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Abstract

Recently, the Natural Language Inference
(NLI) task has been studied for semi-
structured tables that do not have a strict
format. Although neural approaches have
achieved high performance in various types of
NLI, including NLI between semi-structured
tables and texts, they still have difficulty in per-
forming a numerical type of inference, such as
counting. To handle a numerical type of infer-
ence, we propose a logical inference system
for reasoning between semi-structured tables
and texts. We use logical representations as
meaning representations for tables and texts
and use model checking to handle a numer-
ical type of inference between texts and ta-
bles. To evaluate the extent to which our
system can perform inference with numerical
comparatives, we make an evaluation protocol
that focuses on numerical understanding be-
tween semi-structured tables and texts in En-
glish. We show that our system can more ro-
bustly perform inference between tables and
texts that requires numerical understanding
compared with current neural approaches.

1 Introduction

Natural Language Inference (NLI) (Dagan et al.,
2006) is one of the most fundamental tasks to de-
termine whether a premise entails a hypothesis.
Recently, researchers have developed benchmarks
not only for texts but for other kinds of resources
as well, a table being one example. Previous stud-
ies have targeted database-style structured tables
(Pasupat and Liang, 2015; Wiseman et al., 2017;
Krishnamurthy et al., 2017) and semi-structured
tables, such as the infoboxes in Wikipedia (Lebret
et al., 2016; Gupta et al., 2020). Our focus here is
on the NLI task on semi-structured tables, where
we handle a semi-structured table as a premise and
a sentence as a hypothesis.

In Figure 1, for example, we consider the semi-
structured table as a given premise and take Joe
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Joe Biden
Born Joseph Robinette Biden Jr.
November 20, 1942 (age 79)
Scranton, Pennsylvania, U.S.
Political party Democratic (1969—present)
Spouse(s) Neilia Hunter (m. 1966; died 1972)

Jill Jacobs (m. 1977)

Hypothesis 1: Joe Biden was born in November.
Hypothesis 2: Joe Biden has had more than two wives.

Figure 1: A semi-structured table describing Joe
Biden'and two hypothesis sentences. This table entails
Hypothesis 1 and contradicts Hypothesis 2.

Biden was born in November as Hypothesis 1.
We can conclude that Hypothesis 1 is entailed by
the table. A semi-structured table has only two
columns and describes a single object, which is in-
dicated in the title. We call elements of the first col-
umn, such as Political Party, keys, each of which
has an associated value in the second column such
as Democratic (1969—present). Pairs of keys and
values are called rows. It is relatively difficult to
understand the information contained in infobox
tables because (i) values are not limited to words
or phrases, and sometimes whole sentences, and
(ii) a row can contain more than one type of infor-
mation, such as the birthday and birthplace in the
Born row.

In recent years, modern neural network (NN)
approaches have achieved high performance in
many Natural Language Understanding bench-
marks, such as BERT (Devlin et al., 2019). NN-
based approaches (Neeraja et al., 2021) have also
achieved high accuracy on the NLI task between
semi-structured tables and texts, but previous stud-
ies have questioned whether NN-based models
truly understand the various linguistic phenomena

'The table was retrieved from https://en.

wikipedia.org/wiki/Joe_Biden on  February
25, 2022. Some rows have been removed to save space.

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Student Research Workshop, pages 84 - 96
May 22-27, 2022 ©2022 Association for Computational Linguistics


https://en.wikipedia.org/wiki/Joe_Biden
https://en.wikipedia.org/wiki/Joe_Biden

(Jia and Liang, 2017; Naik et al., 2018; Rozen
et al., 2019; Ravichander et al., 2019; Richardson
et al., 2020). These studies have shown that NN-
based approaches have failed to achieve a high per-
formance in numerical reasoning.

In this paper, we focus on a numerical type
of inference on semi-structured tables, which re-
quires understanding the number of items in a ta-
ble as well as numerical comparisons. Numerical
comparatives are among the more challenging lin-
guistic phenomena that involve generalized quan-
tifiers. For example, the phrase more than in Hy-
pothesis 2 in Figure 1 is a numerical comparative
and compares two and the number of wives. For
dealing with numerical comparatives, Haruta et al.
(2020a,b) achieved high performance by develop-
ing a logical inference system based on formal se-
mantics. However, Haruta et al. (2020a,b) con-
centrated on the inference between texts only, and
inference systems that reliably perform inference
between tables and texts involving numerical com-
paratives have not yet been developed.

Thus, we aim to develop a logical inference sys-
tem between semi-structured tables and texts, es-
pecially for numerical reasoning. While previous
work (Pasupat and Liang, 2015; Wiseman et al.,
2017; Krishnamurthy et al., 2017) has provided
semantic parsers of constructing query languages
such as SQLs for question answering on database-
style tables, we present logical representations for
semi-structured tables to enable a numerical type
of inference on semi-structured tables. Further-
more, the existing NLI dataset for semi-structured
tables (Gupta et al., 2020) does not contain suffi-
cient test cases for understanding numerical com-
paratives. Thus, there is a need for an evaluation
protocol that investigates the numerical reasoning
skills of NLI systems for semi-structured tables.

Given this background, our main contributions
in this paper are the following:

1. We propose a logical inference system for
handling numerical comparatives that is based
on formal semantics for NLI between semi-

structured tables and texts.

We provide an evaluation protocol and dataset
that focus on numerical comparatives between
semi-structured tables and texts.

We demonstrate the increased performance of
our inference system compared with previous
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NN models on the NLI dataset, focusing on nu-
merical comparatives between semi-structured
tables and texts.

Our system and dataset will be publicly available
at https://github.com/ynklab/sst_
count.

2 Related Work and Background

This section explains the related work of logic-
based NLI approaches and the background of
model checking, which is used for inference be-
tween semi-structured tables and sentences in our
proposed system.

2.1 Logic-based Approach

Based on the analysis of formal semantics, logic-
based NLI approaches can handle a greater vari-
ety of linguistic phenomena than NN-based ap-
proaches can. Some logic-based NLI approaches
using syntactic and semantic parsers based on for-
mal semantics have been proposed (Bos, 2008;
Abzianidze, 2015; Mineshima et al., 2015; Hu
et al., 2020; Haruta et al., 2020a,b). These logic-
based approaches can derive semantic represen-
tations of sentences involving linguistically chal-
lenging phenomena, such as generalized quanti-
fiers and comparatives, based on Combinatory Cat-
egorial Grammar (CCG) (Steedman, 2000) syn-
tactic analysis. CCG is often used in these ap-
proaches because it has a tiny number of combi-
natory rules, which is suitable for semantic com-
position from syntactic structures. In addition, ro-
bust CCG parsers are readily available (Clark and
Curran, 2007; Yoshikawa et al., 2017).

Regarding logic-based approaches for inference
other than inference between texts, Suzuki et al.
(2019) proposed a logical inference system for in-
ference between images and texts. Their system
converts images to first-order logic (FOL) struc-
tures by using image datasets where structured rep-
resentations of the images are annotated. They
then get FOL formulas P for images from these
structures along with the associated image cap-
tions. Hypothesis sentences are translated into
FOL formulas H through the use of a semantic
parser (Martinez-Gomez et al., 2016). For infer-
ence, they used automated theorem proving and
sought to prove P = H. Our proposed inference
system between semi-structured tables and texts is
inspired by Suzuki et al. (2019). While the previ-
ous system uses automated theorem proving for in-
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B1,G1,G2}

(ALICE, {G1}), (BOB, {B1}), (CATHY, {G2}),
(BOY, {B1}), (GIRL, {G1, G2}),

(LIKE7 {(317 G1)7 (B1> G2)7 (G17 Bl)})}

{
{

Logical formula Output
Jz.3y.(BOY(z) A LIKE(z, y)) True
Jz.3y.(GIRL(z) A GIRL(y) A LIKE(z,y)) False
Jz.3y.(CcAT(y) A LIKE(z,y)) Undefined

Figure 2: Outputs of model checking based on an ex-
ample model and three formulas.

ference between images and texts, our system uses
model checking to judge whether a given text is
true under a given table, and it is expected to be a
faster method.

2.2 Model Checking

We use model checking in the Natural Language
Toolkit (NLTK) (Bird and Loper, 2004; Garrette
and Klein, 2009) for making inference between ta-
bles and texts. This system judges a truth-value
of an FOL formula based on FOL structures. An
FOL structure (called model) is defined by a pair
of the domain D and the valuation V', where D
is a finite set of variables and V' is a finite set of
functions. Each element of V is a pair of symbols,
the name of the function and its domain.

Based on the model used, the system will return

¢ true if the FOL formula is satisfiable,
* false if the formula is unsatisfiable, and

* undefined if there is an undefined function in
the formula.

Figure 2 shows outputs from model checking
based on an example model and three formulas.

3 Method

3.1 System Overview

Figure 3 shows the overview of our proposed sys-
tem. The system takes a table and a sentence as in-
puts and determines whether the table entails, con-
tradicts, or is neutral toward the sentence. We rep-
resent the meaning of tables as FOL structures (see
Section 3.2) and the meaning of sentences as FOL
formulas (see Section 3.3). In the process of trans-
lating a table, we first make a filtered table, and
then translate that table to an FOL structure.

In the process of translating a sentence, we con-
vert the sentence to a CCG derivation tree using a
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CCG parser (Yoshikawa et al., 2017). Before pars-
ing, we use a Named Entity Recognition (NER)
system in spaCy? to identify a proper noun in sen-
tences and add extra underscores to spaces and at
the end of phrases so that such phrases can be
categorized as one proper noun. This derivation
tree is modified by a tree transformation so that it
handles numerical expressions correctly. For the
tree transformation, we use tsurgeon (Levy and
Andrew, 2006) (see Appendix A for more details).
We then construct semantic representations (FOL
formulas) of the hypothesis sentences according
to the CCG derivation tree. For semantic pars-
ing based on CCG, we use ccg2lambda (Martinez-
Gomez et al., 2016). As a result, we obtain an FOL
formula representing the whole sentence.

We apply model checking between the FOL
structure and the FOL formula for inference using
NLTK with optimization (see Section 3.4). Un-
der the FOL formula and the FOL structure, we
assume

* entailment if our system returns true,
* contradiction if our system returns false, and

e neutral otherwise.

3.2 Meaning Representations for Tables

The top of the Figure 3 shows the processes of
translating from premise tables to FOL models.
We select the Children and Parents rows from the
table (a) using rows filtering (see Section 3.2.1).
Then, the filtered table (b) is translated into an
FOL structure (¢). In (c), have is a meta-predicate
(see Section 3.2.2), a predicate connecting a title
and other values.

3.2.1 Rows Filtering

To isolate rows from a premise table that are re-
lated to the hypothesis sentence, we apply Distract-
ing Rows Removal (DRR), which was proposed
by the previous approach (Neeraja et al., 2021).
Since that approach was NN-based, a sentence vec-
tor representation was generated for each row in
the table, and the original DRR was applied to
the sentence representation. Then, the similarity
score between each generated sentence and the hy-
pothesis sentence was calculated. In this process,
the previous approach used fastText (Joulin et al.,
2016) to obtain the embedding vectors of words.
They represented a hypothesis vector sequence of
length p as (hg,hi,...,hy,—1) and an i-th row

https://github.com/explosion/spaCy
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Premise Rows Model
" Filterin Construction
(a) Table Jering .
Bryce Dallas Howard E
! : ¢) FOL Structure (Model
Born March 2, 1981 (age 37) H (b) Flltered Table ( ) ( )
) Los Angeles, California, U.S. ! :{ 0, X1, X2, X3, X4, Vo}
8::;":3;’;‘2 ‘?;;;_S;re%m ! Bryce Dallas Howard = {(BRYCE_DALLAS_HOWARD, { X0 }), (CHILD, { X1, X2})
Spouse(s) Seth Gabel Children  Theodore, Beatrice (THEODORE, {X1}), (BEATRICE, {X2}), (PARENT, {X3, X4})
gh'ldrén ;heﬂ;_i[mv ‘fﬂegce Al Parents  Ron Howard, Cheryl Alley (RON_HOWARD, {X3}), (CHERYL_ALLEY, {X4}), (have, {V0})
arent v
Relatives  Paige Howard, Clint Howard (Subl, {(Vo, X0)}), (Ace, {(Vo, X1), (Vo, X2), (Vo, Xa), (Vo, Xa)})
Rance Howard
- Jean Speegle Howard y Knowledge
Injection
(e) CCG Tree (f) FOL Formula Answer
(d) Sentence two__children Ja.(BRYCE_DALLAS_HOWARD(z) 1
1L ' B has N/N ¥ N . A 3z, z1.(CHILD(20) A CHILD(21) } ental ment
Bryce Dal as_Howard i N RN P ; A Je.(have(e) A Subj(e,z) A Acc(e,zo) | 1 contradiction,
has two children. ! NP S[d\NP ! AJe.(have(e) A Subj(e, z) A Acc(e, 1)) | ! neutral
i S[del] i A= (zo = 21))) 1
Syntactic Semantic Model
Parsing Tree Transformation Parsing Checking

Figure 3: Overview of our proposed system with the example set for premise-hypothesis pair describing Bryce
Dallas Howard. Our system returns true (entailment) for this pair.

vector sequence of length g as (£}, t%, ... »téq)-
The similarity score was then calculating using

Finally, the four rows which were the most similar
were selected as the premise.

We follow most of the original DRR, but with
a slight modification. First, since we directly rep-
resent a set of rows as FOL structures, we do not
need to generate a sentence for each row. Thus,
our system makes a simple concatenation (not us-
ing any words) of keys and values rather than a
proper sentence. Also, to improve the similarity
score calculation, we include numbers in a list of
stopwords. In rows filtering, we select the top two
most similar rows as the premise.

3.2.2 Model Construction

We construct a model based on the title and rows
selected in Section 3.2.1. First, we define an en-
tity variable X that indicates a title. For keys and
values in rows,

* when the key is a noun, we define entity vari-
ables X; (i > 1) indicating the value of each,
and

* when the key is a verb, we define event vari-
ables V; (j > 1), whose subject is the title
entity and whose accusative is the value of
each.
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To classify the parts of speech of the keys as nouns
or verbs of the keys, we use spaCy for part-of-
speech (POS) tagging. Keys are usually composed
of nouns, verbs, adjectives, and prepositions, as
shown in Figure 1. Since morphosyntactic ambi-
guity rarely appears in keys, we can classify keys
into nouns and verbs by simply using a POS tag-
ger.

We also introduce a meta-predicate have, with
an event variable Vj. The subject of have is the
variable X indicating the title entity, and the ac-
cusatives are any of the entities in values.

3.2.3 Knowledge Injection

In some inference problems, an inference sys-
tem needs to capture paraphrases (restatements
of phrases that have the same meaning but are
worded differently) in a premise table and a hy-
pothesis sentence. For example, the function WIFE
is injected in a model because spouse can be para-
phrased as wife.

Using knowledge graphs to paraphrase some
words in keys, we calculate the relatedness score
between each word in keys (key_term) and each
word in the hypothesis sentence (hypo_term).
When the score exceeds the threshold (0.5), the
hypo_term is introduced as a function, and the do-
main of which is the same as that of the key_term.
In this process, we use the standard knowl-
edge graph ConceptNet (Liu and Singh, 2004) to
get the relatedness score between key_term and
hypo_term. ConceptNet is a knowledge base that



has
S[dcl]\NP)/NP
Bryce Dallas Howard (Sldell\ )/

N

AQ1-AQ2.Qa(Az.True(), Az.Q1 (Ay.True(),
Ay.3e.(HAVE(e) A Subj(e, z) A Acc(e, v))))

two children

N/N N
AF.F Az.CHILD(x)
N
Az .CHILD(x)

NP

AF1 . AF>.3z¢, z1.(CHILD(xzg) A CHILD(z1)
AF1(z0) A Fa(mo) A Fi(z1) A Fa(z1) A —~(z9 = #1))

Ax.BRYCE(z)
NP
AF1 . AF2.3z.(BRYCE(x)
AFy(z) A Fa(2))

S[dc\N P

AQ2.Q2(Az.True(), Az.3zg, z1.(CHILD(zg) A CHILD(xz1) A True() A 3e.(HAVE(e)
ASubj(e, z) A Acc(e, zg)) A True() A Je.(HAVE(e) A Subj(e, z) A Acc(e, 1)) A —(zg = x1)))

Sldcl]
Jx.(BRYCE(x) A True() A 3zq, x1.(CHILD(zo) A CHILD(xz1) A True() A Je.(HAVE(e)
ASubj(e, z) A Acc(e, zg)) A True() A Je.(HAVE(e) A Subj(e, z) A Acc(e, z1)) A ~(zg = x1)))

Figure 4: A derivation tree of Bryce Dallas Howard has two children. True is a predicate which always returns
true regardless of arity and argument. The function BRYCE is an abbreviation for BRYCE_DALLAS_HOWARD_.

Phrase Logical formula

(a) less than two books AFi F».Vzoz1.((BOOK(xo) ABOOK(x1) A Fi(xo)
AF1 F>.3zox1.(BOOK (o) A BOOK(z1) A Fi(xo)

(b) at least two books
(c) twice

Table 1: Examples of FOL formulas. F} and F5 in (a) and (b) are unary predicates representing additional attributes
of books on the bottom of the syntactic tree. In (c), V' is a unary predicate for verb phrases, () is a binary predicate
for noun phrases, and K is a unary predicate for additional attributes of the event.

includes WordNet (Miller, 1995). We select Con-
ceptNet because InfoTabS requires paraphrases
based on not only hypernymy and hyponymy re-
lations considered in WordNet, but also common
knowledge. For example, to understand whether
the hypothesis Joe Biden has married twice is en-
tailed or not by Figure 1, we need to capture para-
phrases between Spouse in the premise table and
marry or marriage in the hypothesis.

3.3 Meaning Representations for Sentences

We construct meaning representations of hypoth-
esis sentences based on the CCG derivation tree
and Neo-Davidsonian Event Semantics (Parsons,
1990). ccg2lambda (Mineshima et al., 2015;
Martinez-Gémez et al., 2016) is used to obtain
meaning representations (FOL formulas) of hy-
pothesis sentences based on CCG and A-calculus.
We extend the semantic template that defines lexi-
cal entries and schematic entries assigned to CCG
categories in Mineshima et al. (2015) so that it can
handle the numerical expressions for this task. In
total, we add 251 extra lexical entries for the nu-
merical expressions. Figure 4 shows an example
of CCG derivation trees with meaning representa-
tions involving numerical expressions.

We focus on expressions related to numerical
comparatives: less than, no more than, exactly, at
least, no less than, and more than. We need to
consider how to represent the meaning of a noun
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phrase (N P as its CCG category) that involves a
numerical comparative and the number of entities,
such as less than two books. The meaning of this
phrase is analyzed in Table 1a. We also analyze
the meaning of the phrase at least two books in Ta-
ble 1b. The meaning representation of exactly two
books is given as the composition of the represen-
tation of at least two books and the representation
of no more than two books (van Benthem, 1986).

Adverbs of frequency such as twice describe
the number of events, and their CCG category is
(S\NP)\(S\NP). The semantic representation
of twice is given in Table 1c.

In previous work, Haruta et al. (2020a,b) han-
dled generalized quantifiers including numerical
comparatives as binary predicates many. For ex-
ample, the noun phrase two cats is represented as
CAT(z) A many(z,2), which indicates that = has
the property of CAT and is composed of at least 2
entities. Since one of the aims of our system is
to count the elements in the values of premise ta-
bles, our system assigns different entities for every
word or phrase in the values.

3.4 Optimization of Model Checking

To optimize the process of model checking be-
tween tables and texts, we extend the implementa-
tion of model checking in NLTK. Figure 5 shows
the program that evaluates the truth-value of Jz. A.
NLTK is implemented in Python and uses a set,



Karachi

: for y in D do
if the truth-value of A[y/x] is true then
return true
end if
end for
return false

AR

Figure 5: A program for evaluating the truth-value of
Jz.A.

which is an unordered collection, to represent the
domain D of an FOL structure. When evaluating
a for loop with a set (line 1 of Figure 5), an order
of values in the set is not fixed for each run. To fix
the order, we changed the implementation of the
domain from a set to a list.

We also modify the original program for
model checking in NLTK to make judg-
ments faster. First, we sort the domain
D to facilitate faster evaluation, giving
(X[),Xl,...,Xn_l,Vo,Vl,...,Vm_l), where
n and m are the number of entities and events,
respectively. It is sorted this way because the title
variable X is often the subject of the hypothesis
sentence, which can be found at the top of the
meaning representations.

Second, we use constraints for both the existen-
tial and universal quantifiers (3 and V). We do
not substitute one variable for the other type of
bounded variable in the evaluation scheme during
quantification. Third, we use constraints for ex-
istential quantifiers (3) so as not to use the same
variables for two or more bounded variables dur-
ing substitution. We apply this restriction for only
to entity variables because the same variable may
be applied to different bounded variables for each
event. In the process of model checking, we set
a timeout of 10 seconds for judging whether the
formula is satisfiable.

4 Experiments

We evaluate the extent to which our system can
perform inference with numerical comparatives.
We make an evaluation protocol that focuses
on the numerical understanding between semi-
structured tables and texts in English.

4.1 Dataset

We created a new dataset for the numerical un-
derstanding of semi-structured tables. There are
two motivations for doing so. One is that the
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Country Pakistan

Province Sindh

Metropolitan 2011

corporation

City council City Complex, Gulshan-e-Igbal Town
Districts Central Karachi, East Karachi, South

Karachi, West Karachi, Korangi, Malir

Table 2: The premise table for the hypothesis Karachi
has a half dozen districts.

number of test cases for numerical understanding
is limited to the previous NLI dataset for semi-
structured tables, InfoTabS (Gupta et al., 2020). In
addition, to evaluate whether NLI systems consis-
tently perform inference with numerical compara-
tives, we need to analyze whether the prediction la-
bels change correctly when the numbers in the hy-
pothesis sentence are slightly changed from those
in the original hypothesis sentence.

To create the dataset for numerical understand-
ing of semi-structured tables, we first manually ex-
tracted 105 examples involving numerical expres-
sions from the o1, a0, and «g test sets in InfoTabS.
The inference for these examples requires an un-
derstanding of the number of entities and events.
We then made a problem set from each example
and defined the base hypothesis of the test cases
by rewriting to the actual value n with exactly en-
tailed from a premise table.

Table 2 shows a premise table for the hypothe-
sis Karachi has a half dozen districts, which was
extracted from InfoTabS. This premise-hypothesis
pair is an example, and it makes a problem set for
the statement how many districts Karachi has. Be-
cause we can precisely see six districts in Karachi
from the premise table, the base hypothesis of this
problem set is Karachi has exactly six districts,
where a half dozen is defined as the number six.
When the gold label of an example extracted from
InfoTabS is neutral, a base hypothesis of the ex-
ample is made by simply replacing the numerical
comparatives with exactly. The gold label of the
base hypothesis is the same as that of the original
example. For instance, if the original hypothesis is
Bob has more than two dogs, and its gold label is
neutral, then the base hypothesis becomes Bob has
exactly two dogs. Finally, we make test cases from
each base hypothesis using the following process:

(1) We make a new hypothesis sentence S by re-
moving exactly from the base hypothesis.



Hypothesis Gold Note +KG  Ours
Karachi has less than five districts. C 2] All problem sets 0.03 0.31
Karachi has less than six districts. C 1] All problem sets excluding neutral-filled  0.00  0.27
Karachi has less than seven districts. E

Karachi has five districts. E [1] Table 4: The accuracy of problem sets whose test cases
Karachi has six districts. E were all predicted correctly. +KG is an abbreviation for
Karachi has seven districts. C +KG explicit.

Karachi has more than five districts. E [1]

Karachi has more than six districts. C

Karachi has more than seven districts. C

Table 3: A part of the test cases made from the prob-
lem set for the base hypothesis Karachi has exactly six
districts. [i] (i = 1,2) as noted means that the test case
is not defined when n < 4, n being the actual value. E
and C are entailment and contradiction, respectively.

(i) We make two new hypothesis sentences, S
and S_ by replacing the number n in .S with
n+ 1 and n — 1in S, respectively.

(iii)) We make six additional hypothesis sentences
each from S, S, and S_ by adding the ex-
pressions related to numerical comparatives,
less than, no more than, exactly, at least, no
less than, and more than, thus making a prob-
lem set consisting of 21 hypothesis sentences
with correct gold labels. Table 3 shows a part
of the hypothesis sentences.

(iv) We remove unnatural hypothesis sentences
from the problem set, including such as at
least zero and less than one.

Note that here rwo has the same meaning as at
least two. Our dataset consists of 105 problem sets
with 1,979 test cases. The distribution of gold la-
bels is (entailment, neutral, contradiction) = (965,
176, 838). This dataset includes ten problem sets
that are filled with neutral labels. We confirmed
all words are commonly used in a training set in
InfoTabS and our dataset.

4.2 Experimental Setup for Previous
Research

Neeraja et al. (2021) proposed an NN-based model
for inference between semi-structured tables and
texts and tested it by InfoTabS. We compare our
system to +KG explicit, which was the setting for
which the previous model (Neeraja et al., 2021)
achieved the highest performance. +KG explicit
consists of the following four methods for making
sentence representations of tables.
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Implicit Knowledge Addition The model adds
information that is not in the tables and texts to
models by pre-training with a large-scale NLI cor-
pus, MultiNLI (Williams et al., 2018).

Better Paragraph Representation The model
generates more grammatical sentences for specific
entity types, such as money, date, and cardinal,
with carefully crafted templates when making sen-
tence representations of tables.

Distracting Rows Removal (DRR) The model
removes several rows from the premise table that
are unrelated to the hypothesis sentence. For a de-
tailed explanation of DRR, see Section 3.2.1.

Explicit Knowledge Addition The model adds
a suitable meaning to the keys for each premise
from WordNet (Miller, 1995) or Wikipedia articles
by calculating similarity based on the BERT em-
bedding.

+KG explicit makes sentence representations of
tables and uses RoBERTa-large (Liu et al., 2019)
for encoding premise-hypothesis pairs. Almost all
of the setups are identical to what was used in pre-
vious research except (i) the batch size is set to 4
and (ii) we adopt the result of one seed rather than
the average of three seeds.

4.3 Results

Accuracy per Problem Set Table 4 shows the
accuracy of the previous model (+KG) and our sys-
tem (Ours) for a number of problem sets. Our pro-
posed system could correctly predict 31% of all
problem sets, while the previous model only pre-
dicted 3%. Premise-hypothesis pairs whose gold
labels are neutral can be predicted correctly with-
out a precise numerical understanding. Table 4
also shows that +KG could not perform inference
on any problem set whose gold labels were entail-
ment or contradiction at all. On the other hand,
the accuracy of our logic-based system was 27%.
These results indicate that our system better han-
dles inference involving numerical comparatives



+KG Ours
less than k 0.10 0.36
nomore than k  0.10  0.35
exactly k 0.19 0.32
k 024 0.33
at least k 0.08 0.32
no less than & 0.19 0.33
more than k 0.17 035

Table 5: The accuracy for each numerical comparative
construction. +KG is an abbreviation for +KG explicit.
k indicates a number.

than the previous model, being able to more ro-
bustly predict entailment and contradiction labels.
This shows that our proposed dataset for numerical
understanding is challenging for current systems.
We describe the error analysis of our system in the
fourth paragraph of this section.

Understanding for Each Numerical Compara-
tive Table 5 shows the accuracy of both methods
for each numerical comparative construction. We
observe that our proposed method can predict cor-
rect labels more often than the existing method for
all numerical comparatives.

Run Time for Model Checking with Optimiza-
tion We compare the run times for model check-
ing with and without our optimization for model
checking (see Section 3.4). We chose six problem
sets involving different numbers of values, which
consist of two problem sets each whose numbers
of values are 2, 4, and 6. All of the problems re-
quire understanding the number of entities. The
number of test cases is 124. Table 6 shows the av-
erage and maximum run times for ten trials. We
observe that our optimization made model check-
ing much faster.

Error Analysis Error analysis shows that main
errors are caused by the failure of knowledge injec-
tion. Figure 6 shows two premise-hypothesis pairs,
one for which our system was able to perform
inference and one for which it was not. In Fig-
ure 6a, the function HUSBAND was added to the
model in the knowledge injection process because
the relatedness score between spouse and husband
was high (0.747). On the other hand, in Figure
6b, the function WIN was not added to the model
because the relatedness score between award and
win was low (0.336). In addition, even though we
improved the speed of the original model check-
ing program, several test cases still ran out of time.
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Optimization Average Maximum
disabled 3.20 185.17
enabled 0.04 1.26

Table 6: Average and maximum run time (seconds) for
model checking with and without optimization.

For example, the problem with the hypothesis sen-
tence Jimmy Eat World has been on 13 labels (this
gold label is contradiction) exceeded the maxi-
mum time limit (10 seconds).

Discussion We discuss how to handle various
types of inference other than the numerical one
in InfoTabS with our inference system. First, we
have to correctly parse values in various tables and
extract information from them. For example, to
determine whether Hypothesis 1 in Figure 1 is en-
tailed by the premise table, we need to parse the
noun phrase November 20, 1942 into one date for-
mat. In addition to this, various formats are needed
to be provided, such as age, duration, and year
of marriage. Also, some test cases require arith-
metic operations other than counting, such as Joe
Biden and Neilia Hunter divorced six years after
their marriage, based on the premise table in Fig-
ure 1. Although such issues are tricky, we believe
that our logic-based approach is applicable with
adding premises related to arithmetic operations.

5 Conclusion

In this study, we proposed a logic-based system
for an NLI task that requires numerical understand-
ing in semi-structured tables. We built an NLI
dataset that focuses on numerical comparatives
between semi-structured tables and texts. Using
this dataset, we showed that our system performed
more robustly than the previous NN-based model.

In future work, we will improve knowledge in-
jection process to cover various problems. We also
seek to handle other generalized quantifiers such
as many. We believe that our system and dataset
for performing numerical inference between semi-
structured tables and texts could pave the way for
applications of inference between resources other
than texts.
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Jodie Whittaker

Spouse  Christian Contreras

i. Part of the filtered table describing Jodie Whittaker.

D = {Xo, X1,Vo}

V = {(JODIE_WHITTAKER_, {Xg}), (SPOUSE, {X1}),
(CHRISTIAN_CONTRERASM, { X1 }),

(HUSBAND, {X1}), (HAVE, {V0}),

(

SUij {(VO, XO)})7 (A007 {(VO, Xl)})}
ii. Part of the model constructed by our system for (a-i).
Jz.(JODIE_WHITTAKER_(x) A Jxo.(HUSBAND(zo)
A Je.(have(e) A Subj(e, z) A Acc(e, z0))))

iii. An FOL formula constructed from the hypothesis Jodie
Whittaker has had one husband.

(a) Outputs of our system to the premise-hypothesis pair de-
scribing Jodie Whittaker. Our system was able to perform
inference correctly.

Karl Ferdinand Braun

Nobel Prize in Physics (1909)

Awards

i. Part of the filtered table describing Karl Ferdinand Braun.

D = {Xo, X1,Vo}

V = {(KARL, {Xo}), (AWARD, {X1}),
(NOBEL_PRIZE_PHYSIC, { X1}), (HAVE, {V4}),
(Subj, {(Vo, Xo)}), (Acc, {(Vo, X1)})}

ii. Part of the model constructed by our system for (b-i).

Jz.(KARL(z) A 3xo.(AWARD(z0)
A Fe.(WIN(e) A Subj(e, z) A Acc(e, xo))))

iii. An FOL formula constructed from the hypothesis Karl
Ferdinand Braun won one award.

(b) Outputs of our system to the premise-hypothesis pair de-
scribing Karl Ferdinand Braun. Our system was not able to
perform inference correctly.

Figure 6: Two premise-hypothesis pairs, one for which our system was able to perform inference (a) and one for
which it was not (b). The function KARL in (b-ii, b-iii) is an abbreviation for KARL_FERDINAND_BRAUN_. The
underlined functions are added in the knowledge injection process to perform inference.

supported by PRESTO, JST Grant Number JP-
MJPR21CS, Japan.
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Knowledge injection  Accuracy

disabled 0.23
enabled 0.34

Table 7: The accuracy of our proposed system with and
without knowledge injection.

A Examples of Tree Transformation

We detect where to transform by tregex (Levy and

Andrew, 2006), the regular expression for trees.

We have three tsurgeon scripts, all of which are
for handling numerical expressions involving the
number of events. For example, as Figure 7 shows,
we transform the CCG subtree (a) for exactly n
times, where n is a number, into the CCG subtree

(b).

B Ablation Study for Knowledge
Injection

We conducted an ablation study for knowledge in-
jection (see Section 3.2.3). We picked all of the
base hypotheses in our dataset (105 cases in total)
and experimented to see how effective our knowl-
edge injection method is. As seen in Table 7, our
knowledge injection method provided increased
accuracy by 11% (12 cases).
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n times

exactly ((S\NP)\(S\NP))/((S\NP)\(S\NP)) (S\NP)\(S\NP)
((S\NP)I\(S\NP))/((S\NP)\(S\NP)) (S\NP)\(S\NP)
(S\NP)\(S\NP)

(a)

exactly

((SANP)\(S\NP))/((S\NP)\(S\NP))) n
/((S\NP)\(S\NP))/((S\NP)\(S\NP))) (S\NP)\(S\NP))/((S\NP)\(S\NP)) times
(S\NP)\(S\NP))/((S\NP)\(S\NP)) (S\NP)\(S\NP)
(S\NP)\(S\NP)

(b)

Figure 7: An example tree transformation process for exactly n times, where n is a number. (a) is transformed into

(b).
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