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Abstract

This paper proposes a novel architecture,
Cross Attention Augmented Transducer
(CAAT), for simultaneous translation. The
framework aims to jointly optimize the
policy and translation models. To effectively
consider all possible READ-WRITE simul-
taneous translation action paths, we adapt
the online automatic speech recognition
(ASR) model, RNN-T, but remove the strong
monotonic constraint, which is critical for
the translation task to consider reordering.
To make CAAT work, we introduce a novel
latency loss whose expectation can be opti-
mized by a forward-backward algorithm. We
implement CAAT with Transformer while
the general CAAT architecture can also
be implemented with other attention-based
encoder-decoder frameworks. Experiments
on both speech-to-text (S2T) and text-to-text
(T2T) simultaneous translation tasks show
that CAAT achieves significantly better
latency-quality trade-offs compared to the
state-of-the-art simultaneous translation
approaches. 1

1 Introduction

Simultaneous translation, which starts to translate
input sentences before they are finished, is of im-
portance to many real-life applications such as tele-
conference systems and time-sensitive spoken doc-
ument analysis and conversion. While a substantial
progress has been made on offline machine transla-
tion (Wu et al., 2016; Vaswani et al., 2017; Hassan
et al., 2018), more research on simultaneous trans-
lation is yet highly desirable. Central to the task
is performing high-quality low-latency translation,
which involves the key challenges of developing op-
timal policies for the READ-WRITE action paths

1The code is available at https://github.com/
danliu2/caat.

as well as generating high-quality target sequences
based only on partial source sequences.

This paper aims to optimize the policy and
translation model jointly, by expanding target se-
quences with blank symbols for READ actions.
The loss function can be defined as negative log-
likelihood (NLL) of marginal distribution through
all expanded paths. A similar problem in automatic
speech recognition (ASR) has been tackled with
RNN-T (Recurrent Neural Network Transducer)
(Graves, 2012) by an efficient forward-backward
algorithm. However, RNN-T is trained based on
the monotonic alignment between source and target
sequences, which is not suitable for simultaneous
translation, as it cannot properly consider reorder-
ing. On the other hand, the forward-backward algo-
rithm is not available for attention-based encoder-
decoder (Bahdanau et al., 2015) architectures, in-
cluding Transformer (Vaswani et al., 2017), due
to the deep coupling between source contexts and
target history contexts.

To solve this problem, we separate the cross
attention mechanism from target history represen-
tation in attention-based encoder-decoder, which
can also be viewed as RNN-T with the joiner being
augmented by cross attention mechanism, resulting
in Cross Attention Augmented Transducer (CAAT).
However, cross attention mechanism removes the
alignment constraint in RNN-T which originally
encourages an appropriate latency. To ensure la-
tency under control, jointly minimizing a latency
loss is required. Both the NLL loss and latency loss
can be efficiently optimized by a forward-backward
algorithm.

The main contributions of this paper are three-
fold: (1) We propose a novel architecture, Cross
Attention Augmented Transducer, which jointly
optimizes the policy and translation model by con-
sidering all possible READ-WRITE simultaneous

https://github.com/danliu2/caat
https://github.com/danliu2/caat
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translation action paths. (2) We introduce a novel
latency loss whose expectation can be optimized by
a forward-backward algorithm. Training with this
latency loss ensures the latency of CAAT simulta-
neous translation model to be under control. (3)
The proposed model achieves significantly better
latency-quality trade-offs compared to the state-of-
the-art simultaneous translation approaches.

2 Related Work

Recent work on simultaneous translation falls into
two categories. The first category uses a fixed
policy for the READ/WRITE actions. Cho and
Esipova (2016) propose simultaneous translation
with the wait-if-* policy for an offline model. Ma
et al. (2019) propose a wait-k policy for both the
training and inference period. The second cate-
gory includes models with a flexible policy learned
and/or adaptive to current context. Gu et al. (2017)
introduce an agent trained by reinforcement learn-
ing from the interaction with a pre-trained offline
neural machine translation model. Zheng et al.
(2019a) train the agent by supervise learning with
label sequences generated via the rank of golden
target words given partial input. A special sub-
category of flexible policy jointly optimize policy
and translation by monotonic attention customized
to translation model, e.g., Monotonic Infinite Look-
back (MILk) attention (Arivazhagan et al., 2019) on
RNN encoder-decoder (Bahdanau et al., 2015) and
Monotonic Multihead Attention (MMA) (Ma et al.,
2020c) on Transformer (Vaswani et al., 2017).

End-to-end speech-to-text (S2T) simultaneous
translation has been investigated in (Ma et al.,
2020b,d; Ren et al., 2020), among which Ma et al.
(2020b) adapt latency metrics from T2T simulta-
neous translation to S2T simultaneous translation,
and experiment with both the fixed and flexible
policy. Ma et al. (2020d) study the effect of speech
block processing on S2T simultaneous translation.
Ren et al. (2020) experiment with the wait-k policy
based on a source language CTC segmenter.

In our work, we optimize the marginal distribu-
tion of all expanded paths motivated by RNN-T
(Graves, 2012). Unlike RNN-T, the CAAT model
removes the monotonic constraint, which is critical
for considering reordering in machine translation
tasks. The optimization of our latency loss is moti-
vated by Sequence Discriminative Training in ASR
(Povey, 2005).

3 Preliminaries

3.1 Notations and formulation

Let x and y denote the source sequence and target
sequence, and f and g the encoder and decoder
function, respectively. For simultaneous transla-
tion, let aj denotes the length of source sequence
processed when deciding the target yj . The policy
of simultaneous translation is denoted as an action
sequence p ∈ {R,W}|x|+|y| where R denotes the
READ action and W the WRITE action. If the
READ action is replaced with a blank symbol ∅,
the policy can also be represented by the expanded
target sequence ŷ ∈ (V ∪ {∅})|x|+|y|, where V is
the vocabulary of the target language. Note that
removing all ∅ in ŷ results in the original target
sequence y. The mapping from y to sets of all
possible expansion ŷ is denoted as H(x,y).

3.2 Recurrent Neural Network Transducer

RNN-T (Graves, 2012) draws condition probability
Pr(y|x) by marginalizing all possible alignment
paths as :

Pr (y|x) =
∑

ŷ∈H(x,y)

Pr(ŷ|x)

=
∑

ŷ∈H(x,y)

|x|+|y|∏
k=1

Pr(ŷk|ik, jk)
(1)

where ik and jk denote the source and target posi-
tion of the k-th element in ŷ, respectively, and ŷ =
(ŷ1, ŷ2, ..., ŷ|x|+|y|) ∈ H(x,y) ⊂ {V ∪ ∅}|x|+|y|
corresponds to a possible expansion path which
yields y after removing the blank symbol ∅.

As shown in Figure 1(b), to calculate
P (ŷk|hik , y<jk), RNN-T divides decoder into
predictor and joiner, where the predictor, de-
noted fpred, produces target history representation
(Eq. (2)), and the joiner products output probability
Pr(y|i, j) by joint representations from predictor
and encoder (Eq. (3)).

hpredj = fpred(y<j) (2)

Pr(y|i, j) = softmax(W hhi +W phpredj ) (3)

Though named as RNN Transducer, other se-
quence processing architectures work well as the
encoder or predictor, e.g., Transformer (Zhang
et al., 2020; Yeh et al., 2019). Online decod-
ing is natural for RNN-T if the encoder works
with streaming input, which makes RNN-T widely
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(a) Attention-based Encoder-Decoder (b) RNN-T (c) CAAT

Figure 1: The difference between Attention-based Encoder-Decoder, RNN-T and CAAT.

adopted in both the online and offline ASR tasks.
One drawback of RNN-T is that it is based on a
monotonic alignment between the input and out-
put sequence, making it unsuitable for sequence-
to-sequence tasks with reordering, e.g., machine
translation.

4 The Proposed Method

4.1 Cross Attention Augmented Transducer

4.1.1 Model Architecture
The goal of simultaneous translation is to achieve
high translation quality and low latency. A natu-
ral loss function hence measures the NLL loss of
marginal conditional distribution and expectation
of latency metric through all possible expanded
paths:

L(x, y) = LNLL(x, y) + Llatency(x, y)

= − log
∑
ŷ

Pr(ŷ|x) + Eŷl(ŷ)

= − log
∑
ŷ

Pr(ŷ|x) +
∑
ŷ

Pr(ŷ|y, x)l(ŷ)

(4)

where Pr(ŷ|y, x) = Pr(ŷ|x)∑
ŷ
′∈H(x,y)

Pr(ŷ′ |x) , ŷ ∈

H(x, y) is one of the expanded paths of the tar-
get sequence y, and l(ŷ) is the latency loss for path
ŷ.

As the total number of expanded paths is ex-
ponential with regard to |x| + |y|, computing
the marginal probability

∑
ŷ∈H(x,y) Pr(ŷ|x) is

non-trivial. RNN-T solves this with a forward-
backward algorithm (Graves, 2012), which inher-
ently requires paths in the graph to be mergeable.
That is, the representations of the same location in
different paths should be identical. Conventional
attention-based encoder-decoder architectures as

x1 x2 x3 x4 x5 x6

y6
y5

y4
y3

y2
y1

Figure 2: Expanded paths in simultaneous translation

shown in Figure 1(a), however, do not satisfy this
requirement. Take Figure 2 as an example, the
decoder hidden states for the red path ŷ1 and the
blue path ŷ2 are described below (we denotes sni
as the representation of the i-th decoder step in the
expanded path ŷn) :

s12 = g(s11, h≤2)

= g(g(s0, h≤2), h≤2) (5a)

s22 = g(s21, h≤2)

= g(g(s0, h≤1), h≤2) (5b)

The decoder states at output step 2 with different
history paths, s12 and s22, are not identical. This is
due to the coupling of source and previous target
representation by the attention mechanism in the
decoder. The same problem exists in Transformer,
from the coupling of self-attention and encoder-
decoder cross attention in each block.

To solve this, we separate the cross attention
mechanism from the target history representation,
which is similar to the joiner and predictor in RNN-
T. The novel architecture, as shown in Figure 1(c),
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can be viewed as an extended version of RNN-T
with the joiner augmented by cross attention mecha-
nism, and is named as Cross Attention Augmented
Transducer (CAAT). Different from RNN-T, the
joiner in CAAT is a complex architecture with at-
tention mechanisms as in Eq. (6):

si,j = s(attn(hpredj , henc≤i ), h
pred
j ) (6)

Note that si,j is independent of previous nodes
si′ ,j′ in path ŷ, and the same location from dif-
ferent paths in Figure 2 produces the same state
representation. By analyzing the diffusion of the
output probability through the lattice in Figure 2,
we can find that Pr(y|x) is equal to the sum of
probabilities over any top-right to bottom-left diag-
onal nodes. Defining the forward variable α(i, j)
as the probability of outputting y[1:j] during x[1:i],
and the backward variable β(i, j) as the probabil-
ity of outputting y[j+1:|y|] during x[i:|x|], we can
draw the marginal likelihood Pr(y|x) as :

Pr(y|x) =
∑

(i,j):i+j=m

α(i, j) · β(i, j)

LNLL(x, y) = − log Pr(y|x)
(7)

where 1 ≤ m ≤ |x| + |y|. The detailed deriva-
tion of NLL loss of CAAT can be found in Ap-
pendix A.1.

The proposed CAAT can be implemented with a
variety of attention-based encoder-decoder frame-
works. In this paper, we implemented CAAT with
Transformer, by dividing Transformer’s decoder
into the predictor and joiner module. As shown
in Figure 3, the predictor and joiner share the
same number of transformer blocks as the conven-
tional transformer decoder, but there are no cross-
attention blocks in the predictor module and no
self-attention blocks in the joiner.

4.1.2 Multi-Step Decision
The CAAT architecture gains the ability of han-
dling source-target reordering at the cost of an
expensive joiner. The complexity of joiner is
O(|x| · |y|) during training. For RNN-T, the
joiner is efficient because only softmax operates at
O(|x| · |y|). But for CAAT, joiner takes up half of
the parameters of decoder, which means the com-
plexity of CAAT is about |x|4 times higher than the
conventional encoder-decoder framework during
training.

RNN-T needs to ensure the output timing of yj is
the corresponding source frame aj = align(x, yj).

    Self 
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Figure 3: Architecture of CAAT Transformer

However, based on attention mechanism, CAAT
only needs to ensure output timing to be after
the corresponding position (aj ≥ align(x, yj)).
Therefore, it is no longer necessary to make de-
cision each encoder frame; the decision step size
d > 1 is appropriate for CAAT, which reduces
the complexity of the joiner from O (|x| · |y|) to
O
(
|x|·|y|

d

)
. Besides, the decision step size is also

an effective way to adjust latency-quality trade-off.

4.1.3 Latency Loss

CAAT relaxes the restriction of output timing by
attention mechanism, which means all source step
i ≥ align(x, yj) should be appropriate for out-
put yj , including the offline path (∀j : aj = |x|).
To avoid the CAAT model bypassing online pol-
icy by choosing the offline path, the latency loss
Llatency(x, y) as defined in Eq. (4) is required.

Motivated by Sequence Criterion Training in
ASR (Povey, 2005), we optimize the latency loss
with the forward-backward algorithm. To calculate
the expectation of latency loss through all paths ŷ,
mergeable is also a requirement to the latency loss
definition, which means the latency loss through
path ŷ may be defined as l(ŷ) =

∑|x|+|y|
k=1 l(ŷk) and

l(ŷk) is independent of l(ŷk′ 6=k). However, both
Average Lagging (Ma et al., 2019) and Differen-
tiable Average Lagging (Arivazhagan et al., 2019)
do not meet this requirement. We hence introduce
a novel latency function as follows:
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l(i, j) =
1

|y|
max

(
i− j · |x|

|y|
, 0

)
(8)

l(ŷk) =

{
0 if ŷk = ∅
l(ik, jk) else

(9)

l(ŷ) =

|ŷ|∑
k=1

l(ŷk) (10)

where ik =
∑k

k′=1
I(ŷk′ = ∅) and jk =∑k

k′=1
I(ŷk′ 6= ∅) denote the number of READ

and WRITE actions before ŷk, respectively. The
maximization operation is used to avoid encourag-
ing over-aggressive decision paths. This latency
definition is not rigorous enough to be an evalua-
tion metric for the under-estimation after source
ended, as analyzed in (Arivazhagan et al., 2019),
but it can still be used as a loss function.

By defining the forward latency variable
αlat(i, j) as the expectation of latency of out-
putting y[1:j] during x[1,2,··· ,i], and the backward la-
tency variable betalat(i, j) as the expectation of la-
tency of outputting y[j+1:|y|] during decision steps
x[i,··· ,|x|], the latency loss can be drawn as:

c(i, j) = αlat(i, j) + βlat(i, j)

Llatency(x, y) = Eŷ∈H(x,y)l(ŷ)

=

∑
(i,j):i+j=m α(i, j)β(i, j)c(i, j)

Pr(y|x)

where 1 ≤ m ≤ |x| + |y|. The detailed deriva-
tion of latency loss of CAAT can be found in Ap-
pendix A.2.

4.1.4 Offline Auxiliary Loss

We add the negative log-likelihood loss of the of-
fline translation path as an auxiliary loss to CAAT
model training for two reasons. First, we hope the
CAAT model falls back to offline translation in the
worst case; second, the CAAT translation is carried
out in accordance with offline translation when a
source sentence finishes. The final loss function for

CAAT training is defined as follows:

L(x, y) = LNLL(x, y) + λlatencyLlatency(x, y)
+ λofflineLoffline(x, y)

= − log
∑
ŷ

Pr(ŷ|x)

+ λlatency
∑
ŷ

Pr(ŷ|y, x)l(ŷ)

− λoffline logPoffline(y|x)
(11)

where λlatency and λoffline are the scaling fac-
tors corresponding toLlatency andLoffline, respec-
tively. And we set λlatency = λoffline = 1.0 if not
specified.

4.2 Streaming Encoder
Unidirectional Transformer encoder (Arivazhagan
et al., 2019; Ma et al., 2020c) is not effective for
speech data processing, because of the close re-
latedness to the right context for speech feature
xi. Block processing (Dong et al., 2019; Wu et al.,
2020) is introduced for online ASR, but it lacks
direct observation to infinite left context.

We process the streaming encoder for speech
data by block processing with the right context
and infinite left context. First, input representa-
tions h is divided into overlapped blocks with
block shift step m and block size m + r. Each
block consists of two parts, the main context
mn =

[
hm∗n+1, · · · , hm∗(n+1)

]
and the right con-

text rn =
[
h(n+1)∗m+1, · · · , h(n+1)∗m+r

]
. The

query, key, and value of block bn in self-attention
can be described as follows:

Q = Wq [mn, rn] (12)

K = Wk [m1, · · · ,mn, rn] (13)

V = Wv [m1, · · · ,mn, rn] (14)

By reorganizing the input sequence and designed
self-attention mask, training is effective by reusing
conventional transformer encoder layers. And uni-
directional transformer can be regarded as a special
case of our method with {m = 1, r = 0}. Note
that the look-ahead window size in our method is
fixed, which enables us to increase transformer lay-
ers without increasing latency. We set the main
context size and right context size to 8 and 4, re-
spectively, for our experiments on speech-to-text
simultaneous translation, and conventional unidi-
rectional transformer encoder {m = 1, r = 0} for
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experiments on text-to-text simultaneous transla-
tion.

4.3 Inference of CAAT Simultaneous
Translation

The online inference for CAAT is adapted from
beam search for RNN-T (Graves, 2012), and the
changes are as follows2 : (1) We only merge paths
between decision steps, as the cost of the joiner
of CAAT is significantly more expensive than that
of RNN-T. (2) We extract common prefix of exist-
ing hypotheses as determined target output at each
decision time step. (3) Different beam sizes are in-
troduced for intra-decision (b1) and inter-decision
(b2) pruning, to ensure timely determination of out-
puts. b1 and b2 are set to be 5 and 1, respectively,
if not otherwise specified.

5 Experiments

5.1 Speech-to-Text Simultaneous Translation

5.1.1 Experiment Setup
Datasets and Models We use the MuST-C
v1.03 (Di Gangi et al., 2019) English→German
(EN→DE) and English→Spanish (EN→ES)
speech translation datasets in our experiments.
We use the dev set for validation and report per-
formance on the tst-COMMON set. The 80-
dimensional log-Mel filter bank features are ex-
tracted for speech feature with a 25ms window
size and a 10ms window shift; SpecAugment
(Park et al., 2019) were performed on the training
data. We use SentencePiece (Kudo and Richard-
son, 2018) to generate a unigram vocabulary of size
20,000 for the source and target language jointly.
Our experiments on speech-to-text simultaneous
translation are based on Transformer (Vaswani
et al., 2017). Since the variance of the length of
speech frames is more significant than that of text
length, we use both cosine positional embedding
(Vaswani et al., 2017) and relative positional atten-
tion (Shaw et al., 2018) for speech encoder, and
only cosine positional embedding for the decoder.
Detailed hyper-parameters of our models can be
found in Appendix C.1.

Training and Inference Training speech trans-
lation models is often regarded to be more dif-
ficult than training text machine translation or

2Details of inference algorithm can be found in Ap-
pendix C.

3https://ict.fbk.eu/must-c/

ASR models. We use two methods to improve
the performance and stability of model training.
The first is to pre-train encoder with ASR task
(Ma et al., 2020b), and the second is to leverage
sequence-level knowledge distillation with text ma-
chine translation model (Ren et al., 2020).

Training CAAT models require significantly
larger GPU memory than that used in conventional
Transformer due to the spatial complexityO( |x||y|d )
of the joiner module; we solve this by splitting hid-
den states into small pieces before sending them
into the joiner and recombining them during back-
propagation.

Our implementation is based on the Fairseq li-
brary (Ott et al., 2019); the NLL and latency loss
for CAAT are implemented based on warp-rnnt 4.

Evaluation We evaluate our models with
SimulEval (Ma et al., 2020a). Translation quality
is measured by detokenized case-sensitive BLEU
(Papineni et al., 2002); latency is measured with
the adapted version of word-level Average Lagging
(AL) (Ma et al., 2020a).

5.1.2 Results
We compare CAAT to the current state-of-the-art
model in speech-to-text simultaneous translation
(Ma et al., 2020b), which uses wait-k with a fixed
pre-decision step size of 320ms. All our simulta-
neous speech translation models, both wait-k and
CAAT are trained with encoder pretrained on ASR
task and sequence-level knowledge distillation with
text translation model. Two inference methods are
used for wait-k, conventional beam search only on
target tail (when source finishes) and speculative
beam search (SBS) (Zheng et al., 2019b), both with
a beam size of 5; the forecast steps in SBS is set
to be 2. For CAAT we set the intra-decision beam
size b1 = 5 and inter-decision beam size b2 = 1 as
described in Sec. 4.3. The latency-quality curves
of CAAT are produced by varying decision step
size d ∈ {8, 16, 32, 48, 64, 80,+∞}, and wait-k
by varying k ∈ {1, 2, 4, 6, 8, 10, 12,+∞}. The
AL-BLEU curves on the MuST-C EN→DE and
EN→ES test sets are shown in Figure 4.5

From the figure we can observe that: (1) In
general CAAT significantly outperforms wait-k
(with and without SBS) in both the EN→DE and

4https://github.com/1ytic/warp-rnnt
5Full-size graphs for all latency metrics (AL, AP, and DAL)

along with the corresponding numeric scores are available in
Appendix D.

https://ict.fbk.eu/must-c/
https://github.com/1ytic/warp-rnnt
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Figure 4: Translation quality vs. Average Lagging
on the EN→DE and EN→ES speech translation test
set. The y-axis is BLEU and x-axis Average Laggging
(AL).

EN→ES task. Especially in the low-latency region
(AL < 1000ms) (Ansari et al., 2020), CAAT out-
performs wait-k with SBS by more than 3 BLEU
points. (2) The Offline models of CAAT and wait-k
obtain similar BLEU, suggesting that the adapted
architecture of CAAT performs comparably with
conventional Transformer in an offline scenario. (3)
With the same wait step k, SBS can produce lower
latency. This is due to the word-level latency met-
rics we used requires an additional token to ensure
complete word submitted, which can be offset by
the forward exploration in SBS.

5.1.3 Ablation Study

Effectiveness of Streaming Encoder The per-
formance of our offline models with full-sentence
encoder compared to the state-of-the-art offline
speech translation systems (Wang et al., 2020; In-
aguma et al., 2020) are demonstrated in Table 1.
We also show the ablation analyses on sequence-
level knowledge distillation with text translation
model (KD) and pretrain encoder with ASR task
(Pretrain).

Model EN→DE EN→ES
(Wang et al., 2020) 22.7 27.2
(Inaguma et al., 2020) 22.9 28.0
Full-Sentence Encoder 24.3 28.6

-KD 22.4 26.8
-Pretrain 20.2 25.1

{m = 1, r = 0}
(unidirectional) 22.0 25.3
{m = 8, r = 0} 22.4 26.3
{m = 4, r = 4} 22.8 27.3
{m = 8, r = 4} 23.0 27.8
{m = 12, r = 4} 23.1 27.6

Table 1: Offline translation performance of differ-
ent streaming methods on the MuST-C EN→DE and
EN→ES test set.

We further compare offline translation models
with streaming encoders to those with the conven-
tional full-sentence encoder. As shown in Table 1,
the performance of the translation model with a uni-
directional encoder drops 2-3 BLEU points com-
pared to that with a full-sentence encoder, and
the gap is gradually narrowed by the increase of
main block size m and introduction of right con-
text. Considering the effect on latency, we choose
{m = 8, r = 4}.

# Joiner layers d AL BLEU
0 1 2715.7 9.74
0 32 2154.4 9.42
1 32 1156.2 20.94
4 32 1141.2 21.78
6 32 1114.9 21.81

Table 2: Effect of the number of joiner layers on quality
and latency on the MuST-C EN→DE test set.

Effectiveness of Joiner Layers The perfor-
mance of CAAT models with different numbers
of joiner layers are shown in Table 2. Note that in
the table, the first two rows (# joiner layers=0) cor-
responds to the conventional Transducer without
cross attention, in which encoder representations
are downsampled d times using average-pooling
and then directly fused with predictor outputs by
addition. We can find that the introduction of the
cross attention mechanism significantly improves
the performance of simultaneous translation, and
the BLEU scores are close when the number of
joiner layers is greater than 4.

λoffline AL BLEU
0 1111.6 19.84

0.5 1106.5 20.83
1 1114.9 21.81

1.5 1144.0 21.77
2.0 1176.5 21.87

Table 3: Effect of the λoffline on quality and latency
on the MuST-C EN→DE test set.

Effectiveness of λlatency and λoffline The effec-
tiveness of λoffline is demonstrated in Table 3. Fur-
thermore, as shown in Figure 5, though λlatency
may affect the trade-off between translation qual-
ity and latency, varying λlatency is not as effec-
tive as varying the decision step size d, and we
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found the model training will be unstable when
λlatency ≥ 2.0.

500 1000 1500 2000 2500 3000 3500

16

18

20

22

varying latency

varying d

Figure 5: AL-BLEU curves drawn by varying the deci-
sion step size d and latency loss scale λlatency on the
MuST-C EN→DE test set. varying dmeans setting d =
{8, 16, 32, 48, 64, 80} with λlatency = 1.0; varying
λlatency means setting λlatency = {2, 1.5, 1, 0.5, 0}
with decision step size d = 32.

Effectiveness of Beam Search The effective-
ness of the intra-decision beam size b1 and inter-
decision beam size b2 on simulation translation
performance is shown in Table 4. We can find that
beam search in one decision step brings an improve-
ment of about 0.7 BLEU over the greedy search.
And if we allow multiple hypothesizes between
decision steps we may get another 0.5 BLEU im-
provement at the cost of latency (AL increases from
1114.9 to 2433.5). However, this may be useful in
the scenarios where revision is allowed (Arivazha-
gan et al., 2020), e.g., simultaneous translation for
subtitle.

b1 b2 AL BLEU
1 1 1116.0 21.18
3 1 1109.0 21.75
5 1 1114.9 21.81
10 1 1126.2 21.86
5 2 1929.7 22.1
5 3 2433.5 22.3

Table 4: Performance of CAAT models with different
b1 and b2 on the EN→DE test set, all with the decision
step d = 32.

Case Study We perform case study to demon-
strate the advantages of CAAT model over wait-k
with SBS, we compare wait-k k = 2 with CAAT
d = 32 for they have similar AL latency. As shown
in Figure 7, wait-k generates meaningless transla-
tion by ‘predict’ in the place of pauses and changes
in speech rate, while CAAT does not suffer from
this problem. As a result, CAAT outperforms wait-
k with SBS.

5.2 Text-to-Text Simultaneous Translation

We further performed experiments on the text-to-
text simultaneous translation task. Experiments
are carried out on the WMT15 German-English
(DE→EN) dataset with newstest2013 as the valida-
tion set and newstest2015 as the test set. We strictly
follow the same settings of (Arivazhagan et al.,
2019), and latency is measured with the subword-
level latency metric. Detailed hyper-parameters of
our models can be found in Appendix C.2. We
compare CAAT models to wait-k with/without
SBS, and Infinite Lookbak MMA (MMA-IL)6

(Ma et al., 2020c). The latency-quality curves of
CAAT are produced by varying decision step size
d ∈ {1, 2, 4, 8, 12, 16, 20,+∞} 7, wait-k by vary-
ing k ∈ {2, 4, 6, 8, 10, 12, 16,+∞}, and MMA-
IL by varying weighted average latency loss scale
λavg ∈ {0.8, 0.6, 0.4, 0.2, 0.1, 0.0}.

0 2 4 6 8 10 12
20.0

22.5

25.0

27.5

30.0

28

wait-k
wait-k_SBS
MMA-IL
CAAT

Figure 6: Translation quality vs. Average Lagging on
the WMT15 DE→EN text translation test set.The y-
axis is BLEU and x-axis Average Laggging (AL).

The AL-BLEU trade-off curves are shown in Fig-
ure 6.8 We can see that CAAT outperforms wait-k
and wait-k with SBS, but the gap is narrowing com-
pared to that of S2T simultaneous translation in Fig-
ure 4. Considering the case analyze in Sec. 5.1.3,
we believe that flexible policy is more important
for speech translation because of the speech rate
changing.

6 Conclusions

This paper proposes Cross Attention Augmented
Transducer (CAAT), a novel simultaneous transla-
tion model that jointly optimizes policy and trans-
lation model by considering all possible READ-
WRITE action paths. Crucial to the model is a

6https://github.com/pytorch/fairseq/
tree/master/examples/simultaneous_
translation

7Limited by GPU memory, we failed to train CAAT with
d < 4, so we just set d = {1, 2} in inference on model trained
with d = 4.

8Full-size graphs for all latency metrics along with the
corresponding numeric scores are available in Appendix D.

https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation
https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation
https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation
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Now, chimpanzees are well-known for their aggression.

Nun, Schimpansen sind bekannt für ihre Aggressivität.

Nun, Schimpansen sind für ihre Aggression bekannt.

,Nun, zwei von ihnen ich bin bekannt für ihreAggression.

Figure 7: An example from the EN→DE test set, which demonstrate that CAAT outperforms wait-k with close
latency. The five components from top to bottom: speech, source transcription (aligned to speech audio), reference
translation, hypothesis from CAAT, and hypothesis from wait-k with SBS.

properly designed latency loss incorporated to en-
sure latency to be under control. Experiments
demonstrate that CAAT achieves better latency-
quality trade-offs compared to the state-of-the-art
approaches in speech-to-text and text-to-text si-
multaneous translation tasks. We provide detailed
analyses to demonstrate how CAAT works and im-
proves the performance.
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A Derivation of CAAT Losses

A.1 Derivation of CAAT NLL loss
Given the encoder representation hn, where 1 ≤
n ≤ |x|, the predictor vector hpredj , where 0 ≤
j ≤ J and J = |y|. and decision step size d ≥ 1.
The maximum decision step is I = d |x|d e, and the
output logits at decision step i, target position j
should be

s(i, j) = g
(
h<i∗d, h

pred
j

)
(15)

s(i,j) is a vector of |V |+1 dimension corresponding
to V and blank symbol ∅. s(k, i, j) denotes the
k-th dimension of s(i, j). The conditional output
distribution can be yielded as :

Pr(k|i, j) = es(k,i,j)∑
k′ e

s(k′ ,i,j)
(16)

To simplify notation, define

y(i, j) := Pr(yj+1|i, j)
∅(i, j) := Pr(∅|i, j)

(17)

Define the forward variable α(i, j) as the prob-
ability of outputting y[1:j] during decision steps
[1, 2, · · · , i]. The forward variables for all 1 ≤ i ≤
I and 0 ≤ j ≤ |y| can be calculated recursively
using

α(i, j) = α(i− 1, j) ·∅(i− 1, j)

+ α(i, j − 1) · y(i, j − 1)
(18)

with initial condition α(1, 0) = 1. The total out-
put sequence probability is equal to the forward
variable at the terminal node:

Pr(y|x) = α(I, J) ·∅(I, J) (19)

Define the backward variable β(i, j) as the prob-
ability of outputting y[j+1:J ] during decision steps
[i, · · · , I]. Then:

β(i, j) = β(i+ 1, j) ·∅(i, j)

+ β(i, j + 1) · y(i, j)
(20)

with initial condition β(I, J) = ∅(I, J). Pr(y|x)
is equal to the sum of α(i, j)β(i, j) over any top-
right to bottom-left diagonal through the nodes.
That is, ∀m : 1 ≤ m ≤ I + J

Pr(y|x) =
∑

(i,j):i+j=m

α(i, j) · β(i, j) (21)
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From Eqs. 18, 20 and 21, we can draw the deriva-
tion of loss function L = − log Pr(y|x) as

∂L
∂ Pr(k|i, j)

=
α(i, j)

Pr(y|x)


β(i, j + 1) if k = yj+1

β(i+ 1, j) if k = ∅
0 otherwise

(22)

A.2 Derivation of CAAT Latency Loss
To calculate the marginal expectation in Eq. 23,
we define forward latency variable αlat(n, j) as
the expectation latency of outputting y[1:j] dur-
ing decision steps [1, 2, · · · , i], and backward la-
tency variable betalat(i, j) as the expectation la-
tency of outputting y[j+1:J ] during decision steps
[i, i+ 1, · · · , i]. Here we denote l(n, j) as the la-
tency function for output yj at source position n.

Llatency(x, y) = Eŷ∈H(x,y)l(ŷ)

=
∑
ŷ

Pr(ŷ|y, x)l(ŷ) (23)

The forward latency variables can be calculated
recursively using

αlat(i, j) = p1(i, j) · f1(i, j)
+ p0(i, j) · f0(i, j)

(24)

with initial condition αlat(1, 0) = 0. Where

p1(i, j) =
α(i, j − 1) · y(i, j)

α(i, j)

p0(i, j) =
α(i− 1, j) ·∅(i− 1, j)

α(i, j)

f1(i, j) = αlat(i, j − 1) + l(i, j − 1)

f0(i, j) = αlat(i− 1, j)

(25)

For backward latency variables

βlat(i, j) = q1(i, j) · b1(i, j)
+ q0(i, j) · b0(i, j)

(26)

with initial condition βlat(I, J) = 0. Where

q1(i, j) =
β(i, j + 1) · y(i, j)

β(i, j)

q0(i, j) =
β(i+ 1, j) ·∅(i, j)

β(i, j)

b1(i, j) = βlat(i, j + 1) + l(i, j)

b0(i, j) = βlat(i+ 1, j)

(27)

To simplify notation, define the latency expecta-
tion of all paths go through grid (n, j) as

c(i, j) = αlat(i, j) + βlat(i, j)

c(i, j, 0) = αlat(i, j) + βlat(i+ 1, j)

c(i, j, 1) = αlat(i, j) + l(i, j)

+ βlat(i, j + 1)

(28)

The expectation latency for all paths ŷ ∈
H(x,y) is equal to the expectation through diago-
nal nodes. That is, ∀m : 1 ≤ m ≤ N + J :

ĉ = c(I, J)

=

∑
(i,j):i+j=m α(i, j)β(i, j)c(i, j)

Pr(y|x)
(29)

And the latency loss Llatency(x,y) = ĉ. From
Eqs. 24, 26, 28 and 29, it follows that:

r(i, j) =
β(i, j + 1) (c(i, j, 1)− ĉ) if k = yj+1

β(i+ 1, j) (c(i, j, 0)− ĉ) if k = ∅
0 otherwise

∂Llatency
∂ Pr(k|n, j)

=
α(i, j)

Pr(y|x)
r(i, j)

(30)

B Beam Search Algorithm for CAAT

The pseudo code of beam search algorithm for
CAAT is described in Algorithm 1.

C Hyper-parameters

C.1 Hyper-parameters on Speech-to-Text
Simultaneous Translation

Our experiments on speech-to-text simultaneous
translation are based on Transformer. For speech
processing two 2D convolution blocks are intro-
duced before the stacked Transformer encoder lay-
ers. Each convolution block consists of a 3-by-3
convolution layer with 64 channels and stride size
as 2, and a ReLU activation function. Input speech
features are downsampled 4 times by convolution
blocks and flattened to 1D sequence as input to
transformer layers. Cosine positional embedding is
added to speech representations after convolutions,
and relative positional attention is employed for en-
coder self-attention. The hidden size, feed-forward
hidden size, number of heads, number of encoder
and decoder layers are set to 256, 2048, 4, 12, and
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Algorithm 1 Beam search for CAAT
Require: intra-block beam b1, inter-decision

beam b2, decision step size d
Initialise: B = {∅},Pr(∅) = 1, submitted =
0
for i=1 to I step d do

A = B,B = {}, S = {}
while B contains less than b2 elements more

probable than the most probable in A do
for ŷ in A do

y = H−1(ŷ))
s = Pr(ŷ)p(∅|ŷ, i)
if y in B then

S(y) = max(S(y), s)
else

S(y) = s
end if
Add y to B
for k in y) do

Pr(ŷ + k) = Pr(ŷ) Pr(k|ŷ, i)
Add y + k to A

end for
end for
Remove all but b1 most probable from A
Remove all but top b1 S from B

end while
Remove all but top b2 score from B
to_submit= common_prefix(B)
if length(to_submit) > submitted then

submit(to_submit[submitted:])
submitted=length(to_submit)

end if
end for

6. The dropout ratio is set to 0.3. Our CAAT
model shares the same hyper-parameters with the
conventional Transformer model, except the feed-
forward hidden sizes of predictor and joiner are set
to 1024 to ensure the number of the total param-
eters is identical. All speech translation models
were trained with Adam optimizer with an initial
learning rate of 5× 10−4 and invert_sqrt scheduler.
Each model was trained with 2× V-100 GPU with
32GB video memory, using a batch-size of 20000
frames; update-frequency is set to be 8.

C.2 Hyper-parameters on Text-to-Text
Simultaneous Translation

Our experiments on text-to-text simultaneous trans-
lation are based on Transformer_Base. That is, the
hidden size, feed-forward hidden size, number of
heads, number of encoder and decoder layers are
set to 512, 2048, 8, 6, and 6. The dropout ratio
is set to 0.3. The MMA-IL model is trained with
architecture transformer_monotonic 9, except the
noise variance is set to 2. Our CAAT model shares
the same parameters number with the Transformer
model by setting the feed-forward hidden size of
predictor and joiner to 1024 (half of Transformer
decoder feed-forward hidden size). All text trans-
lation models were trained with Adam optimizer
with initial learning rate 5× 10−4 and invert_sqrt
scheduler. Each model was trained with 2× V-100
GPU with 32GB video memory, with batch-size
4096 frames, and update-frequency is set to 8.

D Expanded Results

We also evaluate our work with the latency metrics
Average Proportion (AP) and Differentiable Aver-
age Lagging (DAL). The full-size version of trans-
lation quality against latency (AL, AP, and DAL)
curves on the MuST-C EN→DE and EN→ES
speech-to-text simultaneous translation tasks are
shown in Figure 8. And the quality-latency curves
on the WMT15 DE→EN text-to-text translation
task are shown in Figure 9. We also provide a
complete table of results in Tables 5, 6 and 7 .

9https://github.com/pytorch/fairseq/
tree/master/examples/simultaneous_
translation/models/transformer_
monotonic_attention.py

https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation/models/transformer_monotonic_attention.py
https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation/models/transformer_monotonic_attention.py
https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation/models/transformer_monotonic_attention.py
https://github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation/models/transformer_monotonic_attention.py
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Figure 8: Translation quality against latency (AL, AP and DAL) on the MuST-C EN→DE and EN→ES speech
translation test sets.
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Figure 9: Translation quality against latency (AL,AP and DAL) on the WMT15 DE→EN text translation test set.
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BLEU AL AP DAL
k wait-k
1 18.1 1147.0 0.75 1571.1
2 18.8 1394.9 0.78 1760.6
4 20.7 1911.6 0.84 2220.6
6 21.8 2377.4 0.88 2652.0
8 22.2 2792.5 0.91 3034.5
10 22.2 3155.7 0.929 3383.0
12 22.5 3477.3 0.94 3674.0
+∞ 23.0 5431.6 1.00 5431.6
k wait-k with SBS
1 18.7 866.6 0.70 1310.9
2 19.6 1125.8 0.74 1515.3
4 21.0 1649.2 0.81 1985.2
6 22.0 2134.0 0.86 2426.7
8 22.3 2571.4 0.89 2835.3
10 22.7 2967.9 0.92 3205.5
12 22.7 3310.8 0.94 3524.1
+∞ 23.0 5431.6 1.00 5431.6
d CAAT
8 20.5 508.1 0.64 1100.4
16 21.4 813.8 0.68 1335.3
32 21.8 1114.9 0.74 1758.1
48 22.2 1443.4 0.78 2193.6
64 22.4 1800.6 0.82 2633.5
80 22.6 2137.8 0.86 3025.4
+∞ 23.2 5431.6 1.00 5431.6

Table 5: Complete results on the MuST-C EN→DE
speech translation test set.

BLEU AL AP DAL
k wait-k
1 20.0 932.1 0.74 1499.3
2 21.5 1203.9 0.77 1713.1
4 23.1 1727.5 0.82 2170.3
6 25.2 2232.7 0.86 2633.2
8 26.0 2676.5 0.89 3033.0

10 26.4 3074.3 0.92 3396.6
12 26.6 3428.9 0.94 3721.1
+∞ 27.8 5997.1 1.00 5997.1
k wait-k with SBS
1 20.4 614.6 0.69 1230.8
2 21.5 903.0 0.73 1453.0
4 23.0 1437.7 0.79 1914.1
6 25.6 1969.6 0.84 2397.4
8 26.0 2437.5 0.88 2826.7

10 26.6 2865.0 0.91 3214.4
12 26.9 3241.9 0.93 3557.9
+∞ 27.8 5997.1 1.00 5997.1
d CAAT
8 24.0 355.9 0.64 1146.3

16 25.8 623.2 0.67 1359.4
32 26.3 955.9 0.72 1785.0
48 26.4 1275.9 0.77 2231.4
64 26.6 1647.7 0.81 2680.7
80 27.1 1977.3 0.84 3083.7
+∞ 27.5 55997.1 1.00 5997.1

Table 6: Complete results on the MuST-C EN→ES
speech translation test set.
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BLEU AL AP DAL
k wait-k
2 19.7 1.57 0.59 3.12
4 23.6 3.38 0.65 4.69
6 26.4 5.29 0.72 6.42
8 28.2 7.24 0.77 8.19

10 28.5 9.02 0.81 9.95
12 29.5 10.77 0.85 11.64
16 29.8 13.95 0.90 14.71
+∞ 30.6 27.90 1.00 27.90
k wait-k with SBS
2 21.1 2.16 0.60 3.16
4 24.5 3.81 0.66 4.67
6 26.9 5.58 0.72 6.41
8 28.9 7.39 0.77 8.19

10 28.8 9.14 0.81 9.94
12 29.9 10.84 0.85 11.64
16 30.0 13.99 0.90 14.72
+∞ 30.6 27.90 1.00 27.90
λavg MMA-IL
0.8 21.1 3.26 0.63 4.65
0.6 23.9 3.74 0.65 5.24
0.4 24.7 4.47 0.68 6.87
0.2 27.5 8.72 0.81 13.0
0.1 26.6 21.37 0.97 24.48
0. 29.5 27.49 1.0 27.49
d CAAT
1 26.8 2.67 0.60 4.96
2 27.8 3.27 0.63 5.79
4 28.1 4.23 0.67 7.20
8 29.2 6.07 0.73 9.85

12 29.3 8.00 0.79 12.58
16 29.6 10.02 0.83 15.23
20 29.9 12.16 0.87 17.64
+∞ 30.2 27.90 1.00 27.90

Table 7: Complete results on the WMT15 DE→EN test
translation test set.


