
preposition. Spray can participate in the alternation,
but as shown in (4), pour cannot.

3) a Jack sprayed paint on the wall.
b. Jack sprayed the wall with paint.
4 a Tamara poured water into the bowl.

b. *Tamara poured the bowl with water.

The alternations in which a verb may partici-
pate is taken to be a lexical property of the verb
(e.g. Pinker, 1989; Levin, 1993; Levin et al., 1995;
Schafer, 2009). Moreover, we hypothesize that the
alternations should be observable within large text
corpora, and are therefore available during the pre-
training procedure for PLMs such as BERT (Devlin
et al., 2018). In contrast, ungrammatical examples
such as (2b) and (4b) should be virtually absent
from the training data. This leads us to hypothesize
that PLM embeddings should encode whether par-
ticular verbs are allowed to participate in syntactic
frames of various alternation classes. Our research
questions are as follows:

1. Do PLM word-level contextual representa-
tions encode information about which syntac-
tic frames an individual verb can participate
in?

2. At the sentence level, do PLM embeddings en-
code the frame-selectional properties of their
main verb?

Through our series of experiments, we find that
PLM embeddings indeed encode information about
verb alternation classes at both the word and sen-
tence level. While performance is relatively con-
sistent on the word-level task for the four PLMs
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we analyze, we find that ELECTRA (Clark et al.,
2020) significantly outperforms the other models
for the sentence-level task. Furthermore, we find
evidence suggesting that middle-to-upper layers
encode more information about verb alternation
classes since they consistently improve upon the
lower layers across all tasks.

The rest of the paper is organized as follows:
after a brief review of related literature in Section 2,
we present datasets and models that are relevant
to our experiment in Sections 3 and 4. We then
present two experiments to answer our research
questions in Sections 5 and 7. Section 6 presents
an additional control task (Hewitt and Liang, 2019)
to test whether our linear probes are selective for
the given tasks. Finally, we offer a discussion in
Section 8 and overall conclusions in Section 9.

2 Related work

Our work follows Kann et al. (2019), who at-
tempt to predict verb class membership and sen-
tence grammaticality judgments on the basis of
GloVe embeddings (Pennington et al., 2014) and
embeddings derived from the 100M-token British
National Corpus with a single-directional LSTM
(Warstadt et al., 2019). For the sentence-level task,
they further process the input embeddings using a
sentence encoder trained on a “real/fake” sentence
classification task. Varying multi-layer perceptron
(MLP) architectures are used for the classification
step. Because their primary research focus has
to do with how neural language models inform
learnability (in the sense of human language ac-
quisition), they intentionally use smaller language
models derived from ‘“an amount of data similar
to what humans are exposed to during language
acquisition” and avoid models trained on “several
orders of magnitude more data than humans see in
a lifetime” (p. 291).

As described in Section 5, we depart and build
upon Kann et al. 2019 by examining the embedding
representations of PLMs instead of static embed-
dings. We then use an intentionally simple and
selective linear diagnostic classifier to probe the
representations, as our research questions focuses
on the PLM embeddings themselves. We note that
Kann et al. (2019) achieves only modest perfor-
mance in prediction accuracy and MCC, and only
for a limited number of verb classes. While this is a
valuable result for their research goals, our hypoth-
esis is that PLMs will achieve better performance

due to a combination of their contextual represen-
tations, complex architectures, and larger training
corpora.

To our knowledge, attempting to predict verb al-
ternation class membership along the lines of Levin
1993 from PLM representations is novel. How-
ever, two very closely related lines of work include
the experiments of Warstadt and Bowman (2019),
which respectively evaluate the performance of var-
ious PLMs on the CoLLA (Warstadt et al., 2019) and
BliMP (Warstadt et al., 2020) benchmarks, which
include acceptability judgment examples from a
wide variety of linguistic phenomena (including
verb argument structures). We distinguish our ex-
periments from these papers in two major ways.
First, we attempt to directly probe the linguistic
knowledge of individual PLM embedding layers
with a classification probe instead of specifically
finetuning the models to a specific task. Second,
we limit our focus to verb alternation classes and
present detailed analysis about patterns and trends
across different alternations and their correspond-
ing syntactic frames.

3 Data

In our experiments, we use two dataset created
by Kann et al. (2019). One is the Lexical Verb-
frame Alternations dataset (LaVA), which is based
on the verbs and alternation classes defined in
Levin (1993). It contains a mapping of 516 verbs
to 5 alternation classes, which are further sub-
divided into two syntactic frames for each alter-
nation. The broad categories of the alternation
classes are: Spray-Load, Causative-Inchoative, Da-
tive, There-insertion, and Understood-object. Ta-
ble 1! provides the class distributions for each syn-
tactic frame. Frames and Alternations of Verbs
(FAVA), the other dataset, is a corpus of 9413 semi-
automatically generated sentences formed from the
verbs in LaVA along with human grammaticality
judgments. The sentences in FAVA are categorized
according to the relevant alternation class, and are
separated into train, development, and test sets by
the authors for each category.

'A similar table appears in Kann et al. (2019), but we
present it again here because of discrepancies that we found
in the distribution counts. Notably, it appears that the authors
flipped the positive and negative counts for the there-Insertion
and Understood-Object alternation classes which carries over
to their results.
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LEVIN-CLASS  CAUS-INCH DATIVE SPRAY-LOAD  there-INSERTION ~ UNDERSTOOD-OBJECT

Inch. Caus. Prep. 2-Obj with loc. no-there  there Refl No-Refl
Positive 73 124 65 74 101 86 149 50 84 11
Negative 144 0 377 442 242 257 0 192 419 503
Total 217 124 442 516 343 343 149 242 503 514

Table 1: An updated overview of the LaVA dataset based on verb membership class distributions for each syntactic
frame. “Postitive” refers to the number of verbs that can participate in the specified syntactic frame, while “Negative”

refers to the number of verbs that cannot participate.

4 Models

In addition to BERT, we perform experiments on
several recent Transformer-based PLMs including
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2021), and ELECTRA (Clark et al., 2020) which
vary from BERT in a few ways including modi-
fications to BERT’s tokenization and pre-training
procedure and the size of their training corpus. To
make comparisons between each model fair, we
use the base architectures for each model which
have 12 layers, 12 attention heads, and a hidden
layer size of 768.2

4.1 Model differences

For pre-training, BERT uses standard Masked Lan-
guage Modeling (MLM) wherein tokens from a
given input sequence are masked at random and the
model attempts to recover the masked tokens from
the unmasked tokens and Next Sentence Prediction
(NSP), in which the model tries to predict whether
one sentence follows another in a given text se-
quence. The other PLMs drop NSP from their
pre-training procedure but make other significant
changes to the architecture and the MLM approach.
RoBERTa introduces “dynamic” masking, in which
different tokens are masked across different train-
ing epochs (as opposed to the same training mask
being used across epochs). DeBERTa uses a “dis-
entangled attention mechanism” which computes
attention weights using distinctly encoded position
and context vectors, and also moves absolute posi-
tion encodings from the input layer to the second-
to-last layer. Lastly, instead of randomly mask-
ing input tokens, ELECTRA strategically replaces
tokens with plausible alternatives using a trained
generator network, and separately trains a discrimi-
native model which aims to predict whether each
token in an input sequence was replaced by a gen-
erator sample.

2 All further references to these models refer to their base
architectures.

4.2 Training Data

In addition to variations in the pre-training methods,
the models are also trained on different datasets.
BERT and ELECTRA are both trained on the En-
glish Wikipedia Dump and BookCorpus (Zhu et al.,
2015). DeBERTa is additionally trained on CC-
Stories (Trinh and Le, 2018) and OpenWebText
(Gokaslan and Cohen, 2019). Finally, RoBERTa
is pretrained on all of the aforementioned datasets
as well as the CC-News corpus (Mackenzie et al.,
2020).

5 Experiment 1: Frame Membership
from Word Embeddings

5.1 Method

In order to answer the first question: “Do PLM
token-level representations encode information
about which syntactic frames an individual verb
can participate in?”, we build a diagnostic classifier
for each syntactic frame which takes a verb’s layer
embedding representation as input. For example,
to probe the Spray-Load alternation, we build two
binary classifiers: one that predicts whether a verb
can participate in the “locative” frame and one that
predicts whether a verb can participate in the “with”
frame.

Furthermore, we build a separate classifier for
each model layer based on the embedding repre-
sentations from that particular layer. For the token-
embedding layer, the verb embedding is formed by
averaging the pretrained token embeddings that cor-
respond to a particular verb. For layers 1-12, the
verb embedding is formed by incorporating con-
textual information from the sentences in FAVA.
Specifically, for each verb, we pass the grammati-
cal sentences from FAVA that contain the verb as
input to the PLM and average over the token em-
beddings corresponding to the verb. We choose
to only include grammatical examples in the con-
struction of the word-level contextual embeddings
since we hypothesize that they represent sentences
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MCC

Accuracy

Ref. BERT

DeBERTa ELECTRA

RoBERTa Ref. BERT DeBERTa ELECTRA RoBERTa

CAUSATIVE-INCHOATIVE

Inchoative_ 0.555 0.948 [11] 0.969 [11]  0.959[5] 0.969 [7] 0.855 0.977 0.986 0.982 0.986

Causative * 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
DATIVE

Preposition 0.320 0.954[8] 0.937[12] 0.945[11] 0.928[9] 0.850 0.989 0.984 0.986 0.982

Double-Object 0.482 0.976 [10] 0.968 [10] 0.976 [12] 0.936[9] 0.853 0.994 0.992 0.994 0.984
SPRAY-LOAD

With 0.645 0.972[10] 0.972[12] 0.979[8] 0.930[10] 0.839 0.988 0.988 0.991 0.971

Locative 0.253 0.969 [10] 0.961 [12] 0.961[9] 0.953[11] 0.734 0.989 0.985 0.985 0.983
THERE

No-There " 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000

There 0.459 1.000[9] 0.987[7] 1.000[10] 0.962[10] 0.858 1.000 1.00 1.000 0.988
UNDERSTOOD OBJECT

Refl 0.000 0.868[6] 0.869[12] 0.860[5] 0.884 [11] 0.732 0.964 0.964 0.962 0.968

Non-Refl 0.219 0.850[7] 0.850[10] 0.855[11] 0.794[8] 0.976 0.994 0.994 0.994 0.992

Table 2: Results from Word-Level experiments with static embeddings. Reference MCC is from Kann et al. (2019)’s
CoLA word-level experiments. The “ symbol indicates syntactic frames which only have positive examples, which
trivially achieve 100% accuracy and 0 MCC (see Footnote 1). The best performing model for a given frame is
denoted in bold (ties are not bolded), and the best performing layer for each model is denoted in brackets ‘[]’.

in the actual training corpora of the PLMs more
accurately than the ungrammatical examples. 3 We
then average over the verb representations for all
input sentences in each layer to form the “layer-
embedding” for the verb.

We choose a Logistic Regression classifier with-
out regularization as our diagnostic probe as imple-
mented in scikit—-learn (Buitinck et al., 2013)
and show that it is sufficiently selective in Section
6. Following Kann et al. (2019), we use strati-
fied k-fold cross-validation to split the verbs into
4 equally-sized folds: 3 of which are chosen to be
the training set and the remaining fold chosen to be
the test set.

Also following Kann et al. (2019), we re-
port Matthews correlation coefficient (MCC)
(Matthews, 1975) in addition to accuracy for model
evaluation. MCC is better suited to data such as
ours, in which there is an extreme majority class
bias for all syntactic frames. *

3 A potential issue with constructing the embeddings in this
manner is that the classifier may simply “memorize” whether
there is a corresponding grammatical example for each verb
in FAVA to trivially determine frame membership. However,
we included ungrammatical examples as well in preliminary
experiments and found negligible differences from our final
results.

*All code and data needed to replicate our analysis can be
found at https://github.com/kvah/analyzing_
verb_alternations_plms

5.2 Results

In Figure 1, we present the layer-by-layer perfor-
mance of each PLM and in Table 2, we report
a comparison between the best-performing layer
for each PLM alongside the performance of the
“CoLA-style” reference embeddings from Kann
et al. (2019). Overall, we find that the contex-
tual PLM embeddings dramatically outperform the
reference embeddings in terms of both MCC and
accuracy.

Surprisingly, the PLMs perform well even for the
more challenging frames; for the “locative” frame,
BERT achieves 0.969 MCC compared to 0.253
when using the reference embeddings, and for the
“non-reflexive” frame, ELECTRA achieves 0.855
MCC compared to 0.219 when using the reference
embeddings. Furthermore, we observe consistent
patterns in performance across different layers of
each PLM. As shown in Figure 2, the lower lay-
ers achieve low-to-moderate correlation on aver-
age while the middle-to-upper layers consistently
achieve strong correlation.

6 Control Task

A control task as described by (Hewitt and Liang,
2019) aims to combat the Probe Confounder Prob-
lem, which highlights the issue of supervised probe
classifiers “learning” a linguistic task by combin-
ing signals in the data that are irrelevant to the
linguistic property of interest. In the context of
our first experiment, a confounding probe would
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Figure 1: MCC for each model layer across all syntactic frames on LAVA.

Mean MCC across Layers

0.7

0.6 1

0.5 A

mcc

0.4

model
bert-base-uncased
deberta-base
electra-base-discriminator
roberta-base

0.3

0.2 4

8 10 12
layer

Figure 2: Mean MCC for each model layer across all
syntactic frames on LAVA.

be problematic since it suggests that good model
performance may be attributed to arbitrary signals
picked up by the probe, as opposed to the PLM em-
beddings actually containing linguistic information
about the syntactic frames. To mitigate the Probe
Confounder Problem, we implement an example
control task for the Spray-Load “with” syntactic
frame for BERT.

For each verb v; in LaVA with a binary label y;
denoting whether v; can participate in the syntax
frame SL-WITH, we independently sample a con-
trol behavior C'(v) by randomly assigning a binary
“membership” value to v; based on the empirical
membership distribution of verbs that participate
in the SL-WITH syntax frame. The control task is
the function that maps each verb, v;, to the label
specified by the control behavior C'(V;):

fcontrol(vi) = C(Uz)

Following the experiment design of Hewitt and

Liang (2019), we compare the selectivity of a lin-
ear probe, an Multi-layer Perceptron with 1-hidden
layer (MLP-1), and an MLP with 2-hidden layers
(MLP-2) where the selectivity of a model is de-
fined by the difference between its accuracy on the
real task (i.e. predicting verb membership for the
SL-WITH frame) and the control task. In addition,
we explore several “complexity control” methods
including limitation of feature dimensionality, re-
ducing the number of training examples, and in-
creasing regularization.

6.1 Complexity Hyperparameters

In this section, we describe the complexity control
methods in more detail and enumerate the hyperpa-
rameters that we tried for each method. The control
parameters were chosen based on the three most
effective methods from the experiments of Hewitt
and Liang (2019). To isolate the effect of each con-
trol method, we only change one of the complexity
parameters in each experiment.

6.1.1 Limiting Dimensionality

For the Logistic Regression model, we reduce the
dimensionality of the feature embeddings by per-
forming a Truncated Singular Value Decomposi-
tion and limiting the output matrix to rank k. For
the MLP models, we simply limit the size of the
hidden layer(s) to k.

Considering the input BERT embeddings which
have 768 dimensions, we limit & to the following
values: {20,100, 300, 500}.
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Selectivity Across Complexity Control Methods
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Figure 4: Linguistic Task accuracies for the three complexity control methods.

6.1.2 Reducing Proportion of Training Data

Because LaVA is not split into train and test sets,
we use 4-fold cross validation as done in Kann et al.
(2019) with 3 training folds and one test fold for
evaluation on the control task. As an additional
constraint, we reduce the number of training sam-
ples in each training fold by randomly sampling a
proportion p of the samples and discarding the rest.
Although Zhang and Bowman (2018) recom-
mend training on 1%, 10% and, 100% of the train-
ing data, our training data is relatively small and im-
balanced (71% of the train set verbs do not partici-
pate in the SL-WITH frame). Hence, we experiment
with larger values of p: {0.1,0.3,0.5,0.7,0.9}

6.1.3 L, Regularization

For both the linear and MLP models, we add Lo
regularization with the following strength values:
{0.01,0.1,0.2,0.5, 1}

6.2 Results

Figure 3 shows the high-level trends across experi-
ment configurations for model selectivity. We ob-
serve that the linear model with default parameters
(k = 768,p = 1, Ly = 0) outperforms both the

MLP-1 and MLP-2 model in selectivity (0.420 v.s.
0.397) with no significant decrease in linguistic task
accuracy (0.985 for the linear and MLP-1 models
v.s. 0.988 for the MLP-2 model).

Looking at the effect of complexity control meth-
ods on model accuracy in Figure 4, we find that lim-
iting dimensionality and L9 regularization has little
impact across all configurations, with the worst
model (linear: k = 20) achieving an accuracy
of 0.983 and the best model (MLP-2: k = 100)
achieving only a slightly higher accuracy of 0.991.
On the other hand, reducing the proportion of data
in each training fold appears to have significant im-
pact on model performance. For the linear model,
there is a huge discrepancy in accuracy between
training on 10% of the data (0.869) and the full
training set (0.988). A nearly identical pattern can
be observed for both of the MLP models as well.

Comparing selectivity, the linear models out-
perform both MLPs across all complexity control
methods. For dimensionality control, we see a
lower selectivity in the linear model for lower val-
ues of k (kK = 20,100) but the best linear model
(k = 300) achieved a higher selectivity (0.429)

147



than the best MLP model (0.414). Similarly, the
best performing configuration for reduced training
samples and L9 regularization are linear models
with p = 0.9 (0.423) and Lo = 0.1 (0.431) respec-
tively.

We arrive at two major conclusions from the
control task experiments. The first is that a linear
probe is a good choice for our linguistic task since
it achieves higher selectivity than the MLP models
without substantial loss in model accuracy across
a wide range of complexity control methods. The
second is that limiting dimensionality, reducing
training samples, and Lo regularization are all ef-
fective methods for increasing model selectivity for
both the linear and MLP models. However, the best
configurations are not significantly better (> 0.01
improvement in selectivity) than the default linear
model so we did not make any modifications to our
classification probe. As we only performed these
experiments for BERT and the SL-WITH syntactic
frame specifically, a great avenue for future work
is to test whether our results extend to other PLMs
and syntactic frames.

7 Experiment 2: Grammar Judgments
from Sentence-embeddings

7.1 Method

In the second experiment, we investigate the extent
to which PLMs encode frame-selectional properties
of their main verb. For each PLM and embedding
layer, we fit a binary Logistic Regression classifier
on the FAVA training set for a given alternation
class which predicts whether a given sentence is
grammatical. We ignore the held out development
set because the probe hyperparameters do not need
to be tuned and directly evaluate each model on the
test set. The whole process can be described by the
following equation:

cs, = f(Ws; +b)

where s; refers to the embedding of the whole sen-
tence for layer ¢ (by averaging all ¢ layer’s hidden
states of words in the sentence s), f refers to the lo-
gistic regression classifier, W and b are the parame-
ters of f, and c;;, is a binary value corresponding to
whether the sentence is grammatical. We then ex-
tract the best performing layer for each model and
compare the results with the reference acceptability
judgment model proposed by Kann et al. (2019).

7.2 Results

The MCC and accuracy scores for each model and
layer are shown in Figure 5. From the figure, we
can see that there is significant variation in layer
performance aside from the Understood-object al-
ternation. Generally, we observe a trend in which
performance increases substantially from the lower
(1-4) layers to the middle layers (5-9), with some
models, most notably ELECTRA, continuing to
improve through the upper layers (10-12). This can
be seen more clearly in Figure 6, which shows the
mean layer performance across each category. Fur-
thermore, ELECTRA achieves the best MCC on 5
of the 6 categories: Combined (0.818), Inchoative
(0.864), Spray_Load (0.830), There (0.828), and
Understood-Object (0.869). The outlier frame is
RoBERTa, which achieves the best MCC (0.802)
on the Dative frame.

Table 3 provides a comparison between the best
performing layer from each PLM and the reference
embeddings from Kann et al. (2019) for each al-
ternation class. As defined by Kann et al. (2019)
an MCC value between 0.5 and 0.7 demonstrates
a moderate correlation between predicted and true
labels while an MCC greater than 0.7 implies
strong correlation. From the table, we see all mod-
els are able to obtain strong correlation for the
Understood-Object alternation, the There frame,
and the Causative-Inchoative frame. In contrast,
BERT and RoBERTa are only able to achieve mod-
erate correlation on the Spray-Load frame, while
all models except ROBERTa only achieve moderate
correlation on the Dative alternation. Consistent
with the CoLA-style embeddings, we find that the
PLMs achieve the best performance on average
for sentences from the Understood-Object alterna-
tion class. This is surprising since frames from the
Understood-Object alternation were the hardest to
predict for the word-level task for both the CoLA-
style embeddings and the PLMs. Nevertheless, all
PLM outperform the reference model across all
alternation categories for the sentence acceptability
judgment task.

8 Discussion

On the word level prediction task, all PLMs achieve
strong correlation (> 0.7 MCC) across all syntactic
frames with the strongest performance in the “there”
frame (1.00, achieved by BERT and ELECTRA)
and the weakest performance on the “non-reflexive”
frame (0.794, achieved by RoBERTa). When look-
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COMBINED CAUSATIVE-INCHOATIVE  DATIVE  SPRAY-LOAD THERE UNDERSTOOD
Mcc
REFE. 0.290 0.603 0.413 0.323 0.528 0.753
BERT 0.642 (10) 0.760 (8) 0.678 (6) 0.625 (10) 0.716 (10) 0.842 (9)
DEBERTA 0.653 (9) 0.776 (5) 0.633 (8) 0.704 (12) 0.744 (6) 0.826 (1)
ELECTRA  0.818 (11) 0.864 (11) 0.670 (8) 0.830 (12) 0.828 (12) 0.869 (11)
ROBERTA 0.496 (8) 0.725 (8) 0.802 (2) 0.470 (5) 0.725 (11) 0.793 (1)
ACCURACY
REF. 0.646 0.854 0.760 0.662 0.729 0.874
BERT 0.840 (10) 0.920 (8) 0.880 (6) 0.820 (10) 0.890 (10) 0.921 (9)
DEBERTA 0.847 (9) 0.924 (5) 0.902 (8) 0.858 (12) 0.912 (6) 0.909 (1)
ELECTRA  0.920 (11) 0.954 (11) 0.897 (8) 0.918 (12) 0.937 (12) 0.934 (11)
ROBERTA 0.787 (8) 0.909 (8) 0.944 (2) 0.747 (5) 0.899 (11) 0.893 (1)

Table 3: Results from Sentence-Level experiments. REF refers to the reference probing model in (Kann et al., 2019).
Bolded values show the best result for each alternation class. ‘()’ indicates the best performing layer for each model.
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Figure 5: Layer-by-layer MCC score for each alternation class on FAVA.

ing at accuracies, each model is able to predict
whether a verb belongs to a particular syntactic
frame with excellent accuracy (> 0.95 across all
alternation frames). Morever, looking at Table 2,
we see that the middle (5-9) and upper (10-12) lay-
ers consistently achieve the highest MCC, which is
reinforced by the trend shown in Figure 2.

For the sentence-level experiments, we see a sim-
ilar outcome wherein the upper-middle PLM layers
achieve the best performance on average. How-
ever, we observe that there is much more variation
in performance between each PLM. ELECTRA
and BERT are relatively consistent, since their best
performing layer for all alternation classes either
come from the middle or upper layers. In con-
trast, the lower layers of RoOBERTa achieve the best
performance on the Dative alternation, and both
RoBERTa and DeBERTa achieve the best perfor-

mance on the Understood-Object alternation from
the first layer. These anomalies can potentially be
explained by the claim that different alternation
classes require different types of linguistic knowl-
edge (i.e. syntactic v.s. semantic) which are en-
coded in different PLM layers. However, the con-
sistently strong performance of the upper layers for
BERT and ELECTRA across all alternation classes
provides counter evidence against the claim.

ELECTRA is the best performing model overall
on the sentence-level acceptability task, achieving
the best MCC and accuracy on four of the five alter-
nation classes (all except Dative). Unsurprisingly,
ELECTRA also excels on the combined dataset
compared to the other models (0.165 MCC over the
second-best performing model, DeBERTa). While
it is difficult to attribute the model’s success to a
specific property, one hypothesis is that its gener-
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ator/discriminator architecture closely resembles
the FAVA task of identifying acceptable sentences
from linguistic minimal pairs. This idea is rein-
forced by the authors as well, who note that the
model’s relatively strong performance on CoLA po-
tentially stems from the fact that the acceptability
judgment task of CoLA “closely matches ELEC-
TRA’s pre-training task of identifying fake tokens”
(Clark et al., 2020, p.15).

While we are optimistic about our results, there
are several limitations to our experiments. First,
we only analyze five different alternation classes
which is a small subset of the 83 classes presented
in Levin (1993). In addition — although our control
task ensures that our classifier probe is relatively
selective for the first experiment and BERT, it may
not necessarily generalize well to the second ex-
periment, other syntactic frames, and other models.
In the future, we hope to expand our selectivity
experiments to a wider array of syntactic frames
and models.

Mean MCC across Layers
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0.6 -

mcc

0.51
model

—— bert-base-uncased
deberta-base

—— electra-base-discriminator
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2 4 6 8 10 12
layer

Figure 6: Mean layer MCC score across all alternation
classes on FAVA.

9 Conclusion and Future Work

Overall, our results support the hypothesis that
PLM contextual embeddings encode linguistic in-
formation about verb alternation classes at both the
word and sentence level. For the frame-selectional
verb classification task, all PLMs achieve signifi-
cant improvement upon the reference CoLA-style
embeddings from Kann et al. (2019), especially for
frames in which the CoLA-style embeddings obtain
weak correlation (i.e. “locative”, “reflexive”, and
“non-reflexive”). Also, it is clear that model perfor-
mance tends to improve from lower to upper layers,
which can be seen the most easily from the mean
performance across layer figures. For the sentence
acceptability task, we arrive at similar conclusions,

albeit with greater distinction in results between
different models and layers. While there are nu-
merous factors that may be responsible for the im-
proved performance from PLMs, we hypothesize
that the improvement can largely be attributed to
the attention-based encodings of transformer mod-
els since we only saw modest improvements in
performance from the reference embeddings when
using the bottom “static” layers for each PLM.

In terms of future work, there are several interest-
ing avenues that we hope to explore. From the data
perspective, it would certainly be worthwhile to test
whether our insights and conclusions extends to the
dozens of alternations described in Levin (1993)
that are not present in the LAVA and FaVA datasets.
There are also several interesting adaptations that
can be made to our experiment methodology. For
example, instead of just analyzing the base archi-
tecture for each PLM, we could also analyze small
and large variants to directly evaluate the effect
of scaling training data and model size within the
same model. Moreover, while we attempt to con-
trol the Probe Confounder Problem by building a
selective probe, there is no guarantee that the clas-
sifier probes do not pick up on arbitrary signals
in the training data that lead to non-meaningful
improvements in performance. Two promising al-
ternative approaches that mitigate this risk include
unsupervised evaluation of minimal pairs as shown
in Warstadt et al. (2020) and “amnesic probing”,
which tests whether a property that can be extracted
from a probe is actually relevant to task importance
(Elazar et al., 2021).
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A Complexity Control Results

Dimensions (k) Training Prop. (p) L2 Reg.  Accuracy  Selectivity

DEFAULT PARAMS

Linear 768 1.0 0.0 0.985 0.420

MLP-1 768 1.0 0.0 0.985 0.397

MLP-2 768 1.0 0.0 0.988 0.397
LIMITING DIMENSIONS

Linear 300 1.0 0.0 0.985 0.429

MLP-1 100 1.0 0.0 0.985 0.414

MLP-2 20 1.0 0.0 0.983 0.408
REDUCING TRAINING SAMPLES

Linear 768 0.9 0.0 0.988 0.423

MLP-1 768 0.9 0.0 0.983 0.411

MLP-2 768 0.9 0.0 0.985 0.414
L2 REGULARIZATION

Linear 768 1.0 0.1 0.985 0.431

MLP-1 768 1.0 1.0 0.988 0.420

MLP-2 768 1.0 1.0 0.988 0.420

Table Al: Results from the Complexity Control Experiments. For each experiment, only the best performing
configuration for each model is reported.
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