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Abstract

Transfer Learning has been shown to be a
powerful tool for Natural Language Process-
ing (NLP) and has outperformed the standard
supervised learning paradigm, as it takes bene-
fit from the pre-learned knowledge. Neverthe-
less, when transfer is performed between less
related domains, it brings a negative transfer,
i.e. it hurts the transfer performance. In this
research, we shed light on the hidden negative
transfer occurring when transferring from the
News domain to the Tweets domain, through
quantitative and qualitative analysis. Our ex-
periments on three NLP tasks: Part-Of-Speech
tagging, Chunking and Named Entity recogni-
tion reveal interesting insights.

1 Introduction

High performing NLP neural tools often require
huge volumes of annotated data to produce power-
ful models and prevent over-fitting. Consequently,
in the case of social media content (informal texts)
such as Tweets, it is difficult to achieve the perfor-
mance of state-of-the-art neural models on News
(formal texts).

The last few years have witnessed an escalated
interest in studying Transfer Learning (TL) for neu-
ral networks to overcome the problem of the lack
of annotated data. TL aims at performing a task
on a target dataset using features learned from a
source dataset (Pan and Yang, 2009). TL has been
proven to be effective for a wide range of applica-
tions (Zamir et al., 2018; Long et al., 2015; Moon
and Carbonell, 2017), especially for low-resourced
domains.

However, it has been shown in many works in
the literature (Rosenstein et al., 2005; Ge et al.,
2014; Ruder, 2019; Gui et al., 2018a; Cao et al.,
2018; Chen et al., 2019; Wang et al., 2019; O’Neill,
2019) that, when source and target domains are less

related (e.g. languages from different families), se-
quential transfer learning may lead to a negative
effect on the performance, instead of improving
it. This phenomenon is referred to as negative
transfer. Precisely, negative transfer is considered
when transfer learning is harmful for the target
task/dataset, i.e. the performance when using trans-
fer learning algorithm is lower than that with a
solely supervised training on in-target data (Torrey
and Shavlik, 2010).

Several works (Gui et al., 2017, 2018b; Mef-
tah et al., 2018a,b; März et al., 2019) have shown
that sequential transfer learning from the News
resource-rich domain to the Tweets low-resource
domain enhances the performance of sequence la-
belling of Tweets. Hence, following the above defi-
nition of negative transfer, transfer learning from
News to Tweets does not beget a negative transfer.
Contrariwise, in this work, we rather consider the
hidden negative transfer, i.e. the percentage of pre-
dictions which were correctly tagged by random
initialisation, but using transfer learning falsified.

In this work, we take a step towards identifying
and analysing the impact of transfer from News to
Tweets. Precisely, we perform an empirical analy-
sis to investigate the hidden negative transfer. First,
we show in section.5.1 that, the final gain brought
by TL can be separated into two categories: posi-
tive transfer and negative transfer. We define posi-
tive transfer as the percentage of tokens that were
wrongly predicted by random initialisation, but the
TL changed to the correct ones. In comparison, neg-
ative transfer represents the percentage of words
which were tagged correctly by random initialisa-
tion, but using TL gives wrong predictions. Then,
in section.5.2, we study the impact of pretraining
state on negative and positive transfer. Finally, in
section.5.3, we provide some qualitative examples
of negative transfer. Our experiments on three NLP
tasks (Part-Of-Speech tagging (POS), Chunking
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(CK) and Named Entity recognition (NER)) reveal
interesting insights.

The remainder of the paper is organised as fol-
low. We first present, briefly, the sequence tagging
neural model (§2). Then, we describe the sequen-
tial transfer learning method (§3), followed by a
short presentation of the involved datasets and tasks
(§4.1). Then, we report the results of our analysis
to highlight the hidden negative transfer occurring
when transferring from News to Tweets (§5). Fi-
nally, we wrap up with a conclusion and future
work (§6).

2 Sequence Tagging Neural Architecture

We perform experiments on 3 Sequence Tagging
(ST) tasks: Part-Of-Speech tagging (POS), Chunk-
ing (CK) and Named Entity Recognition (NER).
Given an input sentence of n successive tokens
S = [w1, . . . , wn], the goal of a ST model is to
predict the tag ci ∈ C of every wi, with C being
the tag-set. We use a common ST neural model. It
includes three main components. First, we have a
WRE (Word Representation Extractor) to build, for
each word wi, a final representation xi combining
two hybrid representations; a word-level embed-
ding (denoted Υword) and a character-level em-
bedding based on a bidirectional-Long Short-Term
Memory (biLSTMs) encoder (denoted Υchar). Sec-
ond, the xi representation is fed into a Features
Extractor (FE) (denoted Φ) based on a single-layer
BiLSTMs network, to produce a hidden representa-
tion hi which constitutes the input of the Classifier
(denoted Ψ): a fully-connected (FC) layer used
for classification. Formally, given wi, the predic-
tions are obtained using the following equation:
wi: ŷi = (Ψ ◦ Φ ◦ Υ)(wi). With Υ ensuring the
concatenation of Υchar and Υword.1

3 Transfer Learning Method

We use a simple sequential TL method to transfer
knowledge from the News domain to the Tweets-
domain. It consists in learning a source model on
the source task with enough data from the News
domain, then transferring a part of the learned pa-
rameters to initialise the target model, which is
further fine-tuned on the target task with few train-
ing examples from the Tweets domain.

1Note that – for simplicity –, we define ŷi only as a func-
tion of wi, but in reality ŷi is a function of all words in the
sentence, thanks to the biLSTMs component.

Specifically, in this work we perform the TL fol-
lowing three simple yet effective steps: 1) The
source model is learnt using a large annotated
dataset from the source domain. 2) We transfer
to the target model the first set of parameters (Υ
and Φ) of the source model, while the second set
of parameters (Ψ) of the target model is randomly
initialised. Then, 3) the target model is further
fine-tuned on the small target data-set.

4 Experimental Settings

4.1 Data-sets
We conduct experiments on TL from English News
(source-domain) to English Tweets (target-domain)
on three tasks (Datasets statistics are given in Ta-
ble.1):

• POS tagging: we use the Wall Street Journal
(WSJ) part of Penn-Tree-Bank (PTB) as a
source-dataset. Regarding the target-datasets,
we used three Tweets datasets: TPoS (Ritter
et al., 2011), ARK (Owoputi et al., 2013) and
TweeBank (Liu et al., 2018).

• CK: for the source dataset, we use the
CONLL2000 shared task’s English data-set
(Tjong Kim Sang and Buchholz, 2000). Re-
garding the target dataset, we use TChunk
Tweets data-set (Ritter et al., 2011) (the same
corpus as TPoS).

• NER: regarding the source domain, we make
use of the English newswire dataset CONLL-
03 from the CONLL 2003 shared task (Tjong
Kim Sang and De Meulder, 2003). tar-
get domain, we conduct our experiments on
WNUT2017 dataset (Derczynski et al., 2017).

4.2 Implementation Details
In the standard word-level embeddings, tokens are
converted to lower-case while the character-level
component still retains access to the capitalisation
information. We set the randomly initialised char-
acter embedding dimension at 50, the dimension
of hidden states of the character-level biLSTM at
100 and used 300-dimensional word-level embed-
dings. Word-level embeddings were pre-loaded
from publicly available GloVe vectors pre-trained
on 42 billions words collected through web crawl-
ing and containing 1.9M different words (Penning-
ton et al., 2014). These embeddings are also up-
dated during training. For the FE component, we
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Task Classes Sources Eval. Metrics Splits (train - val - test)
POS: POS Tagging 36 WSJ Top-1 Acc. 912,344 - 131,768 - 129,654
CK: Chunking 22 CONLL-2000 Top-1 Exact-match F1. 211,727 - n/a - 47,377
NER: Named Entity Recognition 4 CONLL-2003 Top-1 Exact-match F1. 203,621 - 51,362 - 46,435
POS: POS Tagging 17 TweeBank Top-1 Acc. 24,753 - 11,742 - 19,112
CK: Chunking 18 TChunk Top-1 Exact-match F1. 10,652 - 2,242 - 2,291
NER: Named Entity Recognition 6 WNUT Top-1 Exact-match F1. 62,729 - 15,734 - 23,394

Table 1: Statistics of the datasets we used to train our models. Top: datasets of the source domain. Bottom:
datasets of the target domain.

Method POS (Accuracy %) CK (Accuracy %) NER (F1 %)
TPoS ArK TweeBank TChunk WNUT

Random Initialisation 86.82 91.10 91.66 85.96 40.36
Transfer Learning 89.57 92.09 93.23 88.86 41.92

Table 2: Results on POS, CK and NER of Tweets using Transfer Learning vs Random initialisation.

use a single layer biLSTM (token-level feature ex-
tractor) and set the number of units to 200. In all of
our experiments, both pretraining and fine-tuning
were preformed using the same training settings,
i.e. SGD with momentum and early stopping, and
mini-batches of 16 sentences, and a fixed learning
rate of 1.5× 10−2. Throughout this thesis, all our
models are implemented with the PyTorch library
(Paszke et al., 2017).

5 Analysis

First, in order to have an idea about the final impact
of TL compared to randomly initialised models,
we provide in Table.2 the performance of Random
Initialisation and Transfer Learning. Clearly, TL
enhances the performance across all data-sets and
tasks. In the following sub-sections, we attempt to
analyse thoroughly these results by showing that
the impact of TL is two fold, positive transfer and
negative transfer.

5.1 Quantifying Negative Transfer

Let us consider the gain Gi brought by transfer
learning compared to random initialisation for
the dataset i. Gi is defined as the difference be-
tween positive transfer PT i and negative transfer
NT i: Gi = PT i − NT i. Where positive trans-
fer PT i represents the percentage of tokens that
were wrongly predicted by random initialisation,
but transfer learning changed to the correct ones.
negative transferNT i represents the percentage of
words which were tagged correctly by random ini-
tialisation, but using transfer learning gives wrong
predictions.
PT i and NT i are defined as follows:

PT i =
Ncorrected

i
Ni

andNT i =
Nfalsified

i
Ni

. Where

Figure 1: Impact on predictions made by TL compared
to Random initialisation. Positive Transfer stands for
the percentage of predictions that were wrong in the
training from scratch scheme but the TL changed to the
correct ones, and Negative Transfer stands for the per-
centage of predictions which the random model tagged
correctly, but the TL falsified.

Ni the total number of tokens in the validation-set
of the dataseti. N corrected

i is the number of to-
kens from the validation-set of the dataseti, that
were wrongly tagged by the the model trained
from scratch but are correctly predicted by the
model using transfer learning. And Nfalsified

i is
the number of tokens from the validation-set of
the dataseti, that were correctly tagged by the the
model trained from scratch but are wrongly pre-
dicted by the model using transfer learning.

We show in Figure.1 the results on English
Tweets datasets TpoS, ArK and TweeBank for POS;
WNUT for NER; and Tchunk for CK. First tagged
with the classic training scheme (Random) and then
using TL. Blue bars show the percentage of posi-
tive transfer, and red bars give the percentage of
negative transfer. We observe that even though TL
approach is effective, since the resulting positive
transfer is higher than negative transfer in all cases,
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Figure 2: Positive transfer curves (blue) and negative transfer curves (red) on Tweets data-sets, according to differ-
ent pretraining epochs. Transparent Gray highlights the final gain brought by TL.

this last mitigates the final gain brought by TL. For
instance, on Tchunk dataset, TL corrected ∼4.7%
of predictions but falsified ∼1.7%, which reduces
the final gain to ∼3%.

5.2 The impact of pretraining state on
Negative Transfer

So far in our experiments we used the pretrained pa-
rameters from the best model trained on the source
dataset. In simple words, we picked the model
at the epoch with the highest performance on the
source validation-set. In this analysis, we study
when pretrained parameters are ready to be trans-
ferred. Specifically, we pick the pretrained weights
at different pretraining epochs; that we call the pre-
training states. Then, we assess the performance
when transferring each. In Figure.2, we plot for
each target dataset, the curves of positive trans-
fer (blue curves) and negative transfer (red curves)
brought by initialisation with pretrained weights
from different pretraining epochs compared to ran-
dom initialisation. Clearly, both negative and posi-
tive transfer increase with pretraining epochs. More
important, we can observe that for TweeBank and
ArK datasets the negative transfer increases rapidly
in the last pretraining epochs. However, for TPoS
dataset, the negative transfer stays almost stable
throughout pretraining epochs. This phenomenon
could be explained by the fact that TPoS shares the
same PTB tag-set as WSJ, whereas TweeBank and
ArK use different tag-sets. Consequently, in the
last states of pretraining, the pretrained parameters
become well-tuned to the source dataset and spe-
cific to the source tag-set, leading to an increase of
negative transfer and thus a drop in transfer perfor-
mance.

5.3 Qualitative Examples of Negative
Transfer:

We illustrate in Table 32 concrete examples of
words whose predictions were falsified when using
transfer learning compared to random initialisation.
Among mistakes we have observed:

• Tokens with an upper-cased first letter: In
news (formal English), only proper nouns
start with an upper-case letter inside sentences.
Consequently, in the transfer learning scheme,
the pre-trained units fail to slough this pattern
which is not always respected in social media.
Hence, we found that most of the tokens with
an upper-cased first letter are mistakenly pre-
dicted as proper nouns (PROPN) in POS, e.g.
Award, Charity, Night, etc. and as entities in
NER, e.g. Father, Hey, etc., which is consis-
tent with the findings of Seah et al. (2012);
negative transfer is mainly due to conditional
distribution differences between source and
target domains.

• Contractions are frequently used in social
media to shorten a set of words. For instance,
in TPoS dataset, we found that “’s” is in most
cases predicted as a “possessive ending (pos)”
instead of “Verb, 3rd person singular present
(vbz)”. Indeed, in formal English, “’s” is used
in most cases to express the possessive form,
e.g. “company’s decision”, but rarely in con-
tractions that are frequently used in social me-
dia, e.g. “How’s it going with you?”. Sim-
ilarly, “wont” is a frequent contraction for

2Classes significations: nn=N=noun=common noun /
nnp=pnoun=propn=proper noun / vbz=Verb, 3rd person sin-
gular present / pos=possessive ending / prp=personal pronoun
/ prp$=possessive pronoun / md=modal / VBP=Verb, non-3rd
person singular present / uh=!=intj=interjection / rb=R=adverb
/ L=nominal + verbal or verbal + nominal / E=emoticon / $=nu-
merical / P=pre- or postposition, or subordinating conjunction
/ Z=proper noun + possessive ending / V=verb / adj=adjective
/ adp=adposition
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DataSet
TPoS Award� ’s its? Mum wont? id? Exactly

nn vbz prp nn MD prp uh
nnp pos prp$ uh VBP nn rb

ArK Charity� I’M? 2pac× 2× Titans? wth× nvr×

noun L pnoun P Z ! R
pnoun E $ $ N P V

TweeBank amazin• Night� Angry� stangs #Trump awsome• bout•

adj noun adj propn propn adj adp
noun propn propn noun X intj verb

TChunk luv× **ROCKSTAR**THURSDAY ONLY Just� wyd× id?

b-vp b-np i-np b-advp b-np b-np
i-intj O b-np b-np b-intj i-np

Wnut Hey� Father� &× IMO× UN Glasgow Supreme
O O O O O b-location b-person

b-person b-person i-group b-group b-group b-group b-corporation

Table 3: Examples of falsified predictions by standard fine-tuning scheme when transferring from News-
domain to Tweets-domain. Line 1: Some words from the validation-set of each data-set. Line 2: Correct labels
predicted by the classic supervised setting (Random-200). Line 3: Wrong labels predicted by TL setting. Mistake
type: � for words with first capital letter, • for misspelling, ? for contractions, × for abbreviations.

“will not”, e.g. “i wont get bday money lool”,
predicted as “verb” instead of “modal (MD)”
by transfer learning. The same for “id”, which
stands for “I would”.

• Abbreviations are frequently used in social
media to shorten the way a word is stan-
dardly written. We found that transfer learn-
ing scheme stumbles on abbreviations predic-
tions, e.g. 2pac (Tupac), 2 (to), ur (your), wth
(what the hell) and nvr (never) in ArK dataset;
and luv (love) and wyd (what you doing?) in
TChunk dataset.

• Misspellings: Likewise, we found that the
transfer learning scheme often gives wrong
predictions for misspelt words, e.g. awsome,
bout, amazin.

6 Conclusion

Our analysis on the hidden negative transfer from
News-domain to Tweets-domain reveals interest-
ing insights: 1) Even if using TL improves the
performance on Tweets Sequence labelling, an in-
herent negative transfer may minimise the final
gain; and 2) the negative transfer increases with the
number of pretraining epochs. This study opens a
set of promising directions. We plan to 1) Extend
our experiments by investigating the impact of the
model’s hyper-parameters (size, activation func-
tions, learning rate, etc.). 2) Investigate the impact
of the similarity between source and target datasets
and source and target training datasets size on the
negative transfer. 3) Tackle the negative transfer

problem, by identifying automatically biased neu-
rons in the pretrained model and proceed to a prun-
ing of the most biased ones before fine-tuning. 4)
Explore negative transfer on Transformers-based
pretrained models, such as BERT, XLNet, etc.
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