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1 Introduction

Machine reasoning research aims to build inter-
pretable AI systems that can solve problems or
draw conclusions from what they are told (i.e. facts
and observations) and already know (i.e. models,
common sense and knowledge) under certain con-
straints. Although its “formal” definitions vary
in different publications (McCarthy, 1958; Pearl,
1988; Khardon and Roth, 1994; Bottou, 2011; Ben-
gio, 2019), machine reasoning methods usually
share some commonalities. First, such systems
are based on different types of knowledge, such
as logical rules, knowledge graphs, common sense,
text evidence, etc. Second, such systems use differ-
ent inference algorithms to manipulate available
knowledge for problem-solving. Third, such sys-
tems have good interpretability to the predictions.

The developments of machine reasoning systems
go through several stages. Symbolic reasoning
methods represent knowledge using symbolic logic
(e.g., propositional logic and first order logic) and
perform inference using algorithms such as truth-
table approach, inference rules approach, resolu-
tion, forward chaining and backward chaining. A
major defect is that such methods cannot handle the
uncertainty in data. Probabilistic reasoning meth-
ods combine probability and symbolic logic into a
unified model. Such methods can deal with uncer-
tainty, but suffer the combinatorial explosion when
searching in a large discrete symbolic space. With
the rapid developments of deep learning, neural
reasoning methods attract much attention. Neural-
symbolic reasoning methods represent knowledge
symbols (such as entities, relationships, actions,
logical functions and formulas) as vector or ten-
sor representations, and allow the model to per-
form end-to-end learning effectively as all compo-
nents are differentiable. Neural-evidence reason-
ing methods allow the model to communicate with

the environment to acquire evidence for reasoning.
As such models assume the reasoning layer is not
required to be logical, both structured and unstruc-
tured data can be used as knowledge. Besides, as
the interaction with the environment can be con-
ducted multiple times, such approaches are good at
solving sequential decision-making problems.

However, existing machine reasoning methods
face with a dilemma: although they have many
merits such as good abstraction, generalization
and interpretability, their performance are still
worse than black-box neural networks (such as pre-
trained models) on most downstream tasks such as
question answering, text classification, etc.

In this tutorial, we will review typical machine
reasoning frameworks and talk about the dilemma
between black-box neural networks with state-of-
the-art performance and machine reasoning meth-
ods with better interpretability. We will also discuss
possible research directions to escape this dilemma
as the future work.

2 Description

We first review four machine reasoning frameworks.

Symbolic Reasoning This approach, also known
as the Good, Old-Fashioned AI (GOFAI), was the
dominant paradigm in the AI community before
the late 1980s. By manipulating knowledge in the
form of symbolic logic using inference algorithms,
a symbolic reasoning system can solve deductive
and inductive reasoning tasks. We will use deduc-
tive reasoning as an example to show how this task
can be solved based on knowledge in the form of
propositional logic and first-order logic, respec-
tively. This part is also closely related to probabilis-
tic reasoning and neural-symbolic reasoning.

Probabilistic Reasoning One drawback of sym-
bolic reasoning is that it cannot handle data un-
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certainty. To alleviate this problem, probabilistic
reasoning is proposed, which integrates probabilis-
tic models with symbolic knowledge in a unified
framework. In such systems, probabilistic models
handle the uncertainty issue while the symbolic
logic represents types, relations, and the complex
dependencies between them. We will use Bayesian
Network (Pearl, 1988) and Markov Logic Network
(Richardson and Domingos, 2006) as two represen-
tative models to show how probabilistic reasoning
can solve typical reasoning tasks, such as diagnosis,
prediction and maximum probable explanation.

Neural-Symbolic Reasoning Both symbolic
reasoning and probabilistic reasoning support
strong abstraction and generalization. Such sys-
tems have good interpretability but are fragile and
inflexible duo to the finite and discrete symbolic
representations. On the contrary, neural network
models achieve state-of-the-art performance on var-
ious AI tasks, due to their good representation and
learning capabilities. However, such models can-
not capture compositionality and generalization in
a systematic way. They cannot provide explicit
decision-making evidence to explain their outputs
as well, which make such systems look like a black
box. So it is straightforward to integrate neural
networks with symbolic reasoning, which is called
neural-symbolic reasoning in this tutorial. In gen-
eral, a neural-symbolic reasoning system (1) inte-
grates existing reasoning technologies with sym-
bolic knowledge based on neural networks and
(2) implements inference as a chain of differen-
tiable modules, where each module represents a
program with a specific function. By doing these,
such systems are usually more interpretable than
black-box neural networks. We will review knowl-
edge graph reasoning (Bordes et al., 2013; Wang
et al., 2014; Lin et al., 2015; Wang et al., 2017;
Glorot et al., 2013; Socher et al., 2013; Dong et al.,
2014; Liu et al., 2016; Dettmers et al., 2018; Guo
et al., 2019; Ren et al., 2020; Xiong et al., 2017;
Dong et al., 2019; Rocktäschel and Riedel, 2017;
Qu and Tang, 2019; K. Teru et al., 2020), neural
semantic parsing (Dong and Lapata, 2016, 2018;
Sun et al., 2018; Guo et al., 2018; Mao et al., 2019;
Zhong et al., 2020), neural module network (An-
dreas et al., 2016; Hu et al., 2017; Gupta et al.,
2020; Chen et al., 2020) and symbolic knowledge
as constraints (Rocktaschel et al., 2015; Hu et al.,
2016; Xu et al., 2018; Li and Srikumar, 2019; Wang
et al., 2020) as four representative models.

Neural-Evidence Reasoning Previously men-
tioned three reasoning pipelines have the merits of
utilizing abstractive logical or symbolic functions,
which are interpretable to developers and users at
concept level. The design of such symbolic func-
tions in real applications are typically conducted
by domain experts, thus these models cannot be
easily extend to broader applications. Here, we
review neural-evidence models that find external
evidence and combine evidence with the input to
make predictions. We group existing methods into
three categories, including unstructured textual ev-
idence retrieval models, structured fact evidence
retrieval models, and iterative evidence retrieval
models. Applications include open question an-
swering (Chen and Yih, 2020), CommonsenseQA
(Talmor et al., 2019), fact checking and verification
(Thorne et al., 2018), inferential text generation
(Rashkin et al., 2018; Sap et al., 2019), and multi-
hop question answering (Yang et al., 2018).

We then talk about the dilemma between black-
box neural networks with state-of-the-art perfor-
mance and machine reasoning approaches with
better interpretability.

Dilemma: Interpretability vs. Performance
Despite the appealing properties of the previously
mentioned machine reasoning approaches in terms
of interpretability, the reality is that the leading
systems on open benchmarks, evaluated by accu-
racy, are typically black-box models. We will dis-
cuss this dilemma of “interpretability versus perfor-
mance” by showing the empirical success of pre-
trained models on natural language understanding
challenges, including Grade 8 New York Regents
science exam (Clark et al., 2019), discrete reason-
ing over natural language (Dua et al., 2019), rea-
soning over rules in natural language (Clark et al.,
2020), and logical reasoning (Yu et al., 2020). Af-
terwards, we will review model interpretation meth-
ods, including post-hoc ones and intrinsic ones.
Post-hoc methods aim to interpret what an existing
model learned without making changes to the origi-
nal model. We will cover saliency maps (Simonyan
et al., 2013), local interpretable model-agnostic
explanations (LIME) (Ribeiro et al., 2016), test-
ing with concept activation vectors (TCAV) (Kim
et al., 2018), and visual explanation generation
(Hendricks et al., 2016). Intrinsic methods are
that inherently interpretable (to some extent). We
will cover attention (Bahdanau et al., 2014), in-
terpretable CNN (Zhang et al., 2018), and neural
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module network (Andreas et al., 2016).
We last summarize the content of this tutorial

and discuss possible future directions.

Summary This tutorial classifies machine rea-
soning methods into 4 categories based on their
modeling mechanisms, including symbolic reason-
ing, probabilistic reasoning, neural-symbolic rea-
soning and neural-evidence reasoning. Symbolic
reasoning can handle complex reasoning tasks by
using logical rules. Probabilistic reasoning further
alleviates the data uncertainty issue in symbolic rea-
soning systems by introducing probabilistic mod-
els. Neural-symbolic reasoning provides more ro-
bust representation and learning capabilities based
on the latest deep learning technologies. Neural-
evidence reasoning doesn’t require the reasoning
layer to be logical, so they can leverage both sym-
bolic and non-symbolic evidence. All these meth-
ods have good applications in many real-world
scenarios like expert system, medical diagnosis,
knowledge base completion, question answering,
search engine, fact checking, etc.

Of course, we also notice the dilemma of ex-
isting machine reasoning methods. We think this
is only a short-term phenomenon. With the con-
tinue and rapid developments of different areas
at the same time, such as knowledge base engi-
neering, pre-training, interpretability modeling and
neural-symbolic computing, we believe machine
reasoning will definitely have a brighter future.

3 Outline

Opening (15 min.) will describe the motivation
and outline of this tutorial and give our definition
on machine reasoning.

Symbolic Reasoning (20 min.) will review typi-
cal methods based on propositional logic and first
order logic, respectively.

Probabilistic Reasoning (20 min.) will review
typical methods based on Bayesian Network and
Markov Logic Network, respectively.

Neural-Symbolic Reasoning (40 min.) will re-
view typical methods including knowledge graph
reasoning, neural semantic parsing, neural module
network and symbolic knowledge as constraints.

Neural-Evidence Reasoning (40 min.) will re-
view text-base evidence retrieval models, fact-
based evidence retrieval models, and interactive
evidence retrieval models.

Dilemma: Interpretability vs. Performance (30
min.) will review post-hoc models and intrinsic
models for interpretation, and discuss the dilemma
of “interpretability versus performance”.

Summary & Future Discussion (10 min.) will
summarize the content of this tutorial and discuss
possible future directions.

4 Prerequisites for the Attendees

We expect the attendees to be familiar with typical
NLP tasks (such as question answering, semantic
parsing, text generation, etc.), basic concepts of
logic (such as propositional logic and first order
logic) and knowledge graph, recent neural network
architectures (such as convolutional neural network,
recurrent neural network and Transformer) and pre-
trained language models (such as GPT and BERT).

5 Small Reading List

• Domingos and Richardson (2004) - an intro-
duction to Markov Logic as a unifying frame-
work for statistical relational learning, which
is closely related to probabilistic reasoning;

• Bottou (2011) - a nice introduction to machine
reasoning;

• Besold et al. (2017) and Garcez et al. (2019) -
two surveys on neural-symbolic reasoning;

• Storks et al. (2019) - a survey on benchmarks,
knowledge resources, learning and inference
approaches to natural language inference;

• Du et al. (2020) - a survey on interpretable
machine learning techniques;

• Chen and Yih (2020) - a tutorial on open-
domain question answering, in which many
work can be categorized as neural-evidence
reasoning;

• Sap et al. (2020) - a tutorial on commonsense
reasoning for natural language processing.

6 Tutorial Abstract

Machine reasoning research aims to build inter-
pretable AI systems that can solve problems or
draw conclusions from what they are told (i.e. facts
and observations) and already know (i.e. models,
common sense and knowledge) under certain con-
straints. In this tutorial, we will (1) describe the
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motivation of this tutorial and give our definition
on machine reasoning; (2) introduce typical ma-
chine reasoning frameworks, including symbolic
reasoning, probabilistic reasoning, neural-symbolic
reasoning and neural-evidence reasoning, and show
their successful applications in real-world scenar-
ios; (3) talk about the dilemma between black-box
neural networks with state-of-the-art performance
and machine reasoning approaches with better in-
terpretability; (4) summarize the content of this
tutorial and discuss possible future directions.
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cal Hitzler, Kai-Uwe Kühnberger, Luı́s C. Lamb,
Daniel Lowd, Priscila Machado Vieira Lima, Leo
de Penning, Gadi Pinkas, Hoifung Poon, and Ger-
son Zaverucha. 2017. Neural-symbolic learning and
reasoning: A survey and interpretation. CoRR.

Antoine Bordes, Nicolas Usunier, and Alberto Garcia-
Duran. 2013. Translating embeddings for modeling
multi-relational data. In NeurIPS.
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