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Abstract

Building automatic technical support system is
an important yet challenge task. Conceptually,
to answer a user question on a technical forum,
a human expert has to first retrieve relevant
documents, and then read them carefully to
identify the answer snippet. Despite huge suc-
cess the researchers have achieved in coping
with general domain question answering (QA),
much less attentions have been paid for in-
vestigating technical QA. Specifically, existing
methods suffer from several unique challenges
(i) the question and answer rarely overlaps sub-
stantially and (ii) very limited data size. In this
paper, we propose a novel framework of deep
transfer learning to effectively address tech-
nical QA across tasks and domains. To this
end, we present an adjustable joint learning
approach for document retrieval and reading
comprehension tasks. Our experiments on the
TechQA demonstrates superior performance
compared with state-of-the-art methods.

1 Introduction

Recent years have seen a surge of interests in build-
ing automatic technical support system, partially
due to high cost of training and maintaining hu-
man experts and significant difficulty in providing
timely responses during the peak season. Huge
successes have been achieved in coping with open-
domain QA tasks (Chen and Yih, 2020), especially
with advancement of large pre-training language
models (Devlin et al., 2019). Among them, two-
stage retrieve-then-read framework is the main-
stream way to solve open-domain QA tasks, pi-
oneered by (Chen et al., 2017): a retriever com-
ponent finding a document that might contain an
answer from a large collection of documents, fol-
lowed by a reader component finding the answer
snippet in a given paragraph or a document. Re-
cently, various pre-training language models (e.g.,
BERT) have dominated the encoder design for solv-
ing different open-domain QA tasks (Karpukhin

How many provinces did the Ottoman empire contain in 17th century?
... … At the beginning of the 17th century the Ottoman empire contained 32

provinces. Some of these were later absorbed into the Ottoman Empire, while others … …

How can uninstall Data Studio 3.1.1 where Control Panel uninstall process gets an error?

Question
We are able to install Data Studio (DS) 4.1.2 successfully but unable to uninstall the 
existing Data Studio 3.1.1. When uninstall Data Studio 3.1.1 from Control Panel, it raises 
an error message pop-up window and can not uninstall it. Here is the message: |Java 
Virtual Machine Launcher| X Could not find the main class: com.zerog.lax.LAX. Program 
will exit. How can uninstall Data Studio 3.1.1 where Control Panel process gets an error?

Cause
It is an known behavior/limitation.

Answer
It may be happened where two versions Data Studio 3.1.1 and 4.1.2 installed machine.
Here is an workaround. Please try to uninstall all products including Install Manager
(IM) then reinstall IM and Data Studio 4.1.2. Below are detailed steps:

1. Use IM to uninstall as many packages as possible.

2. Identify the packages that are still installed, and manually clean
them up.
Example on Windows:
- C:\Program Files\IBM\{IBMIMShared | SDPShared}

3. Delete IBM Installation Manager.
Example on Windows:
- Delete the IM install directory:
C:\Program Files\IBM\Installation Manager\
- Delete the AppData directory (IM Agent Data):
Windows 7: C:\ProgramData\IBM\Installation Manager
- Delete the Windows registry (regedit) entry :
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\Installation Manager
- re-install IM

4. Reinstall DS 4.1.2 and other products.

[User Question] We use Data Studio 3.1.1.0   
with DB2 WSE V9.7 FP11 on Windows 

2008. While trying to new version of Data Studio 
4.1.2, we are able to install it successfully. But 
unable to remove the existing 3.1.1.0, getting the 
JVM error "Could not find the main class". Is it a 
bug or something? How we can delete it?

[Answer] Please try to uninstall all products       
including Install Manager (IM) then reinstall
IM and Data Studio 4.1.2.

[TechNote] 

Please try to uninstall all products including Install 
Manager (IM) then reinstall IM and Data Studio 4.1.2.

[A Wiki Article] 
[A Factoid Question] 

(a) A factoid QA example in the SQuAD dataset.

(b) A non-factoid QA example in the TechQA dataset.

Figure 1: Factoid QA is semantic aligned but non-
factoid QA has few overlapping words. Semantic simi-
larities between such non-factoid QA is not indicative.

et al., 2020; Xiong et al., 2020).

Despite the tremendous successes achieved in
general QA domain, technical QA have not yet
been well investigated due to several unique chal-
lenges. First, technical QAs are non-factoid. The
question and answer can hardly overlap substan-
tially, because the answer typically fills in missing
information and actionable solutions to the ques-
tion such as steps for installing a software package
and configuring an application. Different from fac-
toid questions that are typically aligned with a span
of text in document (Rajpurkar et al., 2016, 2018),
semantic similarities between such non-factoid QA
pairs could have a large gap as shown in Fig.1.
Therefore, the retrieval module in retrieve-then-
read framework might find documents that do not
contain correct answers due to the semantic gap
in non-factoid QAs (Karpukhin et al., 2020; Lee
et al., 2019; Yu et al., 2020b). Second, compared to
SQuAD (with more than 100,000 QA pairs), techni-
cal domain datasets typically have a much smaller
number of labelled QA pairs (e.g., about 1,400 in
TechQA), partially due to the prohibitive cost of
creating labelled data. In addition, there are lim-
ited real user questions and technical support docu-
ments, especially for some new tech products and
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communities. Since the pre-trained language mod-
els are mainly trained on general domain corpora,
directly fine-tuning pre-trained language models
may lead to unsatisfying performance due to the
large discrepancy between source tasks (general do-
mains) and target tasks (technical domains) (Chang
et al., 2020; Gururangan et al., 2020).

To address the aforementioned challenges, we
propose a novel deep transfer learning framework
that explores knowledge transfer across tasks and
domains (TransTD). TransTD consists of two com-
ponents: TransT (knowledge transfer across tasks)
and TransD (knowledge transfer across domains).
TransTD jointly learns snippet prediction (reading
comprehension) task and matching prediction (doc-
ument retrieval) task simultaneously, applying it on
both general domain QA and target domain QA.

To address the first challenge of non-factoid QAs,
TransT leverages a joint learning model that di-
rectly ranks all predicted snippets by reading each
pair of query and candidate document. It optimizes
matching prediction and snippet prediction in par-
allel. Compared to two-stage retrieve-then-read
methods that only read most semantically related
documents, TransT considers potential snippets in
every candidate document. When jointly training
these two tasks, snippet prediction pays attention
to local correspondence and matching prediction
helps understand the semantic relationship from a
global perspective, allowing the multi-head atten-
tions in BERT-based encoders to jointly attend to in-
formation from different representation subspaces
at different positions. Besides, the weights of two
training objectives can be dynamically learned to
pay more attention on the more difficult task when
training different data samples.

To address the second challenge of learning with
limited data, TransD leverages a deep transfer learn-
ing model to transfer knowledge from general do-
main QAs to technical domain QAs. General do-
main QA dataset like SQuAD has a much larger
data size and a similar task setting (i.e., snippet
prediction). Though knowledge is different be-
tween two domains, by learning the ability to an-
swer questions in general domains, the model can
quickly adapt and learn efficiently when chang-
ing into a new domain, reflected in faster conver-
gence and better performance. Transfer learning
helps avoid overfitting on technical QAs with lim-
ited size of data. Specifically, our model first ap-
plies the multi-task joint learning in general domain

QAs (SQuAD), then transfers model parameters
to initialize the training in the target domain QAs
(TechQA), making knowledge transfer across do-
mains to address data limitation.

We conducted extensive experiments on the
TechQA dataset and utilized BERT as basic models.
Experiments show that TransTD can provide supe-
rior performance than models with no knowledge
transfer and other state-of-the-art methods.

2 Related Work

Open-Domain QA Open-domain textual ques-
tion answering is a task that requires a system to
answer factoid questions using a large collection of
documents as the information source, without the
need of pre-specifying topics or domains (Chen and
Yih, 2020). Two-stage retriever-reader framework
is the mainstream way to solve open-domain QA,
pioneered by (Chen et al., 2017). Recent work has
improved this two-stage open-domain QA from dif-
ferent perspectives such as novel pre-training meth-
ods (Lee et al., 2019; Guu et al., 2020), semantic
alignment between question and passage (Lee et al.,
2019; Karpukhin et al., 2020; Wu et al., 2018),
cross-attention based BERT retriever (Yang et al.,
2019; Gardner et al., 2019), global normalization
between multiple passages (Wang et al., 2019).

Transfer Learning Transfer learning studies
how to transfer knowledge from auxiliary domains
to a target domain (Pan and Yang, 2009; Jiang
et al., 2015; Yao et al., 2019). Recent advances
of deep learning technologies with transfer learn-
ing has achieved great success in a variety of NLP
tasks (Ruder et al., 2019). Several research work in
this domain greatly enrich the application and tech-
nology of transfer learning on question answering
from different perspectives (Min et al., 2017; Deng
et al., 2018; Castelli et al., 2020; Yu et al., 2020a).
Although transfer learning has been successfully
applied to various QA applications, its applicability
to technical QA has yet to be investigated. In this
work, we focus on leveraging transfer learning to
enhance QA in tech domain.

3 Research Problem

In the technical support domain, suppose we have
a set of questions Q and a large collection of doc-
uments D. For each question Q ∈ Q, we aim at
finding a relevant document D ∈ D and extract-
ing the snippet answer S = (Dstart, Dend) in the
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document D. Note that the answer may not exist,
and so, the relevant document may not exist, either.
All predicted snippets are ranked by a specific span
score calculation method, and (usually) the top-11

answer span is chosen to answer the given question.

4 Proposed Framework

In this section, we present our proposed frame-
work for technical QA. Given a query, we first
obtain 50 Technotes by issuing the query to the
search engine Elasticsearch2. Instead of using a
document retriever based on semantic similarity be-
tween the query and each document, our proposed
TransTD jointly optimizes snippet prediction and
matching prediction in a parallel style. Figure 2
illustrates the design of the framework. It has a
multi-task learning method to transfer knowledge
across the snippet prediction (reading comprehen-
sion) and matching prediction (document retrieval)
tasks. This method is further applied to pre-train
the model on auxiliary domain QAs3. Furthermore,
the weights of two training objectives are dynami-
cally adjusted by calculating the difference between
real answer snippet and predicted snippet. So, the
model can focus on optimizing the more difficult
task when training different data samples. Lastly,
Our model has a novel snippet ranking function
that uses snippet prediction to obtain an alignment
score and linearly combines it with the matching
prediction score.

4.1 Knowledge Transfer across Tasks

We build our model upon BERT (Devlin et al.,
2019) to jointly optimize on the RC and DR tasks.
Suppose Θ has the BERT encoder parameters.
When we apply domain knowledge transfer, which
will be introduced in the following section, we ini-
tialize it with the parameters Θ(aux) trained on the
auxiliary domain; when we do not apply the trans-
fer, we initialize it with the original pre-trained
BERT parameters. We have two multi-layer per-
ceptron (MLP) classifiers for the two tasks, whose
parameters are denoted by θRC and θDR, respec-
tively. Both classifiers are randomly initialized.
More specifically, the RC classifier is to predict
answer snippets, and the DR classifier is to predict

1Since technical domain RC is extremely difficult, we also
evaluate performance on top-5 predictions in our experiments.

2Elasticsearch – https://www.elastic.co/elasticsearch/
3In our work, auxiliary domain QAs are from general

domain QAs, so we use these two words interchangeably.

document matching. The joint loss is as follows:

L(aux) = LRC(Θ(aux), θ
(aux)
RC )

+λ(aux) · LDR(Θ(aux), θ
(aux)
DR ),(1)

where λ is a hyper-parameter for the weight of the
DR task over RC task.

Calculate adjustment factor As shown in
Eq.(1), the weights between two training objec-
tives are only adjusted by a pre-determined hyper-
parameter λ. However, for different samples in the
dataset, the difficulty of learning snippet prediction
and matching prediction is different. The weight
of two training objectives should be dynamically
adjusted so that the model can focus on optimiz-
ing the more difficult task when training different
data samples. Since non-factoid questions are open-
ended questions that often require complex answers
that are mostly sentence-level texts, positional re-
lationships between start token and end token in
answer snippets have more fluctuations than fac-
toid answers. Therefore, we take the difference
between real answer snippet and predicted snippet
to measure the difficulty of snippet prediction. In-
tuitively, when the predicted answer snippet is sig-
nificantly different from the actual answer snippet
(much larger or much smaller), it indicates snippet
prediction is difficult for the current data sample.
So, the model should focus on optimizing the read-
ing comprehension part. On the contrary, the model
should focus on optimizing the document retrieval
part. Formally, the weight-adjustable joint learning
loss function is defined as:

L(aux) = w · LRC(Θ(aux), θ
(aux)
RC )

+λ(aux) · LDR(Θ(aux), θ
(aux)
DR ),(2)

w = exp( |(Dend−Dstart)−(D̂end−D̂start)|
Dend−Dstart

). (3)

4.2 Knowledge Transfer across Domains
Besides transferring across tasks, in our framework,
we employ knowledge transfer across domains. We
identify a dataset from an auxiliary domain (not a
technical support domain) for technical question
answering like SQuAD. We apply the multi-task
learning to the auxiliary domain. The goal is to
learn BERT encoder parameters Θ(aux) and two
MLP classifiers θ(aux)

RC and θ(aux)
DR :

L(aux) = LRC(Θ(aux), θ
(aux)
RC )

+λ(aux) · LDR(Θ(aux), θ
(aux)
DR ),(4)
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Figure 2: Our framework performs knowledge transfer across tasks and domains. It explores the mutual en-
hancement between the snippet prediction (reading comprehension) and matching prediction (document retrieval),
applying multi-task learning to the BERT models on both auxiliary domain (SQuAD) and target domain (TechQA).

Here the encoder is initialized by the original pre-
trained BERT parameters. We will initialize the
BERT encoder in the target domain Θ with Θ(aux)

(used in TransTD-Mean and TransTD-CLS). When
λ(aux) = 0, we apply the single RC task on the
auxiliary domain (used in TransTD-single).

4.3 Framework Components
Question and Document Encoder Given a pair
of question Q and document D, we first build
a concatenation by [[CLS], Q, [SEP], D, [SEP]],
where [CLS] stands for a classification token and
[SEP] separates components in the sequence. The
BERTΘ encoder generates contextualized repre-
sentations of every token X in the input sequence
q, which is denoted by BERTΘ(q)[X] ∈ Rd,
where d = 1024. So we have a matrix of to-
ken representations H ∈ Rm×d, where H(k) =
BERTΘ(q)[q[k]] (k is the index of the token).

Reader MLP This classifier reads the represen-
tation matrix H and computes the score of each
token being the start token in the answer snippet
pstart ∈ Rm and the score of each token being the
end token pend ∈ Rm.

pstart = wstart ·HT, pend = wend ·HT, (5)

where wstart,wend ∈ Rd are trainable parameters.
We have the snippet SRC = (D̂start, D̂end) as

D̂start = argmaxk∈{1,...,m}pstart[k], (6)

D̂end = argmaxk∈{1,...,m}pend[k]. (7)

Matching MLP Suppose we have the represen-
tation of the sequence q. It can be denoted by

h ∈ Rd. The classifier is to predict whether the
question Q and document D are aligned, which is
a binary variable projected from h:

pDR = σ(wDR · h), (8)

where σ is the sigmoid function and wDR ∈ Rd

are trainable parameters. We have two options to
produce h from the input sequence q. The first op-
tion is to apply mean pooling to the representations
of all tokens (used in TransTD-Mean):

h = MEAN({BERTΘ(q)[X]|X ∈ q}). (9)

The second option is to use the classification token
[CLS] (used in TransTD-CLS):

h = BERTΘ(q)[CLS]. (10)

Joint Inference The reading MLP takes question
and document pairs and predicts a reading score,

Sreader = (pstart[Ds] + pend[De])

−(pstart[0] + pend[0]). (11)

where p(·)[0] denotes the probability of taking first
token of the sequence as the start position or end
position of the snippet. The joint ranking score of
a (Q, D) pair is a linear combination of reading
score and matching score,

S = α · pDR + (1− α) · Sreader. (12)

It should be noted that different
from previous work that only lever-
ages the first term in reading score, i.e.,
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Table 1: Statistics of TechQA. The test set is not publicly available, only allowing people to submit models for
evaluation. The length of TechNotes is much bigger than that of question and answer texts.

#Ques. (answerable/non-ans.) #TechNotes Len-Ques. Len-Ans. Len-Notes

Train 600 (450 / 150) 30,000 52.1±31.6 48.1±38.7 433.9±320.6
Dev. 310 (160 / 150) 15,500 53.1±30.4 41.2±27.7 449.1±351.2
Test 490 24,500 - - -

Table 2: Ablation study on knowledge transfer across tasks and across domains on TechQA. TransTD transfers
knowledge across both tasks and domains, and TransTD+ is further improved by the adjustable weight.

Methods Adjustable Source task(s) Target task(s)
Reading Comprehension Document Retrieval

Ma-F1 HA-F1@1 HA-F1@5 MRR R@1 R@5

BERTDR - 8 - DR - - - 55.80 45.58 58.23
BERTRC - 8 - RC 52.49 24.92 37.26 51.20 48.13 56.25

TransD
- 8 RC DR - - - 60.63 58.13 64.38
- 8 RC RC 55.31 34.69 50.52 64.60 60.63 68.23

TransT
CLS 8 - RC+DR 53.43 26.83 38.50 51.19 46.88 56.88
Mean 8 - RC+DR 52.30 26.28 41.50 52.68 47.50 59.35

TransTD
CLS 8 RC+DR RC+DR 56.43 39.12 52.30 66.79 64.38 70.63
Mean 8 RC+DR RC+DR 56.88 37.96 49.83 67.55 67.50 69.38

TransTD+ CLS 4 RC+DR RC+DR 56.66 38.33 50.95 67.80 65.00 72.50
Mean 4 RC+DR RC+DR 58.58 40.28 52.57 67.98 66.88 73.13

Table 3: TransTD outperforms two-stage retrieve-then-
read methods that retrieve document based on semantic
alignment. k is the number of retrieved documents.

Method Setting Ma-F1 HA-F1@1 R@1

BERTserini (Yang et al., 2019) k=1 51.34 15.23 30.00
(with BM25 as retriever) k=5 56.60 28.31 48.75

DPR (Karpukhin et al., 2020) k=1 53.22 15.57 26.25
(w/o pre-trained retriever) k=5 56.47 30.40 47.50

DPR (Karpukhin et al., 2020) k=1 54.82 19.46 30.63
(with pre-trained retriever) k=5 58.56 33.03 53.13

TransTD-Mean+ (Ours, Swith) - 58.58 40.28 66.88

Sreader = (pstart[Ds] + pend[De]) (Xiong
et al., 2020; Qu et al., 2020), our added second
term improved inference performance. This is
because during the training time, the span label
of a document that does not contain an answer is
set to (0, 0), and such negative documents are the
majority. Therefore, (pstart[0] + pend[0]) reflects
the probability that Q and D is not aligned. See
Table 4 for experimental comparisons.

5 Experiments

5.1 TechQA Dataset

The TechQA dataset (Castelli et al., 2020) con-
tains actual questions posed by users on the IBM
DeveloperWorks forums. TechQA is designed for

Table 4: Our proposed snippet ranking function can
bring additional improvements. Using (ps[0] + pe[0])
reflects the degree of misalignment between Q and D.

Snippet ranking method Ma-F1 HA-F1@1 R@1

MP-BERT (Wang et al., 2019)
49.45 24.65 43.75

(SMP-BERT = pDR · ps · pe)

WKLM (Xiong et al., 2020)
57.82 39.71 66.25

(SBERT = α · pDR + ps + pe)

Ours (w/o document score) 58.58 40.28 65.00
(Sw/o = ps + pe − ps[0]− pe[0] )

Ours (with document score) 58.58 40.28 66.88
(Swith = α · pDR + Sw/o)

machine reading comprehension tasks, Each ques-
tion is associated with a candidate list of 50 Tech-
notes obtained by issuing a query on the search
engine Elasticsearch4. A question is answerable if
an answer snippet exists in the 50 Technotes, or is
unanswerable otherwise. Data statistics are given
in Table 1. In TechQA, the training set has 600
questions in which 450 questions are answerable;
the validation set has 310 questions in which 160
questions are answerable; the test set has 490 ques-
tions. The Technotes are usually of greater length
than question and answer texts.

4https://www.elastic.co/elasticsearch/
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Figure 3: λ is the weight of the DR task loss over the RC task loss. When λ = 4.0, TransTD achieves the best
performance for both RC (left two) and DR (right two) tasks.
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Figure 4: The more layers being fine-tuned in the target domain, the better performance we can have. However, it
shows the pattern but not always true in the middle of the range.

5.2 Evaluation methods

The accuracy of the extracted snippets is evaluated
by Ma-F15 and HA_F1@K. Ma-F1 is the macro
average of the F1 scores computed on the first of
the K answers provided by the system for each
given question:

Ma-F1 =

∑K
i=1 F1@K

K
, (13)

where F1@K computes F1 scores for top-K an-
swer snippets, selects the maximum F1 score, and
computes the macro F1 score average over all ques-
tions. HA_F1@K calculates macro F1 score aver-
age over all answerable questions. Besides, mod-
els are evaluated on retrieving and ranking docu-
ment by mean reciprocal rank (MRR) and recall
at K (R@K). R@K is the percentage of correct
answers in top K out of all the relevant answers.
MRR represents the average of the reciprocal ranks
of results for a set of queries.

5.3 Ablation Study

TranT transfers knowledge across tasks on the tar-
get domain, with multi-tasks of RC and DR.
TranD transfers knowledge from source domain
RC to target domain RC w/o multi-task learning.
TransTD transfers knowledge across both tasks
and domains. TransTD+ is further improved by the
adjustable weight.

5To avoid confusion between F1 (used on the TechQA
leaderboard) and F1@K, we use Ma-F1 instead of F1.

5.4 Experimental Analysis
5.4.1 Knowledge transfer across domains
In Table 2, the model first fine tuning on the source
domain QA (SQuAD) then further fine tuning on
the target domain QA (TechQA) makes superior
performance than only fine tuning on the target do-
main QA. This indicates knowledge transfer from
general domain QA is crucial for technical QA.

5.4.2 Knowledge transfer across tasks
In Table 2, transferring knowledge across tasks bet-
ter capture local correspondence and global seman-
tic relationship between the question and document.
Compared with BERTRC, TransT improves Ma-F1
by +0.94% and HA_F1@1 by +1.91%.

5.4.3 Across both tasks and domains
In Table 2, transferring knowledge across both
tasks and domains further improve model perfor-
mance. TransTD fine tunes on SQuAD, then further
fine tunes on the TechQA with both RC and AR
tasks. It performs better than TransD and TransT.
TransTD+ makes adjustable joint learning, which
further brings +1.7% and +2.32% improvements
on Ma-F1 and HA_F1@1 compared to TransTD.

5.4.4 Comparison with retrieve-then-read
(two-stage) methods

Using semantic similarity to predict alignment be-
tween query and document in open-domain QA
is an efficient and accurate method. It can be
statistical-based (e.g., BM25) (Yang et al., 2019)
or neural-based that can be jointly optimized with
snippet prediction (Karpukhin et al., 2020; Lee
et al., 2019). However, as shown in Table 3, in
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Figure 5: Error analysis. The left figure represents the proportions between correct and wrong prediction on
DR. The right figure represents the proportion of RC results when the retrieval phase already predicts the correct
document. (Here, “too small” means that if the prediction is SRC = (D

(pred)
start , D

(pred)
end ) and the truth is S =

(Dstart, Dend), we have D(pred)
start > Dstart and D(pred)

end < Dend; on the contrary, “too large” means we have
D

(pred)
start < Dstart and D(pred)

end > Dend.)

the case of the same encoder (i.e., BERT), our pro-
posed TransTD with novel snippet ranking function
can identify answers more accurately than above
methods. This means that our method is more ef-
fective in the context of non-factoid QAs whose
semantics of query and document are not aligned.

5.5 Parameter Analysis

Loss ratio In Figure 3, we compare performance
with loss ratio between the RC and DR tasks, λ in
Eq.(1). We observe that when λ = 4.0, TransTD
achieves the best performance for both RC and
DR tasks. If the loss ratio becomes more than 4.0,
the performance decreases significantly. This is
because RC helps DR more than DR helps RC,
which is consistent with results in Table 2.

Number of fine tuning layers As shown in Fig-
ure 4, we compare performance on different num-
bers of fine tuning layers. Fine tuning all layers (24
layers) makes the best performance. However, the
model performance and the number of fine tuning
layers are not an absolute linear relationship. For
example, only fine tuning 12 to 14 layers achieves
better performance than having 16 or 18 layers,
making a good reference for training with limited
GPU memories.

5.6 Error Analysis

As shown in Figure 5, we manually categorize the
predictive results of 160 answerable question in-
stances in the development set. First of all, there
are 107 (64.4%) questions that can be correctly
matched with corresponding documents through
the joint inference by Eq.(12), however, 53 (35.6%)
questions are mismatched with the documents that
do not contain desirable answers. Additionally,

among 107 correct predictions, only 39 (36.4%)
of them are given with the correct answer snippet
in the best matching document. Among 68 wrong
predictions, 32 (47.1%) of them are mismatched
with the answer span. Besides, 16 (23.5%) of them
are provided with a smaller span of answer snippet
than the actual span, in which the average length
of answer snippet is 44 words. On the contrary, 20
(29.4%) of them are provided with a larger span of
answer snippet than the actual span, in which their
average length is 16 words. We observe that the
TechQA dataset offers a challenging yet interest-
ing problem, where the answers have a wide range
of the number of words. Some long answers are
across multiple sentences.

6 Conclusion

In this paper, we studied QA in the technical do-
main, which was not well investigated. Techni-
cal QA faces two unique challenges: (i) the ques-
tion and answer rarely overlaps substantially (on-
factoid questions) and (ii) very limited data size. To
address the challenges, we propose a novel frame-
work of deep transfer learning to effectively address
TechQA across tasks and domains. To this end,
we present an adjustable joint learning approach
for document retrieval and reading comprehension
tasks. Our experiments on the TechQA dataset
demonstrates superior performance compared with
non-transfer learning state-of-the-art methods.
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