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Abstract

Memotion analysis is a very crucial and important subject in today’s world that is dominated by
social media. This paper presents the results and analysis of the SemEval-2020 Task-8: Mem-
otion analysis by team Kraken that qualified as winners for the task. This involved performing
multimodal sentiment analysis on memes commonly posted over social media. The task com-
prised of 3 subtasks, Task A was to find the overall sentiment of a meme and classify it into
positive, negative or neutral, Task B was to classify it into the different types which were namely
humour, sarcasm, offensive or motivation where a meme could have more than one category,
Task C was to further quantify the classifications achieved in task B. An imbalanced data of 6992
rows was utilized for this which contained images (memes), text (extracted OCR) and their anno-
tations in 17 classes provided by the task organisers. In this paper, the authors proposed a hybrid
neural Naïve-Bayes Support Vector Machine and logistic regression to solve a multilevel 17 class
classification problem. It achieved the best result in Task B i.e 0.70 F1 score. The authors were
ranked third in Task B.

1 Introduction

With the increased availability of internet and connected smart multimedia devices, there has been a
rapid increase in the spreading of memes over social media platforms like Twitter, Facebook, Instagram,
Reddit, etc. Memes are images containing text both of which are related to each other with a context.
Memes usually pertain to an idea, belief, thought, theory, etc. which are usually derived from popular or
unpopular culture with factors like place, people, events, and actions affecting it. These memes are an
integral source of information about a community (Gal et al., 2016). This is why we require a thorough
analysis of these memes. Not only that but also due to hate speech which has been the bane of social
media since the beginning. These are the platforms where people from different parts of the world come
together to interact and share ideas, such platforms encourage the concept of free speech however with
this comes the issue of usage of offensive or anti-social content. Such content, which is not considered
criminal, originates from the intent to harass in the name of criticism, leads to a radicalized person
or community. Detecting such hate speech and offensive content to curb the spread of negativity and
emotional distress using the internet is not only a priority task but a social responsibility. Such memes
that cause trauma and torment to a directed person or a community needs to be flagged, reported, and
taken proper action upon to avoid any unwanted disturbance to the people. This process of filtering
online content has been traditionally dominated by manual checking of such content which is not possible
considering the current internet activity. However, manual filtering is not only a time-consuming task but
a possible mental health hazard too which indicates the need to automate this process. Even researchers
in (Peirson et al., 2018), (Oliveira et al., 2016) were generating memes automatically.

Memes comprise multiple modalities which are textual and visual. These are context-related modali-
ties and machines need a hybrid approach to leverage both these modalities. This paper discusses the data
provided by the task organisers (Sharma et al., 2020) and the proposed approach towards the problem at
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hand. It goes through the data pre-processing and augmentation performed on the imbalanced set of data
and the application of different machine learning and neural network training on the given data-set which
includes recurrent neural network (RNNs) (Mikolov et al., 2010), long short term memory (LSTMs) (Gr-
eff et al., 2016) , Logistic regression (Indra et al., 2016) and neural Naive Bayes Support Vector Machine
(NBSVM) (Wang and Manning, 2012).

2 Related Work

Not much solid work has been done to classify memes yet. In the classification of a meme, major work
has been done on the image segment (Kolawole, 2015). In this work (Kolawole, 2015) the author has
mainly focused on images of memes and has tried to take out the features of images such as lines, edges,
and contrast or interest points such as blobs or corners. In meme classification there exists a lot of
ambiguity because a meme consists of images and text both. By experimentation, it was found that text
is the most important part of a meme as images follow a template, and what is written in that template
matters more, rather than the template. People often confuse meme classification with sentiment analysis.
Sentiment analysis is a small part of meme classification. A lot of work has been done in the sentiment
analysis segment. The first task of meme classification is sentiment analysis i.e predicting whether a
meme is positive, negative or neutral. Sentiment analysis is a Natural Language Processing(NLP) task
and has many levels. Starting from the very beginning sentiment analysis started with a document level
classification (Turney, 2002) moving further to sentence level (Kim and Hovy, 2004) and from that it
came to phrase level (Wilson et al., 2005). If we see there is very little or no work done on sentiment
analysis on memes, a lot of work has been done on sentiment analysis on twitter data. A very broad
approach of sentiment analysis of twitter data was presented in (Pak and Paroubek, 2010). The author
here collected the twitter data based on emoticons for example for positive “:) ,:-) “ for negative “ :(
:-(“ were used. The author’s best approach was multinomial Naive Bayes. In (Go et al., 2009) author
collected data through twitter and tried various classifiers.

3 Data

Data is the most important factor in any analytics and processing task. The data was provided to us by
the competition organisers (Sharma et al., 2020) in two parts, the first set was a more of ill-prepared data
which contained missing rows, missing annotations, missing images, swapped column values and all of
this was revealed while working on it as it was creating a lot of unexpected issues, whereas the second
set was an updated and cleaner but a similarly flawed version of the original data.

3.1 Dataset

The dataset included a folder of 6992 images and a comma-separated values(csv) file of annotated data
corresponding to those images containing 6992 rows and 8 columns. Column headers included an index,
image-name, text-ocr, text-corrected, humour, sarcasm, offensive, motivation, overall-sentiment. The
annotations with their count were divided as shown in Table 1:

Table 1: Data Description with count

Humour Sarcasm Offensive Motivation Overall sentiment
Not funny(1651) Not sarcastic(1544) Not offensive(2713) Motivational(2467) Positive(4160)

Funny(2452) General(3507) Slight (2592) Not motivational(4525) Negative(631)

Very Funny(2238) Twisted meaning(1547) Very offensive(1466) Neutral(2201)

Hilarious(651) Very twisted(394) Hateful offensive(221)

3.2 Pre-processing

The columns in dataset: humour, sarcasm, offensive, motivation, overall-sentiment; were the major
classes and were processed and prepared using basic one-hot encoding to be fed to the learning model
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directly. The column, image-name was used as it is to fetch the images, these images were further
processed before putting them in the model and this process is explained in the later section. The
text-corrected column was used to extract the text found in the corresponding memes and if this column
had issues like missing values, null values, nonsensical values, wrong values, or unwanted symbols then
the text-ocr column was used. There were instances where values from both the columns were missing,
in such situations a custom Google’s OCR was implemented to find out the text from these columns
which involved obtaining an API from Google. Most of the pre-processing (Vijayarani et al., 2015) was
done on the ocr-column.

This pre-processing helped to normalize the text by removing integer characters and replacing with
textual references, removing contractions, removing non-ASCII characters, removing URLs, removing
punctuation, and removing stopwords. Also, this converted the given text into lowercase and to its very
basic form by stemming and lemmatization, and this was done by tokenizing the text. NLTK and regex
were of much importance in performing these tasks. Finally, this resulted into something that could be
used for putting in the training model which the machine could recognise and work on while eliminating
the redundant stuff.

3.3 Data augmentation

Later it was realised that the data was not satisfactory and sufficient, so to obtain a good score data
augmentation techniques were applied. The image data augmentation made not much sense as the memes
were found to be following a sort of trend in the forms of templates. The text augmentation however
included a series of techniques. With some analysis of the data it was found that the data was acutely
imbalanced (Kotsiantis et al., 2005). Every class had highly disproportionate labels, to the extent that
some were in a 1:9 ratio. we introduced redundant data by data replication. This up-sampling of data
surprisingly increased the score by quite a lot, but all up-sampling did was bring in redundant data, which
did not effect the learning of the machine.

4 Proposed Work

To solve this multi-class classification various approaches were tried, top performer presented here:

4.1 Transfer Learning Approach

The initial approach was transfer learning. Transfer learning is a machine learning method where a pre-
trained model developed for a task is reused as a building block for a custom model on a similar task.
For images of the memes, the VGG16/VGG19 (He et al., 2018) model was used. Here the bottom layers,
except the final output layer, were used to make a custom model. These images were fed into the model
and the predicted features were stored in a numpy array and saved. For the text extracted from the memes,
BERT (Houlsby et al., 2019) model was used where a bunch of text was fed to the model and text features
were stored in a NumPy array and saved. Both these NumPy arrays that were received from images and
text were concatenated together to form a single numpy array that contained the features extracted from
both the major factors i.e. image and text. After concatenating these numpy arrays, a feature matrix was
formed which was then used in training the final model. Naïve-Bayes (Muhammad and Yan, 2015) and
decision tree trained on this feature matrix to develop a final classifier. The maximum accuracy achieved
using the decision tree model was 40 percent. After applying the transfer learning technique to all the 5
classes it was concluded that no satisfactory results were produced.

After multiple experiments, it was concluded that the image features were less contributing, meaning
their presence in the feature array would not add much to the final output instead in some cases it would
depreciate the final output quality. This was then analysed on a much lower level by picking up the actual
pictures of memes and evaluating the annotations. It was found out that these pictures were following
a trend by the means of templates. These templates could have a variety of text on them which would
result in a totally different meaning. This was then making the data contradictory and decreasing the
quality of the models.
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4.2 Multi-step approach
In this approach first, the dataset was divided into multiple classes and has multiple layers as shown in
Figure 1. For example, we first classified whether a meme is offensive or not offensive (binary classifica-
tion). If the meme is offensive then we further classify to slight, very offensive, hateful-offensive(multi
class classification).
We were getting good results in binary classification . We thought of converting multi-classification to
binary classification. Let us assume we have 3 classes positive, negative, neutral. We took 2 classes at a
time and trained it. So for one multi-class classification (which is converted to binary class classification)
we made 3 models (Example - 1. Positive and negative 2. Positive and neutral 3. Negative and neutral).
So by this method, we converted multi-class classification to binary-class classification. Algorithm 1
represents the pseudo-code at the time of testing.

Algorithm 1 Multi class classification to binary class classification
Function multi_class_classification_TO_binary_class_classification() :
input x; . Text input of a meme
K = predict(x); . K is the model for positive and negative
L = predict(x); . L is the model for positive and neutral
M = predict(x); . M is the model for negative and neutral
/* K, L, M will give their outputs accordingly. */
if K==L then

. Basically taking the intersection of K and L
print("Positive");

else if K==M then
print("Negative");

else if M==L then
print("Neutral");

else
print("None");

In the first layer, the classes are 1. Overall Sentiment (positive, negative, and Neutral), Motivational,
Not offensive, Offensive, Not sarcastic, Sarcastic, Not humorous, Humorous. In the second layer, hu-
mour is divided into 3 classes i.e Hilarious, Funny, and Very funny then sarcasm is divided into 3 classes
i.e General, Very twisted, and Twisted meaning finally offensive is divided into 3 classes i.e Slight, Very
offensive, and Hateful offensive.The second layer of classification was converted to binary classification
as explained above. Now it was binary classification for offensive, sarcastic, humour. All the above mod-
els were tried but the best results were given by neural Naive Bayes Support Vector Machine (NBSVM)
(Wang and Manning, 2012). In data pre-processing step 5-gram data was given to NBSVM. By applying
this technique the results were good but this approach was ambiguous. If we look at algorithm 1 there
might be a condition when none is given as an outcome so we come up with our final hybrid approach in
the next section.

4.3 Hybrid NBSVM and logistic classifier based Approach
This hybrid approach consisted of two well proved algorithms first is Logistic Regression (Indra et al.,
2016) and second is neural approach NBSVM (Wang and Manning, 2012) .

4.3.1 Naive Bayes Support Vector Machine(NBSVM)
We formulated our NBSVM linear classifier as:

y (q) = sign(wTx (q) + b) (1)

where, the prediction of q test cases is y (q) ’w’ is weight matrix and x (q) is input vector. Let us assume
αi ∈ R|U | be the feature count vector for i training cases with label to be yi ∈ {0, 1, 2}, where U
is the set of features and f ij the number of occurrence of feature (Uk) in training cases i. A, B, C
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Figure 1: Tree of classes into subclass

defined as count vector which are as follows: A = κ +
∑

i:y (i)=0 f
i and B = κ +

∑
i:y (i)=1 f

i and(
C = κ +

∑
i:y (i)=2 α

i
)

for parameter smoothing (κ). The log count ratio for A and B is defined as:

l = log

(
A/||A||1
B/||B||1

)
(2)

Similarly, we compute log count ratio for (B, C) and (C, A).
For Support Vector Machine xq = f q, and (W, B) are obtained by minimizing:

W TW + C
∑
i

max
(
0, 1− y(i) (W T α̂(i) +B)

)2
(3)

Support Vector Machine with Naive Bayes (NBSVM) For NBSVM, we compute:

f̃ (q) = l̂ ◦ f (q) (4)

This finds an interpolation between NB and SVM and therefore, x(q) = f̃ (q) . The proposed algorithm
used following model:

w′ = (1− α) ŵ + αw (5)

where ŵ =
‖w‖1
|U | is the mean magnitude of w and α ∈ [1, 0] , is the interpolation parameter.
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4.3.2 Logistic Regression
Logistic regression (Indra et al., 2016) falls under supervised classification algorithm. It is best for binary
classification. We have used logistic regression where there was binary classification involved. It is a
discriminate model which works by discriminating possible values of class y based on input x. Equation
for this is :-

P (c|x) =
N∑
i=1

wi.f
i (6)

If we calculate P (y/x) directly using equation 6, the result will lie between ∞ to −∞. To obtain an
output between 0 and 1 we have to use function:-

P (c|x) = 1

z
exp

∑
i=1

wi.f
i (7)

The hybrid approach had 8 different models working together to output the final result as shown in
figure 2. All 8 models used either NBSVM (given in section 4.3.1) or logistic regression (given in section
4.3.1). The detail of these models are as follows:
First, is the Overall sentiment class model with the labels positive, negative, neutral which was trained
using NBSVM. Second is the motivational or not motivational class model which was trained using
logistic regression. The third is the Humour class model which was trained using logistic regression. It
outputs whether the meme is funny or not funny. Fourth is the Only funny class model with the labels
hilarious, funny, very funny which was trained using NBSVM. This model is only called if the humour
class model outputs funny and the further results are calculated else the final result remains as not funny.
Fifth is the Sarcasm class model which was trained using logistic regression. It outputs whether the
meme is Sarcastic or not Sarcastic. Sixth is the Only Sarcastic class model with the labels twisted
meaning, very twisted and general which was trained using NBSVM. This model is only called if the
sarcasm class model outputs sarcastic and the further results are calculated else the final result remains as
not sarcastic. Seventh is the offensive class model which was trained using logistic regression. It outputs
whether the meme is offensive or not offensive. Finally eighth is the Only offensive class model with
the labels hateful offensive, very offensive and slight which was trained using NBSVM. This model is
only called if the offensive class model outputs offensive and the further results are calculated else the
final result remains as not offensive. All these models were independently and individually trained. For
training, the eight sub data sets were created. In general, we found during the experiment that, logistic
regression performed better in binary classification such as motivational, humour, sarcasm, offensive.
On the other hand in the case of multi-class classification neural approach of NBSVM performed better.

4.4 Inference
Once we successfully trained our models we then tested them with the testing dataset. A flow of the
full testing process is defined in Figure 2. It starts with the input of the memes. Then the meme text is
extracted from the image. Then pre-processing is performed on the extracted text, as defined in section
3.2. This pre-processed data is then fed into the trained hybrid model which consists of two layers of
classification as shown in figure 2. In the first layer, it has five classifiers and three classifiers in the
second layer. The proposed hybrid model classifies data using the first layer classifiers, then based on
its result it uses the second level classifiers for further classification as shown in figure 2. For example,
to classify a sarcastic meme, once the data is fed to the system our sarcasm model present in the first
layer classifies the memes into Sarcastic or not Sarcastic, if the answer is sarcastic then the second layer
classifier will classify it into twisted meaning, very twisted and general. The system performs similarly
for offensive and humour as well, as shown in figure 2. After collecting all the labels, they are sent to the
final result.

5 Results

The experiments were performed on DGX-1 V100 supercomputer. It is built using the NVIDIA
Pascal powered Tesla V100 accelerators with 1000 TFLOPS speed, 40,960 cuda cores, 5120 ten-
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Figure 2: Flow chart for inference

sor cores. Python codes for cleaning the data, training the models and all the relevant scripts
for testing and other tasks are available in a github repository. It can be accessed using this
https://github.com/rockangator/memotion-analysis. The proposed approach has been implemented in
python using Keras, NLTK, Ktrain, Tensorflow, scikit learn, re, os libraries. The results are shown in
Table 2, 3, 4, 5, 6, 7, 8 based on hybrid NBSVM and logistic classifier approach. As shown in Table 2
our model has given precision - 0.95, recall- 1.00 and f1 score of 0.97 by classifying how negative the
memes are. Moreover, proposed methodology is able to classify not motivational memes with precision
of 0.80, recall - 0.65 and f1 score of 0.71, as shown in Table 3. Our model was able to classify memes as
offensive with 0.74 precision, 0.62 recall and 0.68 f1 score, hateful offensive with precision - 0.97, re-
call - 1.00 and f1 score 0.99, sarcastic with 0.95 precision, 0.90 - recall and 0.90 f1 score. Very Twisted
memes were classified with 0.97 precision, 1.00 recall and 0.98 f1 score. The model classified a meme
as funny with 0.98 precision, 0.87 recall and 0.92 f1 score. After funny was classified the model was
able to classify humorous meme with 0.75 precision, 0.64 recall and 0.69 f1 score as shown in Table 4,
5, 6, 7, 8, 9 respectively.

Finally as compared to (Go et al., 2009) our proposed hybrid model achieved 6% higher accuracy.
In (Go et al., 2009) the authors achieved best accuracy of 81 percent in contrast, our proposed hybrid
model for sentiment analysis of memes achieved 87 percent using Neural Naive Bayes Support Vector
Machine(NBSVM).

https://github.com/rockangator/memotion-analysis
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Table 2: Classification Report for overall sentiment
(Task A)

Positive Negative Neutral
Precision Recall f1-score Support

positive 0.90 0.66 0.76 420
negative 0.95 1.00 0.97 443
neutral 0.77 0.93 0.84 435

accuracy 0.87 1298
macro avg 0.87 0.86 0.86 1298
weighted avg 0.87 0.87 0.86 1298

Table 3: Classification Report for motivation
(Task B)

Motivational - Not Motivational
Precision Recall f1-score Support

not-motivational 0.80 0.65 0.71 474
motivational 0.65 0.79 0.71 383

accuracy 0.71 857
macro avg 0.72 0.72 0.71 857
weighted avg 0.73 0.71 0.71 857

Table 4: Classification Report for Offensive-not offensive
(Task B)

Offensive - Not Offensive
Precision Recall f1-score Support

not-offensive 0.67 0.78 0.72 428
offensive 0.74 0.62 0.68 429

accuracy 0.70 857
macro avg 0.71 0.70 0.70 857
weighted avg 0.71 0.70 0.70 857

Table 5: Classification Report for Slight - Very Offensive - Hateful
Offensive (Task C)

Slight - Very Offensive - Hateful Offensive
Precision Recall f1-score Support

slight 0.84 0.76 0.79 268
very-offensive 0.75 0.81 0.78 219
hateful-offensive 0.97 1.00 0.99 262

accuracy 0.86 749
macro avg 0.85 0.86 0.85 749
weighted avg 0.86 0.86 0.86 749

Table 6: Classification Report for sarcastic - not sarcastic
(Task B)

Not sarcastic - Sarcastic
Precision Recall f1-score Support

not-sarcastic 0.90 0.91 0.91 554
sarcastic 0.95 0.90 0.90 546

accuracy 0.90 1100
macro avg 0.90 0.90 0.90 1100
weighted avg 0.90 0.90 0.90 1100

Table 7: Classification Report for General - Twisted Meaning - Very
Twisted (Task C)

General - Twisted Meaning - Very Twisted
Precision Recall f1-score Support

general 0.92 0.78 0.84 363
twisted-meaning 0.81 0.92 0.86 321
very-twisted 0.97 1.00 0.98 331

accuracy 0.89 1015
macro avg 0.90 0.90 0.89 1015
weighted avg 0.90 0.89 0.89 1015

Table 8: Classification Report for Funny - Not Funny
(Task B)

Funny - Not Funny
Precision Recall f1-score Support

not-funny 0.88 0.98 0.93 497
funny 0.98 0.87 0.92 533

accuracy 0.93 1030
macro avg 0.93 0.93 0.93 1030
weighted avg 0.93 0.93 0.93 1030

Table 9: Classification Report for Hilarious-Funny-
Very Funny (Task C)

Hilarious - Funny - Very Funny
Precision Recall f1-score Support

hilarious 0.75 0.64 0.69 389
funny 0.35 0.47 0.40 244
very-funny 0.33 0.29 0.31 232

accuracy 0.50 865
macro avg 0.48 0.47 0.47 865
weighted avg 0.52 0.50 0.51 865

6 Conclusion

We encourage systematic research and development in the field of memotion analysis. Using combined
machine learning and training methods i.e quantitative and qualitative, we were able to create a model
and empirically validate our results on a dataset of 6992 data points. The results are very encouraging
and quite a remarkable feat (secure third position in task B). Memotion analysis can be one of the most
utilised tools in this era of social media (and in most cases, better than) among all the other highly
regarded sentiment analysis tools that are available to us till date.
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