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Abstract

A major obstacle to the wide-spread adoption
of neural retrieval models is that they require
large supervised training sets to surpass tradi-
tional term-based techniques, which are con-
structed from raw corpora. In this paper, we
propose an approach to zero-shot learning for
passage retrieval that uses synthetic question
generation to close this gap. The question gen-
eration system is trained on general domain
data, but is applied to documents in the tar-
geted domain. This allows us to create arbitrar-
ily large, yet noisy, question-passage relevance
pairs that are domain specific. Furthermore,
when this is coupled with a simple hybrid term-
neural model, first-stage retrieval performance
can be improved further. Empirically, we show
that this is an effective strategy for building
neural passage retrieval models in the absence
of large training corpora. Depending on the
domain, this technique can even approach the
accuracy of supervised models.

1 Introduction

Recent advances in neural retrieval have led to
advancements on several document, passage and
knowledge-base benchmarks (Guo et al., 2016;
Pang et al., 2016; Hui et al., 2017; Dai et al., 2018;
Gillick et al., 2018; Nogueira and Cho, 2019a;

MacAvaney et al., 2019; Yang et al., 2019a,b,c).

Most neural passage retrieval systems are, in fact,
two stages (Zamani et al., 2018; Yilmaz et al.,
2019), illustrated in Figure 1. The first is a true
retrieval model (aka first-stage retrieval!) that takes
a question and retrieves a set of candidate passages
from a large collection of documents. This stage
itself is rarely a neural model and most commonly
is an term-based retrieval model such as BM25
(Robertson et al., 2004; Yang et al., 2017), though
there is recent work on neural models (Zamani
et al., 2018; Dai and Callan, 2019; Chang et al.,

! Also called open domain retrieval.

Question Retrieval Model

Document
Collection

Rescoring
Model

Figure 1: End-to-end neural retrieval. A first-stage
model over a large collection returns a smaller set of
relevant passages which are reranked by a rescorer.

2020; Karpukhin et al., 2020; Luan et al., 2020).
This is usually due to the computational costs re-
quired to dynamically score large-scale collections.
Another consideration is that BM25 is often high
quality (Lin, 2019). After first-stage retrieval, the
second stage uses a neural model to rescore the fil-
tered set of passages. Since the size of the filtered
set is small, this is feasible.

The focus of the present work is methods for
building neural models for first-stage passage re-
trieval for large collections of documents. While
rescoring models are key components to any re-
trieval system, they are out of the scope of this
study. Specifically, we study the zero-shot setting
where there is no target-domain supervised training
data (Xian et al., 2018). This is a common situation,
examples of which include enterprise or personal
search environments (Hawking, 2004; Chirita et al.,
2005), but generally any specialized domain.

The zero-shot setting is challenging as the most
effective neural models have a large number of
parameters, which makes them prone to overfitting.
Thus, a key factor in training high quality neural
models is the availability of large training sets. To
address this, we propose two techniques to improve
neural retrieval models in the zero-shot setting.

First, we observe that general-domain question-
passage pairs can be acquired from community
platforms (Shah and Pomerantz, 2010; Duan et al.,
2017) or high quality academic datasets that are
publicly available (Kwiatkowski et al., 2019; Bajaj
et al., 2016). Such resources have been used to

1075

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 1075-1088
April 19 - 23, 2021. ©2021 Association for Computational Linguistics



create open domain QA passage retrieval models.
However, as shown in Guo et al. (2020) and in our
later experiments, neural retrieval models trained
on the general domain data often do not transfer
well, especially for specialized domains.

Towards zero-shot neural retrieval with im-
proved domain adaptability, we propose a data aug-
mentation approach (Wong et al., 2016) that lever-
ages these naturally occurring question/answer
pairs to train a generative model that synthesizes
questions given a text (Zhou et al., 2017). We ap-
ply this model to passages in the target domain to
generate unlimited pairs of synthetic questions and
target-domain passages. This data can then be used
for training. This technique is outlined in Figure 2.

A second contribution is a simple hybrid model
that interpolates a traditional term-based model —
BM25 (Robertson et al., 1995) — with our zero-shot
neural model. BM25 is also zero-shot, as its param-
eters do not require supervised training. Instead of
using inverted index which is commonly used in
term-based search, we exploit the fact that BM25
and neural models can be cast as vector similarity
(see Section 4.4) and thus nearest neighbour search
can be used for retrieval (Liu et al., 2011; Johnson
et al., 2017). The hybrid model takes the advantage
of both the term matching and semantic matching.

We compare a number of baselines including
other data augmentation and domain transfer tech-
niques. We show on three specialized domains
(scientific literature, travel and tech forums) and
one general domain that the question generation
approach is effective, especially when considering
the hybrid model. Finally, for passage retrieval
in the scientific domain, we compare with a num-
ber of recent supervised models from the BioASQ
challenge, including many with rescoring stages.
Interestingly, the quality of the zero-shot hybrid
model approaches supervised alternatives.

2 Related Work

Neural Retrieval The retrieval vs. rescorer dis-
tinction (Figure 1) often dictates modelling choices
for each task. For first-stage retrieval, as mentioned
earlier, term-based models that compile document
collections into inverted indexes are most common
since they allow for efficient lookup (Robertson
et al., 2004; Yang et al., 2017). However, there are
studies that investigate neural first-stage retrieval.
A common technique is to learn the term weights
to be used in an inverted index (Zamani et al., 2018;
Dai and Callan, 2019, 2020). Another technique
is representation-based models that embed ques-
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Figure 2: Synthetic query generation for neural IR.

tions and passages into a common dense subspace
(Palangi et al., 2016) and use nearest neighbour
search for retrieval (Liu et al., 2011; Johnson et al.,
2017). Recent work has shown this can be ef-
fective for passage scoring (Chang et al., 2020;
Karpukhin et al., 2020; MacAvaney et al., 2020).
Though all of the aforementioned first-stage neu-
ral models assume supervised data for fine-tuning.
For rescoring, scoring a small set of passages per-
mits computationally intense models. These are
often called interaction-based, one-tower or cross-
attention models and numerous techniques have
been developed (Guo et al., 2016; Hui et al., 2017,
Xiong et al., 2017; Dai et al., 2018; McDonald et al.,
2018), many of which employ pre-trained contex-
tualized models (Nogueira and Cho, 2019a; MacA-
vaney et al., 2019; Yang et al., 2019a,b). Khattab
and Zaharia (2020) also showed that by delaying in-
teraction to the last layer, one can build a first stage
retrieval model which also leverages the modeling
capacity of an interaction based models.

Model Transfer Previous work has attempted to
alleviate reliance on large supervised training sets
by pre-training deep retrieval models on weakly
supervised data such as click-logs (Borisov et al.,
2016; Dehghani et al., 2017). Recently, Yilmaz
et al. (2019) has shown that training models on
general-domain corpora adapts well to new do-
mains without targeted supervision. Another com-
mon technique for adaptation to specialized do-
mains is to learn cross-domain representations (Co-
hen et al., 2018; Tran et al., 2019). Our work is
more aligned with methods like Yilmaz et al. (2019)
which use general domain resources to build neu-
ral models for new domains, though via different
techniques — data augmentation vs. model trans-
fer. Our experiments show that data augmentation
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compares favorably a model transfer baseline. For
specialized domains, recently, there have been a
number of studies using cross-domain transfer and
other techniques for biomedical passage retrieval
via the TREC-COVID challenge?? that uses the
CORD-19 collection (Wang et al., 2020).
Question generation for data augmentation is a
common tool, but has not been tested in the pure
zero-shot setting nor for neural passage retrieval.
Duan et al. (2017) use community QA as a data
source, as we do, to train question generators. The
generated question-passage pairs are not used to
train a neural model, but QA is instead done via
question-question similarity. Furthermore, they
do not test on specialized domains. Alberti et al.
(2019) show that augmenting supervised training
resources with synthetic question-answer pairs can
lead to improvements. Nogueira et al. (2019) em-
ployed query generation in the context of first-stage
retrieval. In that study, the generated queries were
used to augment documents to improve BM25 key-
word search. Here we focus on using synthetic
queries to train the neural retrieval models.

Hybrid Models Combining neural and term-
based models have been studied, most commonly
via linearly interpolating scores in an approximate
re-ranking stage (Karpukhin et al., 2020; Luan
et al., 2020) or through the final layer of a rescor-
ing network (Severyn et al., 2015; McDonald et al.,
2018). Since rescoring can be cast as classification,
blending signals is straight-forward. However, this
is approximate as it does not operate over the whole
collection. For first-stage retrieval, the most com-
mon method is to learn term weights for a standard
inverted index in order to make search efficient
(Zamani et al., 2018; Dai and Callan, 2019). Here
we propose a first-stage retrieval model that incor-
porates both term-based (sparse) and neural-based
(dense) representations in a hybrid model that uses
nearest neighbor search for exact inference (Liu
et al., 2011; Johnson et al., 2017; Wu et al., 2019).
Similar methods using approximate nearest neigh-
bour search have been investigated by Seo et al.
(2019).

3 Synthetic Question Generation

In this work, we are specifically investigating the
zero-shot scenario where there exists neither user is-
sued questions nor domain specific data except the
passage collection itself. We propose to address the

2ir.nist.gov/covidSubmit/
3ir.nist.gov/covidSubmit/archive.html

Ubuntu Forums

Passage: Every time I get a notification about and begin updating when
they become available, the process is interrupted by an error message:
error in foomatic-filters. Then I get “error in linux generic package”
and a bunch of numbers. This is replaced before I can write it all down
with “error in Linux package” Everything seems to go OK except I don’t
know if the updates are really being installed. I tried un-installing and
re-installing foomatic-filters . . .

Generated Question: How do I get rid of error in foomatic-filters?

Biomedical Literature

Passage: Electroencephalographic tracings of 50 patients who presented
the classical features of Friedreich’s ataxia were reviewed . . . Friedre-
ich’s ataxia is mainly a spinal disorder. Involvement of supraspinal and
in particular brain stem or diencephalic structures may be more extensive
in those patients who show electrographic abnormalities. This would re-
quire confirmation with comparative data based on pathological obser-
vations. Impaired function of brain stem inhibitory mechanism may be
responsible for the slightly raised incidence of seizures in patients with
Friedreich’s ataxia and other cerebellar degenerations.

Generated Question: What is the significance of Friedreich’s ataxia?

Table 1: Examples of domain-targeted synthetic gener-
ated questions used to train passage retrieval models.

training data scarcity issue by generating synthetic
questions (Zhou et al., 2017; Duan et al., 2017;
Alberti et al., 2019; Nogueira et al., 2019). Lever-
age the fact that there are large question-answer
data sources freely available from the web (Shah
and Pomerantz, 2010; Duan et al., 2017). we first
train a question generator using general domain
question-answer pairs. The passage collection of a
target domain is then fed into this generator to cre-
ate pairs of noisy question-passage pairs, which are
used to train a retrieval model (see Figure 2). In this
work, we mine English question-answer pairs from
community resources, primarily StackExchange*
and Yahoo! Answers’. Note we use stackexchange
as it covers a wide range of topics, and we focus
on investigating the domain adaptability of using a
question generation approach. We leave comparing
question generator trained on different datasets or
using different architectures to future work.

To ensure data quality, we further filter the data
by only keeping question-answer pairs that were
positively rated by at least one user on these sites.
In total, the final dataset contains 2 millions pairs,
and the average length of questions and answers are
12 tokens and 155 tokens respectively. This dataset
is general domain in that it contains question-
answer pairs from a wide variety of topics.

Our question generator is an encoder-decoder
with Transformer (Vaswani et al., 2017) layers,
which is a common for generation tasks such
as translation and summarization (Vaswani et al.,
2017; Rothe et al., 2019). The encoder is trained
to build a representation for a text and the decoder
generates a question for which that text is a plausi-
ble answer. Appendix B has model specifics.

*archive.org/details/stackexchange
>webscope.sandbox.yahoo.com/catalog.php?datatype=1
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Our approach is robust to domain shift as the
generator is trained to create questions based on
a given text. As a result, generated questions stay
close to the source passage material. Real examples
are shown in Table 1 for technical and biomedical
domains, highlighting the model’s adaptability.

4 Neural First-stage Retrieval

In this section we describe our architecture for train-
ing a first-stage neural passage retriever. Our re-
trieval model belongs to the family of relevance-
based dense retrieval © that encodes pairs of items
in dense subspaces (Palangi et al., 2016). Let
Q=1(q,...qn) and P = (p1,...,pm) be a ques-
tion and passage of n and m tokens respectively.
Our model consists of two encoders, { fo(), fr()}
and a similarity function, sim(). An encoder is a
function f that takes an item x as input and outputs
a real valued vector as the encoding, The similarity
function, sim(), takes two encodings, q,p € RY
and calculates a real valued score, s = sim(q, p).
For passage retrieval, the two encoders are respon-
sible for computing dense vector representation of
questions and passages.

4.1 BERT-based Encoder

In this work, both query and document encoders
are based on BERT (Devlin et al., 2019), which
has been shown to lead to large performance gains
across a number of tasks, including document rank-
ing (Nogueira and Cho, 2019a; MacAvaney et al.,
2019; Yang et al., 2019b). In addition, we share
parameters between the query and passage encoder
—1i.e., fo = fp, so called Siamese networks — as
we found this greatly increased performance while
reducing parameters.

We encode P as (CLS, p1,...,pm, SEP). For
some datasets, a passage contains both a title
T = (ti,..,t;) and content C' = (cy,...,Co),
in which case we encode the passage as
(CLS, ty,...,t;,SEP, ¢, ..., co, SEP). These se-
quences are fed to the BERT encoder. Let hcrs €
RY be the final representation of the “CLS” token.
Passage encodings p are computed by applying a
linear projection, i.e., p = W * hcLs, where W is
a N x N weight matrix (thus N = 768), which
preserves the original size of hcps. This has been
shown to perform better than down-projecting to a
lower dimensional vector (Luan et al., 2020), espe-
cially for long passages.

We encode @ as (CLS, q1,q2,...,qn, SEP)
which is then fed to the BERT encoder. Similarly,

°Ak.a. two-tower, dual encoder or dense retrieval.

O Question-Passage
Scoring Model

cLs cLs

First-stage
Retrieval

| Question Encoding
H

Nearest
Neighbor

H
H
1 Search

Figure 3: First-stage neural passage retrieval. Top: A
BERT-based transformer encodes questions and pas-
sages and scores them via dot-product. Bottom: Pas-
sages from the collection are encoded and stored in a
nearest neighbour search backend. At inference, the
question is encoded and relevant passages retrieved.

a linear projection on the corresponding “CLS” to-
ken, using the same weight matrix W, is applied to
generate (. Following previous work (Luan et al.,
2020; Lee et al., 2019b), we use dot product as the
similarity function, i.e., sim(q, p) = (q,p) = q7p.
The top half of Figure 3 illustrates the model.

4.2 Training

For training, we adopt softmax cross-entropy loss.
Formally, given an instance {q,p*,p;,....p, }
which comprises one query (, one relevant passage
p" and k non-relevant passages p; . The objective
is to minimize the negative log-likelihood:

L(q,pt.py, Py ) =
k

1Og(e<q,q+> + Zem,qﬂ) —(q,q")
i=1

This loss function is a special case of ListNet loss
(Cao et al., 2007) where all relevance judgements
are binary, and only one passage is marked relevant
for each training example.

For the set {p, ..., p; }, we use in-batch nega-
tives. Given a batch of (query, relevant-passage)
pairs, negative passages for a query are passages
from different pairs in the batch. In-batch nega-
tives has been widely adopted as it enables efficient
training via computation sharing (Yih et al., 2011;
Gillick et al., 2018; Karpukhin et al., 2020).

4.3 Inference

Since the relevance-based model encodes questions
and passages independently, we run the encoder
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over every passage in a collection offline to cre-
ate a distributed lookup-table as a backend. At
inference, we run the question encoder online and
then perform nearest neighbor search to find rel-
evant passages, as illustrated in the bottom half
of Figure 3. While there has been extensive work
in fast approximate nearest neighbour retrieval for
dense representations (Liu et al., 2011; Johnson
et al., 2017), we simply use distributed brute-force
search as our passage collections are at most in the
millions, resulting in exact retrieval.

4.4 Hybrid First-stage Retrieval

Traditional term-based methods like BM25
(Robertson et al., 1995) are powerful zero-shot
models and can outperform supervised neural mod-
els in many cases (Lin, 2019). Rescoring sys-
tems have shown that integrating BM25 into a
neural model improves performance (McDonald
et al., 2018). However, for first-stage retrieval most
work focuses on approximations via re-ranking
(Karpukhin et al., 2020; Luan et al., 2020). Here
we present a technique for exact hybrid first-stage
retrieval without the need for a re-ranking stage.
Our method is motivated by the work of Seo et al.
(2019) for sparse-dense QA.

For a query @ and a passage P, BM25 is com-
puted as the following similarity score,

BM25(Q, P) =

n

IDF(g;) xcnt(q; € P) * (k+1)
cht(qz EP)+k+(1-b+bx )

avg

where k/b are BM25 hyperparameters, IDF is the
term’s inverse document frequency from the cor-
pus, cnt is the term’s frequency in a passage, n/m
are the number of tokens in /P, and m,y, is the
collection’s average passage length.

Like most TF-IDF models, this can be written
as a vector space model. Specifically, let q?™% ¢
[0,1]!V] be a sparse binary encoding of a query of
dimension |V|, where V is the term vocabulary.
Specifically this vector is 1 at position ¢ if v; € @,
here v; is the i-th entry in V. Furthermore, let
p°™25 ¢ RIVI be a sparse real-valued vector where,

bm25 _ IDF(v;) * cnt(v; € P) * (k+ 1)
! ent(v; € P) +k* (1 —b+bx )

avg

We can see that,

BM25(Q, P) = (¢, p"™™)

As BM25 score can be written as vector dot-
product, this gives rise to a simple hybrid model,

sim ( qhyb hyb ) (

<[ bm25 nn]’ [pmeS’ pnn]>
)\< bm25 bm25> + <qnn7pnn>7

b hyb>

where @"° and p™® are the hybrid encodings that

concatenate the BM25 (q®™2°/p®™23) and the neu-
ral encodings (q""/p™, from Sec 4.1); and A is
a interpolation hyperparameter that trades-off the
relative weight of BM25 versus neural models.
Thus, we can implement BM25 and our hy-
brid model as nearest neighbor search with hybrid
sparse-dense vector dot-product (Wu et al., 2019).

5 Experimental Setup

We outline data and experimental details. The Ap-
pendix has further information to aid replicability.

5.1 Evaluation Datasets

BioASQ Biomedical questions from Task B
Phase A of BioASQ (Tsatsaronis et al., 2015). We
use BioASQ 7 and 8 test data for evaluation. The
collection contains all abstracts from MEDLINE
articles. Given an article, we split its abstract into
chunks with sentence boundaries preserved. A pas-
sage is constructed by concatenating the title and
one chunk. Chunk size is set so that each passage
has no more than 200 wordpiece tokens.

Forum Threads from two online user forum do-
mains: Ubuntu technical help and TripAdvisor top-
ics for New York City (Bhatia and Mitra, 2010).
For each thread, we concatenate the title and initial
post to generate passages. For BERT-based models
we truncate at 350 wordpiece tokens. Unlike the
BioASQ data, this data generally does not contain
specialist knowledge queries. Thus, compared to
the collection of question-answer pairs mined from
the web, there is less of a domain shift.

NaturalQuestions Aggregated queries issued to
Google Search (Kwiatkowski et al., 2019) with
relevance judgements. We convert the original for-
mat to a passage retrieval task, where the goal is
to retrieval the long answer among all wiki para-
graphs (Ahmad et al., 2019). We discarded ques-
tions whose long answer is either a table or a list.
We evaluate retrieval performance on the develop-
ment set as the test set is not publicly available.
The target collection contains all passages from the
development set and is augmented with passages
from 2016-12-21 dump of Wikipedia (Chen et al.,

1079



2017). Each passage is also concatenated with title.
For BERT-based models passages are truncated at
350 wordpiece tokens. This data is different from
the previous data in two regards. First, there is a
single annotated relevant paragraph per query. This
is due to the nature in which the data was curated.
Second, this data is entirely “general domain”.
Dataset statistics are listed in Appendix A.

5.2 Zero-shot Systems

BM25 Term-matching systems such as BM25
(Robertson et al., 1995) are themselves zero-shot,
since they require no training resources except the
document collection itself. We train a standard
BM25 retrieval model on the document collection
for each target domain.

ICT The Inverse Cloze Task (ICT) (Lee et al.,
2019b) is an unsupervised pre-training objective
which randomly masks out a sentence from a pas-
sage and creates synthetic sentence-passage pairs
representing membership of the sentence in the
passage. These masked examples can then used
to train or pre-train a retrieval model. Lee et al.
(2019b) showed that masking a sentence with a cer-
tain probability, p, can both mimic the performance
of lexical matching (p = 0) or semantic matching
(p > 0). ICT is domain-targeted since training
examples are created directly from the relevant col-
lection. Chang et al. (2020) showed that ICT-based
pre-training outperforms a number of alternatives
such as Body First Selection (BFS) or Wiki Link
Prediction (WLP) for large-scale retrieval.

Ngram Gysel et al. (2018) proposes to train un-
supervised neural retrieval system by extracting
ngrams and titles from each document as queries.
Different from ICT, this approach does not mask
the extract ngrams from the original document.

QA The dataset mined from community question-
answer forums (Sec. 3) itself can be used directly to
train a neural retrieval model since it comes of the
form query and relevant text (passage) pair. This
data is naturally occurring and not systematically
noisy, which is an advantage. However, the data is
not domain-targeted, in that it comes from general
knowledge questions. We call models trained on
this dataset as QA. Applying a model trained on
general domain data to a specific domain with no
adaptation is a strong baseline (Yilmaz et al., 2019).

QGen The QGen retrieval model trained on the
domain-targeted synthetic question-passage pairs

QA ICT Ngram ICT+Ngram QGen
BioASQ 2.00M 90.50M 636.54M 727.05M  82.62M
NQ 2.00M 71.58M 356.15M 427.72M  84.33M
Forum Travel | 2.00M  0.30M 1.25M 1.54M  0.26M
Forum Ubuntu | 2.00M  0.42M 2.07TM 249M  0.43M

Table 2: Number of (synthetic-question, passage) pairs
used in zero-shot experiments.

described in Section 3. While this model can con-
tain noise from the generator, it is domain-targeted.

QGenHyb This is identical to QGen, but instead
of using the pure neural model, we train the hybrid
model in Section 4.4 setting A = 1.0 for all models
to avoid any domain-targeted tuning. We train the
term and neural components independently, comb-
ing them only at inference.

All ICT, NGram, QA and QGen models are
trained using the neural architecture from Section 4.
For BioASQ experiments, question and passage
encoders are initialized with BioBERT base v-1.1
(Lee et al., 2019a). All other data uses uncased
BERT base (Devlin et al., 2019).

We can categorize the neural zero-shot models
along two dimensions extractive vs. transfer. ICT
and Ngram are extractive, in that they extract ex-
act substrings from a passage to create synthetic
questions for model training. Note that extractive
models are also unsupervised, since they do not
rely on general domain resources. QA is a direct
cross-domain transfer model, in that we train the
model on data from one domain (or general do-
main) and directly apply it to the target domain for
retrieval. QGen models are in-direct cross-domain
transfer models, in that we use the out-of-domain
data to generate resources for model training.

5.3 Generated Training Datasets

The nature of each zero-shot neural system requires
different generated training sets. For ICT, we fol-
low Lee et al. (2019b) and randomly select at most
5 sentences from a document, with a mask rate
of 0.9. For Ngram models, Gysel et al. (2018)
suggests that retrieval models trained with ngram-
order of around 16 was consistently high in quality.
Thus, in our experiment we also use 16 and move
the ngram window with a stride of 8 to allow 8
token overlap between consecutive ngrams.

For QGen models, each passage is truncated to
512 sentence tokens and feed to the question gen-
eration system. We also run the question generator
on individual sentences from each passage to pro-
mote questions that focus on different aspects of
the same document. We select at most 5 salient
sentences from a passage, where sentence saliency
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is the max term IDF value in a sentence.
The size of the generated training set for each
baseline is shown in Table 2.

6 Results and Discussion

Our main results are shown in Table 3. We compute
Mean Average Precision over the first N7 results
(MAP), Precision@ 10 and nDCG@ 10 (Manning
et al., 2008) with TREC evaluation scriptg. All
numbers are in percentage.

Accuracy of pure neural models are shown in the
upper group of Table 3. First, we see that both QA
and QGen consistently outperform neural baselines
such as ICT and Ngram that are based on sub-string
masking or matching. Matching on sub-strings
likely biases the model towards memorization in-
stead of learning salient concepts of the passage.
Furthermore, query encoders trained on sub-strings
are not exposed to many questions, which leads
to adaptation issues when applied to true retrieval
tasks. Comparing QGen with QA, typically QGen
performs better, especially for specialized target
domains. This suggests that domain-targeted query
generation is more effective for domain shift than
direct cross-domain transfer (Yilmaz et al., 2019).

Performance of term-based models and hybrid
models are shown in Table 3 (bottom). We can see
that BM25 is a very strong baseline. However, this
could be an artifact of the datasets as the queries are
created by annotators who already have the relevant
passage in mind. Queries created this way typically
have large lexical overlapping with the passage,
thus favoring term matching based approaches like
BM?25. This phenomenon has been observed by
previous work Lee et al. (2019b). Nonetheless, the
hybrid model outperforms BM25 on all domains,
and the improvements are statistically significant
on 9/12 metrics. This illustrate that term-based
model and neural-based model return complemen-
tary results, and the proposed hybrid approach ef-
fectively combines their strengths.

For NaturalQuestions since there is a single rele-
vant passage annotation, we report Precision@ 1
and Mean reciprocal rank (MRR)°. Results are
show in Table 4. We can see here that while QGen
still significantly outperform other baselines, the
gap between QGen and QA is smaller. Unlike
BioASQ and Forum datasets, NaturalQuestions
contains general domain queries, which aligns well
with the question-answer pairs for training the QA

"BioASQ: N=100; and Forum: N=1000.
Shttps://trec.nist.gov/trec_eval/
MRR = MAP when there is one relevant item.

model. Another difference is that NaturalQuestions
consists of real information seeking queries, in this
case QGen performs better than BM25.

6.1 Zero-shot vs. Supervised

One question we can ask is how close to the
state-of-the-art in supervised passage retrieval are
these zero-shot models. To test this we looked
at BioASQ 8 dataset and compare to the top-
participant systems.!? Since BioASQ provides
annotated training data, the top teams typically
use supervised models with a first-stage retrieval
plus rescorer architecture. For instance, the AUEB
group, which is the top or near top system for
BioASQ 6, 7 and 8, uses a BM25 first-stage re-
trieval model plus a supervised neural rescorer
(Brokos et al., 2018; Pappas et al., 2019).

In order to make our results comparable to par-
ticipant systems, we return only 10 passages per
question (as per shared-task guidelines) and use the
official BioASQ 8 evaluation software.

Table 5 shows the results for three zero-shot sys-
tems (BM25, QGen and QGenHyb) relative to the
top 4 systems on average across all 5 batches of the
shared task. We can see the QGenHyb performs
quite favorably and on average is indistinguish-
able from the top systems. This is very promising
and suggests that top-performance for zero-shot
retrieval models is possible.

A natural question is whether improved first-
stage model plus supervised rescoring is addi-
tive. The last two lines of the table takes the two-
best first-stage retrieval models and adds a sim-
ple BERT-based cross-attention rescorer (Nogueira
and Cho, 2019b; MacAvaney et al., 2019). We
can see that, on average, this does improve quality.
Furthermore, having a better first-stage retriever
(QGenHyb vs. BM25) makes a difference.

As noted earlier, on BioASQ, BM25 is a very
strong baseline. This makes the BM25/QGenHyb
zero-shot models highly likely to be competitive.
When we look at NaturalQuestions, where BM25 is
significantly worse than neural models, we see that
the gap between zero-shot and supervised widens
substantially. The last row of Table 4 shows a
model trained on the NaturalQuestions training
data, which is nearly 2-3 times more accurate than
the best zero-shot models. Thus, while zero-shot
neural models have the potential to be competitive
with supervised counterparts, the experiments here
show this is data dependant.

'Oparticipantsfarea .biocasqg.org
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BioASQ 7 BioASQ 8 Forum Travel Forum Ubuntu
Prec nDCG Prec nDCG Prec nDCG Prec nDCG
MAP @10 @10 MAP @10 @10 MAP @10 @10 MAP @10 @10
NEURAL MODELS
ICT* 9.31*  3.84* 11.44* | 931% 336* 11.78* | 3.66* 11.60* 12.04* | 8.93*  21.60* 23.21*
Ngram* 9.17*  3.86" 11.53* | 8.81* 2.84* 10.74* | 10.00 25.60 28.53 | 9.44*  22.00* 23.90*
QAT | 17.80" 746" 21.93* | 14.61" 426" 17.09" | 1100 27.60 2832 | 1778 3400 3473
QGen? 3245 1348 37.23 | 3032 9.36 3453 | 11.79  32.00 3334 | 17.97 3240 36.11
TERM/HYBRID MODELS
BM25* 45.12*  20.66 50.33* | 38.61* 11.94* 42.78* | 15.41* 37.60 39.21 16.23* 31.20* 35.16*
QGenHyb! | 46.78 20.60 52.16 | 41.73 12.84 46.18 | 18.19 40.80 43.92 | 21.97 39.60 43.91

Table 3: Zero-shot first-stage retrieval. Unsupervised*; Out-of-domain’; Synthetict. Bold=Best in group. Statisti-
cally significant differences (permutation test, p < 0.05) from the last row of each group are marked by *.

MRR Prec@1
BM25* 6.63*  1.84*
ICT* 4.62¢  1.58*
Ngram* 7.22%  3.05%
QAf 11.14*  4.35*
QGent | 1493 621

QGenHyb! | 16.73  6.05

Supervised | 33.68  17.33

Table 4: Zero-shot ad-hoc retrieval for Natural Ques-
tions. Unsupervised*; Out-of-domain’; Synthetict.
Bold=Best; Underline=Best non-hybrid. Baselines
with statistically significant differences (permutation
test, p < 0.05) from QGen are marked by *.

6.2 Learning Curves

Since our approach allows us to generate queries
on every passage of the target corpus, one question
is that whether retrieval system trained this way
simply memorizes the target corpus or it also gen-
eralize on unseen passages. Furthermore, from an
efficiency standpoint, how many synthetic training
examples are required to achieve maximum perfor-
mance. To answer these questions, we uniformly
sample a subset of documents and then generate
synthetic queries only on that subset. Results on
BIOASQ 7 are shown in Figure 4, where x-axis
denotes the percentage of sampled documents. We
can see that retrieval accuracy improves as passage
coverage increases. The peak is achieved when
using a 20% subset, which covers 21% of the refer-
ence passages. This is not surprising because the
number of frequently discussed entities/topics are
typically limited, and a subset of the passages cov-
ers most of them. This result also indicates that the
learned system does generalize, otherwise optimal
performance would be seen with 100% of the data.

6.3 Generation vs. Retrieval Quality

Another interesting question is how important is
the quality of the question generator relative to
retrieval performance. Below we measured gen-

Bl B2 B3 B4 BS5 |Avg
BM25 317 278 404 40.1 41.8 | 363
QGen 289 203 30.7 29.0 33.1 | 284
QGenHyb 348 313 434 419 453|393
"AUEB-1 | 33.6 31.8 444 401 460 | 39.2
pa 335 33.0 435 360 483 389
bioinfo-3 340 317 437 402 46.7 | 39.2
DeepR-test 307 29.1 435 398 47.5 | 38.1
BM25resc. 339 292 424 425 457 | 387
QGenHyb—resc. | 37.5 312 43.0 43.6 46.6 | 40.4

Table 5: MAP for zero-shot models (above dashed
lined) vs. supervised models (below dashed line) on
BioASQS8 document retrieval. B1-B5 is batch 1-5.

eration quality (via Rouge-based metrics (Lin and
Hovy, 2002)) versus retrieval quality for three sys-
tems. The base generator contains 12 transformer
layers, the lite version only uses the first 3 layer.
The large one contains 24 transformer layers and
each layer with larger hidden layer size, 4096, and
more attention heads, 16. Retrieval quality was
measured on BIOASQ 7 and generation quality
with a held out set of the community question-
answer data set. Results are shown in Table 6.
We can see that larger generation models lead to
improved generators. However, there is little dif-
ference in retrieval metrics, suggesting that large
domain targeted data is the more important criteria.

7 Conclusion

We study methods for neural zero-shot passage
retrieval and find that domain targeted synthetic
question generation coupled with hybrid term-
neural first-stage retrieval models consistently out-
performs alternatives. Furthermore, for at least one
domain, approaches supervised quality. While out
of the scope of this study, future work includes fur-
ther testing the efficacy of these first-stage models
in a full end-to-end system (evaluated briefly in
Section 6.1), as well as for pre-training supervised
models (Chang et al., 2020).
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Figure 4: MAP on BioASQ7 (y-axis) w.r.t. the % of
documents used for synthesizing queries (x-axis).

Generation Retrieval
Rouge Rouge Prec nDCG
1 L MAP @10 @10
Lite 23.55 2190 | 3250 13.48 37.23
Base 2620 2423 | 32.86 1342 37.96
Large | 26.81 2490 | 32.61 13.34 37.53

Table 6: Generation quality vs. retrieval metrics.
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A Data

Statistics on each evaluation set are listed in Ta-
ble 7. Document collection of “BioASQ” comes
from MEDLINE articles, and we remove roughly
10M articles that only contains a title. Furthermore,
for BioASQ 7B and BioASQ 8B we only keep
articles published before 2018 December 31 and
2019 December 31, respectively. On “Forum”, we
remove threads with empty posts. On "NQ” since
there is at most one passage annotated as relevant
for each question, and we also remove questions
that have no answer, thus the number of questions
equal to the number of reference passages. Besides
zero-shot experiments, we also conduct supervised
experiments on NQ, where we randomly samples
5% question from the training data as development
set. This yields a training and development set
with 70,393 and 3,704 (question, passage) pairs,
respectively.

The data resources can be downloaded from the
following websites

http://participants-area.

e BioASQ:

biocasqg.org/

e Forum: http://sumitbhatia.net/source/
datasets.html

e Natural Questions: https://github.com/

google/retrieval-ga—-eval

e Pubmed / Medline:

nih.gov/databases/download/pubmed_
medline.html

https://www.nlm.

e Stackexchange:

details/stackexchange

http://archive.org/

e Yahoo!

sandbox.yahoo.com/catalog.php?

Answers:  http://webscope.

datatype=1
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BioASQ7 _BioASQS8 NQ ForumTravel ForumUbuntu
Q 500 500 1772 25
R 2349 1646 1772 1,538 1,188
C 50M 53.4M 29.5M 82,669 106,642

Table 7: Statistics on each evaluation set. “Q” denotes
the number of unique questions. “R” denotes the to-
tal number of annotated reference passages. “C” is the
number of passages in the target collection.

e BioBERT:
dmis-lab/biobert

https://github.com/

e BERT:

google—research/bert

https://github.com/

To the extent that we pre-process the data, we will
release relevant tools and data upon publication.

B Question Generation Details

Our question generation follows the same imple-
mentation of Rothe et al. (2019). Both the encoder
and decoder share the same network structure. Pa-
rameter weights are also shared and are initial-
ized from a pretrained RoBERTa (Liu et al., 2019)
checkpoints. Training data is processed with sen-
tencepiece (Kudo and Richardson, 2018) tokeniza-
tion. We truncate answers to 512 sentencepiece
tokens, and limit decoding to at most 64 steps. The
training objective is the standard cross entropy. We
use Adam (Kingma and Ba, 2014) with learning
rate of 0.05, 81 = 0.9, B = 0.997 and € = 1e — 9.
Learning rate warmup over the first 40,000 steps.
Training batch size for the “lite”, “base” and “large”
models are 256, 128 and 32 respectively. All mod-
els are trained on a “4x4” slice of v3 Google Cloud
TPU. At inference, results from using beam search
decoding usually fall short of diversity, thus we use
greedy decoding to speed up question generation.

C Neural Model Details

C.1 Zero shot Retrieval Models
C.1.1 Development Set

Since we are investigating zero-shot scenario where
there is no annotated development set available, hy-
perparameters are set by following best practice
reported in previous work. We thus do not have
development set numbers. However, in the hyper-
parameters section below, we do use a subset of the
zero-shot training data to test training convergence
under different parameters.

C.1.2 Data Generation

For ICT task, we follow Lee et al. (2019b) and ran-
domly select at most 5 sentences from a document,

with a mask rate of 0.9. For Ngram models, Gysel
et al. (2018) suggests that retrieval models trained
with N larger than 16 consistently outperform those
trained with N smaller than 8. In addition, further
increase N from 16 has little effect on retrieval ac-
curacy. Thus, in our experiment we set N to 16
and move the ngram window with a stride of 8 to
allow 8 token overlap between consecutive ngrams.
For QGen models, each passage is truncated to 512
sentence tokens and feed to the question generation
system. Besides, we also run question generator on
individual sentences from each document to pro-
mote questions that focus on different aspects of
the same document. In particular, we select at most
top 5 salient sentences from a document, where
salience of a sentence is measure as the max IDF
value of terms in that sentence. We then feed these
sentences to the question generator.

C.1.3 Hyperparameters

For zero-shot neural retrieval model training, we
uniformly sample of a subset of 5K (question, doc-
ument) pairs from the training data as a noisy devel-
opment set. Instead of finding the best hyperparam-
eter values, we use this subset to find the largest
batch size and learning rate that lead the training
to converge (Smith et al., 2018). Take batch size
for example, we always start from the largest batch
that can fit in the memory of a “8x8” TPU slice.
We gradually decrease the batch size by a factor of
2 if the current value causes training diverge. More
details of hyperparameter values of each task are
listed in Table 8. Note on Forum data, the maxi-
mum batch size for QGen is much larger than other
tasks. Looking into the data, we found that queries
generated by ICT or Ngram task on Forum data
tends to contain higher percentage of noisy sen-
tences or ngrams that are either ill-relevant to the
topic or too general. For example, “suggestions are
welcomed”, “any ideas for things to do or place to
stay”. We train each model for 10 epochs, but also
truncate training steps to 200,000 to make training
time tractable.

For BM25, the only two hyperparameters are k
and b. We set these to £k = 1.2 and b = 0.75 as
advised by Manning et al. (2008).

For the hybrid model QGenHyb, the only hy-
perparameter is A. We set this to 1.0 without any
tuning, since this represented an equal trade-off
between the two models and we wanted to keep
the systems zero-shot. However, we did try exper-
imentations. For BioASQ 8b and Forum Ubuntu,
values near 1.0 were actually optimal. For BioASQ
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Learning Rate Batch Size
o ICT le-5 8192
4 Ngram le-5 8192
£ QGen le-5 8192
_. ICT 2e-6 1024
E 2 Ngam 2e-6 1024
€& QGen 2e-6 4096
=z ICT le-6 512
5 E Ngram le-6 512
= 2  QGen le-6 4096
~ ICT le-5 6144
o Ngram le-5 6144
“  QGen le-5 6144

Table 8: Hyperparameters

7b and Forum Travel, values of 2.0 and 2.1 were
optimal and led to improvements in MAP from
0.468 — 0.474 and 0.181 — 0.188, respectively.

C.2  Supervised Models

We also train supervised models on BioASQ and
NQ, where we use the development set to do early
stopping. For BioASQ, our developement set is
data from BioASQ 5 (i.e., disjoint from BioASQ
7 and 8). The development set MAP of our su-
pervised model reranking a BM25 system on this
data is 52.1, compared to the BioASQ 8 scores of
38.7. For NQ, the MRR on the development set is
0.141. All other hyperparameters remain the same
except we use a smaller batch size of 1024, as we
observe that using large batch causes the model
quickly overfit the training data. This may due to
the number of training examples is 2 orders of mag-
nitude smaller compared to zero-shot setting. For
our BioASQ supervised model we follow Pappas
et al. (2019) and train it with binary cross-entropy
using the top 100 BM25 results as negatives.

C.3 Computational Resources

C.3.1 Question Generation
To train the question generator on 2M questions,

e We used a “4x4” slice of v3 Google Cloud
TPU.

e Training time ranges from 20 hours for the
lite model and 6 days for the large model.

Once trained, we need to run the generator over
our passage collection.

e We distributed computation and used 10,000
machines (CPUs) over the collection.

e For BioASQ, the largest dataset, it took less
than 40 hours to generate synthetic questions.

We initialize question generation models from
either RoBerta base or Roberta large checkpoint
(Liu et al., 2019), and the total number of trainable
parameters are 67M for the lite model, 152M for
the base model and 455M for the large model.

C.3.2 Neural Retrieval Model

To train the retrieval models, we need to train the
query and passage encoders. We share parameters
between the two encoders and initialize them from
either base BERT (Devlin et al., 2019) or BloBERT
(Lee et al., 2019a) checkpoint. Thus retrieval mod-
els trained on BioASQ have 108M trainable pa-
rameters and retrieval models trained on NQ and
Forum data have 110M trainable parameters. After
training, we need to run the passage encoder over
every passage in the collection to create the nearest
neighbour backend.

e Depending on the training batch size, we use
either an “8x8” or “4x4” TPU slice.

o Training the "ngram” model on BioASQ took
the longest time, which completes in roughly
30 hours.

e Indexing BioASQ, which is our largest pas-
sage collection, with 4000 CPUs which took
roughly 4 hours.

Having trained models, the inference task is to
encode a query with the neural model and query
the distributed nearest neighbour backend to get
the top ranked passages. The relevant resources
are:

e We encode queries on a single CPU.

e Our distributed nearest neighbour search uses
20 CPUs to serve the collections.

e For BioASQ, our largest collection, to run the
inference on the test sets of 500 queries took
roughly 1m57s. This is approximately 0.2s
per instance to encode the query, run brute-
force nearest neighbour search on 10s of mil-
lions of examples and return the result.
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