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Abstract

While Automatic Speech Recognition has
been shown to be vulnerable to adversarial at-
tacks, defenses against these attacks are still
lagging. Existing, naive defenses can be par-
tially broken with an adaptive attack. In clas-
sification tasks, the Randomized Smoothing
paradigm has been shown to be effective at de-
fending models. However, it is difficult to ap-
ply this paradigm to ASR tasks, due to their
complexity and the sequential nature of their
outputs. Our paper overcomes some of these
challenges by leveraging speech-specific tools
like enhancement and ROVER voting to de-
sign an ASR model that is robust to pertur-
bations. We apply adaptive versions of state-
of-the-art attacks, such as the Imperceptible
ASR attack, to our model, and show that our
strongest defense is robust to all attacks that
use inaudible noise, and can only be broken
with very high distortion.

1 Introduction’

1.1 The threat of adversarial attacks on ASR

In recent years, Automatic Speech Recognition
(ASR) has been transitioning from a topic of aca-
demic research to a mature technology imple-
mented in everyday devices. Al voice assistants are
becoming increasingly popular, and ASR models
are being implemented in cars, smart TVs, and var-
ious devices within the Internet of Things. There-
fore, challenges to the security of these models, as
explored in several recent articles, are also tran-
sitioning from academic curiosities to real-world
threats.

One of these major security threats is vulnera-
bility to adversarial attacks (Szegedy et al., 2014):
perturbations of inputs to any model that, while
nearly imperceptible to human senses, have con-
siderable effects on its outputs. Such attacks can

"For reproducibility purposes our code and models are
available at https://github.com/RaphaelOlivier/smoothingASR

enable a malicious party to discretely manipulate
models’ behaviors and cause them to malfunction,
while escaping human observation. For instance,
when applied to voice assistants, adversarial attacks
can potentially lead to privacy breaches by suc-
cessfully soliciting arbitrary sensitive information.
They could also fool an ASR system to believe an
audio input contains hateful content, and have it
automatically rejected from platforms or its author
banned.

For several years now, adversarial attacks have
been an active research field that crosses nearly
every application of Machine Learning. One of
the main objectives of the field is to defend Al
models against such attacks without impacting their
performance (on regular data) heavily.

1.2 Limitations of current defenses

This research has taken the form of an arms race,
where the attacker has the upper hand: whenever
a defense was proposed (Samangouei et al., 2018),
a stronger or adaptive attack was developed to
counter it (Athalye et al., 2018). Some recent works
seem to have partially broken this trend by propos-
ing defenses with precise claims, that are optimal in
a specific sense or certified against specific classes
of attacks. These defenses mostly fit into three cat-
egories: Adversarial training using strong attacks
like PGD (Madry et al., 2018), Convex relaxations
of the adversarial training objective (Wong and
Kolter, 2018), and noise-based randomized smooth-
ing methods (Cohen et al., 2019).

These defenses, however, have all been proposed
on classification tasks, and their extension to ASR
is not trivial. Adversarial training, which is already
time and resource-consuming for classification, is
even harder to use in speech recognition where
strong attacks are much longer to compute. Convex
relaxation is heavily architecture-dependent, and
the use of recurrent networks or different activa-
tions makes it hard to adapt to ASR. Randomized
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smoothing is more promising because its simple
gaussian noise-addition method makes it, in princi-
ple, usable on any model without concerns for how
the attacks are computed. In reality however, there
are still major challenges. ASR models are typi-
cally more susceptible than classification models
to the same amount of gaussian noise. Besides, to
retain good model performance with large amounts
of random noise, smoothing methods require to run
multiple iterations of the randomized model and
use a majority vote on the outputs. When evalu-
ating sentences in the English alphabet, the set of
outputs is exponentially large in the length of the
output, and majority vote is unlikely to estimate ac-
curately the most probable one within a reasonable
number of iterations.

1.3 Our contributions

Overcoming these challenges is the object of our
work. Since general-purpose machine learning de-
fenses have significant limitations when applied to
speech, we improve them by leveraging the tools
developed by the Speech Processing community.
To use randomized smoothing on ASR while retain-
ing good clean performance, we consider speech
enhancement methods to make the defended model
more accurate on gaussian-augmented inputs. We
also replace the majority vote with a strategy based
on the “Recognizer Output Voting Error Reduction”
(ROVER) (Haihua et al., 2009) method. Depending
on whether we apply training data augmentation,
we provide both an off-the-shelf defense and one
that requires specific fine-tuning.

We apply our defenses to a DeepSpeech?2 and a
Transformer model, trained and evaluated on the
LibriSpeech dataset. We test them against strong
attacks like the CW attack (Carlini and Wagner,
2018), the Imperceptible ASR Attack (Qin et al.,
2019) and the (untargeted) PGD attack (Madry
et al., 2018). We run adaptive versions of these at-
tacks to avoid obfuscation effects. Our best model
shows strong robustness against these attacks: to
achieve partial transcription of the target sentence,
attack algorithms require 10 times larger pertur-
bations. Under equal noise distortions, the Word-
Error-Rate (WER) on the ground truth under denial-
of-service attacks improves by 30 to 50% for our
model compared to the baseline.

2 Related Work
2.1 Attacks

Numerous general adversarial attacks have been
proposed in the past (Szegedy et al., 2014; Good-
fellow et al., 2015; Moosavi-Dezfooli et al., 2016;
Carlini and Wagner, 2017; Madry et al., 2018). A
few others specifically targeted audio inputs: the
earliest was the ultrasonic-based DolphinAttack
(Zhang et al., 2017) and the Houdini loss for struc-
tured models (Cisse et al., 2017), followed by the
effective and popular Carlini&Wagner (CW) attack
for audio (Carlini and Wagner, 2018). Other works
have extented the state-of-the art with over-the air
attacks (Yuan et al., 2018; Yakura and Sakuma,
2019; Li et al., 2019) and black-box attacks that
do not require gradient access and transfer well
(Abdullah et al., 2021). A recent line of work has
improved the imperceptibility of adversarial noise
by using psychoacoustic models to constrain the
noise rather than standard Lo or L., bounds (Szur-
ley and Kolter, 2019; Schonherr et al., 2019; Qin
et al., 2019).

2.2 Defenses

While a large amount of defenses against adver-
sarial attacks have been proposed (Papernot et al.
(2015); Buckman et al. (2018); Samangouei et al.
(2018) are just examples), the vast majority have
been broken using either a strong or an adaptive
attack (Carlini and Wagner, 2017; Athalye et al.,
2018). Only a handful of defense families have
stood the test of time. One is adversarial training,
in the form proposed by Madry et al. (2018) as
well as more recent variations (Wong et al., 2020;
Tramer and Boneh, 2019). Noise-based, smoothing
methods are another (Cao and Gong, 2017; Li et al.,
2018; Liu et al., 2018; Lécuyer et al., 2019; Cohen
et al., 2019). Finally, some methods prove robust-
ness by investigating a relaxation of the adversarial
objective (Gowal et al., 2018; Wong and Kolter,
2018; Mirman et al., 2018) or an exact solving
(Katz et al., 2017; Bunel et al., 2018).

Efforts to adapt adversarial training or relaxation
methods to ASR have been limited so far: Sun et al.
(2018) have used training for speech based on the
FGSM attack, which is simpler but not nearly as
robust as PGD training. Most proposed ASR de-
fenses such as MP3 compression (Das et al.) or
quantization (Yang et al., 2019) have shown the
same weakness as above to adaptive attacks (Sub-
ramanian et al., 2019). Exploiting temporal depen-
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dencies in speech to detect adversarial manipula-
tions (Yang et al., 2019) is a promising line of work.
However, at best it only enables the user to detect
these modified inputs. Reconstructing the correct
transcription is an entirely different challenge, and
our objective in this work.

2.3 Randomized smoothing for ASR

Some noise-based defenses for audio classification
have been proposed: Subramanian et al. (2019)
for instance use simple white noise as a defense
mechanism. This is a straightforward extension
of randomized smoothing to another classification
setting.

Regarding specifically ASR, the only existing
randomized smoothing works we are aware of are
Mendes and Hogan (2020), who propose an adap-
tation of the noise distribution to psychoacoustic
attacks, and the recent Zelasko et al. (2021). The
latter in particular thoroughly explores the effects
of gaussian smoothing on DeepSpeech2 and the
Espresso Transformer. However, their work on
making these models more robust to white noise
is limited to gaussian augmentation in training.
Specifically they do not explore the issue of voting
on transcription and resort to one-sentence estima-
tion (see Section 5.1), which limits the amount
of noise they can use, and therefore the radius of
their defense. Besides, they do not use adaptive
attacks (Section 3.3) which makes their evaluation
incomplete. To our knowledge, we propose the first
complete (randomization, training and vote, eval-
uated on adaptive attacks) version of randomized
smoothing for Speech Recognition.

3 Adversarial attacks on Speech
Recognition

As in previous work, we evaluate our defenses
against white-box attacks, that can access model
weights and their gradients and are aware of the
defenses applied. Provided with an input, these
attacks will run gradient-based iterations to craft
an additive noise. They are the hardest attacks to
defend against, and a great metric to evaluate de-
fenses that will carryover well to more practical
attacks run over-the-air, without gradient access or
in real time (Li et al., 2019; Abdullah et al., 2021).

We consider two threat models. Untargeted at-
tacks generate a small, additive adversarial noise
that causes a denial-of-service (DOS) by altering
drastically the transcription. Targeted attacks on

the other hand craft an additive noise that forces
the model to recognize a specific target of the at-
tacker’s choice, such as "OK Google, browse to
evil.com" (Carlini and Wagner, 2018). As their
objective is more precise than simple denial-of-
service, targeted attacks typically require slightly
larger perturbations.

We now present the specific attacks that we use.
Perturbed samples for all these attacks are provided
as supplementary material.

3.1 Untargeted attacks

Projected Gradient Descent The PGD attack
(Madry et al., 2018) crafts a noise § that generates
mistranscriptions by maximizing the loss under its
perturbation budget. It optimizes the objective

mazs| < L(f(x +6),y)

using Projected Gradient Descent?: it takes gradi-
ent steps that maximize the loss

5n — 571—1 + UL(f(UU + 5n—1)7y)

and projects d,, on the ball of radius € after each
iteration. We use 50 gradient steps when running
this attack.

Rather than fixing a value for € over all sentences,
it is more interesting to bound the relative amount
of noise compared to the input, that is the signal-
noise-ratio (SNR) expressed in decibels:

x
SNR(6,x) =20 % logio( ||’|5|‘2)
2

When running PGD attacks, we set a SNR thresh-

old, t}‘l‘eIﬁ derive for each utterance the L., bound
xX
= —sym-
10720

3.2 Targeted attacks

Carlini& Wagner attack The CW attack (Car-
lini and Wagner, 2018) is a targeted attack, specifi-
cally designed against CTC models. For a specific
attack target yr it minimizes the objective:

L(f(z +6),yr) + Alldl,

. This attack is unbounded, which means it does not
fix a threshold for how large ¢ should be. Instead,
it will regularly update its regularization parame-
ter A to find the smallest successful perturbation.
Therefore, the most interesting metric to evaluate a

Zor Ascent, in this case
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model under this attack is the SNR it achieves. Car-
lini and Wagner (2018) report SNRs between 30
and 40dB on the undefended DeepSpeech2 model.

To run this targeted attack, we fixed 3 target
sentences of different lengths, constant in all our
experiments. We try to perturb each input utterance
until the model generates one of the targets (the
one of closest length). For example, all utterances
of less than 3-8 words are perturbed to predict the
target "Really short test string".

Imperceptible ASR attack This attack pro-
posed by Qin et al. (2019) is a variation of the CW
attack for ASR (Carlini and Wagner, 2018) that
adds a second objective, where masking thresh-
olds are computed on specific frequencies, to make
the noise less perceptible by the human ear. The
Imperceptible attack does not improve the SNR
budget of the CW attack, only how these examples
are perceived by the listener under fixed budget.
Therefore reporting its results is superfluous. We
however provide samples generated by this attack
along with this article.

3.3 Adaptive attacks against defended
models

Our defenses use randomized (gaussian smoothing)
and non-differentiable (speech enhancement) pre-
processing steps. As (Athalye et al., 2018) have
shown such elements can obfuscate the gradients
and lead authors to wrongfully assume that a de-
fense is robust. We follow the recommendations of
that paper, and adapt our attacks to alleviate these
effects, using two techniques:

* Straight-through estimator: when flowing gra-
dients through the non-differentiable prepro-
cessing module, we approximate its derivative
as the identity function.

» Expectation over Transformation: since our
model is stochastic, rather than just applying
backpropagation once to compute gradients,
we average the gradients returned by 16 back-
propagation steps.

We illustrate the need for such attacks in ap-
pendix A.

4 Randomized smoothing for speech
recognition

4.1 Randomized smoothing for classification

The idea of defending models against attacks by
adding random noise to the inputs was formalised
and generalized in Cohen et al. (2019) for classi-
fication. The idea is to replace the deterministic
classifier f : R? — {1,2,...,m} with the smooth
classifier:

g(z) = argmazyeqr o, ) P(f(x +€) = k)

with € ~ N(0,02T). More precisely, since classi-
fier g cannot be evaluated exactly, it is estimated
with a form of Monte Carlo algorithm: many noisy
forward passes are run and majority vote deter-
mines the output label.

The underlying reasoning behind this method is
that given a small perturbation J, and a standard
deviation o >> ||§||,, probability distributions for
x + e and x + § + € are very “close” by standard
divergence metrics. Therefore discrete estimators
built around these distribution have equal value
with high probability. So if an attacker crafts an
adversarial perturbation 9, it will have a very small
chance of changing the output of g.

When using randomized smoothing, the biggest
challenge is to retain good performance on very
noisy data. One can see this defense as a way to
shift the problem from adversarial robustness to
white noise robustness. This is typically done with
data augmentation during training.

4.2 Extension to variable-length data

The variable length of speech inputs is not an issue
to use randomized smoothing. The main conse-
quence is that the Lo norm of a perturbation scales
with the utterance length. Since Signal-Noise Ra-
tio is normalized by utterance length, this does not
affect our experiments.

A bigger problem is the nature of the text tran-
scriptions output by the model. The number of
possible outputs is exponential in the length of the
input, and the probability mass of each of them
under noisy inputs is extremely small. Therefore,
majority vote cannot estimate the probabilities of
the transcriptions in practice, as we discuss in Sec-
tion 5.1.

However, the reasoning that Gaussian distribu-
tions centered on a utterance z and an adversar-
ially perturbed one x + € are close is still valid.
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This tends to show that the overall noise-additive
method still makes natural and adversarial points
similar from the model’s perspective.

4.3 Gaussian noise-robust speech recognition
models

As mentioned above, when using randomized
smoothing it is critical to retain good performance
on gaussian-augmented inputs. With ASR mod-
els this is not a trivial objective. We consider the
following techniques to achieve this goal.

Augmented Training Rather than training a neu-
ral ASR model entirely on gaussian-augmented
data, we used a pretrained model on clean data that
we fine-tune with gaussian augmentation for one
epoch. We find that it helps training converge and
leads to similar or better results on noisy data in a
much shorter time.

Speech enhancement Speech enhancement al-
gorithms help improve audio quality. After adding
gaussian noise, we can use enhancement to restore
the original audio quality. We tried multiple stan-
dard enhancement methods and found a-priori SNR
estimation (ASNR) (Scalart and Filho, 1996) to be
most effective. Neural methods such as SEGAN
(Pascual et al., 2017) did not reach the same per-
formance (in terms of WER in the end-to-end ASR
pipeline), most likely because these models are tai-
lored to real-world-like noise conditions and are
not trained on gaussian noise. It is possible, though
not certain, that a generative model trained on gaus-
sian noise would improve the enhancement results:
Pascual et al. (2017) argue that they outperform
first-order filters like ASNR specifically for com-
plex noise conditions.

5 Voting strategies on text outputs

Even with augmented training and/or enhancement,
when feeding noisy inputs to ASR models the out-
put distribution has high variance. Running mul-
tiple forward passes and "averaging" the outputs
can help reduce that variance and improve accu-
racy. But this requires a good voting strategy on
text outputs.

We first discuss some elementary strategies
and their potential drawbacks, then describe the
ROVER-based vote that we use. All of these strate-
gies are empirically compared in Section 7.1. We
denote the sampled transcriptions as ¢y, ..., ¢, and
t is our final transcription.

5.1 Baseline strategies

One-sentence estimation A solution that has the
merit of simplicity is to not vote at all. Using only
one input, we can hope that the sentence we get is
"close" to the most probable sentence (in terms of
Word-Error Rate for instance) and just return it as
our output. This is the strategy used by Zelasko
et al. (2021).

Majority vote Following the original random-
ized smoothing defense, we can vote at sentence
level: t = argmazycy, .. ¢ycard({i/t; =1'})

Designed for classification, majority vote is not
adapted to probabilistic text outputs. The set 1" of
all possible transcriptions is infinite, and even with
our most stable models and a relative noise of -15
dB, 100 noise samples typically output 100 differ-
ent transcriptions. Even without setting up rigorous
statistical tests, it is clear that outputing the likeliest
transcription, or just a "likelier than average" one,
with high probability would require thousands of
ASR iterations, which in practice is not feasible.
In other words, majority vote is barely better than
one-sentence estimation, for a high computation
cost.

Statistics in the logits space For a given input
utterance length, some ASR architectures, such as
CTC-trained models (Graves et al., 2006), first gen-
erate fixed-length logits sequences 1, ..., l,, then
apply a best-path decoder d to generate transcrip-
tions t; = d(l;). It is then possible to aggregate
these logits over the random inputs, for exam-
ple by averaging them, then to apply the decoder:
t=d(L Y1),

One potential issue with this strategy as a de-
fense is that it distances itself from the randomized
smoothing framework, where the use of discrete
outputs to vote on is critical. To get a concrete
idea of how this could be a problem, one should
remember that adversarial examples can be gener-
ated with high confidence (aka very large logits).
Such a phenomenon could disrupt the statistic by
over-weighting the fraction of inputs that are most
affected by an adversarial perturbation.

5.2 ROVER

The Recognizer Output Voting Error Reduction
(ROVER) system was introduced by NIST in 1997,
as an ensembling method that mitigates the dif-
ferent errors produced by multiple ASR systems.
Contrary to majority vote it works at the word-level
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Model c=0]| 0=0.01 | 0 =0.02
Baseline Deepspeech2 9.7 27 63
Transformer 5.7 12 35
Deepspeech2+ o-AUG - 11 16
Enhancement, Deepspeech2+ ASNR - 17 33
augmentation Deepspeech2+ 0-AUG + ASNR - 12 18
Transformer+ ASNR - 9.1 19
Deepspeech2+ Maj-100 - 27 69
Deepspeech2+ Avg-100 - 25 62
Voting Deepspeech2+ ROVER-8 - 21 52
Deepspeech2+ ROVER-16 - 20 50
Deepspeech2+ ROVER-32 - 20 50
Proposed models  Deepspeech2+ ASNR + ROVER-16 | - 14 26
Deepspeech2+ 0-AUG + ROVER-16 | - 9 12
Transformer+ ASNR + ROVER-16 - 8.1 15

Table 1: Word Error Rate (%) for Deepspeech2 on the LibriSpeech clean test set under various defenses on
clean utterances when adding gaussian noise of deviation o. 0-AUG stands for gaussian augmentation of de-
viation ¢ in training - the same deviation used at inference. ASNR means A priori SNR filtering of inputs.
Maj-N,Avg-N,ROVER-N refer to majority vote, logits averaging and ROVER voting strategies, using N for-

ward passes.

rather than the sentence level, by selecting at each
position the word present in the most sentences.
ROVER should be fed the time duration of each
word in the audio space, which we can extract us-
ing audio-text alignment information provided by
the ASR models (see Section 6.2). We use ROVER
as a black-box script and understanding its inner
behavior is not absolutely necessary to follow this
work, however we provide a high-level explanation
of this algorithm in Appendix B

In our work we introduce an alternative use of
ROVER, as a voting system on the text outputs
of the same probabilistic model rather than for en-
sembling multiple models. We mostly use it as a
black box, by feeding to ROVER multiple output
sequences. We also feed

The main drawbacks of this method lie in the
time penalty of the voting module when using a
large number of inputs. We further discuss that
limitation in Section 8.1

6 Experiments

6.1 Dataset

We run all our experiments on the 960 hours Lib-
riSpeech dataset (Panayotov et al., 2015), and re-
port our results on its test-clean split. As adversar-
ial attacks can take a considerable amount of time
to compute, we evaluate attacks on the first 100
utterances of this test set.

6.2 Models

We test our smoothing methods on two model ar-
chitectures :

* The CTC-based DeepSpeech2 (Amodei et al.,
2016), a standard when evaluating adversar-
ial attacks on ASR since Carlini and Wag-
ner (2018). We pretrain it on the clean Lib-
riSpeech training set. As discussed above, we
fine-tuned it on gaussian-augmented data for
one epoch, using always the same deviation
used at inference for smoothing. For decod-
ing we use greedy search, as we find that in-
creasing the beam size has very little impact
on WER for this model. This is a relatively
lightweight model that we use for ablation ex-
periments. The CTC decoder provides frame
alignments for each transcription character :
we use them to infer word duration (needed
for ROVER) with good precision.

* A more recent Transformer architecture. We
adapt the Espresso implementation (Wang
et al., 2019) to our code. Training and hyper-
parameter search for transformer models can
be computationally expensive, and reaching
state-of-the-art word-error-rate is unnecessary
in this work. For those reasons we keep all the
hyperparameters of Espresso’s "Librispeech
Transformer" architecture, and do not fine-
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tune this model on gaussian noise. We also
only run untargeted attacks on the transformer
model, as targeted attack algorithms and im-
plementations are usually model specific (and
most often proposed against DeepSpeech?2).
We do not know of any available implementa-
tion of a targeted attack on ASR transformer
models.

This transformer implementation does not out-
put character alignment. It however provides
word-level attention scores with the encoded
audio. We can align each word with the
highest-scoring audio vector, and obtain a
word-level alignment. This method is less
precise than with DeepSpeech2 and can likely
be improved.

6.3 Defenses

Our models are defended with gaussian noise,
ASNR enhancement, voting strategies or a com-
bination of all of these. The noise deviation is set
to o = 0.1 or 0 = 0.2 depending on the experi-
ments, which corresponds for the vast majority of
utterances to a signal-noise ratio in the 10-14dB
and 7-11dB respectively.

Against adversarial examples, we compare our
models with each other, as well as with the un-
defended DeepSpeech2 model and a baseline de-
fense using MP3 Compression (Carlini and Wag-
ner, 2018).

6.4 Evaluation metrics

We evaluate our models under untargeted attacks
with Word Error Rate (WER) which is the word-
level edit distance between two transcriptions nor-
malized by the length of the target. In case of large
mistakes we upper bound WER values to 100%
(while the real value can be greater if the generated
sentence is longer than the target). We report this
WER on the ground-truth: the lower the WER the
better the defense.

With targeted attacks, we also report Word-Error-
Rate, both on the ground truth and the attack target.
However, since the CW attack is unbounded, if
applied with good hyperparameters it always suc-
ceeds in forcing our model to deviate from the
ground truth (high WER) and predict the attack
target (low WER). Therefore these metrics mainly
have value as a sanity check to make sure we run
the attack correctly. To measure whether a defense
is effective against CW, our primary evaluation met-

ric is the Signal-Noise-Ratio (SNR), which quan-
tifies the amount of noise the attack generates to
achieve its objective. A SNR above 20 — 25 would
typically be hard to perceive for a human.

Model No CW attack
attack | GT TGT SNR
Vanilla 8 100 O 27dB
MP3 compression 9 100 3 16dB
Trained (¢ = 0.01) 11 100 8 14dB
Off-the-shelf (¢ = 0.01) | 17 100 4 10dB
Trained (¢ = 0.02) 14 100 6 8dB
Off-the-shelf (c = 0.02) | 31 100 6 5dB

Table 2: Word Error Rate (%) for Deepspeech2 on
the first 100 utterances of the LibriSpeech clean test
set, for clean inputs and under the CW attack for the
baselines and the proposed trained and off-the-shelf de-
fenses, with gaussian deviations 0.01 and 0.02. We re-
port both the WER on the ground truth (GT) and the
attack target (TGT), and the SNR required to achieve it.

7 Results

We first show that our defended models, which add
gaussian noise to all inputs, retain low WER on
this noisy but non-adversarial data. Then we report
their performance against adversarial attacks. We
show that they successfully recover all attacks that
use near-imperceptible noise.

7.1 Performance under gaussian noise

We report the performance of our model on noisy
inputs (but no attack) in Table 1.

Augmentation and Enhancement We evalu-
ate gaussian augmentation on DeepSpeech2, and
ASNR on both our architectures. Both techniques
lower the word-error rate significantly under o =
0.01, 0.02, with an advantage for the former. In-
terestingly however, combining both techniques at
once (on a DeepSpeech2 model trained on noisy
and enhanced data) does not really improve re-
sults compared to using augmentation only. This
suggests to use ASNR enhancement as a "fallback
option" in situations where retraining a model is
not acceptable. This off-the-shelf method nonethe-
less provides competitive performance when using
state-of-the-art architectures like Transformer.

Voting strategies We compare all our proposed
voting strategies on DeepSpeech?2 outputs. As ex-
pected, majority vote brings no significant improve-
ment over one-sentence estimation (i.e. the base-
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» Vanilla & MP3 Trained DeepSpeech? (0.01)
Off-the-shelf DeepSpeech2 (0.02)
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75
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m Off-the-shelf DeepSpeech2 (0.01) @ Trained DeepSpeech2 (0.02)

Off-the-shelf Transformer (0.02)

PGD Signal-Moise Ratio (dB)

Figure 1: WER achieved against PGD attacks by the baselines (Vanilla model, MP3 compression) and the
proposed trained (DeepSpeech2 with Smoothing, augmented training and ROVER) and off-the-shelf (Deep-
Speech2/Transformer with Smoothing, ASNR and ROVER) defenses, with gaussian deviations 0.01 and 0.02.
We plot the results when varying the PGD SNR bound : a lower SNR means a larger perturbation.

line). Logits averaging is somewhat effective ; how-
ever it does not compare to ROVER, by far the best
voting methods even with fewer sentences.

Proposed models As a consequence, we propose
two smoothing-based defenses:

* atrained defense using smoothing, augmen-
tation and ROVER. On DeepSpeech2, with
o = 0.01 (resp. 0.02) it reaches a WER of 9
(resp. 12)

* an off-the-shelf defense using smoothing,
ASNR enhancement and ROVER. Applied
to DeepSpeech? this defense suffers from a
higher WER of 14 (resp. 26) but is still rela-
tively effective. With Transformer it performs
much better with a WER of 8.1 (resp 15).

7.2 Performance under attack

In Figure 1 we plot the results of our defenses and
baselines against the untargeted PGD attack, as a
function of the SNR used to bound the attack. They
demonstrate the effectiveness of ASR smoothing:
compared to the vanilla DeepSpeech2 the Word-
Error-Rate improves by 20 to 50 points for all PGD

attacks bounded by SNR > 20dB for our pro-
posed models, with both 0 = 0.01 and o = 0.02.
When SNR = 25dB is sufficient to reach total
denial-of-service (W E R = 100) on Deepspeech?,
and 20d B for the MP3 compression baseline, the
same feat requires SNRs of 10 — 15d B to defeat
our defenses.

Table 2 reports the results of the targeted CW
attack. As expected for an unbounded attack, it is
partially able to break our defenses (low WER on
its target), but at a high cost. The SNR it requires
to achieve these results is as low as 10 — 14 under
o = 0.01 and 5 — 8 with 0 = 0.02 ! This com-
pares to 27d B for the undefended DeepSpeech2
and 16d B for the MP3 baseline. With the higher
o in particular, the adversarial noise becomes very
much audible to the human ear, even when refining
it with the Imperceptible attack (Section 3.2). The
tradeoff in clean (no attack) accuracy is fairly low
for the trained defense even with o = 0.02 (+-5%
WER). It is higher for the untrained, off-the-shelf
defense, with which using a lower deviation may
be required for practical applications.
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8 Discussion

8.1 ROVER accuracy/time tradeoff

== Computation time == WER
25 400

20
300

200

WER (%)
Time (s)

100

20 40 60 80 100

Number of ROVER random iterations

Figure 2: Average ROVER Word-Error Rate and com-
putation time (DeepSpeech2) for a single utterance
when varying N.

One drawback of ROVER voting is its important
time consumption when using many inputs. This
may be partially due to its third-party, black-box
implementation that does not use GPU computa-
tion. However, in Figure 2 we show that ROVER
voting time increases superlinearly with the num-
ber of samples (where averaging and counting are
of course linear): this is most likely an irreducible
complexity of the algorithm. Using more than 50
iterations is not practically feasible®. This is why
we use N = 16 in most of our experiments: even
though more iterations may bring marginal WER
improvement, this value enables us to improve per-
formance substantially while keeping the voting
time negligeable. Besides, 16 inputs can typically
be fed to the model in one batch, thus keeping the
overall computation time low.

8.2 Certifying randomized smoothing on
ASR

While our main focus in this work is to reach strong
empirical performance under attack, we also show
that adversarial robustness can to some extent be
proven for Speech Recognition, as is the case with
classification (Cohen et al., 2019). We show that
we can prove the following result:

Proposition 1 If for a sentence s the randomized
ASR model f verifies

PWER(f(z),s) <k]>p>0.5

31t is, in fact, forbidden by default in the publicly available
implementation

then for any noise ||6||y < R:
PWER(f(z+9),s) <k]>05

where R = % (¢~ (p) — ¢~ (1 — p)) and ¢ is the
standard gaussian CDF.

This means that if with high probability the
gaussian-smoothed model does not deviate "too
much" from a sentence s in terms of WER, then
the same remains true when adding a small pertur-
bation &. This proposition can be used to write an
algorithm that certifies a transcription. We defer
the proof to appendix C.

In practice such guarantees are very hard to com-
pute: these certification algorithms demand thou-
sands of forward passes to give results with any use-
ful confidence margin, which on large ASR models
remains an open problem.

9 Conclusion

We have proposed a state-of-the-art adversarial
defense for ASR models based on randomized
smoothing. It is successful against all attacks us-
ing inaudible distortion, while retaining a low error
rate on natural data. To achieve strong performance
under noise, we have leveraged speech enhance-
ment methods and proposed a novel use for ASR
output ensembling methods like ROVER. We suc-
cessfully defend against state-of-the-art adaptive
attacks, and analyse the importance and limits of
each component of our defense. Finally, we show
that Randomized Smoothing on ASR is to some
extent a provably robust defense.

This work paves the way for a thorough explo-
ration of smoothing defenses for ASR. Practical
certification, extension to other architectures and
ensembling with other defenses are some areas of
interest. Our approach could also be crossed with
Mendes and Hogan (2020) to generate noise that
defends specifically against psychoacoustic-based
attacks (Qin et al., 2019).
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A The need for adaptive attacks
A.1 Background

In some previous works, the authors apply attacks
to their proposed defense without any modification.
This amounts to assuming that the attacker ignores
the existence of the defense, and tends to lead to
inflated accuracy for the defender.

In the particular case of stochastic defenses, such
as ours, it is a well-known fact that the gradients the
attacker uses are noisy and less informative than
those of undefended models, thus making gradient-
based attacks less effective (Athalye et al., 2018).
This phenomenon should not be seen as a desirable
feature : rather than making adversarial examples
fail to break the defense, the defense obfuscates
them but is still vulnerable to a cautious attacker,
who uses an adaptive attack rather than the vanilla
attack.

One simple fix to the noisy gradient phenomenon
is Expectation over Transformation (EoT). The
attacker, which has only access to the stochastic
model f(z + €) cannot access the gradients of the
deterministic model

Vef(z) = VoE[f(z +€)]

They estimate them by applying the expectation to
the gradients of the stochastic function :

Vof(z) = E[Vaf(z + ¢)]

This latter quantity can be estimated with sample
mean, i.e. by averaging gradients over a batch.

A.2 Results

All the results we report in the main paper are com-
puted against the above adaptive attack, using gradi-
ent batches of size 16. In Table 3 we report results
obtain by the PGD attack on our trained defense,
with o = 0.01, with and without EoT. The WER
is significantly lower using vanilla attacks, demon-
strating why using adaptive attacks is necessary to
correctly evaluate a defense. This also illustrates
that our claims in the paper do not reflect obfus-
cation phenomena, but rather actual adversarial
robustness.

B The ROVER voting algorithm

ROVER (Haihua et al., 2009) works in two steps.
First, it aligns all £ sentences word-by-word and
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Model, Smoothing

Adaptive

SNR-PGD
35 30 25 20 15 10

Trained defense, 0 = 0.02 No
Trained defense, 0 = 0.02  Yes

29 39 54 66 90 100
34 46 60 70 92 100

Table 3: Word Error Rate (%) for Our defense on the first 100 utterances of the LibriSpeech clean test set under
untargeted PGD attacks using various SNR. The first line corresponds to the vanilla attack, the second uses an
adaptive attack that averages gradients on 16 forward+backward passes.

aggregates them into one Word Transition Net-
work (WTN), i.e. a graph where nodes represent
timesteps, and edges between two timesteps are
word (or silent) candidates. Alignment is done iter-
atively : the first sentence serves as a base WTN,
then for ¢ = 2,...,k ROVER merges sentence ¢
with the base WTN using Dynamic Programming
tool SCLITE, using a process close to Levenstein
distance : it finds the minimal cost alignment using
operations of substitution, insertion and deletion.
These alignment steps make use of audio alignment
information as well as word and sentence scores,
to output a final WTN.

At this step, ROVER votes on the aligned words
using (in our version) the frequency of each word.
It also accepts metrics based on word confidence,
which we evaluated (using DeepSpeech2’s soft-
max outputs as confidence scores) and found not to
bring any improvement in our use case.

C Certifying ASR smoothing

C.1 Robustness properties for classification

For multiclass classification, Cohen et al. (2019)
are able to provide a robustness certificate based
on the probability of the most probable class A : if

pa=P(f(z+e)=A)

and
pB = glﬁP(f(:v +¢€) = B)

then g(x + ¢) = A forall |||, < R with

R=2(67 (pa) = 67" (p5)

where ¢ is the smoothed classifier :

g(w) = argmazyeqi o,y P(f(x +¢€) = k)

€ ~ N(0,0%I) and ¢ the standard gaussian CDF.
This result extends naturally from the binary clas-
sification case, which itself is a consequence of

the Neyman-Pearson lemma (Neyman and Pearson,
1933). In the case of ASR, reducing the problem
to binary classification is not as trivial. We pro-
pose such a reduction by using thresholds on the
evaluation metric d (typically the WER).

C.2 Robustness properties for ASR

Name f an ASR model. We assume given an em-
pirical target sentence g (different from the golden
transcription y) and a threshold k €]0, 1[. We de-
fine the binary classifier fas:

s 1 ifd(f(z),9) <k
J@) = {0 otherwise

And g(x) = argma:cce{oyl}P(f(a: +€)=c). gis
informative only if g(z) = 1.

By immediate application of Cohen et al.
(2019)’s result to f we obtain the following guar-
antee :

Proposition 2 g(x+0) = 1 forall ||0]|, < R with

26 p)— ¢ (1-p)), p=P(f(z) = 1)

R:§

C.2.1 Certification algorithm

This result allows us to use on f the CERTIFY
algorithm from Cohen et al. (2019) (Section 3.2.2).
We do not reproduce it here; the only change to our
use case is that rather than generating a “top class”
c4 based on counts, we use our ROVER prediction
strategy to generate the “top transcription” t 4. A
policy to estimate the bound %k could perhaps be
designed, or k£ can simply be fixed to a value that
seems reasonable with respect to applications.

Proposition 3 With probability at least 1 — « over
the randomness in CERTIFY, if CERTIFY returns
a transcription t4 and a radius R (i.e. does not
abstain), then the model predicts ty at WER < k
within radius R around x.
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C.2.2 Feasability

Despite our good experimental results, and while
we showed in this section that robustness certifi-
cation is possible, this algorithm requires estimat-
ing probabilities which is computationally infea-
sible using a large ASR model. As Cohen et al.
(2019) note, certification with informative bounds
and confidence requires many samples (in the tens
of thousands). We are unable to run this many
forward loops per sentence* under reasonable time
constraints. Nonetheless, these results show a possi-
ble way to reduce ASR to finite-class classification
for certification purposes, and open a path towards
guaranteeing the robustness of ASR models using
faster architectures.

D Additional experiments

In Table 4 we report the results of both the PGD and
CW attacks on our baselines and proposed mod-
els. We include models that are partially defended
(without voting/augmented training/etc) to serve as
an ablation study.

*Using one NVIDIA GTX 2080Ti
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o Model, Smoothing Nat. SNR-PGD CW
35 30 25 20 15 10 | GT TGT SNR
0.0  Deepspeech2 8 63 89 100 100 100 100 | 100 O 27
MP3 compression 9 59 71 79 100 100 100 | 100 3 16
AUG 12 50 64 82 100 100 100 | 100 O 19
RS 34 58 66 84 95 100 100 | 100 13 15
RS+ AUG 11 30 46 57 82 100 100 | 100 11 14
0.01 +RS+ASNR 23 35 45 60 71 91 100 | 100 11 10
RS+ ROVER 29 51 64 8l 93 100 100 | 100 7 15
RS+ 0-AUG+ROVER | 9 31 43 59 81 100 100 | 100 8 14
RS+ ASNR +ROVER | 20 34 46 60 70 92 100 | 100 4 10
AUG 13 46 63 83 100 100 100 | 100 O 15
RS 72 79 82 87 96 97 100 | 100 12 10
RS+ AUG 19 35 46 64 77 100 100 | 100 9 8
0.02 RS+ ASNR 41 44 55 62 74 84 100 | 100 13 5
RS+ROVER 62 7277 84 93 98 100 | 100 7 10
RS+ AUG +ROVER 14 34 46 60 77 100 100 | 100 6 8
RS+ ASNR +ROVER | 36 40 46 56 71 83 100 | 100 6 5

Table 4: Word Error Rate (%) for Deepspeech2 on the first 100 utterances of the LibriSpeech clean test set under
various attacks and defenses. + AUG stands for gaussian augmentation of deviation ¢ in training - the same
deviation used at inference. ASNR means A priori SNR filtering of inputs. + ROVER refers to the ROVER
voting strategy using 16 forward passes. For the PGD attack we specify the minimal SNR we use as L., bound.
For the unbounded CW attack we report both the WER on the ground truth (GT) and the attack target (TGT), and
the SNR required to achieve it. All attacks run on models using smoothing are adaptive and average gradients on
16 forward+backward passes.
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