
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8216–8224
November 7–11, 2021. c©2021 Association for Computational Linguistics

8216

Don’t Search for a Search Method —
Simple Heuristics Suffice for Adversarial Text Attacks

Nathaniel Berger†∗ and Stefan Riezler†,‡
†Computational Linguistics & ‡IWR

Heidelberg University, Germany

Artem Sokolov♦,† and Sebastian Ebert♦
♦Google Research
Berlin, Germany

{berger,riezler}@cl.uni-heidelberg.de, {artemsok,eberts}@google.com

Abstract

Recently more attention has been given to ad-
versarial attacks on neural networks for natural
language processing (NLP). A central research
topic has been the investigation of search al-
gorithms and search constraints, accompanied
by benchmark algorithms and tasks. We im-
plement an algorithm inspired by zeroth order
optimization-based attacks and compare with
the benchmark results in the TextAttack frame-
work. Surprisingly, we find that optimization-
based methods do not yield any improvement
in a constrained setup and slightly benefit from
approximate gradient information only in un-
constrained setups where search spaces are
larger. In contrast, simple heuristics exploit-
ing nearest neighbors without querying the tar-
get function yield substantial success rates in
constrained setups, and nearly full success rate
in unconstrained setups, at an order of magni-
tude fewer queries. We conclude from these re-
sults that current TextAttack benchmark tasks
are too easy and constraints are too strict, pre-
venting meaningful research on black-box ad-
versarial text attacks.

1 Introduction

Neural networks are currently deployed in many
production systems from image classification to
natural language processing (NLP). While they
show impressive results, many of such systems
are also susceptible to adversarial examples. These
examples are close in space to data points that are
classified correctly, but due to small changes are
classified incorrectly. This corresponds to the local
non-smoothness noted by Szegedy et al. (2014).

Chen et al. (2017) present a zeroth order
optimization-based (ZOO) attack that significantly
outperforms other black-box attacks for image pro-
cessing. An initial goal of our work was to in-
vestigate whether a ZOO approach that guides

∗Part of the work done while the first author was interning
at Google.

the search for adversarial examples by approxi-
mate gradient information can be transferred to
adversarial attacks in NLP. To this end, we imple-
mented a ZOO-inspired algorithm in the TextAt-
tack framework (Morris et al., 2020) and compared
it with their benchmark results (Yoo et al., 2020).
Surprisingly, we found that search guided by a
ZOO approach only yields minimal improvements,
whereas heuristic search exploiting nearest neigh-
bors yields competitive success rates at minimal
query count. We conclude from these results that
the victim models in current benchmark tasks are
too easily broken and imperceptibility constraints
are too strict, thus defeating meaningful research on
black-box search methods for adversarial attacks.

2 Related Work

Black-box attacks on NLP systems generally at-
tempt to search over discrete tokens and, instead of
bounding the perturbation in Euclidean space, use
linguistic constraints over the selected tokens.

Alzantot et al. (2018) implement a discrete ge-
netic algorithm where genes are tokenized sen-
tences (Genetic Alg in Table 1). Two genes can
crossover by sampling a parent for each position in
the sentence and selecting the corresponding token.
Mutations are performed by sampling from nearby
tokens in embedding space. The embedding space
they use is the counter-fitted GloVe embeddings
(Pennington et al., 2014; Mrkšić et al., 2016). Zang
et al. (2020) also work with a discretized search al-
gorithm, in their case Particle Swarm Optimization
(PSO in Table 1). Each particle is again a tokenized
sentence and has a velocity associated with each
token. Instead of moving in continuous space ac-
cording to its velocity in each step, a position in
the sentence “jumps” from one token to another.
Instead of operating over embeddings, they use the
lexicon HowNet (Dong and Dong, 2003) to find
synonyms of current words. Jin et al. (2020) create
a powerful baseline for adversarial attacks which

8217

first determines an importance ranking over words
and then changes each token in order (Word Im-
portance Ranking, WIR in Table 1). Tokens can
be changed to one of the 50 nearest neighbours
in embedding space but are subject to constraints.
The replacement token must have a cosine similar-
ity of at least 0.7 in the attack’s embedding space,
again in the counter-fitted GloVe embedding space
by Mrkšić et al. (2016). Additionally, replacement
tokens must have the same part of speech and a
sentence level similarity score given by a Universal
Sentence Encoder (Cer et al., 2018) above a given
threshold. The word importance ranking is deter-
mined by the difference in output when a given
token is removed from the input.

The above black-box attacks on NLP sys-
tems along with greedy and beam search are re-
implemented by Morris et al. (2020). Their library,
TextAttack, seeks to be a test bed for comparing
adversarial attacks on NLP systems. To this end, a
companion paper comparing different attacks has
been released by Yoo et al. (2020).

3 Zeroth Order Optimization-Based
Attack (ZOO)

Chen et al. (2017) work under the adversarial at-
tack framework of Carlini and Wagner (2017) and
use a zeroth order optimization method to work
in a black-box setting to attack images. The ZOO
idea is to create pseudogradients using zeroth order
estimates of the true gradient. Their method per-
forms point-wise perturbations on individual pixels
by adding a scaled one-hot vector ei to the image x
and computing the difference between the outputs.
The derivative of this single perturbed pixel can
then be calculated by f(x+µei)−f(x−µei)

2µ ei, where
µ controls how far apart the two queried points are.

Chen et al. (2017) use coordinate descent (Poljak
and Tsypkin, 1973) and perturb a single pixel at
a time to construct a gradient. Instead of having
to query the model 2m times, this method can be
optimized by perturbing all pixels simultaneously
with a vector u sampled from a multivariate Gaus-
sian distribution (Nesterov and Spokoiny, 2015).
This two-point function evaluation in expectation
approximates the true gradient of the function but
can also be applied in situations where the function
is unknown but smooth, which is the case in black-
box attacks on neural networks. The estimated
gradient can then be used in standard gradient de-

scent:

xt+1 = xt − λ
1

n

n∑
i=1

f(x+ µui)− f(x)
µ

ui.

Inspired by the zeroth order optimization-based
attack of Chen et al. (2017) and the interpretable
displacements of Sato et al. (2018), we developed
a discretized version of zeroth order optimization
for attacks on NLP systems, dubbed DiscreteZOO.

4 DiscreteZOO for Black-Box Attacks on
NLP Systems

Zeroth order optimization assumes nothing about
the function to optimize other than the fact that it
is smooth. We add the assumptions here that we
possess a surrogate embedding space and that there
is a smooth transformation from this embedding
space to the internal embedding space of the target
model. Continuous zeroth order gradient estima-
tion requires that any arbitrary point be queryable
in order to use Gaussian noise as perturbations. In
the discrete case, however, the system only allows
us to query with tokens. Instead of sampling from
a Gaussian distribution then, we sample from the
nearest neighbours around the target token in the
surrogate embedding space.

Given the current token t, we can perturb its em-
bedding et with a vector µuk,t, with µ = ||ek−et||,
uk,t =

ek−et
µ , and ek being the embedding of an-

other token. We can use this to calculate the finite
differences between two different function evalu-
ations. Sampling a set of multiple neighbouring
tokens N for displacements yields the update rule

et+1 = et−λ
1

|N |
∑
k∈N

f(et + µuk,t)− f(et)
µ

uk,t.

Adding this estimated direction vector to the cur-
rent embedding then moves towards an area of
increasing goal function values, where we would
hope to find a token suitable for flipping the label.
Once the direction vector is added to the embed-
ding, we snap it to the nearest existing token by
cosine similarity.

In addition to the ZOO-inspired search, we use
the word importance ranking of Jin et al. (2020)
and Yoo et al. (2020), which replaces each token
in the text with an unk token to decide which to-
kens to attack first. Additionally, we noticed that
often label-flipping tokens are already available
within the sampled tokens N . In this case, we

8218

should accept the sampled token and return early,
saving queries to the model, instead of continuing
to sample and construct a direction vector. Another
optimization prevents the algorithm from snapping
to the nearest token if that token decreases the goal
function value.

A detailed algorithm is given in the ap-
pendix. Code implementing the algorithm can be
found at https://github.com/StatNLP/
discretezoo.

5 Experiments

5.1 Baselines

In addition to the methods from Yoo et al. (2020),
we also implement a random baseline. Firstly, in-
stead of determining the importance by deleting
each token or replacing it with unk, the indices
are randomly shuffled and taken as the attack order.
Secondly, replacement tokens are chosen randomly
as well. In the constr. setup, the random choice
is over the Top-N tokens ranked by proximity in
the counter-fitted GloVe embedding space (Mrkšić
et al., 2016), filtered by the constraints. In the un-
constr. setup, the same method is used to generate
the list of tokens, but no filtering is applied. Instead
of iterating over them and selecting the token with
the highest goal function value, the random base-
line samples a single token from the list, inserts
into the sentence, and returns if the token flips the
label along with the goal function value. If the goal
function values is improved then the token is kept
and if not it is discarded–the goal function value
is returned with the label and does not change the
query count. If the label is not flipped, it moves on
to the next target position.

Two additional baselines are picking the farthest
or closest token at each step. They function sim-
ilarly to the random baseline, but instead of sam-
pling from the list of replacement tokens, they im-
mediately pick the farthest or closest token in em-
bedding space, respectively. If all tokens that pass
the constraints are equally acceptable, then picking
the most dissimilar acceptable token should be a
good heuristic.

The baselines and the WIR methods (Yoo et al.,
2020) all iterate over the indices of the target sen-
tence once. In order to see the effects of random
continued sampling until the label flips, we also in-
troduce a method called random, CS. This method
iterates over the indices multiple times and samples
tokens until a label flip is achieved or until a maxi-

mum number of tokens has been sampled. For this
method to work, the RepeatModification
constraint has to be removed. Therefore, it is a
stronger attack, as it can make changes that are not
available to the other methods. Still, this should
illustrate the upper bound achievable with random
sampling and keeping tokens that improve the goal
function.

5.2 Constraints
In Yoo et al. (2020), a number of constraints are
used to maintain semantic similarity of the adver-
sary with the original text. The main constraints of
interest are cosine similarity, BERTScore (Zhang
et al., 2015), and part of speech tagging. In the
constr. setting, replacement tokens must have a
cosine similarity of 0.9 with the original token, the
two sentences must have a BERTScore of 0.9, and
the part of speech can not be changed. We also
introduce a unconstr. setting, where all constraints
are removed.

5.3 Target Models and Goal Functions
All of the attacks in this paper target multiclass
BERT models (Devlin et al., 2019) fine-tuned on
SNLI (Bowman et al., 2015) or Movie Reviews
(Pang and Lee, 2005). Both are provided by the
TextAttack library (Morris et al., 2020) and are
used in the comparison done by Yoo et al. (2020).

Morris et al. (2020) use a goal function that seeks
to minimize the probability of the true label:

GTextAttack = 1− f(x)l,

where f(x) is the neural network with a probability
vector as output and l is the index of the true label.
Working from the zeroth order optimization-based
attack of Chen et al. (2017), we also implement
their goal function:

Gzoo = −max(log f(x)l −max
l′ 6=l

log f(x)l′ ,−κ).

In our experiments we found no difference in run-
ning all attacks on both goal functions, so here we
report only results on the zoo loss.

6 Results

Results for the baseline attacks and DiscreteZOO
are summarized in Table 1.

In the constr. setup on SNLI, DiscreteZOO out-
performs all other methods in terms of success rate.
On Movie Reviews, DiscreteZOO achieves slightly

https://github.com/StatNLP/discretezoo
https://github.com/StatNLP/discretezoo

8219

Method Attack Success% ↑ (±σ) Avg # Queries ↓ (±σ) % Words Changed ↓ (±σ)
constr. unconstr. constr. unconstr. constr. unconstr.

M
ov

ie
R

ev
ie

w
s

Greedy 20.6 100.0 35.0 1111.5 9.6 9.2
Beam 4 21.4 100.0 95.1 1688.1 10.0 8.9
Beam 8 21.8 100.0 174.9 2504.1 10.1 8.9

WIR(UNK) 17.8 99.6 30.1 153.8 11.8 16.6
WIR(DEL) 17.0 99.8 30.2 147.5 11.7 16.4

WIR(PWWS) 18.6 99.6 44.2 894.4 10.6 10.0
WIR(RAND) 16.8±0.5 99.6 12.5±0.1 172.8 12.9±0.5 20.2
Genetic Alg 19.4 99.6 2658.6 2578.6 10.6 10.3

PSO 22.0 100.0 2456.4 4010.2 11.1 10.5
DiscrZOO 20.4±0.0 97.9±0.4 33.2±0.0 118.7±2.5 13.7±0.0 17.8±0.2

Random 11.5±0.7 68.3±1.8 5.4±0.0 12.2±0.2 11.9±0.7 50.6±1.0
Random, CS 17.3±0.2 98.7±0.6 15.1±0.1 15.9±0.4 13.9±0.4 37.5±0.4

Farthest 12.3±0.7 78.3±0.3 5.3±0.0 10.6±0.1 11.2±0.3 27.1±0.4
Closest 11.1±0.4 55.5±0.7 5.4±0.0 13.1±0.2 12.2±0.7 30.0±1.0

SN
L

I

Greedy 19.9 100.0 7.2 422.0 6.1 5.9
Beam 4 20.1 100.0 12.3 563.0 6.1 5.9
Beam 8 20.1 100.0 17.8 739.0 6.1 5.8

WIR(UNK) 19.6 100.0 26.2 84.9 7.0 6.5
WIR(DEL) 18.7 100.0 26.2 85.3 7.3 6.6

WIR(PWWS) 19.1 99.9 30.5 407.2 6.0 6.8
WIR(RAND) 18.3±0.1 100.0 5.0±0.0 85.9 7.3±0.2 8.7
Genetic Alg 19.7 99.9 1328.5 998.5 6.1 6.4

PSO 20.0 100.0 1262.4 815.2 6.2 6.4
DiscrZOO 21.2±0.1 98.1±0.2 26.9±0.0 58.3±0.1 6.7±0.0 6.8±0.1

Random 10.1±0.3 70.0±0.4 2.6±0.0 5.6±0.0 7.3±0.2 17.7±0.4
Random, CS 18.7±0.4 99.9±0.1 6.8±0.04 7.3±1.0 8.0±0.1 16.3±0.2

Farthest 11.6±0.2 81.0±0.7 2.6±0.0 5.1±0.0 7.2±0.2 12.3±0.2
Closest 7.9±0.2 58.0±0.7 2.7±0.0 6.4±0.1 7.4±0.3 15.8±0.1

Table 1: Adversarial attack using ZOO loss on both Movie Reviews and SNLI. DiscreteZOO averaged over three
runs; Random, Farthest, and Closest Nearest Neighbor baselines averaged over seven runs; standard deviation
denoted by ±. With constraints, the DiscreteZOO attack samples up to 10 neighbors, while the unconstrained
attack samples up to 25 neighbors.

higher results than the WIR methods with compara-
ble query counts, but it is not as successful as the
beam search or PSO methods. For DiscreteZOO,
the standard deviation is either very low or actually
zero. This suggests that there is not a large enough
space from which the algorithm can sample. The
farthest baseline already achieves a success rate
of 12.3% on Movie Reviews and 11.6% on SNLI,
while random and closest achieve 11.5% and 11.1%
on Movie Reviews and 10.1% and 7.9% on SNLI,
respectively. Thus, simple heuristics already ac-
complish a substantial amount of the achievable
success rates at minimal query count, while the
generally low success rates across all algorithms
suggests that the constraints are too strict, prevent-

ing exploitation of more sophisticated search tech-
niques. The continued sampling version of the
random baseline achieves a success rate of 17.3%
on Movie Reviews and 18.7% on SNLI. This is di-
rectly competitive with the search based methods.

In the unconstrained setup, all search methods,
including DiscreteZOO, approach success rates of
100%. The methods are only able to evaluate the
50 nearest neighbors, however, the farthest base-
line reaches success rates of 78.31% and 81.04%
on Movie Reviews and SNLI, respectively. Ran-
dom and closest follow farthest in terms of success
rate, with a query count that is an order of mag-
nitude lower than other methods. The continued
sampling version of the random baseline achieves

8220

nearly 100% success rate on both datasets with a
similarly small query count. The relative success
of the baseline heuristic methods shows that the
nearest neighbor structure in the embedding space
is already powerful enough to flip the label. Much
of the success of the other methods can already be
attributed to these simple heuristics, showing that
search is not always necessary.

7 Analysis

The results of the previous experiments show slight
improvement over previous methods but they ap-
pear curious. For example, some of the results have
no variation on repeated runs even with a stochastic
algorithm. Additionally, random token selection
appears to be competitive with greedyWIR meth-
ods.

The counterfitted GLoVE embedding space
(Mrkšić et al., 2016) is a very sparse embedding
space, containing a total of 65713 tokens. Using
the neighborhood threshold given by the constr.
constraints, a cosine similarity of 0.9 or higher,
then the average token in this embedding space has
0.72 neighbors. Among tokens that have neighbors,
the average rises to 2.63. Histograms showing num-
ber of tokens over neighborhood size with different
neighborhood definitions can be seen in figure 1
in the appendix. These values are an upper bound
on the actual average number of neighbors as the
constraints also include BERTScore and a Part of
Speech constraint which further restrict the space.

The sparsity of the space coupled with the size
of the neighborhoods induced by cosine similar-
ity of 0.9 or higher could explain why the naive
methods are able to perform so well compared to
more sophisticated optimization methods. There
are so few valid replacement tokens in the space
that it is entirely feasible to try every option with
the greedyWIR or beam methods.

With a large enough sample size, discretezoo
already observes all allowed replacement tokens
during sampling and is able to stop if one of them
flips the label. In this case, discretezoo and greedy-
WIR should produce similar results. This is effec-
tively demonstrated by the random baseline, which
chooses a replacement token randomly and is un-
able to use information from the goal function to
decide between multiple replacement tokens. Be-
cause there are so few possible replacement tokens,
randomly selecting from the few that are available
is roughly as good of a strategy as beam search or

greedily selecting the best replacement token from
all options. The results given by the random base-
line are close to those reported by Yoo et al. (2020)
for their greedyWIR baselines. This suggests that
the success of their attacks compared to the more
advanced search methods is not because of their
algorithm finding good texts but rather because the
search space has been so restricted that any choice
will work. Methods besides greedyWIR are allowed
more flexibility. Instead of just considering one tar-
get position at a time, they are allowed to consider
the best replacement for all positions. This turns
the attack into a combinatorial problem of finding
which combination of positions is best to attack
instead of which replacement tokens are the best.

Additionally, this shows that the models being
attacked are very brittle. Given a single target token
that has replacements, there are on average only
three to choose from. Selecting one of these three
very similar tokens is already enough to flip the
label in many cases.

8 Conclusion

Zeroth order optimization methods have been
shown to yield superior performance for black box
attacks in continuous spaces such as images (Chen
et al., 2017). In attacks on NLP systems, only a
discrete set of tokens are admissable as input but
they are still processed as vectors in continuous
space. This allows for optimization in the continu-
ous space instead of in the discrete token space. We
implement a zeroth order optimization algorithm
in the TextAttack library (Morris et al., 2020) and
compare with the results of Yoo et al. (2020). While
our method appears to be competitive, we find that
the linguistic constraints imposed on the search
methods are so tight that nearly no optimization is
necessary. Instead, selecting the farthest allowable
token or a random token is already enough to flip
the label in many cases. We argue that more ro-
bust tasks are required for meaningful research on
black-box adversarial text attacks.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In EMNLP.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-

8221

tated corpus for learning natural language inference.
In EMNLP.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. In
IEEE S&P.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In EMNLP Demo.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. 2017. ZOO: Zeroth order opti-
mization based black-box attacks to deep neural net-
works without training substitute models. In Work-
shop on Artificial Intelligence and Security.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Zhendong Dong and Qiang Dong. 2003. Hownet-a hy-
brid language and knowledge resource. In Interna-
tional Conference on Natural Language Processing
and Knowledge Engineering, pages 820–824, Bei-
jing, China.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In AAAI.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In EMNLP Demo.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors to
linguistic constraints. In NAACL.

Yurii Nesterov and Vladimir Spokoiny. 2015. Ran-
dom gradient-free minimization of convex functions.
Foundations of Computational Mathematics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Boris Poljak and Yakov Tsypkin. 1973. Pseudogradi-
ent adaptation and training algorithms. Automation
and Remote Control, 34:45–67.

Motoki Sato, Jun Suzuki, Hiroyuki Shindo, and Yuji
Matsumoto. 2018. Interpretable adversarial pertur-
bation in input embedding space for text. In IJCAI.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In ICLR.

Jin Yong Yoo, John Morris, Eli Lifland, and Yanjun Qi.
2020. Searching for a search method: Benchmark-
ing search algorithms for generating nlp adversarial
examples. In BlackboxNLP.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combina-
torial optimization. In ACL.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/2020.acl-main.540
https://www.aclweb.org/anthology/2020.acl-main.540

8222

A Appendix

A.1 Algorithms

Algorithm 1: Unconstrained Attack
Result: Returns a pair (successful, ŝ), containing a

boolean indicating success and a sequence of
tokens

Input: s is the original sentence to attack,
T = [t0, t1, ..., tn] is an ordered sequence of
indices to target, filtered by pre-transformation
constraints, n is the number of replacement
tokens to use for calculating displacements,
and u is the number of gradient updates the
algorithm can perform.

Data: E is a matrix of word embeddings,
goal_function is a function that returns
goal function value and model prediction.

1 y = argmaxmodel(s)
2 ŝ = s
3 for t in T do
4 steps = 0
5 while steps < u do
6 −→et = Est

7 neighborhood = knn(−→et , E, k · n)
8 candidates = choose(neighborhood, n)
9 (l, ŷ) = goal_function(ŝ, y)

10
−−−→
sumd =

−→
0

11 for c ∈ candidates do
12 ŝct = {s0, ..., st−1, c, st+1, ...}
13 (lc, yc) = goal_function(ŝct , y)
14 if yc 6= y then
15 return (True, ŝct)
16 end
17

−−−→
sumd =

−−−→
sumd+ lc−l

‖−→ec−−→et‖
−→ec−−→et
‖−→ec−−→et‖

18 end
19 r = knn(et + γ ·

−−−→
sumd,E, 1)

20 s̃ = {ŝ0, ...ŝt−1, r, ŝt+1, ...}
21 (l̃, ỹ) = goal_function(s̃, y)

22 if l̃ ≥ l then
23 ŝ = s̃
24 ŷ = ỹ
25 end
26 if ŷ 6= y then
27 return (True, ŝ)
28 end
29 steps = steps+ 1;
30 end
31 end
32 return (False, ŝ)

Algorithm 2: Random Baseline
Result: Returns a pair (successful, ŝ), containing a

boolean indicating success and a sequence of
tokens

Input: s is the original sentence to attack,
T = [t0, t1, ..., tn−1] is an ordered sequence
of indices to target, filtered by
pre-transformation constraints. b is a
maximum number of queries to perform.

Data: E is a matrix of word embeddings,
goal_function is a function that returns
goal function value and model prediction.

1 y = argmaxmodel(s)
2 ŷ = y
3 ŝ = s
4 for t in T do
5 current_token = ŝt
6 current_embedding = Ecurrent_token
7 replacements =

knn(current_embedding, E, 50)
8 r = shuffle(replacements)0
9 s̃ = {ŝ0, ...ŝt−1, r, ŝt+1, ...}

10 (l̃, ỹ) = goal_function(s̃, y)

11 if l̃ ≥ l then
12 ŝ = s̃
13 ŷ = ỹ
14 end
15 if ŷ 6= y then
16 return (True, ŝ)
17 end
18 end
19 return (False, ŝ)

Algorithm 3: Random Baseline, Contin-
ued Sampling

Result: (successful, ŝ)
Input: s, T = [t0, t1, ..., tn−1], b
Data: E, goal_function

1 y = argmaxmodel(s), ŷ = y, ŝ = s, count = 0,
ci = 0

2 while y = ŷ ∧ count < b do
3 if ci ≥ n then
4 ci = 0
5 end
6 current_target = tci
7 current_token = ŝcurrent_target
8 current_embedding = Ecurrent_token
9 replacements =

knn(current_embedding, E, 50)
10 r = shuffle(replacements)0
11 s̃ = {ŝ0, ...ŝtci−1, r, ŝtci+1, ...}
12 (l̃, ỹ) = goal_function(s̃, y)
13 count = count+ 1

14 if l̃ ≥ l then
15 ŝ = s̃
16 ŷ = ỹ
17 end
18 if ŷ 6= y then
19 return (True, ŝ)
20 end
21 ci = ci+ 1;
22 end
23 return (False, ŝ)

8223

A.2 Embedding Space Analysis

0 5 10 15 20 25
0

10000

20000

30000

40000

50000

Co
s S

im
 >

=
0.

9

0 5 10 15 20 25
100

101

102

103

104

0 5 10 15 20 25
Linear Scale

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
s S

im
 >

=
0.

7

0 5 10 15 20 25
Log Scale

103

104

Neighborhood Size

Nu
m

be
r o

f T
ok

en
s

Figure 1: Graphs of number of tokens over number of
neighbors, under two neighborhood definitions. Both
linear and log scales are used in order to highlight out-
lying values.

A.3 Relaxed Constraint Results

8224

Method Attack Success% ↑ (±σ) Avg # Queries ↓ (±σ) % Words Changed ↓ (±σ)
lax. lax. lax.

M
ov

ie
R

ev
ie

w
s

Greedy 84.6 208.93 14.2
Beam 4 89.4 525.3 14.5
Beam 8 90.2 933.3 14.3

WIR(UNK) 78.2 67.3 19.8
WIR(DEL) 78.8 67.5 20.1

WIR(PWWS) 75.6 142.1 17.6
WIR(RAND) 76.7±0.8 55.0±0.6 22.9±0.5
DiscrZOO 60.5±0.5 66±0.3 17.0±0.2

Random 33.6±0.6 8.5±0.0 20.4±0.4
Random, CS 63.9±1.2 17.7±0.3 27.9±0.3

Farthest 36.1±0.8 8.4±0.6 20.6±0.6
Closest 27.0±0.6 8.8±0.0 20.1±0.2

SN
L

I

Greedy 89.1 49.24 6.6
Beam 4 90.0 78.37 6.7
Beam 8 90.1 117.0 6.7

WIR(UNK) 88.1 39.8 8.1
WIR(DEL) 88.4 39.9 8.4

WIR(PWWS) 86.8 65.6 7.0
WIR(RAND) 87.3±0.4 21.9±0.2 9.6±0.1
DiscrZOO 81.7±0.3 37.1±0.1 7.0±0.1

Random 47.3±1.1 4.3±0.0 10.0±0.2
Random, CS 84.5±0.4 9.5±0.1 12.7±0.3

Farthest 57.2±0.5 4.1±0.0 10.0±0.2
Closest 32.0±0.4 4.6±0.0 10.2±0.1

Table 2: Adversarial attack using ZOO loss on both Movie Reviews and SNLI. DiscreteZOO averaged over three
runs; Random, Farthest, and Closest Nearest Neighbor baselines averaged over seven runs; standard deviation
denoted by ±. With constraints, the DiscreteZOO attack samples up to 10 neighbors. The lax. constraints are the
same as the constr. from Table 1 with the cosine similarity and BERTScore thresholds set to 0.7.

