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Abstract

It is widely known that a good language
model (LM) can dramatically improve the
quality of automatic speech recognition
(ASR). However, when dealing with a low-
resource language, it is often the case that
not only aligned audio data is scarce, but
there are also not enough texts to train a
good LM. This is the case of Beserman, an
unwritten dialect of Udmurt (Uralic > Per-
mic). With about 10 hours of aligned au-
dio and about 164K words of texts available
for training, the word error rate of a Deep-
speech model with the best set of parame-
ters equals 56.4%. However, there are other
linguistic resources available for Beserman,
namely a bilingual Beserman-Russian dic-
tionary and a rule-based morphological an-
alyzer. The goal of this paper is to explore
whether and how these additional resources
can be exploited to improve the ASR qual-
ity. Specifically, I attempt to use them in
order to expand the existing LM by gen-
erating a large number of fake sentences
that in some way look like genuine Beser-
man text. It turns out that a sophisticated
enough augmented LM generator can in-
deed improve the ASR quality. Neverthe-
less, the improvement is far from dramatic,
with about 5% decrease in word error rate
(WER) and 2% decrease in character error
rate (CER).

Abstract

BaHB3BUIBL TOAMO, YMOH JISCHTOM Kb
MO/IesIb BEpachbKeMe3 acpKa3 TOIMAaHIIICh
3eWNBIKC TpOCHbl  OYASTHIHBI  ObITaTd
mybica. O3bbl K€ HO, KyKe BEpachbKOH
MBIHY THYM KBUIBEC CSPBICh, KBI3bbI

Ke pacrio3HaBarteyie3 JBIIIETOH [OHHA
BOJIITOM Kyapa, O3bbl MK YMOHM KBUI
MOJeNie3  JBIIIETOH TIOHHA  TeKCThEC
YeMBICh TYyXK OXBIT JIyO. Yamak Tatie
IOTIyp YIOMYPT KBULUISH TOXBSCHKETTIM
OecepMaH BepachbKEeTIHbBI3 KbULIIMBIH. Ku
ynambel BaHb 10 yac mana BOJISITSM HO
pacimppoBath KapeM Kyapa HO 164 ciopc
nasia y’ke KyTdM KbLTBECHIH TeKCThEC. Ta
TOJSTHECHIH JBIIIeTCKbIca, Deepspeech
cucreMa Bo3pMatd 56,4% WER (Mbin-
JIAHb ~ Paclo3HAaTh KapeM KBbUIbECIOH
npouieHTchl).  O3bBl Ke HO OecepMmaH
BEPaChKEThs BaHb Ha MYKET KBUITO/IOH
BaHEChEC: OecepMaH-3yd KbLUTIOKAM HO
IOHeppaabsiH MOpQOJOTH  aHaJIM3aTop.
Ta yxi19H 1ene3 — BajaHbl, Jy3-a Be-
pacpKeMe3 acapKa3 TOAMAHIJIICH 3eUIIBIKCD
OyJI9TOH TMOHHA Ta BaTcaM PeCypChECTBI
yXKe KyThIHBL  KbUICSIpBICH, COOC BBLTD
MBIKBSCHKBICA, TYPTTIMBIH KbIJI MOJIENE3
MAaChKHITATBIHBI, CO TOHHA KBUIIBITIMBIH
BaJl TPOC 39MOC JIYUCHTIM IIYOChHEC,
KYABECHI3 KYyI-OI JIACSHb TYHAJIO 33MOC
O6ecepman Tekctibl.  LllyochEcThl KbLI-
JBITUCH TEHepaTop THIPMBIT «BU3bMO»
Ke, pAaCMO3HABAaHWIH 3ewIblKe3 33M33
HO Oymd BbUAM. O3bbl K€ HO Ta YMOSIH
MIGICKBIMOH  JIyD IIybICa, BEpaHbl YT
aysl: WER Bo3pMmatoH yce 5%-nbl nana,
vom CER (MblajiaHb pacrio3HaTh Kapem
OYKBAOCJI9H MPOIEHTCh) — 2%-JIHL.
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W3BecTHO, 4YTO XOpoluas s3bIKOBas MO-
JeMb MOXET CYIIECTBEHHO TOBBICHTbH Ka-
YeCTBO aBTOMATHYECKOTO PaCO3HABAHHS
peun. OgHAKO eclu pedb UAET O HEeKpYyII-
HOM $I3BIKE, 3a4acTyl0 UMEETCsl He TOJIBKO
CJIMIIIKOM MaJIO BBIPOBHEHHOI'O 3BYKa IJId
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00y4yeHus1 pacro3HaBatelis, HO W CJIHII-
KOM MaJl0 TEKCTOB JUIsi OOYYeHHUs] XOpo-
el s3IKoBoM Mozeir. MIMEeHHO TakoB
ciy4ail OecepMsIHCKOTO — OecriChbMeHHO-
ro IMaJIeKTa yJMypTCKOTo s3bIKa. B Haiiem
pacropsikeHuu uMerorcst okosio 10 yacos
3ByKa, BBIPOBHEHHOTO C pacIIu(poBKaMH,
U TEKCThl 00BEMOM OKOJIO 164 ThIC. Cllo-
BoynotpeOyieHuii. OOYUYUBIIUCh, HAa ITUX
JaHHbIX, cuctema Deepspeech nemoHcTpu-
pyer WER (IIpOoUEHT HenpaBUJIBHO pac-
MO3HAHHBIX CJIOB), paBHBIA 56,4%. OnHa-
KO /111 OECEpPMSIHCKOTO CYIECTBYIOT JIPY-
rve JIMHTBUCTUYECKHE DPECypChl, a MMEH-
HO OecepMsIHCKO-PYCCKHIA CJIOBaph W TIpa-
BWJIOBBI MOP(OJIOTMYECKUI aHAIM3aTop.
[lenb 3TOM paGOTBl — BBISICHUTH, MOXHO
JIM ICTIOJTb30BaTh 9TH JIOTIOJHUTESIbHBIE pe-
CYPCHI 1J151 YJIy4lIeHUs] PAaCIIO3HABAHUS pe-
yy. B dYacTHOCTH, mpeanpuHUMAeTCsl IMo-
IIBITKA PACIIMPUTh C HUX IOMOUIBIO S3bl-
KOBYIO MOJIeJIb MYTEM MOPOXAEHHUS OO0JIb-
IIIOT0 KOJIMYECTBA HEHACTOSIIIUX MpPeasio-
JKeHUH, KOTOpble B HEKOTOPBIX OTHOIICHU-
SIX TIOXOXH HA HACTOSIIMI OecepMsIHCKUI
TekcT. OKa3plBaeTCsl, YTO €CIM FeHepaTop
MpeIOKeHUA JOCTaTOYHO “YMEH, Kade-
CTBO paclo3HaBaHUs [OCJIE TOrO JEUCTBU-
TeJIbHO Bo3pactaeT. OfHaKoO 3TO yJIydllle-
HUE BPSJ JIM MOXKHO Ha3BaTh CYIIECTBEH-
HbIM: NIokazatesib WER nagaer npumepHo
Ha 5%, a CER (mipolieHT HEnmpaBUIILHO pac-
MO3HAHHBIX OYKB) — Ha 2%.

1 Introduction

The key to reaching good ASR quality is having lots
of data, i.e. thousands or at least hundreds of hours
of text-aligned sound recordings. For most lan-
guages in the world, however, resources of that size
are unavailable. With only a dozen hours of sound
at hand, it is currently impossible to reach a WER
low enough for the system to be usable in real-world
applications. Nevertheless, a system with a WER,
which is high, but lower than a certain threshold
(e.g. 50%), could still be used in practice. Specifi-
cally, the primary motivation behind this research
was the need to transcribe large amounts of spo-
ken Beserman for subsequent linguistic research. If
an ASR system, despite its high WER, could facili-
tate and accelerate manual transcription, that would
be a useful practical application, even if limited in

scope. Other possible applications of such under-
trained noisy ASR systems have been proposed by
Tyers and Meyer (2021). This is why it makes sense
to experiment with datasets that small.

A number of techniques have been used to
achieve better results in low-resource ASR systems.
This includes pre-training the model on the data
from another (possibly related or phonologically
similar) language (Stoian et al., 2020), augment-
ing the sound data with label-preserving transfor-
mations (Tiiske et al., 2014; Park et al., 2019), and
training the LM on a larger set of texts taken e.g.
from a written corpus (Leinonen et al., 2018). That
a good language model can play an important role
can be seen e.g. from the experiments on ASR for
varieties of Komi, a language closely related to Ud-
murt, as described by (Hjortnaes et al., 2020b) and
(Hjortnaes et al., 2020a). Replacing a LM with a
larger and more suitable one (in terms of domain)
can decrease WER significantly.

Beserman is traditionally classified as a dialect of
Udmurt (Uralic > Permic) and is spoken by around
2200 people in NW Udmurtia, Russia. Unlike stan-
dard Udmurt, it lacks a codified orthography and
is not used in the written form outside of scien-
tific publications. This paper describes experiments
with training Deepspeech (Hannun et al., 2014) on
transcribed and elicited Beserman data. I am par-
ticularly interested in augmenting the LM with the
help of linguistic resources that exist for Beserman:
a Beserman-Russian dictionary and a morpholog-
ical analyzer. The former is used, among other
things, to transfer information from a model trained
on Russian data. Same kinds of data augmentation
could be relevant for many other under-resourced
languages and dialects, since bilingual dictionaries
and rule-based tools often exist for varieties, which
are poor in raw data.

The paper is organized as follows. In Section 2,
I describe the dataset and lay out the reasons why
improving the LM could be challenging. In Sec-
tion 3, the training setup is outlined. In Section 4,
I describe how the artificially augmented LM was
generated. In 5, the original results are compared
to that of the augmented LM. This is followed by a
conclusion.

2 The data

The Beserman dataset I have at hand consists of
about 15,000 transcribed sound files with record-
ings from 10 speakers, both male and female, total-



ing about 10 hours (with almost no trailing silence).
Most of them come from a sound-aligned Beser-
man corpus, whose recordings were made in 2012—
2019 and have varying quality. Another 2,700
files, totaling 2.5 hours, come from a sound dictio-
nary and contain three pronunciations of a head-
word each. The duration of most files lies be-
tween 1 and 5 seconds. In addition to the texts of
the sound-aligned corpus, there are transcriptions
of older recordings, which are not sound-aligned
as of now, and a corpus of usage examples based
on the Beserman-Russian dictionary! (Arkhangel-
skiy, 2019). All these sources combined contain
about 27,400 written Beserman sentences (some
very short, some occurring more than once), with
a total of 164K words.

Such amount of textual data is insufficient for
producing a well performing LM. Since Beserman
is a morphologically rich language, most forms
of most lexemes are absent from the sample and
thus cannot be recognized, being out-of-vocabulary
words. Unlike in some other studies mentioned
above, it is hardly possible to find Beserman texts
elsewhere. One way of doing that would be to
use texts in literary Udmurt, which are available in
larger quantities (tens of millions of words). Al-
though I have not explored that option yet?, I doubt
it could have the desired effect because the avail-
able Udmurt texts belong to a completely different
domain. While most Beserman texts are narratives
about the past or the life in the village, or every-
day dialogues, most Udmurt texts available in dig-
ital form come from mass media. There is a pro-
nounced difference between the vocabularies and
grammatical constructions used in these two do-
mains.

Instead, I attempt to utilize linguistic resources
available for Beserman: a Beserman-Russian dic-
tionary comprising about 6,000 entries and a mor-
phological analyzer. The latter is rule-based and is
based on the dictionary itself. Apart from the in-
formation necessary for morphological analysis, it
contains some grammatical tags, such as animacy
for nouns and transitivity for verbs. The analyzer

! Available for search at http://beserman.ru; a large
part of it has been published as Usacheva et al. (2017).

There are certain phonological, morphological and lexi-
cal differences between the standard language and the Beser-
man dialect. Before an Udmurt model can be used in Beser-
man ASR, the texts should be “translated” into Beserman. Al-
though such attempts have been made (Miller, 2017), making
the translations look Beserman enough would require quite a
lot of effort.

recognizes about 97% of words in the textual part
of the Beserman dataset. A small set of Constraint
Grammar rules (Karlsson, 1990; Bick and Didrik-
sen, 2015) is applied after the analysis, which re-
duces the average ambiguity to 1.25 analyses per
analyzed word.

The idea is to inflate the text corpus used to pro-
duce the LM by generating a large number of fake
sentences, using real corpus sentences as the start-
ing point and the source of lemma frequencies, and
incorporating data from the linguistic resources in
the process.

3 Deepspeech training

All Beserman texts were encoded in a version of
the Uralic Phonetic Alphabet so that each Unicode
character represents one phoneme. Although there
are a couple of regular phonetic processes not re-
flected in the transcription, such as optional final de-
voicing or regressive voicing of certain consonants,
the characters almost always correspond to actual
sounds. Therefore, CER values reported below
must closely resemble PER (phone error rates)®. All
sound files were transformed into 16 KHz, single-
channel format.

Deepspeech architecture (Hannun et al., 2014)
(Mozilla implementation*) was used for training.
This involves training a 5-layer neural network with
one unidirectional LSTM layer. After each epoch,
the quality is checked against a development dataset
not used in training. After the training is complete,
the evaluation is performed on the test dataset. The
train/development/test split was randomly created
once and did not change during the experiments.
The development dataset contains 1737 sentences;
the test dataset, 267 sentences. No sound dictionary
examples were included in either development or
test datasets, otherwise their unnaturally high qual-
ity would lead to overly optimistic WER and CER
values. It has to be pointed out though that the train-
ing dataset contains data from all speakers of the
test dataset. This is in line with the primary us-
age scenario I had in mind, i.e. pretranscription of
field data, because most untranscribed recordings in
my collection are generated by the same speakers.
However, for a real-world scenario where the set of
potential speakers is unlimited, this setting would

3This property is the reason why UPA rather than Udmurt
Cyrillic script was used for encoding. Otherwise, the choice of
encoding is hardly important because UPA can be converted to
Cyrillics and vice versa.

‘https://github.com/mozilla/DeepSpeech
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produce an overly optimistic estimate. No transfer
learning was applied.

A number of hyperparameter values were tested:
learning rate between 0.00005 and 0.001, dropout
rate 0.3 or 0.4, training batch size between 16 and
36. These value ranges have been demonstrated to
yield optimal results on a dataset of similar size by
(Agarwal and Zesch, 2019). The results did not de-
pend in any significant way on these values, except
for almost immediate overfitting when the learning
rate was close to 0.001. Under all these settings,
the training ran for 8 or 9 epochs, after which the
loss on the development dataset started rising due to
overfitting. The model used for the evaluation was
trained with the following parameters: learning rate
0.0002, droupout rate 0.4, training batch size 24.

The output of the trained Deepspeech model is
filtered using kenlm, an n-gram language model
(Heafield, 2011). 3-gram and 4-gram models were
tried, with no substantial difference; the figures be-
low refer to the 4-gram models. When using the
model with Deepspeech, there are two adjustable
parameters, o and 5. « (between 0 and 1) is the LM
weight: higher values make the filter pay more at-
tention to the n-gram probabilities provided by the
model. [ defines the penalty for having too many
words: higher values increase the average number
of words in transcribed sentences and decrease the
average length of a word. A number of « and 3
combinations were tested (see below).

4 Augmented language model

As could be immediately seen from the test results,
at least one of the reasons why the automatic tran-
scription was wrong in many cases is that the corpus
used to train the LM simply lacked the forms. Since
Beserman is morphologically rich, a corpus of 164K
words will inevitably lack most forms of most lex-
emes. Thankfully, this gap can be filled relatively
easily, since Beserman morphological analyzer and
dictionary can be turned into a morphological gen-
erator. (Another option, not explored here, would
be to use subwords instead of words (Leinonen
etal., 2018; Egorova and Burget, 2018).) However,
if one just generated all possible word forms and
added them to the corpus packed into random sen-
tences, that would completely skew the occurrence
and co-occurrence probabilities of forms, which
would lead to even worse performance. The real
trick would be to add the lacking forms without los-
ing too much information from the original model,

i.e. without significantly distorting the probabili-
ties. Specifically, one would need to make the fol-
lowing values as close to the original ones as possi-
ble:

* relative frequencies of lemmata;

* relative frequencies of affix combinations, such
as “genitive plural”;

e constraints on co-occurrence of certain gram-
matical forms (e.g. “verb in the first person is
not expected after a second-person pronoun”);

* lexical constraints on contexts (e.g. “mother
eats apples“ should be fine, while “apple eat
mother* should not).

Of course, traditional word-based text generation
models strive to achieve exactly that. However, they
could hardly be applied here because the objective
of correctly generating a lot of previously unseen
forms would be missed. Instead, I developed a sen-
tence generator that utilizes not only the texts, but
also the linguistic resources available for Beserman.

After a series of sequential improvements, the re-
sulting sentence generator works as follows.

First, the sentences from the Beserman corpora
are morphologically analyzed and turned into sen-
tence templates. In a template, content words
(nouns, verbs, adjectives, adverbs and numerals)
are replaced with “slots”, while the rest (pronouns,
postpositions etc.) are left untouched. The idea
is that the lemma in a slot can be replaced by an-
other lemma with similar characteristics, while the
remaining words should not be replaced with any-
thing else. Certain high-frequency or irregular verbs
or adverbs are also not turned into slots, e.g. neg-
ative verbs or discourse clitics. Templates where
less than one-third of the elements were turned into
slots, or that contain fewer than three words, are dis-
carded.

A slot contains the inflectional affixes the word
used to have, its tags (e.g. “N,anim” for “animate
noun”), as well as the original lemma.

Second, the data from the grammatical dictio-
nary of the analyzer is processed. For each item,
its lemma, stem(s) and tags (part of speech among
them) is loaded. A global frequency dictionary is
created. If a lemma is present in the corpora, its to-
tal number of occurrences is stored as its frequency;
for the remainder of the lemmata, the frequency is
set to 1.



Third, semantic similarity matrices are cre-
ated for nouns, verbs and adjectives separately.
The semantic similarities are induced from the
Russian translations the lemmata have in the
Beserman-Russian dictionary. Each transla-
tion is stripped of usage notes in brackets and
parentheses and of one-letter words. After
that, the first word of the remaining string is
taken as the Russian equivalent of the Beserman
word. The similarities between Russian transla-
tions are then calculated with an embedding model

ruwikiruscorpora_upos_skipgram_300_2_201

trained on the data of Russian National Corpus
and Russian Wikipedia (Kutuzov and Kuzmenko,
2017). The resulting pairwise similarities are then
condensed into a JSON file where each Beserman
lemma contains its closest semantic neighbors
together with the corresponding similarity value.
The similarity threshold of 0.39 was set to only
keep lemmata which are sufficiently similar to the
lemma in question in terms of their distribution.
After that, an average lemma contains about 66
semantic neighbors.

After these preparatory steps, the sentence gen-
eration starts. A template is chosen at random, af-
ter which each slot is filled with a word. If a slot
contains multiple ambiguous analyses, one of them
is chosen at random with equal probability, apart
from several manually defined cases where one of
the analyses is much more probable than the oth-
ers. The original lemma of the slot is looked up
in the list of semantic neighbors. If found, its se-
mantic neighbors are used as its possible substi-
tutes. Neighbors whose tags differ from the slot tags
(e.g. inanimate nouns instead of animate) are fil-
tered out. A random similarity threshold is chosen,
which can further narrow down the list of substi-
tutes. This way, more similar lemmata have a higher
chance of ending up on the list of potential substi-
tutes. When the list is ready, a lemma is chosen
at random, with probability of each lemma propor-
tional to its frequency in the global frequency list.
Its stem is combined with the inflectional affixes in
the slot, taking certain morphophonological alterna-
tions into account. The resulting word is added to
the sentence. Template elements that are not slots
are generally used as is, but words from a certain
manually defined list can be omitted with a proba-
bility of 0.2 (this mostly includes discourse parti-
cles).

Shttps://rusvectores.org/en/models/

The sentences generated this way do not always
make sense, but many of them at least are not com-
pletely ungrammatical, and some actually sound
quite acceptable.

5 Results and comparison

I did not check how the size of the training dataset
affects the quality of the model. However, it is in-
teresting to note that the addition of 2.5 hours of
triple headword pronunciations from the sound dic-

9$ionary apparently did not add to the quality. The
results were almost the same when they were omit-
ted from the training set.

As already mentioned in Section 3, the output
of a trained Deepspeech model is filtered with an
n-gram model trained on a text corpus, with pa-
rameters « and 5. I evaluated the model on the
test dataset with three kenlm models: based only
on the real Beserman sentences (base), and two
augmented models trained on real and generated
sentences (gen). The first augmented model was
trained on 2M additional sentences (about 170K
word types), the second, on 10M additional sen-
tences (about 300K word types). The difference be-
tween the two augmented models was almost nonex-
istent. The larger model performed slightly better
than the smaller for most parameter values, except
in the case of o = 1.0; the difference in WER in
most cases did not exceed 0.5%. The figures below
are given for the larger model.

The following « values were tested: 1.0, 0.9,
0.75, 0.6, 0.4. The values of 3 between 1.0 and
7.0 with the step of 1 were tested. The WER values
for 8 > 5.0 were always worse than with lower 3
values and are not represented below.

One can see that the values obtained with the aug-
mented model are better than the baseline across the
board, so the sentence generation has had a posi-
tive effect on ASR quality. Also, the augmented
model tolerates larger S values, whereas the base-
line model starts producing too much short words
in place of longer words absent from its vocabulary
in that case. Nevertheless, the difference is not that
large: the best gen value, 51.4, is lower than the
best base value, 56.4, only by 5%. The difference
in CER is even less pronounced:

A more in-depth analysis of the data reveals that
the effect of LM augmentation is most visible on
longer sound files. If only tested on sentences
whose ground-truth transcription contained at least
6 words, the best WER value for gen equals 52.1, as
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B=1 B=2 5=3 =4
a=1.0]573/556 | 56.5/54.1 | 57.7/52.7 | 58.8/52.4
a=09|57.0/533 | 56.8/52.7 | 58.4/51.6 | 59.6/53.5
a=0.775|564/529 |572/51.9 | 58.7/51.4 | 60.9/53.4
a=06|57.1/529 | 58.9/51.9 | 60.4/53.8 | 64.9/56.3
a=04|59.6/555 | 62.3/56.4 | 67.0/59.8 | 75.4/66.1

Table 1: WER for base (before slash) and gen (after slash) models with different o and (3 values.

=1 5=2 5=3 =14
a=10|350/344 | 33.9/33.3 | 333/32.0 | 32.8/309
a=09 |340/325 | 33.4/32.1 | 33.0/30.7 | 32.7/30.2
a=0.75| 32.9/31.5 | 32.4/30.4 | 32.0/29.7 | 31.9/29.2
a=06|322/30.1 | 31.5/29.9 | 31.5/29.6 | 31.7/29.3
a=04|31.6/30.1 | 31.3/29.6 | 31.3/30.3 | 31.8/30.8

Table 2: CER for base (before slash) and gen (after slash) models with different o and g values.

opposed to only 59.5 for base. On short files, how-
ever, the added benefit of having plausibly looking
n-grams in the corpus stops playing any role. For
sentences (or, rather, sentence fragments) that con-
tained at most 3 words, the best WER value for gen
equals 60.5, compared to 61.5 for base.

As we can see, the LM augmentation did improve
the ASR quality, even if marginally. The most im-
portant takeaway from this experiment, however,
was that using a bilingual dictionary and a Russian
model for approximating semantic similarity was a
crucial part of the LM augmentation. Without that
step, the generated LM did not visibly differ from
base, even when lemma frequencies and tags were
taken into account.

Since, to the best of my knowledge, no Deep-
speech (or any other) ASR models existed for
standard Udmurt when the experiments were con-
ducted, it was impossible to compare ASR quality
for Beserman and standard Udmurt.

6 Conclusion

There is a famous statement by Frederick Jelinek,
made exactly in the context of ASR development,
“Whenever I fire a linguist our system performance
improves”. Indeed, contemporary ASR is largely an
engineering enterprise and relies on algorithms and
large amounts of data rather than on any linguis-
tic insights. Still, if there is not enough data, can
linguistic resources — resources created by linguists
and for linguists — be of any help at all? The results
of the experiments with the Beserman data are not
conclusive. On the one hand, linguistic interven-

tion did improve the ASR results, lowering WER
by 5% and even more so in the case of longer sen-
tences. Linguistic resources, such as the rule-based
analyzer turned into a generator, and the Beserman-
Russian dictionary, as well as the corpus of usage
examples, seemed indispensable in the process. On
the other hand, the result is yet another experimen-
tal model for a low-resource language with subopti-
mal performance, which might be not good enough
even for auxiliary uses. In order to make it us-
able, one would still have to either add more data
or change the algorithm (e.g. (Baevski et al., 2021)
report results for comparable amounts of Tatar and
Kyrgyz data that almost look like magic). It would
be interesting to see if the “linguistic” LM augmen-
tation adds anything in that case.
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