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Abstract
We present an effective system adapted from
the end-to-end neural coreference resolution
model, targeting on the task of anaphora reso-
lution in dialogues. Three aspects are specif-
ically addressed in our approach, including
the support of singletons, encoding speak-
ers and turns throughout dialogue interactions,
and knowledge transfer utilizing existing re-
sources. Despite the simplicity of our adapta-
tion strategies, they are shown to bring signif-
icant impact to the final performance, with up
to 27 F1 improvement over the baseline. Our
final system ranks the 1st place on the leader-
board of the anaphora resolution track in the
CRAC 2021 shared task, and achieves the best
evaluation results on all four datasets.

1 Introduction

Coreference resolution of anaphoric identities
(a.k.a. anaphora resolution) is a long-studied Natu-
ral Language Processing (NLP) task, and is still
considered one of the unsolved problems, as it
demands deep semantic understanding as well as
world knowledge. Although there is a significant
performance boost recently by the neural decoders
(Lee et al., 2017, 2018) and deep contextualized en-
coders such as BERT and SpanBERT (Joshi et al.,
2019, 2020), the majority of the experiments are
based on OntoNotes (Pradhan et al., 2012) from the
CoNLL 2012 shared task, which may overestimate
the model performance due to two perspectives:
the lack of support for harder cases such as single-
tons and split-antecedents, and the lack of focus on
real-world dialogues. In this work, we target on
the task of anaphora resolution in the CRAC 2021
shared task (Khosla et al., 2021) that addresses both
perspectives, and present an effective coreference
resolution system that is adapted from the recent
end-to-end coreference model.

All datasets in the CRAC 2021 shared task are
in the Universal Anaphora format. For simplic-
ity, we refer to it as the UA format, and refer to

the annotation scheme of the CoNLL 2012 shared
task as the CoNLL format. The UA format is an
extension of the CoNLL format, and further sup-
ports bridging references and discourse deixis. For
anaphora resolution, the UA format differs from
the CoNLL format on three aspects: the support
of singletons, split-antecedents, and non-referring
expressions (excluded from the current evaluation).
Our approach specifically addresses the singleton
problem (Section 3.1), which is shown to be a crit-
ical component under the UA setting that brings
17-22 F1 improvement on all datasets (Section 5.2).
Few recent work has studied the split-antecedent
problem (Zhou and Choi, 2018), and we leave the
split-antecedents as future work.

In addition to singletons, our approach also em-
phasizes on the speaker encoding (Section 3.3) and
knowledge transfer (Section 3.4) to address the
dialogue-domain perspective. Especially, we use
a simple strategy of speaker-augmented encoding
that captures the speaker interaction and dialogue-
turn information, utilizing the strong Transformers
encoder. It has been shown by the previous study
that conversational metadata such as speakers can
be significant for coreference resolution on dia-
logue documents (Luo et al., 2009), and we do see
2-3 F1 improvement on three datasets by simply ap-
plying the speaker encoding strategy (Section 5.3).

Knowledge transfer from other existing re-
sources is also shown to be important in our ap-
proach. Two different strategies are experimented,
and the domain-adaptation strategy is able to bring
large improvement, boosting 8 F1 for LIGHT and
6 F1 on PSUA (Table 3).

Our final system ranks the 1st place on the leader-
board of the anaphora resolution track in the CRAC
2021 shared task, and achieves the best evaluation
results on all four datasets, with 63.96 F1 for AMI,
80.33 F1 for LIGHT, 78.41 F1 for PSUA, 74.49 F1
for SWBD (Section 5.1). A brief summary of our
final submission is shown in Table 4.
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2 Related Work

Pretrained Transformers encoders have been suc-
cessfully adopted by recent coreference resolution
models and shown significant improvement (Joshi
et al., 2019, 2020). We also adopt the Transform-
ers encoder in our approach because of its superior
performance. For the neural decoder, there have
been two popular directions from recent work. One
is mention-ranking-based, where the model pre-
dicts only one antecedent for each mention without
focusing on the cluster structure (Wiseman et al.,
2015; Lee et al., 2017; Wu et al., 2020). The other
is cluster-based, where the model maintains the pre-
dicted clusters and performs cluster merging (Clark
and Manning, 2015, 2016; Xia et al., 2020; Yu et al.,
2020). We adopt the mention-ranking framework
in our approach because of its simplicity as well as
its state-of-the-art decoding performance.

3 Approach

3.1 Mention-Ranking (MR)

Our baseline model MR adopts the mention-ranking
strategy, and follows the architecture of the end-to-
end neural coreference resolution model (Lee et al.,
2017, 2018) with a Transformer encoder (Joshi
et al., 2019, 2020). Given a document with T to-
kens, the model first enumerates all valid spans,
and scores every span for being a likely mention,
denoted by the mention score sm. The model then
greedily selects top λT spans by sm as mention
candidates that may appear in the final coreference
clusters. Let X = (x1, . . . , xλT ) be the list of
all mention candidates in the document, ordered
by their appearance. For each mention candidate
xi ∈ X , the model selects a single coreferent an-
tecedent from all its preceding mention candidates,
denoted by Yi = (ε, x1, . . . , xi−1), with ε being a
“dummy” antecedent that may be selected when xi
is not anaphoric (no antecedents).

The antecedent selection is performed by the
pairwise scoring process between the current men-
tion candidate xi and each of its preceding can-
didate y ∈ Yi. The final pairwise score s(xi, y)
consists of three scores: how likely each candidate
being a mention, measured by the mention score
sm; and how likely they refer to the same entity,
measured by the antecedent score sa. The final
score s(xi, y) can be denoted as follows:

s(xi, y) = sm(xi) + sm(y) + sa(xi, y, φ(xi, y))

Both sm and sa are computed by the FeedFor-
ward Neural Network (FFNN), and φ(xi, y) rep-
resents additional meta features. Unlike previ-
ous work, we do not include the specific genre
as a feature; instead, we simply use a binary fea-
ture on whether the document is dialogue-based or
article-based, since dialogues can exhibit quite dif-
ferent traits from written articles (Aktaş and Stede,
2020). We also adopt a speaker feature that indi-
cates whether two candidates are from the same
speaker, or whether the speaker information is not
available, which is important for written articles
or two-party dialogues. In Section 3.3, we fur-
ther adapt more speaker encoding to benefit multi-
speaker dialogues and the personal pronoun issue.

For inference, the selected antecedent is the pre-
ceding candidate with the most pairwise score, de-
noted by argmaxy′∈Yis(xi, y

′). For training, the
marginal log-likelihood of all gold antecedents
Ŷi ⊆ Yi for each xi ∈ X is optimized, denoted by
the loss Lc:

P (y) =
es(xi,y)∑

y′∈Yi e
s(xi,y′)

(1)

Lc = − log
∏
xi∈X

∑
ŷ∈Ŷi

P (ŷ) (2)

3.2 Singleton Recognition (SR)

As the UA format does support singletons, MR
would fail to predict those singleton clusters, since
the antecedent selection can only generate clusters
with at least one pair of mentions. Several previ-
ous work has addressed the singleton problem from
different perspectives (Yu et al., 2020; Zaporojets
et al., 2021). Our SR model is built upon MR and
further recognizes singletons based on the simple
strategy as follows: we make use of the mention
score sm in the antecedent selection process, and
create a singleton cluster for any candidates with
sm > 0 that have not yet found any antecedents,
which poses an additional requirement on the men-
tion score, such that only valid mentions should
have sm > 0. Let Ψ+ ⊆ X be the set of gold
mention candidates, and Ψ− = X \Ψ+ be the set
of other mention candidates. We optimize the men-
tion score with the binary cross-entropy loss Lm
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0.6
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-0.3
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Figure 1: Example of the new antecedent selection process that support singletons (Section 3.2). Each arrow
indicates the selected antecedent (the dummy antecedent is excluded), and the mention score sm is shown below
each mention. Mentions of the same predicted clusters are marked in the same color. Although no antecedent is
selected for “food truck”, it will still be assigned as a singleton cluster because of sm = 0.6 > 0. “that building”
and “workout place” are still assigned to the corresponding cluster even though their sm < 0, to allow some slacks
on the mention score prediction. “slightly” will not be assigned to any clusters.

and joinly train with the coreference loss Lc:

Lm =−
∑
xi∈Ψ+

log σ(sm(xi))

−
∑

xj∈Ψ−

log(1− σ(sm(xj))) (3)

L = Lc + αm · Lm (4)

σ is the sigmoid function, and αm is a hyperpa-
rameter. L is the final loss composed of two tasks.
In practice, we also perform negative sampling on
Ψ− dynamically, so that Ψ+ and Ψ− are of simi-
lar sizes (|Ψ+| ≈ |Ψ−|), to alleviate the negative
effects from the skewed class distribution.

In the new selection process, we still regard
the selected non-dummy antecedent y to be valid
by y = argmaxy′∈Yis(xi, y

′), even though the
mention score of either candidate can be negative
(sm(xi) < 0 or sm(y) < 0). This is to allow cer-
tain slacks on the mention score prediction which
could help with the mention recall. Figure 1 shows
three different cases of the predicted clusters by the
SR model.

3.3 Speaker Encoding (SE)
Our SE model is further adapted upon SR model
and aims to strengthen the speaker encoding for
each candidate representation. As we are target-
ing on the coreference resolution in dialogues, en-
coding speaker interactions becomes more criti-
cal, especially for the correct understanding of the
speaker-grounded personal pronouns that are more
frequent in dialogues than other non-dialogue gen-
res (Aktaş and Stede, 2020).

The speaker feature introduced in Section 3.1
provides shallow distinction on whether two men-
tions are from the same speaker. However, the
speaker interactions across dialogue turns are not
presented in the document encoding; therefore, the
representation of each candidate has no awareness
on the speaker interactions at all. To provide deeper

knowledge on the interactions, we adopt a simple
but effective strategy that is similar to some other
work in speaker encoding (Le et al., 2019; Wu et al.,
2020): a special speaker token is prepended to each
sentence, and we feed the new speaker-augmented
document to the encoder directly.

Table 1 shows an example on this speaker aug-
mentation. Each speaker is indexed by the order of
the first appearance in the dialogue. All the special
speaker tokens are added to the tokenizer vocabu-
lary, and will be picked up in the tokenization and
encoding process. Therefore, all encoded candidate
representation in the SE model is conditioned on
the entire speaker interactions, and automatically
learns to fuse the information of speakers and turns
in the training process.

John: Do you know Mike?
Mary: He is my best friend!
Paul: I like him too!
Mary: We should meet together!

[SPK1] Do you know Mike ? [SPK2] He is my best friend !
[SPK3] I like him too ! [SPK2] We should meet together !

Table 1: Example for the speaker-augmented encoding.
A special speaker token is assigned to each speaker and
prepended to each corresponding sentence.

3.4 Knowledge Transfer

We also emphasize on the knowledge transfer in
this task, as the training resources of dialogue cor-
pora annotated in the UA format are limit and ex-
pensive to obtain, while there already exist larger-
scale training corpora for other domains in different
annotation schemes, e.g. the OntoNotes dataset in
the CoNLL format that mainly consists of non-
dialogue genres. For clarity, we denote the pro-
vided data annotated in the UA format as UAD, and
other existing data in non-UA format as OD. We
investigate two common ways to make use of OD
in the training for SE, denoted as follows:
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• SE+M: Mix OD and UAD together as a larger
dataset, regarding OD as data augmentation
that provides more knowledge.

• SE+P: Pretrain the model on OD first, then
further train the model on UAD only, regard-
ing training on UAD as domain adaptation.

Above two choices are plausible in our approach,
because we only use data in the CoNLL format
for OD, which is still largely similar to the UA
format, despite the difference on the singletons,
non-referring expressions, and split-antecedents.

Similarly, we denote the model as SR+M/P if the
SR model is used instead of SE.

4 Experiments

4.1 Datasets
For data in the UA format (UAD), we use the AR-
RAU corpus (Poesio et al., 2018) from the CRAC
2018/2021 shared task. Four sub-corpora are
used as the training set for UAD, namely TRAINS-
93, PEAR, RST, GNOME. One sub-corpus named
TRAINS-91 is used as one of the development (dev)
set. In addition, four other corpora from the CRAC
2021 shared task are also used as the develop-
ment set as well as the final test set, namely AMI,
LIGHT, Persuasion for Good (PSUA), Switchboard
(SWBD). All above datasets are of the dialogue do-
main except for RST and GNOME. Table 2 shows
the detailed statistics of all UAD datasets. Note that
certain datasets do not provide speaker information,
therefore their averaged numbers of speakers per
document are shown as 0.

For non-UA format data (OD), we use two
datasets in the CoNLL format: OntoNotes (ON)
(Pradhan et al., 2012) and BOLT (Li et al., 2016).
OntoNotes consists of documents in six genres,
where only two genres “Telephone Conversation”
and “Broadcast Conversation” are of the dialogue
domain; we use the same provided train/dev/test
split for OntoNotes. BOLT has the same annota-
tion scheme as OntoNotes and consists of docu-
ments from discussion forums, instant messages
and telephone conversations. We perform a random
80/10/10 split for the train/dev/test set of BOLT. De-
tailed statistics of both datasets are shown in the
bottom of Table 2.

4.2 Preprocessing
We only perform one trivial preprocessing step spe-
cific to the training set of UAD datasets: remove

#D #M #C #S

TRAINS-93 98 12148 4523 0.0
PEAR 20 3401 1168 0.0
RST 413 62409 38724 0.0
GNOME 5 5499 2598 0.0

TRAINS-91 16 2501 828 0.0
AMI (DEV) 7 7441 3120 4.0
LIGHT (DEV) 20 3448 1357 2.0
PSUA (DEV) 21 2437 1273 2.0
SWBD (DEV) 11 3421 1771 0.0

AMI (TST) 3 4139 1883 4.0
LIGHT (TST) 21 3501 1359 2.0
PSUA (TST) 28 3446 1857 2.0
SWBD (TST) 22 7847 3897 2.0

ON (TRN) 2802 155558 35142 0.6
ON (DEV) 343 19155 4545 0.8
ON (TST) 348 19764 4532 0.8

BOLT (TRN) 1110 58146 12854 2.5
BOLT (DEV) 137 8029 1649 2.5
BOLT (TST) 137 7599 1610 2.5

Table 2: Statistics for all datasets (Section 4.1), exclud-
ing non-referring expressions. UAD datasets are shown
in the upper part, and OD datasets shown in the bottom
part. TRN/DEV/TST: the train/dev/test split. #D: total
number of documents; #M: total number of mentions;
#C: total number of clusters; #S: averaged number of
speakers per document (excluding unknown speakers).

all non-referring expressions and regard them as
non-mentions, as they will not be counted in the
final evaluation (Section 5). In addition, our cur-
rent approach does not consider split-antecedents,
which we will leave as future work.

4.3 Implementation

Our system is based on the PyTorch implemen-
tation of the end-to-end coreference resolution
model from Xu and Choi (2020), and we follow
the similar hyperparameter settings. Specifically,
SpanBERTLarge (Joshi et al., 2020) is used as the
Transformers encoder with maximum sequence
length of 512. Long documents are split into mul-
tiple sequences, and each sequence is encoded
by SpanBERTLarge independently, as suggested by
(Joshi et al., 2019). During training, we limit the
maximum sequences to be 3 due to the GPU mem-
ory constraints, and a long document will be trun-
cated into multiple documents if it exceeds the
maximum sequences.

Hyperparameters For all datasets, nested men-
tions are always enabled. We set the λ = 0.5 and
maximum span width to be 30 in the span enumer-
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AMI LIGHT

MUC B3 CEAFφ4 Avg F1 MUC B3 CEAFφ4 Avg F1

MR 46.06 31.28 17.87 31.73 79.47 48.61 24.06 50.71

SR 54.66 53.32 53.64 53.87 79.12 63.34 65.59 69.35
SR+P 50.08 52.63 52.60 51.77 86.39 74.68 69.57 76.88

SE 57.01 53.91 53.65 54.86 77.38 63.91 65.46 68.92
SE+M 59.36 48.49 40.05 49.30 86.92 68.49 41.66 65.69
SE+P 56.93 55.27 53.92 55.37 87.23 74.91 68.86 77.00

SE+P+DEV 70.70 61.37 59.81 63.96 90.03 79.19 71.77 80.33

(a) Evaluation results on the test set of AMI and LIGHT.

PSUA SWBD

MUC B3 CEAFφ4 Avg F1 MUC B3 CEAFφ4 Avg F1

MR 75.15 50.80 21.78 49.24 72.70 46.65 22.54 47.30

SR 73.36 67.97 64.15 68.49 73.92 62.38 58.01 64.77
SR+P 78.96 73.83 65.27 72.69 75.30 65.16 57.69 66.05

SE 72.99 68.56 64.37 68.64 74.47 63.32 58.77 65.52
SE+M 81.63 65.82 44.83 64.10 76.54 61.43 43.97 60.65
SE+P 82.19 76.50 67.46 75.38 77.56 67.56 59.36 68.16

SE+P+DEV 84.04 79.57 71.63 78.41 80.63 74.39 68.45 74.49

(b) Evaluation results on the test set of Persuasion for Good (PSUA) and Switchboard (SWBD).

Table 3: Evaluation results on the test set of four datasets (Section 4.1). The macro-averaged F1 of MUC, B3, and
CEAFφ4

is the main evaluation metric. Section 3 describes the details of all listed approaches. SE+P+DEV is the
setting of our final submission to the CRAC 2021 shared task, where all available development sets are also added
in the training process for SE+P (Section 5.1).

Track Resolution of anaphoric identities
Setting Predicted mentions
Baseline MR (§3.1). The end-to-end coreference resolution model with the

SpanBERT encoder (Joshi et al., 2020; Xu and Choi, 2020) is used as the baseline.
Approach SE+P+DEV (§3.4). The final model is built upon baseline with three key adaptations:

1) An updated antecedent selection process is used to support singletons,
with an additional optimization on the mention scores.

2) Speaker-augmentation strategy is used to encode the speakers and dialogue-turns.
3) Knowledge transfer is employed that pretrains the model on CoNLL datasets, then

further trains on the UA datasets as a domain adaptation step.
The final submission includes the dev data into training.

Train Data TRAINS-93, PEAR, RST, GNOME, ON, BOLT (§4.1)
Dev Data TRAINS-91, AMI, LIGHT, PSUA, SWBD, ON, BOLT (§4.1)

Table 4: Summary of our final submission to the CRAC 2021 shared task. Train/Dev Data: all datasets we use for
the training set and development set.

ation stage, and limit the maximum antecedents to
be 50 in the pair scoring process. Adam optimizer
is used for the optimization, with the weight decay
rate of 10−2 and gradient clipping norm of 1. We
employ the learning rate of 1×10−5 for Transform-
ers parameters, and 3× 10−4 for task parameters.
αm = 0.1 is used for Eq (4). In particular, we
do not apply any higher-order inferences, as their

benefits are shown trivial (Xu and Choi, 2020).

Training When training UAD or OD alone, we
concatenate and mix all its corresponding corpora
together as the training data. For SE+M, we concate-
nate and mix all available training corpora together
regardless of UAD or OD. All experiments are con-
ducted on a Nvidia A100 GPU. 20 training epochs
are used for all the settings, and the training takes
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around 1-2 hours for UAD and 3-4 hours for OD.
In particular, development sets are not added to

the training data, except for our final submission to
the shared task, where the best-performed model
has been identified, then we train the final model
with the same setting but adding all development
sets in the training (Section 5.1).

5 Results and Analysis

The Universal Anaphora Scorer1 is used in the of-
ficial evaluation process. For the task of anaphora
resolution, the main evaluation metric is the aver-
aged F1 score of MUC, B3 and CEAFφ4 , same as
the CoNLL 2012 shared task. Singletons and split-
antecedents are included in the evaluation, while
non-referring expressions are excluded.

5.1 Results

Table 3 shows the evaluation results on the test set
of four datasets using different approaches. Among
all approaches without adding the dev sets into
training, SE+P achieves the best results on all four
datasets. Another SE+P model is then trained with
adding the dev sets as our final submission, dentoed
by SE+P+DEV, which further yields the best results,
and ranks the 1st place at the “anaphoric identity”
track in the CRAC 2021 shared task.

Final Submission Table 4 lists the summary of
our final submission to the shared task.

5.2 Analysis: Singleton Recognition

One of the main differences between the UA and
CoNLL format is that UA supports singletons, as
UA annotates all noun phrases. The left side of
Table 6 shows the total number and percentage
of the singleton clusters on the test set of four
datasets. Singletons are indeed prevalent, and all
four datasets have at least 73% of their gold clusters
as singletons. Therefore, recognizing singletons
can become critical for coreference resolution on
the UA formatted data.

Comparing MR and SR in Table 3, it is clear that
singleton recognition plays a pivotal role in the final
performance, with SR outperforming MR by a huge
margin of 17-22 Avg F1 on all four datasets. To
further examine the performance of SR, we collect
the precision/recall of the predicted mentions by
different models, as well as the precision/recall
of predicted singletons over gold singletons, as

1https://github.com/juntaoy/universal-anaphora-scorer

Mentions Singletons

P R F P R F

MR 90.3 40.6 56.1 - - -

SR 84.7 76.4 80.3 44.7 54.8 49.2
SR+P 83.1 74.3 78.5 42.8 54.0 47.8

SE 83.4 77.7 80.4 43.1 55.9 48.7
SE+M 81.5 69.5 75.0 29.8 35.7 32.5
SE+P 84.1 77.9 80.9 45.8 53.5 49.4

(a) Statistics on the test set of AMI.

Mentions Singletons

P R F P R F

MR 97.1 60.0 74.2 - - -

SR 87.7 86.8 87.2 56.3 72.1 63.2
SR+P 90.1 89.4 89.7 65.1 68.3 66.6

SE 87.6 86.3 87.0 55.0 73.6 62.9
SE+M 91.4 71.7 80.3 43.1 23.9 30.8
SE+P 90.0 89.6 89.8 62.1 68.4 65.1

(b) Statistics on the test set of LIGHT.

Mentions Singletons

P R F P R F

MR 94.9 56.8 71.1 - - -

SR 89.5 85.4 87.4 66.2 55.4 60.3
SR+P 91.8 86.4 89.0 74.3 51.5 60.8

SE 88.8 86.0 87.4 64.6 57.2 60.7
SE+M 90.5 69.9 78.9 53.6 26.0 35.1
SE+P 91.9 87.4 89.6 74.8 54.4 63.0

(c) Statistics on the test set of Persuasion for Good (PSUA).

Mentions Singletons

P R F P R F

MR 92.0 54.0 68.1 - - -

SR 85.7 80.1 82.8 54.0 51.8 52.9
SR+P 86.3 80.3 83.2 52.9 50.5 51.7

SE 85.0 80.6 82.7 53.3 54.0 53.7
SE+M 86.3 68.9 76.6 39.2 31.7 35.1
SE+P 87.4 81.0 84.1 56.9 50.5 53.5

(d) Statistics on the test set of Switchboard (SWBD).

Table 5: Statistics of different approaches on the test
set of four datasets. The left side shows the Preci-
sion/Recall/F1 (P/R/F) of the predicted mentions over
gold mentions, and the right side shows the predicted
singletons over gold singletons.

shown in Table 5. Compared with MR, all models
that support singletons receive huge gains on the
mention recall with 26-36% improvement, with
relatively small 5-10% degradation on the mention
precision.

https://github.com/juntaoy/universal-anaphora-scorer
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#AC #SC #AM #PM

AMI 1883 1383 (73.5%) 4139 1566 (37.8%)
LIGHT 1359 1024 (75.4%) 3501 1676 (47.9%)
PSUA 1857 1525 (82.1%) 3446 1464 (42.5%)
SWBD 3897 2968 (76.2%) 7847 3746 (47.7%)

Table 6: Statistics on the test set of all four datasets.
#AC: total number of all clusters. #SC: total number
of singleton clusters, with the corresponding percent-
age indicated inside parentheses. #AM: total number of
all mentions. #PM: total number of personal pronoun
mentions, with the percentage inside parentheses. All
statistics exclude non-referring expressions.

More interestingly, most SR/SE-related models
are able to recover the majority of gold singletons
on all four datasets, up to 73% recall on LIGHT,
demonstrating the effectiveness of the mention
score optimization in Eq (3) and the new antecedent
selection process. Nevertheless, the best F1 for
singletons is still below 67 out of four datasets,
suggesting that resolving singletons alone can be a
challenging aspect already.

5.3 Analysis: Speaker Encoding
Despite the simple strategy of speaker-augmented
encoding described in Section 3.3, SE+P shows de-
cent improvement over its counterpart SR+P, with
2-3% enhancement on Avg F1 on all datasets, ex-
cept for LIGHT that has only trivial improvement,
confirming that stronger speaker encoding is indeed
important for the dialogue domain.

Meanwhile, SE does not show advantages over
SR due to the fact that the current training corpora
of all ARRAU datasets do not provide the speakers
(Table 2); consequently, neither models could learn
to use the speaker information, resulting in similar
performance. This on the other side also demon-
strates the significance of knowledge transfer that
utilizes other existing resources.

5.4 Analysis: Knowledge Transfer
Comparing the two knowledge transfer strategies,
the pretraining paradigm SE+P performs signifi-
cantly better than the mixing paradigm SE+M. In
fact, while the pretraining brings improvement over
SE, the mixing paradigm even performs worse than
without knowledge transfer, likely because of the
domain mismatch and the annotation format mis-
match, showing that the pretraining strategy should
always be preferred in this case.

The impact of the pretraining on OD can be
dataset-specific, as shown by Table 3. SE+P is able

to boost performance upon SE by a good margin
on AMI/SWBD with 0.5/2.6 F1 respectively, while
LIGHT/PSUA can benefit significantly, with 6.7/8.1
F1 improvement. Encouraged by the results, we
suggest to further explore the utilization of existing
resources as a future direction.

6 Conclusion

In this work, we present an adapted end-to-end
coreference resolution system for anaphoric identi-
ties in dialogues, specifically addressing three as-
pects: the support for singletons, stronger speaker
and turn encoding through the dialogue interac-
tions, as well as the knowledge transfer utilizing
other existing resources. Our final system achieves
the best results on all four datasets on the leader-
board of the CRAC 2021 shared task, and further
analysis is performed to show the effectiveness of
our proposed adaptation strategies.
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