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Abstract

The CODI-CRAC 2021 shared task is the
first shared task that focuses exclusively on
anaphora resolution in dialogue and provides
three tracks, namely entity coreference resolu-
tion, bridging resolution, and discourse deixis
resolution. We perform a cross-task analysis
of the systems that participated in the shared
task in each of these tracks.

1 Introduction

The CODI-CRAC 2021 shared task (Khosla et al.,
2021), which focuses on anaphora resolution in dia-
logue, provides three tracks, namely entity corefer-
ence resolution, bridging resolution, and discourse
deixis/abstract anaphora resolution. Among these
three tracks, bridging resolution and discourse
deixis resolution are relatively under-studied prob-
lems. This is particularly so in the context of di-
alogue processing. This shared task is therefore
of potential interest to researchers in the discourse
and dialogue communities, particularly researchers
in anaphora resolution who intend to work on prob-
lems beyond identity coreference.

Our goal in this paper is to perform a cross-team
analysis of the systems participating in the three
tracks of the shared task. Our analysis is partly
quantitative, where we attempt to draw conclusions
based on statistics computed using the outputs of
the systems, and partly qualitative, where we dis-
cuss the strengths and weaknesses of the systems
based on our manual inspection of these outputs.
While several attempts have been made to perform
an analysis of different coreference systems (e.g.,
Kummerfeld and Klein (2013), Lu and Ng (2020)),
we note that conducting an insightful analysis of
these systems is inherently challenging for at least
two reasons. First, for entity coreference resolution
and discourse deixis resolution, the latter of which
is treated as a general case of event coreference,

∗*Equal contribution

the system outputs on which we perform our anal-
ysis is in the form of clusters. Hence, we do not
have information about which links were posited
by a system and used to create a given cluster. This
makes it impossible to pinpoint the mistakes (i.e.,
the erroneous linking decisions) made by a system
and fundamentally limits our ability to explain the
behavior of a system. Second, even if we could pin-
point the mistakes, existing models for anaphora
resolution have become so complex that it is vir-
tually impossible to explain why a particular mis-
take was made. For instance, a mention extraction
component is so closely tied to a resolution model
that it is not always possible to determine whether
a mistake can be attributed to erroneous mention
extraction or resolution. Worse still, since the par-
ticipants have the freedom to partition the available
training and development datasets in any way they
want for model training and parameter tuning and
are even allowed to exploit external training cor-
pora, it makes it even harder to determine whether
a system performs better because of a particular
way of partitioning the data or because external
training data are used.

The rest of this paper is structured as follows.
The next three sections describe our cross-team
analysis for the three tracks, namely entity coref-
erence (Section 2), bridging (Section 3), and dis-
course deixis (Section 4). We present our conclu-
sions and observations in Section 5.

2 Entity Coreference Resolution

In this section, we analyze the results of the four
teams that participated in the anaphora resolution
track and submitted a shared task paper, namely the
team from Emory University (Xu and Choi, 2021)
(henceforth Emory), the team from the University
of Texas at Dallas (Kobayashi et al., 2021) (hence-
forth UTD), the team from Korea University (Kim
et al., 2021) (henceforth KU), and the DFKI team
(Anikina et al., 2021) (henceforth DFKI).
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LIGHT AMI Persuasion Switchboard

P R F P R F P R F P R F

Emory 89.2 92.5 90.8 82.2 90.2 86.0 90.6 90.7 90.6 85.3 89.8 87.5
UTD 92.3 91.6 92.0 86.6 78.6 82.4 91.3 89.7 90.5 89.2 86.1 87.6
KU 85.6 92.8 89.1 79.4 89.3 84.0 83.3 92.5 87.7 78.7 89.8 83.8
DFKI 84.8 82.6 83.7 75.4 65.8 70.3 79.8 77.5 78.6 79.3 77.9 78.6

Table 1: Entity coreference resolution: mention extraction results.

2.1 Mention Extraction

Since mention extraction has a large impact on
coreference resolution performance (Pradhan et al.,
2011, 2012), let us first consider the mention ex-
traction performance of the participating systems.

Table 1 presents the mention extraction results in
the standard manner, expressing the results of each
system on each corpus in terms of recall, precision,
and F-score. Specifically, a mention is considered
correctly detected if it has an exact match with a
gold mention in terms of boundary. In terms of F-
score, Emory and UTD achieve comparable perfor-
mance, and both of them outperform KU and DFKI.
Except for DFKI, all the systems achieve an aver-
age mention extraction F-score of more than 85%.
These mention extraction results are much better
than those achieved by traditional coreference re-
solvers, and are consistent with Lu and Ng’s (2020)
observation that mention detection performance
has improved significantly over the years, partic-
ularly after the introduction of span-based neural
coreference models (Lee et al., 2017, 2018). Con-
sidering the recall and precision numbers, we see
that Emory and KU are recall-oriented, whereas
UTD and DFKI are precision-oriented. Specifi-
cally, Emory and KU achieve the highest recall,
whereas UTD achieves the highest precision.

To gain additional insights into the mention
extraction results achieved by these systems, we
present these results from a different point of view
in Table 2. We first divide the mentions into 10
groups, which are shown in Table 3. As can be
seen, the first nine groups focus on different kinds
of pronouns, whereas the last group is composed
of non-pronominal mentions. We note that the clas-
sification of the mentions in the test corpus into
these 10 groups is not error-free: since we rely
on part-of-speech tags and the surface forms to
identify pronouns, words that appear in the cor-
pus such as “well” (which corresponds to “we’ll”)
and “were” (which corresponds to “we’re”) should
belong to Group 1 but are being misclassified as

non-pronominal.
Consider first Table 2a, where results are aggre-

gated over the four datasets. The “%” and “count”
columns show the percentage and number of gold
mentions that belong to each group. “none” shows
the fraction of mentions that are not detected by
any of the four participating systems. E (Emory),
T (UTD), K (KU), and D (DFKI) show the per-
centage of gold mentions successfully extracted
by each of these systems. E-only, T-only, K-only,
and D-only show the percentage of gold mentions
that are successfully extracted by exactly one of the
systems. For instance, E-only shows the fraction
of mentions successfully extracted by the Emory
resolver but not the other three.

A few points deserve mention. First, despite the
fact that Group 10 (non-pronominal mentions) is
the largest group, approximately half of the men-
tions are pronominal. The largest pronoun groups
are Group 1 (1st and 2nd person pronouns (e.g., “I”,
“we”)), Group 3 (3rd person ungendered pronouns
(e.g., “it”, “they”)), Group 5 (reflexive pronouns
(e.g., “myself”, “yourself”)), and Group 7 (demon-
strative pronouns (e.g., “this”, “that”)). This should
not be surprising given the prevalence of these pro-
nouns in dialogue, but their prevalence suggests the
importance of pronoun resolution in the shared task.
Second, considering the “only” columns, we see
that the percentage of mentions that are uniquely
identified by one of the systems is relatively small.
Third, Emory and KU extract more gold mentions
than UTD and DFKI. As can be seen in the “Over-
all” row, Emory and KU manage to extract more
than 90% of the gold mentions. These results are
consistent with those shown in Table 1. Perhaps
the biggest difference among the systems lies in
the extraction of non-pronominal mentions: Group
10 is the group for which Emory and KU clearly
demonstrate superior extraction performance.

While Table 2a focuses on gold mention extrac-
tion, Table 2b focuses on the extraction of erro-
neous mentions. Specifically, we take the union
of the set of erroneous mentions extracted by the
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(a) Coverage of gold mentions

Group % count none E T K D E-only T-only K-only D-only

Overall 100.0 19051 4.1 90.5 86.1 90.7 76.0 1.0 0.5 1.5 0.9
1 28.5 5433 0.0 99.8 99.6 99.0 99.7 0.0 0.0 0.0 0.0
2 1.6 308 0.0 99.4 99.7 99.4 100.0 0.0 0.0 0.0 0.3
3 8.8 1670 0.0 98.3 97.1 99.8 100.0 0.0 0.0 0.0 0.1
4 5.2 986 0.0 98.5 98.7 99.4 94.7 0.0 0.0 0.5 0.0
5 0.3 65 0.0 95.4 89.2 93.8 100.0 0.0 0.0 0.0 0.0
6 0.9 172 2.3 79.7 68.6 88.4 56.4 0.6 0.0 3.5 3.5
7 5.1 974 1.3 97.8 96.6 96.9 0.0 0.2 0.1 0.5 0.0
8 0.3 61 6.6 70.5 63.9 78.7 45.9 0.0 0.0 0.0 3.3
9 0.6 115 3.5 77.4 75.7 94.8 93.0 0.0 0.9 0.9 0.0

10 48.6 9267 8.1 82.3 74.0 82.4 63.3 2.0 0.9 2.9 1.7

(b) Coverage of wrong mentions

Group % count E T K D E-only T-only K-only D-only

Overall 100.0 7072 39.0 26.7 57.7 52.4 10.0 4.2 18.8 20.7
1 0.5 32 75.0 71.9 87.5 87.5 3.1 0.0 9.4 0.0
2 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 6.2 439 58.3 45.3 99.8 100.0 0.0 0.0 0.0 0.2
4 0.9 67 61.2 58.2 92.5 55.2 0.0 0.0 17.9 3.0
5 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 2.4 173 23.7 16.8 66.5 69.4 3.5 0.6 22.0 28.9
7 0.7 52 82.7 53.8 50.0 0.0 32.7 3.8 5.8 0.0
8 5.3 376 17.0 14.1 39.4 90.7 0.5 0.5 5.1 56.6
9 3.7 262 16.4 9.5 99.2 83.2 0.4 0.0 8.8 0.0
10 80.2 5671 39.6 26.3 52.9 44.5 12.0 5.1 21.7 21.1

Table 2: Entity coreference resolution: per-class mention extraction results.

Group Description
1 1st and 2nd person pronouns
2 3rd person gendered pronouns
3 3rd person ungendered pronouns
4 Possessive pronouns
5 Reflexive pronouns
6 Indefinite pronouns
7 Demonstrative pronouns
8 Relative and interrogative pronouns
9 Other pronouns

10 Non-pronominal noun phrases

Table 3: Division of mentions into groups.

four resolvers and compute statistics based on the
resulting set, which we refer to as S. The columns
in Table 2b can be interpreted in the same way as
those in Table 2a. For instance, E, T, K, and D
show the percentage of mentions in S extracted by
each of the systems, and E-only, T-only, K-only,
and D-only show the percentage of mentions in S
extracted by exactly one of the systems.

A few points deserve mention. First, approxi-
mately 80% of the erroneous mentions belong to
Group 10. This should perhaps not be surprising
given that the extraction of non-pronominal men-
tions, which are often composed of multiple to-
kens, is typically more challenging than that of

pronouns. Note that a complication involved in the
extraction process concerns the detection of non-
referring mentions: according to the shared task
guidelines, any non-referring mention extracted
will be considered erroneous. The second largest
group is Group 3, whose mentions account for
6.2% of the number of erroneous mentions. This
again should not be surprising. This group is com-
posed of pronouns such as “it”, many of which
may not be referring because of its use as an exple-
tive or a pleonastic pronoun. Second, considering
the “Overall” row, we can see that UTD has the
smallest coverage of erroneous mentions, which
translates to a higher mention extraction precision.,
whereas KU has the highest coverage of erroneous
mentions. While Table 2a shows that Emory and
KU both achieve high mention extraction recall,
Table 2b shows that KU does so at the expense
of precision and that Emory is clearly superior to
KU for mention extraction. While DFKI’s cov-
erage of gold mentions is the lowest among the
four systems, its coverage of erroneous mentions
is relatively high. Third, considering the group-
specific results, we can get a better idea of what
makes a particular system better for mention ex-
traction. UTD extracts fewer erroneous mentions
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MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT
Emory 90.6 89.5 90.0 74.2 84.9 79.2 68.1 75.9 71.8 80.3
UTD 87.8 89.1 88.5 72.7 82.6 77.3 74.5 73.9 74.2 79.6
KU 89.3 75.3 81.7 64.9 54.9 59.5 55.7 78.4 65.1 68.8
DFKI 86.2 70.9 77.8 75.3 59.0 66.2 52.8 64.1 57.9 67.3

AMI
Emory 72.4 69.0 70.7 57.2 66.2 61.4 53.5 67.9 59.8 64.0
UTD 66.7 65.5 66.0 48.5 58.3 53.0 51.1 46.4 48.6 57.4
KU 69.0 53.0 60.0 63.6 49.5 55.7 46.5 72.4 56.6 57.4
DFKI 59.1 41.9 49.1 48.1 41.3 44.4 37.0 39.7 38.3 43.9

Persuasion
Emory 80.4 88.0 84.0 76.9 82.5 79.6 74.7 68.8 71.6 78.4
UTD 78.7 87.8 83.0 76.6 80.4 78.5 76.2 74.8 75.5 77.5
KU 76.5 77.2 76.9 65.6 70.4 67.9 61.9 73.1 67.0 70.6
DFKI 69.8 65.2 67.4 65.2 55.1 59.7 52.6 52.7 52.6 59.9

Switchboard
Emory 82.2 79.1 80.6 72.4 76.5 74.4 64.1 73.4 68.5 74.5
UTD 77.5 79.5 78.5 70.7 74.3 72.4 71.5 69.0 70.2 72.6
KU 80.9 66.4 72.9 66.3 58.2 62.0 52.0 75.8 61.7 65.5
DFKI 62.7 60.2 61.4 55.6 56.9 56.3 42.8 43.1 43.0 53.5

Table 4: Entity coreference resolution: official resolution results.

than other teams except for Groups 4 and 7, both
of which are relatively small. By contrast, KU ex-
tracts considerably more erroneous possessive pro-
nouns (Group 4) than other teams, Emory extracts
considerably more erroneous demonstrative pro-
nouns (Group 7) than other teams, DFKI extracts
more erroneous relative and interrogative pronouns
(Group 8) than other teams, and both KU and DFKI
extract considerably more erroneous indefinite pro-
nouns (Group 6) and other pronouns (Group 9)
than other teams. Finally, considering the “only”
columns, we see that 10% of the erroneous men-
tions are only extracted by Emory, 18.8% by KU,
and 20.7% by DFKI. This shows that the systems
are quite different in terms of mention extraction.

2.2 Resolution
Next, we consider the coreference results. Table 4
shows the official results obtained using the official
scorer. These results are expressed in terms of
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), and CEAFe (Luo, 2005) recall (R), precision
(P), and F-score (F), as well as the CoNLL score,
which is the unweighted average of the MUC, B3,
and CEAFe F-scores.

The four participating systems show a clear dif-
ference in performance in terms of CoNLL F-score:
Emory performs the best, UTD and KU rank sec-
ond and third respectively, and DFKI achieves the
lowest performance. The performance difference

between Emory and UTD is smaller compared to
that between any other pair of systems: UTD un-
derperforms Emory roughly by 0.7–6.6% in the
CoNLL score. This could be explained in part by
the fact that both systems were built upon coref-hoi,
which is Xu and Choi’s (2020) entity coreference
system. Nevertheless, as we will see below, the two
systems behave quite differently.

Next, we consider the performance of these sys-
tems w.r.t. each scorer. As a link-based metric,
MUC focuses on link identification and does not re-
ward successful identification of singleton clusters.
Hence, by looking at the MUC recall, we can get
a better idea of how well a resolver does in terms
of link identification. As can be seen, Emory and
UTD are substantially better than KU and DFKI
in terms of link identification. To gain a better un-
derstanding of the extent to which the singleton
clusters and the non-singleton clusters contribute
to the overall performance of the systems, we show
the corresponding results in Table 5. Specifically,
in the "F" columns we show the CoNLL score. The
"ns-F" columns show the CoNLL scores obtained
by removing the singleton clusters from the output
prior to scoring, meaning that the scorers are ap-
plied to score only the non-singleton clusters. Sim-
ilarly, the "s-F" columns show the CoNLL scores
obtained by removing the non-singleton clusters
from the output prior to scoring, effectively allow-
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LIGHT AMI Persuasion Switchboard

F ns. F s. F F ns. F s. F F ns. F s. F F ns. F s. F

Emory 80.3 60.5 32.4 64.0 45.0 29.3 78.4 56.6 35.8 74.5 53.6 33.7
UTD 79.6 60.2 32.9 57.4 42.9 25.2 77.5 56.5 35.3 72.6 53.7 32.5
KU 68.8 49.4 28.0 57.4 38.5 27.5 70.6 48.0 33.1 65.5 44.8 30.7
DFKI 67.3 51.2 27.0 43.9 32.2 19.1 59.9 43.2 27.3 53.5 41.6 20.7

Table 5: Entity coreference resolution: results on singleton and non-singleton cluster identification.

ing the scorers to score only the singleton clusters.
As we can see from the results in Table 5, Emory

and UTD achieve comparable performance w.r.t.
both non-singleton and singleton cluster identifi-
cation, except on the AMI dataset where Emory
clearly demonstrates its superior performance w.r.t.
both tasks. In addition, while Emory and UTD
are generally better than KU w.r.t. both tasks, the
difference stems more from non-singleton cluster
identification than singleton cluster identification.
Comparing KU and DFKI, we see that KU is bet-
ter than DFKI on both tasks on all but the LIGHT
dataset.

Next, we measure system performance, specif-
ically link identification performance, at the pair-
wise level. For each non-singleton coreference
cluster in the gold output, we extract every pair
of mentions in the cluster, and denote the set of
pairs extracted from all non-singleton clusters as
Gp. We similarly extract all the pairs from the
non-singleton clusters produced by each of the four
systems, and denote the resulting sets as Ep, Tp,
Kp and Dp. The recall, precision, and F-scores in
Table 6 are computed based on the pairwise links
in these sets.

From the “Overall” row in Table 6, we can see
that approximately 120K pairs can be extracted
from the gold clusters of the four test datasets. As
we can see, except for KU, all systems have higher
recall than precision. In particular, UTD has the
highest recall but the lowest precision. Comparing
Emory and UTD, we see that while the two sys-
tems achieve comparable recall, UTD’s precision
is much lower, which in turn results in a lower F-
score. Though precision-oriented, KU’s precision
is not as high as Emory’s, which has the highest
precision among the systems.

To gain a better understanding of how these sys-
tems perform w.r.t. identifying difficult vs. easy
links, we divide the pairs into three groups based
on an intuitive notion of hardness. Group A is com-
posed of pairs where the two mentions are lexically
identical. A pair appears in Group B if (1) both

mentions in the pair are pronouns or (2) both men-
tions are non-pronominal and have a content word
overlap. Finally, a pair appears in Group C if (1)
the anaphor is pronominal but the antecedent is
not or (2) the two mentions have no content word
overlap.

Results are shown in the rows labeled A, B, and
C. The easiest links (Group A) account for nearly
half of all pairs while the hardest links (Group C)
have a much lower representation, accounting for
only 15% of all pairs. Emory achieves the best
results in all three groups, indicating its robustness
in identifying both easy and hard links. UTD ranks
second in Groups A and B, and the performance
gap between Emory and UTD widens as hardness
increases. DFKI ranks third in Groups A and B,
and largely fails to identify the links in Group C.
Finally, while KU does poorly for Groups A and B,
it performs slightly better than UTD w.r.t. Group C.
We speculate that KU chooses to resolve only those
pairs it is most confident about regardless of hard-
ness, yielding a low recall but a higher precision.

To understand how well each system does in re-
solving the anaphors in each of the 10 groups we
defined earlier, we show the per-group results in
the rows labeled 1 through 10. As can be seen, the
links involving 1st or 2nd pronouns as anaphors
(Group 1) form the largest group, accounting for
70% of all links. This is followed by links involving
non-pronominal mentions (Group 10) and posses-
sive pronouns (Group 4), both of which account
for slightly more than 10% of all links. Emory
achieves the best performance on these three largest
groups. Comparing Emory and UTD, we can see
that the two systems are indeed different: Emory
achieves a higher precision than UTD on all 10
groups, and its precision and recall are both higher
than UTD’s on Groups 6, 7, and 10. Comparing
KU and DFKI, we see that DFKI outperforms KU
in resolving 1st and 2nd pronouns (Group 1), pos-
sessive pronouns (Group 4) and reflexive pronouns
(Group 5). Though achieving the lowest overall
performance, KU outperforms UTD in resolving
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Emory UTD KU DFKI
Group % count P R F P R F P R F P R F

Overall 100.0 120045 60.4 78.9 68.4 45.2 80.2 57.8 57.9 30.6 40.1 49.1 58.7 53.5

A 46.4 55702 63.4 84.3 72.4 55.4 90.5 68.7 64.6 28.1 39.2 54.4 79.9 64.8
B 38.6 46357 62.8 80.7 70.6 41.3 83.1 55.2 55.5 35.5 43.3 44.5 54.9 49.1
C 15.0 17986 44.5 57.2 50.1 25.8 41.0 31.6 48.4 25.9 33.7 10.1 2.5 4.0

1 70.0 84000 62.2 84.3 71.6 48.1 87.0 61.9 57.5 28.2 37.8 49.1 71.1 58.1
2 2.4 2835 81.6 68.8 74.7 59.4 78.6 67.6 87.1 51.2 64.5 58.4 35.1 43.9
3 5.0 5990 47.2 53.9 50.3 27.1 59.1 37.2 57.1 44.2 49.8 29.9 14.0 19.1
4 10.1 12124 62.3 82.2 70.9 46.1 84.6 59.7 60.5 42.2 49.7 55.3 62.6 58.7
5 0.7 862 67.2 68.6 67.9 56.9 74.9 64.7 49.3 20.6 29.1 51.1 49.9 50.5
6 0.1 158 38.4 27.2 31.9 24.1 21.5 22.7 59.0 22.8 32.9 7.7 0.6 1.2
7 0.9 1051 37.9 40.9 39.3 18.7 34.1 24.1 44.8 29.6 35.6 nan 0.0 nan
8 0.0 37 15.6 13.5 14.5 11.5 18.9 14.3 23.3 18.9 20.9 0.0 0.0 nan
9 0.2 259 50.1 74.9 60.1 28.2 78.4 41.5 37.5 47.5 41.9 26.7 3.1 5.5

10 10.6 12729 49.2 58.7 53.5 33.1 46.5 38.6 52.9 25.2 34.2 31.3 6.6 10.9

1A 39.7 47641 63.0 86.7 73.0 56.0 93.2 69.9 62.1 25.1 35.7 53.8 88.1 66.8
1B 26.2 31414 64.2 84.2 72.8 42.0 85.2 56.2 54.4 33.7 41.6 41.9 56.4 48.1
1C 4.1 4945 43.4 61.6 50.9 21.7 39.2 27.9 46.1 23.6 31.2 2.0 0.5 0.8

2A 0.9 1108 91.3 74.2 81.9 66.4 94.7 78.0 94.2 58.8 72.4 79.2 46.4 58.5
2B 0.9 1097 79.6 64.4 71.2 54.2 85.9 66.5 85.2 49.2 62.4 46.4 32.7 38.4
2C 0.5 630 70.1 67.0 68.5 54.6 37.5 44.4 76.1 41.4 53.6 43.5 19.5 26.9

3A 1.9 2322 53.4 63.3 57.9 36.3 67.4 47.2 67.0 53.7 59.6 56.0 22.3 31.9
3B 1.1 1289 40.7 45.5 43.0 13.8 51.0 21.8 46.3 40.6 43.2 22.3 9.3 13.1
3C 2.0 2379 44.2 49.3 46.6 33.0 55.3 41.4 53.4 36.9 43.7 14.9 8.4 10.8

4A 1.1 1271 71.3 87.3 78.5 55.9 91.3 69.3 68.9 46.7 55.7 68.4 75.0 71.5
4B 7.9 9499 63.4 83.9 72.2 46.9 88.3 61.2 60.9 43.0 50.4 54.9 69.3 61.3
4C 1.1 1354 47.2 65.4 54.8 31.1 52.1 39.0 49.7 33.1 39.7 15.7 4.2 6.6

5A 0.0 11 42.9 27.3 33.3 80.0 36.4 50.0 0.0 0.0 nan 46.2 54.5 50.0
5B 0.6 750 68.4 73.1 70.7 57.5 79.2 66.6 50.0 20.5 29.1 52.8 56.3 54.5
5C 0.1 101 56.3 39.6 46.5 49.5 47.5 48.5 48.0 23.8 31.8 6.9 2.0 3.1

6A 0.1 69 50.0 37.7 43.0 32.1 37.7 34.7 69.7 33.3 45.1 8.3 1.4 2.5
6B 0.0 38 0.0 0.0 nan 0.0 0.0 nan 0.0 0.0 nan 0.0 0.0 nan
6C 0.0 51 39.5 33.3 36.2 17.8 15.7 16.7 59.1 25.5 35.6 nan 0.0 nan

7A 0.2 280 53.8 60.0 56.8 38.6 51.1 44.0 59.8 53.6 56.5 nan 0.0 nan
7B 0.3 318 33.0 36.2 34.5 12.5 36.8 18.6 34.8 21.7 26.7 nan 0.0 nan
7C 0.4 453 30.9 32.5 31.7 16.1 21.6 18.5 37.6 20.3 26.4 nan 0.0 nan

8A 0.0 1 0.0 0.0 nan 0.0 0.0 nan 100.0 100.0 100.0 0.0 0.0 nan
8B 0.0 6 14.3 16.7 15.4 5.6 16.7 8.3 16.7 16.7 16.7 0.0 0.0 nan
8C 0.0 30 16.7 13.3 14.8 14.6 20.0 16.9 21.7 16.7 18.9 nan 0.0 nan

9A 0.0 42 49.2 76.2 59.8 42.7 76.2 54.7 40.0 33.3 36.4 46.7 16.7 24.6
9B 0.1 125 62.6 87.2 72.9 30.4 92.0 45.7 38.2 58.4 46.2 0.0 0.0 nan
9C 0.1 92 35.8 57.6 44.2 21.0 60.9 31.2 35.3 39.1 37.1 100.0 1.1 2.2

10A 2.5 2957 70.3 70.0 70.2 64.9 67.3 66.1 81.5 34.4 48.4 75.3 18.5 29.7
10B 1.5 1821 43.8 49.9 46.6 33.7 52.6 41.0 43.5 25.5 32.1 30.0 13.8 18.9
10C 6.6 7951 44.1 56.6 49.6 24.8 37.3 29.8 46.0 21.8 29.6 3.7 0.5 0.9

Table 6: Entity coreference resolution: resolution results at the pairwise level.
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3rd person ungendered pronouns (Group 3), in-
definite pronouns (Group 6), demonstrative pro-
nouns (Group 7), relative and interrogative pro-
nouns (Group 8), and other pronouns (Group 9).
The remaining rows of the table show the results
when each of the ten groups is further subdivided
into three groups based on the three levels of hard-
ness. Space limitations preclude a discussion of
these results, however.

Table 7a shows each system’s coverage of gold
coreferent pairs. The rows can be interpreted in the
same way as those in Table 6, whereas the columns
can be interpreted in the same way as those in Ta-
ble 2. As a quick reminder, “none” shows the per-
centage of gold pairs that are not extracted by any
of the four systems; “E”, “T”, “K”, and “D” show
the percentage of gold pairs extracted by each of
the four systems; and the “x-only” columns show
the percentage of gold pairs that are extracted only
by system x.

A few points deserve mention. First, consider
the “none” results. As can be seen, only 10.5%
of the links are not recovered by any of the four
systems. Taking into account link hardness, we
see that 31.9% of the hardest links (Group C) are
not extracted while only 4.9% of the easiest links
(Group A) are not extracted. These results provide
suggestive evidence that our intuition notion of link
hardness is consistent with what a resolver would
perceive as hard. Considering the per-group results
(Group i, where 1 ≤ i ≤ 10), approximately 65%
of the links involving indefinite pronouns (Group 6)
and relative and interrogative pronouns (Group 8),
47% of the links involving demonstrative pronouns
(Group 7), and 29% of the links involving 3rd
person ungendered pronouns (Group 3) and non-
pronominal mentions (Group 10) are missed by
all four systems. These are traditionally the harder
groups of anaphors to resolve. Second, consider the
“x-only” results. While the “Overall” results sug-
gest that Emory and UTD may not very different
from each other in terms of the links they recover,
the "x-only" results suggest otherwise. Specifically,
18% of the hardest links (Group C) and 16.6% of
the non-pronominal links (Group 10) are uniquely
identified by Emory, whereas 15.1% of the links
involving 3rd person gendered pronouns (Group 2)
are uniquely identified by UTD.

While Table 7a focuses on the extraction of gold
coreferent pairs, Table 7b focuses on pairs that
are erroneously posited as coreferent. Specifically,

we take the union of the set of pairs that are erro-
neously posited as coreferent by the four resolvers
and compute statistics based on the resulting set,
which we refer to as S. The columns in Table 7b
can be interpreted in the same way as those in
Table 2. For instance, E, T, K, and D show the
percentage of pairs in S extracted by each of the
systems, and the "x-only" columns show the per-
centage of pairs in S that are extracted only by
system x.

As can be seen in Table 7b, approximately 19.4K
erroneous links are established by the four systems,
of which 60.2% are established by UTD, 37.7% by
DFKI, 32% by Emory, and 13.8% by KU; in addi-
tion, 32.4% of these erroneous links are only estab-
lished by UTD and 20.4% are only established by
DFKI. Combining the results in Tables 7a and 7b,
we see that UTD is the most aggressive among
the four systems in link identification: it has the
highest recall but the lowest precision, which is
consistent with the results in Table 6, and a large
percentage of erroneous links are only established
by UTD. In fact, a closer examination of the results
reveals that the percentage of erroneous links es-
tablished by UTD is higher than that by any other
system w.r.t. each of the ten groups and each of the
three hardness groups. Furthermore, recall from
Table 7a that Emory manages to correctly extract
many hard links (Group C) and non-pronominal
links (Group 10), but from Table 7b we can see
that this success comes at the expense of extracting
a fairly large number of erroneous links in these
groups. Finally, the “only” columns show that the
errors made by the four systems are quite different
from each other.

2.3 Discussion

In this subsection, we manually analyze the pair-
wise links that are correctly and incorrectly estab-
lished by the participating systems.

We begin by examining the coreference links
that are not identified by any system. The mention
pairs that are most frequently missed are: ("I", "I"),
("I", "you"), ("you", "I"), and ("it", it"), where the
first mention in each pair is the anaphor and the
second mention is its antecedent. It should per-
haps not be surprising that these pairs all involve
links between pronouns given their prevalence in
spoken dialogues. More than 3000 instances of
these four mention pairs are not extracted by any
of the participating systems. The other major types
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(a) Coverage of correct links

Group % count none E T K D E-only T-only K-only D-only

Overall 100.0 120045 10.5 78.9 80.2 30.6 58.7 4.6 3.7 1.1 0.7

A 46.4 55702 4.8 84.3 90.5 28.1 79.9 1.3 2.6 0.6 0.6
B 38.6 46357 9.0 80.7 83.1 35.5 54.9 3.3 3.7 1.3 1.0
C 15.0 17986 31.9 57.2 41.0 25.9 2.5 18.0 7.1 2.4 0.1

1 70.0 84000 6.2 84.3 87.0 28.2 71.1 2.9 2.4 0.7 0.7
2 2.4 2835 9.7 68.8 78.6 51.2 35.1 5.4 15.1 0.5 1.1
3 5.0 5990 29.1 53.9 59.1 44.2 14.0 4.0 9.3 3.4 0.6
4 10.1 12124 7.1 82.2 84.6 42.2 62.6 3.2 2.7 1.3 1.1
5 0.7 862 13.6 68.6 74.9 20.6 49.9 2.6 5.3 1.6 2.7
6 0.1 158 65.8 27.2 21.5 22.8 0.6 4.4 1.9 1.9 0.0
7 0.9 1051 47.4 40.9 34.1 29.6 0.0 9.3 5.2 4.5 0.0
8 0.0 37 64.9 13.5 18.9 18.9 0.0 8.1 5.4 8.1 0.0
9 0.2 259 12.7 74.9 78.4 47.5 3.1 5.8 9.3 0.8 0.0
10 10.6 12729 29.3 58.7 46.5 25.2 6.6 16.6 7.8 2.4 0.2

1A 39.7 47641 3.1 86.7 93.2 25.1 88.1 0.6 1.6 0.3 0.7
1B 26.2 31414 7.3 84.2 85.2 33.7 56.4 3.4 3.0 1.0 0.8
1C 4.1 4945 29.4 61.6 39.2 23.6 0.5 22.3 6.1 1.9 0.0

2A 0.9 1108 1.8 74.2 94.7 58.8 46.4 1.7 17.6 0.0 1.0
2B 0.9 1097 8.3 64.4 85.9 49.2 32.7 1.9 20.2 0.3 1.5
2C 0.5 630 26.0 67.0 37.5 41.4 19.5 17.8 1.6 1.9 0.5

3A 1.9 2322 20.6 63.3 67.4 53.7 22.3 3.7 7.8 3.1 0.4
3B 1.1 1289 36.5 45.5 51.0 40.6 9.3 4.1 8.7 5.0 0.9
3C 2.0 2379 33.3 49.3 55.3 36.9 8.4 4.2 11.1 2.9 0.7

4A 1.1 1271 2.8 87.3 91.3 46.7 75.0 0.8 4.0 0.6 0.5
4B 7.9 9499 5.3 83.9 88.3 43.0 69.3 1.8 1.8 1.4 1.3
4C 1.1 1354 23.7 65.4 52.1 33.1 4.2 15.1 7.5 2.0 0.1

5A 0.0 11 36.4 27.3 36.4 0.0 54.5 9.1 0.0 0.0 18.2
5B 0.6 750 10.9 73.1 79.2 20.5 56.3 1.7 2.9 1.3 2.7
5C 0.1 101 30.7 39.6 47.5 23.8 2.0 7.9 23.8 4.0 1.0

6A 0.1 69 47.8 37.7 37.7 33.3 1.4 5.8 4.3 2.9 0.0
6B 0.0 38 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6C 0.0 51 64.7 33.3 15.7 25.5 0.0 5.9 0.0 2.0 0.0

7A 0.2 280 29.6 60.0 51.1 53.6 0.0 6.4 3.2 5.7 0.0
7B 0.3 318 47.8 36.2 36.8 21.7 0.0 8.5 7.2 5.3 0.0
7C 0.4 453 58.1 32.5 21.6 20.3 0.0 11.7 5.1 3.1 0.0

8A 0.0 1 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
8B 0.0 6 66.7 16.7 16.7 16.7 0.0 16.7 0.0 0.0 0.0
8C 0.0 30 66.7 13.3 20.0 16.7 0.0 6.7 6.7 6.7 0.0

9A 0.0 42 11.9 76.2 76.2 33.3 16.7 11.9 9.5 0.0 0.0
9B 0.1 125 4.0 87.2 92.0 58.4 0.0 4.0 8.8 0.0 0.0
9C 0.1 92 25.0 57.6 60.9 39.1 1.1 5.4 9.8 2.2 0.0

10A 2.5 2957 18.1 70.0 67.3 34.4 18.5 9.1 7.7 1.6 0.2
10B 1.5 1821 30.2 49.9 52.6 25.5 13.8 10.5 12.7 2.7 0.9
10C 6.6 7951 33.3 56.6 37.3 21.8 0.5 20.8 6.7 2.6 0.0
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(b) Coverage of wrong links

Group % count E T K D E-only T-only K-only D-only

Overall 100.0 193827 32.0 60.2 13.8 37.7 9.6 32.4 7.3 20.4

A 34.6 66992 40.5 60.5 12.8 55.6 6.7 18.5 7.1 23.2
B 46.8 90794 24.4 60.4 14.6 35.0 7.1 37.7 7.4 22.3
C 18.6 36041 35.6 59.0 13.8 11.1 21.2 44.7 7.3 10.1

1 70.0 135593 31.7 58.2 12.9 45.6 7.6 27.6 7.3 24.4
2 1.1 2207 19.9 69.0 9.8 32.2 4.5 48.7 2.5 20.5
3 7.3 14074 25.7 67.5 14.1 14.0 12.9 53.9 5.7 11.6
4 9.4 18316 33.0 65.4 18.3 33.5 8.3 34.2 8.5 14.0
5 0.6 1069 26.9 45.7 17.1 38.5 8.8 27.6 8.2 33.0
6 0.1 168 41.1 63.7 14.9 7.1 20.8 46.4 5.4 6.0
7 1.2 2290 30.8 68.0 16.7 0.0 18.9 58.1 9.7 0.0
8 0.0 88 30.7 61.4 26.1 6.8 13.6 48.9 9.1 6.8
9 0.3 631 30.6 81.9 32.5 3.5 8.9 47.9 5.9 2.2

10 10.0 19391 39.9 61.7 14.8 9.5 21.3 42.9 7.4 7.3

1A 30.6 59401 40.8 58.9 12.3 60.8 5.9 15.2 7.4 25.5
1B 33.3 64556 22.9 57.3 13.7 38.0 6.7 35.6 7.4 25.9
1C 6.0 11636 34.2 60.2 11.8 11.0 21.2 46.7 6.2 10.3

2A 0.3 566 13.8 94.0 7.1 23.9 0.5 64.8 0.0 4.8
2B 0.6 1179 15.4 67.4 8.0 35.2 2.5 48.5 2.4 27.1
2C 0.2 462 39.0 42.4 17.7 34.6 14.5 29.2 5.8 22.9

3A 2.0 3866 33.1 71.0 15.9 10.5 14.7 51.4 4.8 6.5
3B 2.7 5227 16.4 78.2 11.6 8.0 8.6 69.2 5.3 6.5
3C 2.6 4981 29.7 53.6 15.4 23.0 16.1 39.9 6.9 20.9

4A 0.6 1197 37.3 76.6 22.4 36.8 4.9 33.2 7.4 6.5
4B 7.4 14350 32.0 66.3 18.3 37.6 5.9 32.5 8.5 15.6
4C 1.4 2769 35.8 56.4 16.4 11.0 22.1 43.2 8.7 9.3

5A 0.0 12 33.3 8.3 25.0 58.3 16.7 0.0 16.7 41.7
5B 0.5 942 26.9 46.6 16.3 40.1 7.5 27.3 7.5 34.3
5C 0.1 115 27.0 42.6 22.6 23.5 18.3 33.0 13.0 21.7

6A 0.0 74 35.1 74.3 13.5 14.9 8.1 48.6 1.4 12.2
6B 0.0 29 58.6 51.7 20.7 3.4 31.0 31.0 6.9 3.4
6C 0.0 65 40.0 56.9 13.8 0.0 30.8 50.8 9.2 0.0

7A 0.2 375 38.4 60.5 26.9 0.0 20.5 45.3 12.5 0.0
7B 0.6 1080 21.6 75.9 11.9 0.0 13.9 69.4 8.5 0.0
7C 0.4 835 39.3 61.1 18.3 0.0 24.6 49.2 10.1 0.0

8A 0.0 6 16.7 33.3 0.0 50.0 16.7 33.3 0.0 50.0
8B 0.0 26 23.1 65.4 19.2 11.5 7.7 57.7 3.8 11.5
8C 0.0 56 35.7 62.5 32.1 0.0 16.1 46.4 12.5 0.0

9A 0.0 55 60.0 78.2 38.2 14.5 14.5 30.9 5.5 0.0
9B 0.2 300 21.7 87.7 39.3 4.7 4.0 50.0 2.7 4.7
9C 0.1 276 34.4 76.4 23.9 0.0 13.0 48.9 9.4 0.0

10A 0.7 1440 60.7 74.7 16.0 12.4 15.4 27.6 1.8 5.4
10B 1.6 3105 37.5 60.7 19.4 19.0 15.9 39.1 8.9 10.5
10C 7.7 14846 38.4 60.7 13.7 7.3 23.0 45.1 7.7 6.9

Table 7: Entity coreference resolution: coverage of wrong links at the pairwise level.
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of missing links involve demonstrative pronouns,
wh-pronouns, and one-anaphora.

As for missing links that involve non-pronominal
expressions, some appear to be easy to identify
as the two mentions involved are synonyms, such
as ("the super market", "the grocery store"), ("the
school", "the college"), and ("kids", "children").
Since we do not examine the context in which they
appear or consider how far apart they are from each
other, we cannot conclude why these seemingly
simple cases are being missed by all systems.

Some missing links are difficult to identify be-
cause the two mentions involved appear to have
different semantic types. Examples include: ("your
destination", "the king of the goolehops"), ("your
donation", "the organization"), ("this very rep-
utable charity", "you"), ("this school your son
goes to", "private"), ("the battery", "the standard"),
("sixty-six", "the street"), and ("Michael", "a").

There are links that are missed because one or
both of the mentions involved are simply not ex-
tracted. Examples include: ("your husband", "a
wonderful man, you know, who treats me very, you
know, with a, with as") and ("your grandfathers of
past", "the kings of old: my great-grandfather kind
leonidas, the pious baylor the blessed, and maegor
the cruel"). Note that the antecedents in these ex-
amples are very long and certainly pose challenges
to a mention detection system.

Next, we take a closer look at the top-performing
system, the Emory system, in an attempt to under-
stand why it works better than the other systems.
First, there are more than 1700 links in the AMI
test corpus that involve "well" (i.e., "we’ll") and
"were" (i.e., "we’re") and are correctly identified
by Emory but not the other systems. In fact, the
large discrepancy in resolution performance be-
tween Emory and UTD on AMI can primarily be
attributed to UTD’s failure to even extract "well"
and "were" as mentions (probably because of the
missing apostrophe). Second, Emory appears to be
better than the other systems at exploiting context
to determine when two mentions are coreferent.
Consider a lexical pair that appears frequently in
the data such as ("I", "I"). While many instances
of it are coreferent, there are also many instances
that are not coreferent. The coreferent and non-
coreferent instances can only be distinguished by
factors such as distance and the surrounding con-
text. While Emory and UTD achieve similar recall
numbers, Emory achieves higher precision scores

because of its ability to better exploit context to
distinguish the coreferent and non-coreferent cases
of a frequently-occurring lexical pair than UTD.

We also examine the erroneous links established
by Emory. A major type of error involves links
between nouns that are synonymous or semanti-
cally similar. Examples include ("contrast", "bright-
ness") and ("the cash", "budget"). Another ma-
jor type of error involves the frequently occurring
lexical pairs discussed in the previous paragraph:
while Emory is comparatively better than the other
systems in exploiting context to distinguish the
coreferent and non-coreferent instances, it is still
far from being perfect in doing so. For instance,
while it correctly identifies more than 1700 links in-
volving "well" and "were", it incorrectly identifies
more than 1500 links involving these two pronouns.
Determining how to effectively exploit context to
distinguish the coreferent instances from their non-
coreferent counterparts is by no means trivial, but
it is a problem that must be addressed in order to
bring entity coreference resolvers to the next level
of performance.

Table 8 shows examples of the most frequent
gold coreferent pairs in the four test sets as well
as the predictions made by the four systems on
these pairs. Specifically, the first block shows the
results of the five most frequent coreferent pairs.
Perhaps not surprisingly, each pair involves two
pronouns. The "count" column shows the number
of times the two pronouns are coreferent in the test
data. In addition, we show the number of times
each system correctly predicts each pair as coref-
erent as well as the number of times each system
incorrectly predicts each pair as coreferent. As can
be seen, Emory and UTD establish a lot more cor-
rect links but also a lot more erroneous links than
KU and DFKI. Moreover, the number of wrong
links posited by Emory is considerably smaller
than that by UTD. These results provide empiri-
cal support for our earlier claim that determining
how to effectively exploit context to distinguish the
coreferent instances of a frequent pair from their
non-coreferent counterparts is a challenging but
important problem for coreference researchers.

The second block shows results involving pairs
in which one is a pronominal mention and the
other is a non-pronominal mention, whereas the
last block shows results involving pairs in which
both mentions are non-pronominal. The first two
blocks of results are similar in terms of the ob-
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Emory UTD KU DFKI
anaphor antecedent count Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Most frequent pairs
i i 34534 31110 13677 32175 17729 8120 5420 29747 6515
i you 8500 7053 3484 6866 7438 2697 2120 2607 7056

we we 8148 5957 8829 8049 12885 1412 264 7858 12793
you i 7472 6155 3778 6113 7676 2642 2131 3402 10122
you you 4713 3996 1647 3962 4241 2304 1557 4148 16741

Most frequent (pronoun, non-pronoun) or (non-pronoun, pronoun) pairs
they people 114 88 55 107 141 26 8 23 36

it the remote 109 23 24 59 181 9 0 1 0
i william 96 0 0 0 0 0 0 0 0

people them 93 78 13 90 15 6 0 0 0
people they 89 61 75 85 73 17 11 0 0

Most frequent (non-pronoun, non-pronoun) pairs
texas here 19 0 0 0 0 0 1 0 0
texas down here 18 0 0 0 0 0 0 0 0

the product the remote 18 0 0 10 2 1 1 0 0
here raleigh 15 0 0 15 41 0 0 0 0

childrens children 12 6 3 6 3 2 3 0 0

Table 8: Entity coreference resolution: examples of frequent gold coreferent pairs and the results of the systems
on them.

servations we can draw. The last block of results
indicate how challenging it is to correctly establish
links between two non-pronominal mentions.

3 Bridging Resolution

The shared task divides the evaluation of bridging
resolution into two phases: (1) the Predicted phase,
where a system needs to first identify all of the
entity mentions that likely correspond to anaphors
and antecedents, then perform bridging resolution
on the predicted mentions; and (2) the Gold phase,
which is essentially the same as the Predicted phase
except that bridging resolution is performed on the
given gold mentions.

In this section, we analyze the performance of
the teams that participated in the bridging resolu-
tion track. The UTD team (Kobayashi et al., 2021)
and the KU team (Kim et al., 2021) participated
in both phases, whereas the INRIA team (Renner
et al., 2021) only participated in the Gold phase.
In other words, two teams participated in the Pre-
dicted phase, and three teams participated in the
Gold phase. We will use their team name to refer to
the bridging resolution systems they developed. To
make it clear which phase a system was developed
for, we will augment the team name with a super-
script that encodes the phase. For instance, we will
use UTDP and UTDG to refer to the systems the
UTD team developed for the Predicted phase and
the Gold phase respectively.

3.1 Anaphor Extraction

The “Recognition” rows in Table 9 show the offi-
cial anaphor extraction results on each of the four
test sets, where results are expressed in terms of
recall (R), precision (P), and F-score. An anaphor
is considered correctly detected if it has an ex-
act match with a gold bridging anaphor in terms
of boundary. Comparing the two systems devel-
oped for the Predicted phase, we see that KUP

beats UTDP on three datasets, LIGHT, AMI, and
Switchboard. Perhaps impressively, on these three
datasets, KUP outperforms UTDP in terms of both
precision and recall, showing its firm superiority
over UTDP . Note that KUP is a pipelined system
where anaphor extraction is performed as an ex-
plicit step prior to resolution, whereas UTDP is
a span-based system where the spans correspond-
ing to anaphors are jointly learned as part of the
resolution process. These results seem to suggest
that better results can be achieved if one designs a
model specifically for anaphor extraction.

Among the three Gold systems, UTDG outper-
forms KUG on all datasets, and KUG in turn out-
performs INRIAG on all datasets. One difference
between UTDG and UTDP is that the former has
an explicit anaphor extraction component whereas
the latter does not. The better anaphor extraction
results achieved by UTDG in comparison to KUG

could be therefore be attributed to the introduction
of this anaphor extraction component, providing
further empirical support for our earlier hypoth-
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LIGHT AMI Persuasion Switchboard

P R F P R F P R F P R F

UTDP

Recognition 21.8 44.3 29.2 26.8 32.9 29.5 29.6 38.9 33.6 28.9 32.2 30.4
Resolution 10.4 21.2 14.0 12.1 14.8 13.3 19.3 25.3 21.9 14.5 16.1 15.3

KUP

Recognition 28.8 54.7 37.7 32.3 38.4 35.1 20.9 60.4 31.1 29.7 43.4 35.3
Resolution 10.3 19.5 13.5 9.4 11.2 10.3 8.3 24.0 12.3 9.3 13.5 11.0

UTDG

Recognition 34.7 40.7 37.5 37.0 42.2 39.4 43.0 52.1 47.1 37.7 50.9 43.3
Resolution 18.3 21.4 19.7 18.4 21.0 19.6 28.7 34.7 31.4 18.4 24.8 21.1

KUG

Recognition 38.2 34.7 36.4 41.9 30.8 35.5 31.3 53.1 39.4 41.2 30.9 35.3
Resolution 17.5 15.9 16.7 18.1 13.3 15.3 14.9 25.3 18.8 21.4 16.1 18.3

INRIAG

Recognition 34.8 11.8 17.6 34.1 14.4 20.2 46.7 17.0 24.9 34.2 24.9 28.8
Resolution 18.4 6.3 9.4 10.1 4.3 6.0 30.5 11.1 16.3 9.2 6.7 7.8

Table 9: Bridging resolution: official anaphor recognition and resolution results.

esis that better anaphor extraction results could
be achieved via an anaphor extraction component.
While one would generally expect to see better
anaphor extraction performance in the Gold phase
than in the Predicted phase, it is interesting to see
that this is not necessarily the case for KU. Specif-
ically, except on Persuasion where KUG achieves
considerably better performance than KUP , the two
systems achieve similar F-scores on the remaining
three datasets. While their F-scores are similar,
the recall and precision scores are not: KUP has
dramatically higher recall and substantially lower
precision than KUG. INRIAP is roughly on par
with the other systems in terms of precision, but
its recall is much lower than the other systems: the
best recall it achieves on any of the datasets is only
24.9%. This level of extraction performance will
likely limit its resolution performance severely.

Tables 10 and 11 show each system’s coverage
of correct and wrong anaphors in the Predicted
phase and the Gold phase respectively. The rows
and columns in these tables can be interpreted in
the same way as those in Table 2. As a quick
reminder, “none” shows the percentage of gold
anaphors that are not extracted by any of the sys-
tems, and the “x-only” columns show the percent-
age of correct/wrong anaphors extracted by system
x and not any of the other systems.

Consider first the left half of Table 10, which
shows each Predicted system’s coverage of gold
anaphors. As we can see, 40.4% of the gold
anaphors are not extracted by any of the two

systems. More specifically, 38.4% of the non-
pronominal anaphors (the largest group), 50.7%
of the 1st+2nd person pronouns (one of the second
largest groups) and 67.6% of the 3rd person ungen-
dered pronouns (the other second largest group) are
not extracted by any of them. These results suggest
that anaphor extraction in the Predicted phase is
rather challenging. In terms of the coverage of gold
anaphors, the “x-only” columns show that the two
Predicted systems are quite different: while many
of the anaphors extracted by KUP are not extracted
by UTDP , there are also a number of anaphors that
are extracted by UTDP but not by KUP .

The right half of Table 10 shows each Predicted
system’s coverage of mentions that are erroneously
extracted as anaphors. As can be seen, KUP

extracts nearly half of the erroneously extracted
anaphors, whereas the corresponding percentage
for UTDP is slightly lower (38.9%). The num-
ber of mistakes uniquely made by KUP is larger
than that by UTDP on all but Groups 4 (possessive
pronouns) and 7 (demonstrative pronouns). These
results suggest that the two systems are very differ-
ent from each other in terms of anaphor extraction.

Next, consider the three Gold systems in Ta-
ble 11. Somewhat surprisingly, when the gold
mentions are provided, the percentage of anaphors
that cannot be extracted by any of the three sys-
tems increases for all but two groups (Group 10
(non-pronominal mentions) and Groups 6 (indefi-
nite pronouns)) in comparison to the corresponding
percentages in the Predicted phase. The remaining
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Coverage of gold anaphors Coverage of wrong anaphors
Group % count none T-only K-only % count T-only K-only

Overall 100.0 2526 40.4 14.5 25.1 100.0 4863 38.9 49.5
1 2.8 71 50.7 8.5 26.8 9.4 459 14.6 80.4
2 0.0 1 100.0 0.0 0.0 0.2 10 0.0 100.0
3 2.8 71 67.6 2.8 25.4 3.3 159 8.2 85.5
4 0.9 23 39.1 26.1 30.4 1.1 55 58.2 30.9
5 0.0 0 100.0 0.0 0.0 0.1 3 33.3 66.7
6 1.8 46 26.1 17.4 30.4 2.0 97 58.8 34.0
7 1.9 49 73.5 0.0 22.4 1.9 94 6.4 91.5
8 0.0 1 100.0 0.0 0.0 0.1 4 25.0 75.0
9 1.3 32 62.5 9.4 21.9 0.8 39 33.3 64.1

10 88.4 2232 38.4 15.3 25.0 81.1 3943 43.1 43.8

Table 10: Bridging resolution (Predicted phase): coverage of correct and wrong anaphors.

Coverage of gold anaphors Coverage of wrong anaphors
Group % count none T-only K-only I-only % count T-only K-only I-only

Overall 100.0 2526 35.6 20.2 12.3 3.5 100.0 3338 37.5 26.4 12.3
1 2.8 71 56.3 11.3 5.6 8.5 8.9 297 26.3 37.0 19.2
2 0.0 1 100.0 0.0 0.0 0.0 0.1 5 0.0 60.0 40.0
3 2.8 71 73.2 5.6 7.0 2.8 3.5 117 47.0 31.6 12.8
4 0.9 23 56.5 13.0 0.0 0.0 1.0 35 48.6 5.7 31.4
5 0.0 0 100.0 0.0 0.0 0.0 0.0 1 0.0 100.0 0.0
6 1.8 46 17.4 19.6 15.2 2.2 1.9 62 30.6 40.3 9.7
7 1.9 49 83.7 2.0 12.2 0.0 1.0 35 20.0 71.4 8.6
8 0.0 1 100.0 0.0 0.0 0.0 0.1 3 0.0 0.0 100.0
9 1.3 32 75.0 6.2 3.1 3.1 0.6 20 40.0 55.0 5.0

10 88.4 2232 32.2 21.7 12.9 3.5 82.8 2763 38.7 24.1 11.3

Table 11: Bridging resolution (Gold phase): coverage of correct and wrong anaphors.

columns provide suggestive evidence that the three
systems are quite different from each other in terms
of anaphor extraction. Specifically, among the
gold anaphors, 20.2% are extracted only by UTDG,
12.3% only by KUG, and 3.5% only by INRIAG,
and among the erroneously extracted anaphors,
37.5% are only extracted by UTDG, 26.4% only by
UTDG, and 12.3% only by INRIAG.

3.2 Resolution

The “Resolution” rows in Table 9 show the offi-
cial resolution results on each of the four test sets,
where results are expressed in terms of recall (R),
precision (P), and F-score at the entity level. In
other words, an anaphor is considered correctly
resolved if it is resolved to its antecedent or any
preceding mention that is coreferent with its an-
tecedent. Comparing the two Predicted systems,
we see that UTDP beats KUP on all datasets in
terms of recall, precision, and F-score. Given that
UTDP ’s anaphor extraction performance is poorer
than that of KUP , its superior resolution results
can be attributed solely to better resolution and not
better anaphor extraction. We speculate that KUP ’s
poorer resolution performance can be attributed to

its attempt to establish links, many of which are
wrong, more aggressively than UTDP .

Among the three Gold systems, UTDG outper-
forms KUG on all datasets in terms of F-score, and
with the exception of its precision on Switchboard,
it outperforms KUG on both recall and precision on
all datasets. It is worth noting that both Gold sys-
tems outperform their Predicted counterparts on all
datasets, which is consistent with our expectation
that the Gold setting is easier than the Predicted
setting. INRIAG’s performance is much lower than
the other two systems in terms of both recall and
precision, but primarily because of recall. We be-
lieve that its low recall can be attributed in part to
its fairly poor anaphor extraction performance.

To gain a better understanding of how these sys-
tems perform w.r.t. identifying difficult vs. easy
links, we divide the bridging pairs based on how
hard we believe it is to resolve them. Specifically,
we partition the bridging pairs into five groups:
same string (the two mentions are the same string),
same head (the two mentions have the same head),
same head lemma (the two mentions have the same
lemma head), word overlap (the two mentions have
at least one content word overlap), and other (pairs
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(a) Coverage of correct links

all none T K T-only K-only
Group % cnt % cnt % cnt % cnt % cnt % cnt

Overall 100.0 2526 77.4 1954 14.4 364 12.1 306 10.5 266 8.2 208
Same string 1.1 28 89.3 25 10.7 3 0.0 0 10.7 3 0.0 0
Same head 18.8 475 58.5 278 32.0 152 17.7 84 23.8 113 9.5 45

Same head lemma 6.6 167 61.1 102 30.5 51 15.6 26 23.4 39 8.4 14
Word overlap 4.2 105 79.0 83 13.3 14 13.3 14 7.6 8 7.6 8

Other 69.3 1751 83.7 1466 8.2 144 10.4 182 5.9 103 8.1 141

(b) Coverage of wrong links

all T K T-only K-only
Group % cnt % cnt % cnt % cnt % cnt

Overall 100.0 6604 44.8 2961 57.6 3807 42.4 2797 55.2 3643
Same string 7.0 462 54.1 250 45.9 212 54.1 250 45.9 212
Same head 16.0 1055 74.3 784 31.2 329 68.8 726 25.7 271

Same head lemma 4.3 287 71.1 204 39.0 112 61.0 175 28.9 83
Word overlap 5.2 346 46.5 161 55.8 193 44.2 153 53.5 185

Other 67.4 4454 35.1 1562 66.5 2961 33.5 1493 64.9 2892

Table 12: Bridging resolution (Predicted phase): coverage of correct and wrong links.

that have no lexical overlap).
Two points deserve mention. First, the groups

are listed in ascending order of resolution difficulty:
intuitively, a pair of mentions having the same head
lemma is easier to resolve than one that does not
have any lexical overlap, for instance. Second, if
a pair belongs to a group (e.g., same head lemma),
then it should also belong to all subsequent groups
(i.e., word overlap and other), but since we are
partitioning the pairs, we will assign a pair to only
the first group that is applicable to it.

Tables 12a and 13a show the results for the
Predicted systems and the Gold systems respec-
tively. The rows correspond to the five groups.
The columns can be interpreted in the same way
as those in Table 7a. “all” expresses the size of
a group in terms of the number of pairs it covers
and the corresponding percentage. “none” shows
the number and percentage of pairs that are not
resolved by any of the systems. The “T”, “K”, and
“I” columns show the number and percentage of
pairs correctly resolved by the individual systems,
whereas the “x-only” columns show the number
and percentage of pairs that can be resolved by
system x and not any of the other systems.

We begin by noting that the percentage of
anaphors that belong to the “same string” group
is much smaller in bridging than in coreference.
This is understandable: this group contains pairs in
which the mentions are lexically identical. While
many coreferent mentions are lexically identical,
relatively few bridging pairs are composed of lex-

ically identical mentions. In addition, approxi-
mately only 30% of the links (i.e., those that con-
nect the pairs in the first four groups) can be estab-
lished using string-matching facilities. This makes
bridging resolution more challenging than entity
coreference resolution.

Next, consider the Predicted systems. As we
can see in the “overall” row, the overall resolu-
tion performance of KUP is worse than that of
UTDP . However, this by no means implies that
UTDP is better than KUP in all categories. Gen-
erally, UTDP performs much better than KUP on
the easier categories, and as we move down the ta-
ble, the performance gap between the two systems
continues to shrink, to the point that KUP starts
to outperform UTDP on “other”, the most difficult
category. Overall, these results suggest that while
UTDP is better than KUP at resolving the easier-
to-resolve pairs, the reverse is true when it comes
to resolving the difficult-to-resolve pairs. Consider-
ing the results in the “x-only” columns, we see that
the links recalled by the two systems are largely
different from each other. Finally, considering the
results in the “none” column, we note that 77.4% of
the links are not recalled by any of the two systems.
Even for simpler categories such as “same head”
and “same head lemma”, around 60% of the pairs
are not recalled. These results provide suggestive
evidence that the Predicted setting is indeed very
challenging.

Consider the Gold systems. A few points deserve
mention. First, the performance differences that
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(a) Coverage of correct links

all none T K I T-only K-only I-only
Group % cnt % cnt % cnt % cnt % cnt % cnt % cnt % cnt

Overall 100.0 2526 70.2 1773 19.3 488 13.5 342 5.3 134 12.5 315 7.7 195 1.9 49
Same string 1.1 28 89.3 25 0.0 0 0.0 0 10.7 3 0.0 0 0.0 0 10.7 3
Same head 18.8 475 47.4 225 42.5 202 19.8 94 7.6 36 27.2 129 7.8 37 1.5 7

Same head lemma 6.6 167 46.1 77 37.7 63 27.5 46 10.8 18 21.6 36 12.6 21 1.2 2
Word Overlap 4.2 105 64.8 68 21.9 23 17.1 18 5.7 6 16.2 17 8.6 9 1.9 2

Other 69.3 1751 78.7 1378 11.4 200 10.5 184 4.1 71 7.6 133 7.3 128 2.0 35

(b) Coverage of wrong links

all T K I T-only K-only I-only
Group % cnt % cnt % cnt % cnt % cnt % cnt % cnt

Overall 100.0 5400 49.5 2675 34.9 1883 23.0 1244 43.2 2333 30.2 1629 19.6 1060
Same string 7.7 414 77.1 319 11.8 49 17.6 73 70.5 292 11.8 49 11.1 46
Same head 15.7 847 74.0 627 29.0 246 11.1 94 61.4 520 19.0 161 6.6 56

Same head lemma 4.6 250 71.6 179 32.0 80 11.2 28 58.0 145 21.6 54 6.4 16
Word overlap 7.7 416 34.9 145 31.5 131 39.7 165 30.3 126 27.4 114 37.5 156

Other 64.3 3473 40.5 1405 39.6 1377 25.5 884 36.0 1250 36.0 1251 22.6 786

Table 13: Bridging resolution (Gold phase): coverage of correct and wrong links.

we have observed above between UTDP and KUP

are also applicable to UTDG and KUG, except that
UTDG outperforms KUG on all categories. In other
words, UTDG manages to do better than KUG on
the difficult categories. Second, INRIAG underper-
forms UTDG and KUG on all but the easiest group,
“same string”. Third, considering the results in the
“x-only” columns, we see that the links recalled by
UTDG and KUG are quite different, but the links
recalled by INRIAG are for the most part similar
to those recalled by the other two systems. Finally,
considering the results in the “none” column, we
see that 70.2% of the links are not recalled by any
of the three systems, which is smaller than the cor-
responding percentage in the Predicted setting. In
fact, the percentage associated with nearly every
group in the Gold phase is smaller than the corre-
sponding percentage in the Predicted phase. This
again provides suggestive evidence that the Gold
setting is indeed less challenging than the Predicted
setting.

While Tables 12a and 13a focus on the extrac-
tion of gold pairs, Tables 12b and 13b focus on
the extraction of wrong pairs (i.e., wrong links).
Specifically, in Table 12b, we take the union of the
set of wrong pairs extracted by the two Predicted
systems and compute statistics based on the result-
ing set, which we refer to as S. The columns in
Table 12b can be interpreted in the same way as
those in Table 12a. Table 13b is essentially the
same as Table 12b except that it shows the results
of the three Gold systems.

Consider first the Predicted systems (Table 12b).
As can be seen, 6604 erroneous links are estab-
lished by the two systems, of which 44.8% are
established by UTDP and 57.6% by KUP ; in ad-
dition, 42.4% of these erroneous links are only
established by UTDG and 55.2% are only estab-
lished by UTDP . Comparing Tables 12a and 12b,
we see that each system identifies a lot more er-
roneous links than correct links. Moreover, while
Table 12a shows that UTDP performs better than
KUP on the easy categories and worse than it on
the harder categories, Table 12b shows the reverse
trend. Specifically, UTDP extracts more erroneous
pairs that belong to the easy categories than KUP ,
whereas KUP extracts more erroneous pairs that
belong to the harder categories than UTDP . Fi-
nally, considering the “x-only” columns, we see
that there is very little overlap in the erroneous
links predicted by the two systems.

Next, consider the Gold systems (Table 13b). We
can see that 5400 erroneous links are established by
the three systems, which is smaller than the corre-
sponding number in Table 12b. This again suggests
that the provision of gold mentions has made the
task somewhat easier. Of these 5400 erroneous
links, 49.5% are established by UTDG, 34.9% by
KUG, and 23.0% by INRIAG; in addition, 43.2%
of these erroneous links are only established by
UTDG, 30.2% are only established by UTDG, and
19.6% are only established by INRIAG. Some of
the observations we made on the Predicted results
in Table 12b are applicable to the Gold results. For
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Recalled Missed
relation/category anaphor antecedent TP KP TG KG IG anaphor antecedent

Part-whole these waters the sea X X X X X a bird a beak
Is-a a parent the father X X a chrysler car
Instance-of (same head) a car cars X X a college colleges
Instance-of (diff heads) a highway the road X X humans i
Related/Associated any amount your payment X X X X X sound volume
Number fifteen seventeen X X X fifty the tenth
Pronoun pairs we you X we we
Pro, non-pro pairs they texas X people they
Demonstrative pronouns this an adventure X X conceptual design this

Table 14: Bridging resolution: examples of gold bridging pairs that belong to different relations/categories.

instance, UTDG extracts a lot more erroneous pairs
that belong to the easy categories than KUP . What
is different is that UTDG extracts more erroneous
pairs than KUG on the hard categories as well, even
though the difference in the number of erroneous
pairs they extract is smaller as the hardness level
increases. INRIAG generally extracts fewer er-
roneous pairs than the other two systems, but it
extracts more erroneous pairs in the “word overlap”
group than the other systems. Finally, considering
the “x-only” columns, we see that the three sys-
tems are quite different from each other in terms of
their prediction of erroneous pairs.

3.3 Discussion

In this subsection, we manually analyze the pair-
wise links that are correctly and incorrectly estab-
lished by the participating systems.

A bridging relation in this data typically involves
two mentions where one is a specific instance of a
generic concept referred to by the other via the use
of semantic relations such as set-subset, part-whole,
and is-a. There are no noticeable differences be-
tween the Predicted systems and the Gold systems
in terms of the kind of semantic relations they ex-
tract. Specifically, both the Predicted systems and
the Gold systems are able to extract a variety of se-
mantic relations as bridging relations, such as is-a
(e.g., ("an eagle", "bird"), ("a light blue", "standard
color")), set-subset (e.g., ("I", "we"), ("charities",
"Save the Children")) and part-whole (e.g., ("the
engine", "the car"), ("New Orleans", "the United
States")). In addition, both are able to extract less
well-defined relations in which one mention is sim-
ply associated with or is a specific instance of the
other (e.g., ("one chip", "two"), ("a child", "kid"),
("people", "customers"), ("it", "a new one, the
phone"), ("the place", "a restaurant"), ("some", "an-
imals"), ("That", "a special flower to show you"),

("dresses", "Levi’s), ("people who have killed po-
lice officers", "murderers")). Additional examples
that are successfully recalled by the systems are
shown in Table 14. Specifically, the "Recalled"
column shows successfully recalled pairs that are
instances of different semantic relations or cate-
gories as well as the system(s) that identified these
pairs. As discussed before, while some relations
can be identified via string-matching facilities (e.g.,
("the function", "a desired function"), ("two batter-
ies", "battery")), the majority of them cannot.

In addition, we do not observe any noticeable
differences between the systems submitted by dif-
ferent teams in terms of the kinds of semantic rela-
tions they extract. As discussed before, the UTD
systems achieve better resolution results than the
KU systems because (1) the UTD systems are more
conservative in positing bridging links between two
mentions than the KU systems, and (2) the UTD
systems focus more on the relations that can be
identified via string-matching facilities, which pre-
sumably are easier to identify.

Examining the links that are missed by all of the
systems, we do not find any noticeable differences
between the kinds of semantic relations that exist
in the correctly extracted pairs and those that ex-
ist in the pairs that fail to be extracted. Table 14
shows several gold pairs that are not extracted by
any of the systems in the "Missed" column. While
a deeper analysis is needed in order to understand
why some instances of a particular semantic rela-
tion are being extracted and others are not, we spec-
ulate that the distance between the two mentions
involved, their surrounding contexts, and whether
a given mention pair is seen in the training data as
having a bridging relation may have played a role.

While it is encouraging to see from Table 14 that
the systems can successfully recall pairs that be-
long to the "Other" (i.e., most difficult-to-resolve)
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category, a large percentage of bridging links in
this category are still not extracted by any of the
systems. To improve system recall for these diffi-
cult cases, existing work has explored the use of
information extracted from manually constructed
resources such as knowledge graphs (Pandit et al.,
2020) as well as bridging pairs (Hou, 2018) and
bridging-annotated data (Hou, 2020) automatically
constructed using lexico-syntactic patterns. These
and other ideas (see Kobayashi and Ng (2020) for
an overview) could be explored to improve the re-
call of the participating systems. Note, however,
that these manually and automatically constructed
resources are not likely to be helpful for resolv-
ing bridging links that involve pronouns as well as
nouns that are semantically poor (e.g., "here"). Cur-
rently, demonstrative pronouns such as "this" and
"that" have a resolution recall of 14.2% and 4.5%
respectively, and the word "here" has a resolution
recall of 6.3%. Given that these anaphors cannot
be resolved via string matching, the only way to
resolve them is to exploit the contexts in which
they appear. While the mention representations
acquired by existing mechanisms are supposed to
be contextualized, the contextual information en-
coded in them is arguably quite limited and insuffi-
cient as far as making accurate linking decisions is
concerned. Hence, learning effective context rep-
resentations is a key challenge for state-of-the-art
bridging resolvers. As discussed earlier, learning
effective context representations is also an issue
surrounding state-of-the-art entity coreference re-
solvers. However, we believe that this issue is likely
to be more challenging for bridging resolution than
for entity coreference. The reason is that determin-
ing whether two mentions are associated based on
context is in general a lot more challenging than
determining whether they refer to the same entity.

4 Discourse Deixis Resolution

The shared task divides the evaluation of discourse
deixis resolution into two phases: (1) the Predicted
phase, where a system needs to first identify all
of the entity mentions that likely correspond to
anaphors and antecedents, then perform discourse
deixis resolution on the predicted mentions; and
(2) the Gold phase, which is essentially the same
as the Predicted phase except that the mentions
corresponding to anaphors are to be extracted from
the given gold mentions.

In this section, we analyze the performance of

the teams that participated in the discourse deixis
resolution track. The UTD team (Kobayashi et al.,
2021) participated in both phases, whereas the
DFKI team (Anikina et al., 2021) participated in
the Predicted phase only. In other words, two teams
participated in the Predicted phase, and one team
participated in the Gold phase. As in bridging, we
will use their team name to refer to the discourse
deixis resolution systems they developed, augment-
ing the team name with a superscript that encodes
the phase the system was developed for.

4.1 Mention Extraction

Mention extraction results of the four test sets,
which are expressed in terms of R, P, and F, are
shown in the “Overall” row of Table 15. As in the
other tracks, a mention is considered correctly ex-
tracted if it has an exact match with a gold mention
in terms of boundary.

Consider first the two systems developed for
the Predicted phase, UTDP and DFKIP . DFKIP

achieves a much higher recall (9–17% points)
than UTDP on three of the four datasets, and on
the remaining dataset (LIGHT), the two systems
achieve comparable recall. These results suggest
that DFKIP is a lot more aggressive in extract-
ing mentions than UTDP . The high recall scores
achieved by DFKIP , however, come at the expense
of precision. As can be seen, DFKIP ’s precision
scores are substantially lower than UTDP ’s, with
a difference of 37–42% points. Consequently, the
mention extraction F-scores achieved by DFKIP

are also lower than those achieved by UTDP : there
is a 12–22% point difference in F-score between
the two systems.

Next, consider the two UTD systems, UTDP and
UTDG. The performance difference between these
two systems is less than that between the two sys-
tems for the Predicted phase. In terms of F-score,
while UTDG outperforms UTDP by nearly 12%
points on Persuasion, the two differ from each other
by only 2–3% points on the remaining datasets.
The difference between their recall and precision
values, however, provides some evidence that they
may not be as similar to each other as their F-scores
suggest. Specifically, UTDG’s mention extraction
system seems to be recall-oriented: on three of the
four datasets, UTDG has a much higher recall (6–
26% points) but a much lower precision (6–16%
points) than UTDP .

To better understand whether these systems dif-
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LIGHT AMI Persuasion Switchboard

P R F P R F P R F P R F

Overall
UTDG 66.2 49.0 56.3 54.5 45.2 49.4 61.8 67.3 64.4 48.2 61.8 54.2
UTDP 65.2 46.9 54.5 60.2 39.1 47.4 72.3 41.6 52.8 64.4 42.2 51.0
DFKIP 25.2 44.3 32.1 18.5 56.3 27.8 31.5 58.4 40.9 27.7 51.3 36.0

Anaphor
UTDG – 65.0 – – 61.9 – – 77.2 – – 74.9 –
UTDP – 73.8 – – 64.4 – – 65.9 – – 71.1 –
DFKIP – 56.2 – – 81.4 – – 69.1 – – 68.1 –

Antecedent
UTDG – 37.5 – – 32.9 – – 58.9 – – 52.4 –
UTDP – 27.7 – – 20.5 – – 21.2 – – 21.5 –
DFKIP – 35.7 – – 37.9 – – 49.3 – – 39.4 –

Table 15: Discourse deixis resolution: mention extraction results.

fer in terms of how well they extract anaphors and
antecedents, we also show in the last two rows of
Table 15 their results on anaphor and antecedent
extraction. Since each mention in the test sets is an-
notated as “anaphor” or“antecedent”, we can easily
compute recall. However, since the systems did not
label each of the extracted mentions as “anaphor”
or “antecedent” in the outputs, we cannot compute
precision. As can be seen, DFKIP extracts more
mentions as antecedents and anaphors than UTDP

on all datasets, with the exception on LIGHT and
Switchboard, where UTDP achieves better recall
on anaphor extraction. Comparing UTDP and
UTDG, we can see that while UTDG lags behind
UTDP by 3–9% points in anaphor extraction on
LIGHT and AMI, UTDG achieve superior mention
extraction performance to UTDP in the remaining
cases. In particular, the difference between their
recall in antecedent extraction is much bigger than
that in anaphor extraction.

To gain additional insights into the difference
between the systems w.r.t. mention extraction, we
show in Table 16a their performance on extracting
the five gold mentions that occur most frequently
on the four test sets combined. More specifically,
in the “mention” column, “overall” shows the re-
sults aggregated over all gold mentions, “The rest”
aggregates the results of all but the top five gold
mentions, and the remaining rows show the results
of each of the top five gold mentions. The “%” and
“count” columns show the percentage and num-
ber of gold mentions that belong to each category.
The remaining columns can be interpreted in the
same way as those in Table 2. For instance, “none”
shows the percentage of gold mentions that cannot
be extracted by any of the three systems, UTDG

shows the percentage of gold mentions extracted
by UTDG, and UTDG-only shows the percentage

of gold mentions that are extracted by UTDG but
not by the other two systems.

Perhaps not surprisingly, the most frequent cat-
egories of mentions are all anaphor categories.
Specifically, the most frequent category is “that”,
accounting for 29.3% of the gold mentions. This is
followed by “it” (6.9%) and “this” (1.8%). These
three categories of anaphors account for nearly 38%
of the gold mentions in the test data. From the
“none” column, we see that the worst-performing
category is “The rest”. This should perhaps not
be surprising either: the majority of the mentions
in this category are antecedents, which may not
have appeared in the training data at all. In addi-
tion, 55.8% of the anaphor “it” were missed by the
systems. We believe that this can be attributed to
two reasons. First, DFKIP gave up on handling
“it”. Second, we speculate that it is challenging to
determine whether “it” is used deictically: while
“this”, “that” and “it” can all be used as coreferent
anaphors, bridging anaphors, and deictic expres-
sions, it is more likely for “it” to be a coreferent or
bridging anaphor than a discourse deixis compared
to “this” and “that”. Moving on to the performance
of the systems (UTDG, UTDP , and DFKIP ), we
see that the systems are indeed better at extract-
ing “this” and “that” than “it”. Note that DFKIP ’s
recall scores on the anaphors that the system is
able to handle are substantially higher than those
of the UTD systems. In particular, considering the
“x-only” columns, we see that there are many in-
stances of these anaphors that are extracted only by
DFKIP .

While Table 16a focuses on gold mention extrac-
tion, Table 16b focuses on the extraction of erro-
neous mentions. Specifically, we take the union
of the set of erroneous mentions extracted by the
three resolvers and compute statistics based on the
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(a) Coverage of gold mentions

mention % count none UTDG UTDP DFKIP UTDG-only UTDP -only DFKIP -only

Overall 100.0 1371 65.0 30.4 28.9 29.5 1.7 0.8 2.4
that 29.3 402 2.2 86.6 85.3 92.3 1.2 0.7 6.0
it 6.9 95 55.8 36.8 32.6 0.0 11.6 7.4 0.0

this 1.8 25 0.0 76.0 60.0 100.0 0.0 0.0 20.0
which 0.7 10 10.0 50.0 30.0 70.0 10.0 0.0 40.0

the same 0.3 4 25.0 75.0 25.0 0.0 50.0 0.0 0.0
The rest 60.9 835 99.0 0.8 0.4 0.1 0.5 0.1 0.0

(b) Coverage of wrong mentions

mention % count UTDG UTDP DFKIP UTDG-only UTDP -only DFKIP -only

Overall 100.0 1202 43.3 17.4 61.6 29.8 4.1 49.9
that 43.3 520 25.8 23.5 90.6 2.7 2.1 67.7
this 6.3 76 17.1 23.7 89.5 3.9 2.6 71.1
it 4.5 54 61.1 81.5 0.0 18.5 38.9 0.0

which 3.5 42 9.5 11.9 95.2 2.4 2.4 81.0
that way 0.4 5 80.0 60.0 0.0 40.0 20.0 0.0
The rest 42.0 505 65.7 3.4 31.9 65.0 2.6 31.7

Table 16: Discourse deixis resolution: per-anaphor mention extraction results.

resulting set, which we refer to as S. The columns
in Table 16b can be interpreted in the same way as
those in Table 16a. For instance, UTDG, UTDP ,
and DFKIP show the percentage of mentions in
S extracted by each of the systems, and the “x-
only” columns show the percentage of mentions in
S extracted by exactly one of the systems.

A few points deserve mention. First, the five
most frequently occurring categories of mentions
that are erroneously extracted are likely mentions
that are incorrectly posited by the systems as dis-
course deixis, as the top four categories are the
same as the top four categories of gold mentions.
The erroneously extracted antecedents will likely
appear in the “The rest” category. Second, DFKIP

covers more than 90% of the mistakes made for the
top categories of anaphors that it can handle (i.e.,
“that”, “this”, “which”), suggesting that the system
is very aggressive in positing the occurrences of
these words as anaphors. In contrast, it only ex-
tracts one-third of the mentions in the “The rest”
category, which, as noted above, should mostly
contain erroneously extracted antecedents, while
UTDG and UTDP extract two-thirds and 3% of
the erroneously extracted antecedents respectively.
These results imply that UTDP is a lot more cau-
tious in positing mentions as antecedents compared
to the other two systems, while UTDG is the most
liberal in positing mentions as antecedents. These
differences can also be observed when considering
the “x-only” columns.

4.2 Resolution

A discourse deixis resolver is expected to output
clusters, each of which contains a deixis and all
of its antecedents. As far as scoring is concerned,
discourse deixis resolution is viewed as a general-
ized case of event coreference, and hence the scorer
used for scoring entity coreference chains is used
to score the output of a discourse deixis resolver.

Table 17 shows the official results obtained using
the official scorer. Again, the results are expressed
in terms of MUC, B3, and CEAFe R, P, and F, as
well as the CoNLL score.

A few points deserve mention. First, there is a
clear difference in performance between the two
systems developed for the Predicted phase, UTDP

and DFKIP , in terms of CoNLL F-score, where
the scores achieved by UTDP almost double those
achieved by DFKIP . In comparison, the difference
in the CoNLL score between UTDG and UTDP

is smaller: less than 2% points on LIGHT and
AMI, 12.5% points on Persuasion, and 5.0% points
on Switchboard. We speculate that the particu-
larly large difference in performance between the
two systems on Persuasion can be attributed in
part to mention extraction, where UTDG has a
considerably higher mention extraction F-score on
this dataset than UTDP (64.4 vs. 52.8). Second,
DFKIP ’s MUC recall scores are lower than the
other systems for all but the Switchboard dataset.
This implies that DFKIP is not able to recall as
many links as the other systems. However, a closer
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MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT
UTDG 49.0 30.0 37.2 56.3 39.1 46.2 51.7 42.9 46.9 43.4
UTDP 44.6 31.2 36.8 56.2 37.0 44.6 55.3 40.5 46.7 42.7
DFKIP 9.2 12.5 10.6 21.1 31.3 25.2 19.3 42.1 26.5 20.8

AMI
UTDG 44.6 21.2 28.7 49.7 34.6 40.8 39.6 43.0 41.2 36.9
UTDP 45.5 21.2 28.9 52.4 29.5 37.8 44.9 35.1 39.4 35.4
DFKIP 7.5 16.9 10.4 14.5 39.1 21.2 12.6 49.5 20.1 17.2

Persuasion
UTDG 53.3 45.5 49.1 54.9 55.7 55.3 46.0 59.3 51.8 52.1
UTDP 45.5 20.3 28.1 64.9 30.2 41.2 61.0 41.8 49.6 39.6
DFKIP 14.7 14.6 14.7 26.9 37.2 31.2 16.9 46.7 24.8 23.6

Switchboard
UTDG 39.4 31.2 34.8 41.6 48.5 44.8 33.7 55.0 41.8 40.4
UTDP 35.2 21.3 26.5 52.3 30.4 38.5 50.5 34.9 41.3 35.4
DFKIP 14.2 21.3 17.1 22.6 37.2 28.1 18.9 42.8 26.2 23.8

Table 17: Discourse deixis resolution: official resolution results.

LIGHT AMI Persuasion Switchboard

F ns. F s. F F ns. F s. F F ns. F s. F F ns. F s. F

UTDG 43.4 43.9 7.7 36.9 35.2 8.4 52.1 52.0 4.2 40.4 36.6 9.5
UTDP 42.7 47.0 2.2 35.4 37.9 2.6 39.6 42.1 1.0 35.4 39.1 2.0
DFKIP 20.8 17.1 6.9 17.2 15.3 3.4 23.6 22.8 2.1 23.8 22.6 3.8

Table 18: Discourse deixis resolution: results on singleton and non-singleton cluster identification.

examination of the results reveals that precision
seems to play a bigger role in the observed perfor-
mance difference between DFKIP and the other
systems: DFKIP ’s precision scores are generally
very poor. We speculate that this can be attributed
to the fact that the system is overly aggressive in
positing “that”, “this”, and “which” as anaphors
and attempts to resolve them, which in turn yields
a lot of erroneous links. Third, comparing UTDG

and UTDG, we see that the considerably better
results achieved by UTDG on Persuasion can be
attributed to not only mention extraction but also
resolution, as reflected in the 25.2% point differ-
ence in MUC recall between the two systems.

To further our understanding of how the systems
perform w.r.t. non-singleton cluster and singleton
cluster identification, we show the corresponding
results in Table 18, whose rows and columns can
be interpreted in the same manner as those in Ta-
ble 5. Comparing the two Predicted systems, we
see that while DFKIP is considerably worse than
UTDP in non-singleton cluster identification, it per-
forms slightly and consistently better than UTDP

in singleton cluster identification. This again could

be attributed to its being aggressive in extracting
anaphors. Comparing the two UTD systems, we
see that UTDG is always better than UTDP in sin-
gleton cluster identification, but UTDP is better
than UTDG in non-singleton cluster identification
on all but the Persuasion dataset. These results
further reveal why UTDG performs substantially
better than UTDP on Persuasion: UTDG are better
than UTDP in both non-singleton and singleton
cluster identification on Persuasion.

Next, we measure system performance, specif-
ically link identification performance, at the pair-
wise level. For each non-singleton cluster in the
gold output, we extract every pair of mentions in
the cluster. We similarly extract all the pairs from
the non-singleton clusters produced by each of the
three systems. The recall, precision, and F-scores
in Table 19 are computed based on the pairwise
links in these sets.

From the “Overall” row in Table 19, we can
see that 504 pairs can be extracted from the gold
clusters of the four test sets. As we can see, all
systems have higher recall than precision. Compar-
ing the two Predicted systems, we see that while
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UTDG UTDP DFKIP

anaphor % count P R F P R F P R F

Overall 100.0 504 25.0 37.7 30.1 17.2 26.2 20.7 9.4 23.6 13.5
that 68.1 343 30.1 47.8 36.9 21.4 33.5 26.1 11.8 33.5 17.5
it 17.7 89 12.7 16.9 14.5 9.1 13.5 10.9 0.0 0.0 0.0

this 4.4 22 18.9 31.8 23.7 10.5 18.2 13.3 2.9 13.6 4.8
which 2.0 10 20.0 30.0 24.0 0.0 0.0 0.0 1.9 10.0 3.1

the same 0.8 4 0.0 0.0 0.0 25.0 25.0 25.0 0.0 0.0 0.0
The rest 7.1 36 2.5 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0

Table 19: Discourse deixis resolution: per-anaphor resolution results at the pairwise level.

(a) Coverage of correct links

anaphor % count None UTDG UTDP DFKIP UTDG-only UTDP -only DFKIP -only

Overall 100.0 504 46.0 37.7 26.2 23.6 14.3 8.3 6.3
that 68.1 343 31.8 47.8 33.5 33.5 16.0 9.3 8.7
it 17.7 89 76.4 16.9 13.5 0.0 10.1 6.7 0.0

this 4.4 22 45.5 31.8 18.2 13.6 22.7 13.6 9.1
which 2.0 10 70.0 30.0 0.0 10.0 20.0 0.0 0.0

the same 0.8 4 75.0 0.0 25.0 0.0 0.0 25.0 0.0
The rest 7.1 36 97.2 2.8 0.0 0.0 2.8 0.0 0.0

(b) Coverage of wrong links

anaphor % count UTDG UTDP DFKIP UTDG-only UTDP -only DFKIP -only

Overall 100.0 1330 19.5 20.2 69.0 13.7 15.6 63.9
that 69.5 925 21.8 21.1 68.1 14.5 15.6 61.2
this 7.8 104 14.4 15.4 78.8 9.6 10.6 75.0
it 5.0 67 43.3 64.2 0.0 35.8 56.7 0.0

which 4.4 59 8.5 16.9 74.6 8.5 16.9 74.6
the 1.7 22 0.0 0.0 100.0 0.0 0.0 100.0

The rest 11.5 153 5.9 2.6 91.5 5.9 2.6 91.5

Table 20: Discourse deixis resolution: per-anaphor resolution results at the pairwise level.

DFKIP achieves lower overall recall and precision
than UTDP , the difference in their recall scores is
comparatively smaller than the difference in their
precision scores. In particular, the two systems
achieve the same recall in the resolution of “that”,
the most frequent anaphor, and the slightly lower
overall recall achieved by DFKIP can be largely
attributed to its decision of not resolving “it” and
some other anaphors. Comparing the two UTD sys-
tems, we see that UTDG achieves better recall and
precision than UTDP in resolving the top anaphors.
Perhaps more interesting, while the two Predicted
systems cannot resolve any of the anaphors in “The
rest” category, UTDG manages to achieve a non-
zero F-score on this category, though precision and
recall are both low.

Table 20a shows each system’s coverage of gold
pairs. The rows can be interpreted in the same way
as those in Table 19, whereas the columns can be
interpreted in the same way as those in Table 7a. As
a quick reminder, “none” shows the percentage of
gold pairs that are not extracted by any of the three

systems; “UTDG”, “UTDP ”, and “DFKIP ” show
the percentage of gold pairs extracted by each of
the three systems; and the “x-only” columns show
the percentage of gold pairs that are extracted only
by system x.

A few points deserve mention. First, consider
the “none” results. As can be seen, 46.0% of the
links are not recovered by any of the three sys-
tems. In particular, 97.2% of the links involving
the anaphors in the “The rest” category are not re-
covered. This is followed by “it”, where 76.4% of
the links involving “it” are not recovered. In con-
trast, the recovery rate is higher for “that”, probably
because of the larger representation of links involv-
ing “that” in the training set. Second, consider the
“x-only” results, which suggest that the three sys-
tems are more different from each other than we
may think. Examining the “that” links, we see that
16% are only identified by UTDG, 9.3% only by
UTDP , and 8.7% only by DFKIP . Similarly for
“this”: 22.7% are only identified by UTDG, 13.6%
only by UTDP , and 9.1% only by DFKIP .
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0 1 2 3 4 5 6 7 8 9 10 >10

Distribution of links over sentence distances
Gold 90 216 98 49 21 9 4 2 0 1 3 11

UTDG 122 339 141 70 28 10 7 5 0 3 6 33
UTDP 106 278 132 77 32 16 10 14 3 5 8 91
DFKIP 386 573 261 151 21 9 4 2 0 1 3 11

Distribution of correctly predicted links over sentence distances
UTDG 11 126 39 13 1 0 0 0 0 0 0 0
UTDP 28 64 23 10 4 2 0 0 0 1 0 0
DFKIP 0 78 23 18 0 0 0 0 0 0 0 0

Distribution of incorrectly predicted links over sentence distances
UTDG 111 213 102 57 27 10 7 5 0 3 6 33
UTDP 78 214 109 67 28 14 10 14 3 4 8 91
DFKIP 386 495 238 133 21 9 4 2 0 1 3 11

Table 21: Discourse deixis resolution: distribution of gold/predicted links over the sentence distances between the
anaphor and the antecedents.

While Table 20a focuses on the extraction of
gold pairs, Table 20b focuses on the extraction of
wrong pairs (i.e., wrong links). Specifically, we
take the union of the set of wrong pairs extracted
by the three resolvers and compute statistics based
on the resulting set, which we refer to as S. The
columns in Table 20b can be interpreted in the same
way as those in Table 20a. For instance, UTDG

shows the percentage of pairs in S extracted by
UTDG, and UTDG-only shows the percentage of
pairs in S that are extracted by UTDG but not the
other two systems.

As can be seen in Table 20b, 1330 erroneous
links are established by the three systems, of which
19.5% are established by UTDG, 20.2% by UTDP ,
and 69.0% by DFKIP ; in addition, 13.7% of these
erroneous links are only established by UTDG,
15.6% are only established by UTDP , and 63.9%
are only established by DFKI. These results again
reveal that DFKIP establishes a lot more erroneous
links than the UTD systems in each category of
anaphors it handles. Interestingly, it attempts to
resolve “the”, which should not have appeared in
the training data as an anaphor. Considering the
“x-only” results, we see that there is a fairly large
percentage of links in each category that are identi-
fied by only one of the three systems, suggesting
that the three systems are quite different from each
other in their resolution behavior.

To get a better idea of how far a discourse deixis
can be from its antecedent, we show in Table 21
the relevant statistics collected from the four test
sets. Specifically, the row labeled "Gold" shows
the distribution of gold links over the number of
sentences between a deixis and its antecedent. (If

the sentence distance is 0, it means that the deixis
refers to the sentence in which it appears.) As
can be seen, the results are consistent with our
intuition: a deictic expression most likely has the
immediately preceding sentence (i.e., distance =
1) as its referent; in addition, the number of links
drops as distance increases. More than 90% of the
antecedents are at most four sentences away from
their anaphors. In other words, if a discourse deixis
resolver simply employs the closest five sentences
preceding an anaphor as its candidate antecedents,
they should cover more than 90% of the correct
antecedents.

The next three rows of Table 21 show the dis-
tributions of the links identified by the three re-
solvers, UTDG, UTDP , and DFKIP . Interestingly,
these three distributions all have similar shapes to
the gold distribution: they all peak at distance =
1 and generally drop as the sentence distance in-
creases. Next, we tease apart the correct links from
the wrong links. The distributions of the correctly
predicted links as well as the distributions of the
incorrectly predicted links created by the three re-
solvers over sentence distances are shown in the
next two blocks of results. Comparing UTDP and
DFKIP , we see that DFKIP does not posit any links
between an anaphor and the sentence in which it
appears, but it establishes more correct links than
UTDP when the sentence distance is between 1
and 3. Nevertheless, as discussed before, it posits a
substantially larger number of erroneous links than
the two UTD resolvers.
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4.3 Discussion

At first glance it appears that discourse deixis res-
olution is more challenging the entity coreference
resolution and bridging resolution. The reason is
that while various string-matching facilities can
be used to identify some of the entity coreference
relations and bridging relations, they cannot be
applied to resolve deictic expressions as there is
no content word overlap between a deixis and its
antecedent. However, this task has certain charac-
teristics that make it somewhat easier that it seems.
First, for antecedents, the unit of annotation is a
sentence/utterance; moreover, an antecedent cannot
be bigger than a turn (i.e., the utterances produced
by a speaker within a turn). These constraints on
antecedent annotation can be exploited to signif-
icantly reduce the search space of candidate an-
tecedents. Better still, as discussed in the previous
subsection, there is a recency constraint that can
be exploited to further reduce this search space:
a deixis’s antecedent typically appears close to it.
In contrast, any multi-word expression can be a
valid antecedent for an anaphor in entity corefer-
ence and bridging; moreover, in some of the entity
coreference relations and bridging relations, the
two mentions involved can be far apart from each
other. Hence, to achieve good performance, a coref-
erence/bridging resolver typically needs to work
with a larger search space than a discourse deixis
resolver.

The key factor that appears to be limiting the per-
formance of the participating systems is anaphor
recognition. The most frequent deictic expressions
such as "that", "this", and "it" can also serve as
an identity or bridging anaphor, and determining
whether a mention is deictic is a key challenge in
discourse deixis resolution. As discussed earlier,
the low recognition and resolution results achieved
by DFKI’s system can largely be attributed to its
being weak at determining whether a given expres-
sion such as "this" or "that" is used deictically and
its being overly liberal in classifying these words
as deictic and resolving them.

5 Concluding Remarks

We presented a cross-team analysis of the systems
that participated in each of the three tracks of the
CODI-CRAC 2021 shared task. As noted in the
introduction, conducting a systematic analysis that
can provide insightful observations is by no means
a trivial task. We believe that future cross-team

analyses can be improved in a number of ways.

First, any analysis should be based on the links
identified by a system rather than the output clus-
ters they generated. The reason is that a cluster
contains both the links identified by a system and
the links automatically created via transitive clo-
sure. Hence, to better understand the mistakes
made by a resolver, we should request the teams
to provide the links their systems identify in ad-
dition to the clusters they produce so that we can
conduct cross-team analyses on the links instead.
We do note, however, that this may not be easy for
entity-based systems, where a link is established
between an anaphor and one of its preceding clus-
ters. For these systems, assumptions may need to
be made. For example, when merging takes place,
we may assume that a link is established between
the anaphor and the member of the cluster that is
closest to the anaphor.

Second, to facilitate cross-team comparisons, the
teams should be asked to run diagnostic tests pro-
vided by the organizers on their systems so that ad-
ditional insights into their behavior can be gained.
For instance, since mention extraction performance
has a significant correlation with resolution perfor-
mance, we will not be able to quantify its impact on
resolution performance or directly compare differ-
ent models in terms of their resolution performance
that is not affected by their mention detection per-
formance unless we provide a system with gold
mentions. Hence, a useful diagnostic test, which
was employed in the CoNLL-2012 shared task
on Unrestricted Multilingual Coreference (Prad-
han et al., 2012), involves running the systems on
the test data when gold mentions are given. An-
other useful diagnostic test, which involves running
the bridging resolvers and the discourse deixis re-
solvers on the test data when gold anaphors are
given, would allow us to directly compare the re-
solvers in terms of their antecedent selection perfor-
mance. While this shared task has a Gold phase for
the bridging track and the discourse deixis track in
which gold mentions are given, these gold mentions
are somewhat different from what one would ex-
pect. Specifically, while the participants expected
to be given task-specific gold mentions, they were
instead provided with gold mentions that were cre-
ated by taking the union of the three sets of gold
mentions collected from the three tracks. Worse
still, the gold mentions provided in the discourse
deixis track did not even include the antecedents.
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Unfortunately, this somewhat unconventional def-
inition of gold mentions was not clearly commu-
nicated to the participants and has caused some
confusion among them.

Third, our analysis could be improved with an
analysis of annotation quality. Strictly speaking, an
analysis of annotation quality should not be part
of a cross-team analysis, but for this shared task
annotation quality may have played a role in the
performance of the participating systems given that
there are linking decisions that we do not agree with
based on our casual inspection of the annotated
data. Having said that, we are not sure whether it
is possible for us to assess annotation quality since
the annotation guidelines are not made available to
the participants.

Fourth, from an analysis point of view, it may be
a good idea to include LEA (Moosavi and Strube,
2016) as one of the evaluation metrics. As Moosavi
and Strube point out, it is not easy to interpret the
scores provided by existing scorers such as MUC,
B3, and CEAFe and LEA is designed to partially
address this problem.

Fifth, our analysis did not focus on the differ-
ences among the four datasets. For instance, in
discourse deixis resolution, UTDG achieved sig-
nificantly better results than UTDP on Persuasion
but not the other datasets. A cross-dataset analysis
could shed light on why systems exhibit different
trends on different datasets. Having said that, the
organizers should take an active role in explaining
to the participants the differences among the differ-
ent datasets and the unique challenges associated
with each of them so that the participants know
why these four datasets were chosen, rather than
have them figure these differences out on their own.

Finally, to facilitate cross-team analyses, the or-
ganizers should include as much relevant informa-
tion in the system prediction files that they make
available to the participants as possible. Currently,
these files merely contain the pairwise predictions
made by the systems as well as the gold links they
missed. Some potentially useful information that
can also be provided in these files includes the sen-
tence/turn distance between the mention pairs and
their surrounding contexts. While this information
can be extracted by the participants from the raw
system outputs, simply laying the burden on them
will likely deter them from conducting an analysis.
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