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Abstract

Although many fact-checking systems have
been developed in academia and industry, fake
news is still proliferating on social media.
These systems mostly focus on fact-checking
but usually neglect online users who are the
main drivers of the spread of misinformation.
How can we use fact-checked information to
improve users’ consciousness of fake news
to which they are exposed? How can we
stop users from spreading fake news? To
tackle these questions, we propose a novel
framework to search for fact-checking arti-
cles, which address the content of an origi-
nal tweet (that may contain misinformation)
posted by online users. The search can directly
warn fake news posters and online users (e.g.
the posters’ followers) about misinformation,
discourage them from spreading fake news,
and scale up verified content on social media.
Our framework uses both text and images to
search for fact-checking articles, and achieves
promising results on real-world datasets. Our
code and datasets are released at https://
github.com/nguyenvo09/EMNLP2020.

1 Introduction

The rampant spread of biased news, partisan stories,
false claims and misleading information has raised
heightened societal concerns in recent years. Many
reports pointed out that fabricated stories possibly
caused citizens’ misperception about political can-
didates (Allcott and Gentzkow, 2017), manipulated
stock prices (Kogan et al., 2019) and threatened
public health (Ashoka, 2020; Alluri, 2019).

The proliferation of misinformation has pro-
voked the rise of fact-checking systems worldwide.
Since 2014, the number of fact-checking outlets
has totally increased 400% in 60 countries (Stencel,
2019). However, fabricated stories and hoaxes are
still pervading our cyberspace. Fig. 1 shows an
example of a fake quote related to Barack Obama.
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FACT-CHECKED: President Obama Confirms He Will …
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Figure 1: An original tweet and a mock-up of how a
correctly retrieved fact-checking article is presented.

The quote had been debunked by Snopes (Emery,
2016) on September 08, 2016 but two months later,
it appeared again inside an original tweet posted
by a Twitter user (called an original poster) and
was retweeted over 28 thousand times. Perhaps,
the original poster and people who shared the orig-
inal tweet did not know if it was fact-checked or
they might share it simply because it was suit-
able for their personal preferences or ideologies
(Lewandowsky et al., 2012). In other words, exist-
ing fact-checking systems mainly focus on detec-
tion but neglect online users who play the critical
role in spreading fake news. After detecting fake
news, what are the next steps to discourage people
from sharing it? Recent studies (Vo and Lee, 2018,
2019) tried to curb the above weakness. However,
these approaches are not proactive since they rely
on fact-checkers who may be unreliable.

Recent works showed that when seeing fact-
checked information, users’ likelihood to delete
fake news’s shares went up 400% (Friggeri et al.,
2014) and 95% of the time users did not further
consume or go through fake news (CNN, 2020).
Observing the downside of existing methods and
impacts of broadcasting verified news, our goal is
to search for fact-checking articles (FC-articles)
which address the content of original tweets (i.e.
confirming, supporting, debunking or refuting). We

https://github.com/nguyenvo09/EMNLP2020
https://github.com/nguyenvo09/EMNLP2020
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show a mock-up of how a relevant FC-article is
linked/displayed given an original tweet in Fig. 1.
By searching for FC-articles and incorporating fact-
checked information into social media posts, we
can warn users (e.g. followers of original posters)
about fake news to which they are exposed. The
search also proactively scales up volume of veri-
fied content on social media. However, achieving
the goal is challenging since we need to solve two
problems: (P1) what information in original tweets
should we use to find correct FC-articles? and (P2)
how can we design a framework to retrieve and
rank FC-articles?

With the first problem (P1), we can use original
tweets’ text to find FC-articles. However, this ap-
proach is suboptimal since fake news can appear
in many forms (e.g. text, images, videos) (Friggeri
et al., 2014; O’Brien, 2018) as shown in Fig. 1.
Thus, we propose to use both text and images of
original tweets to search for FC-articles. Regarding
the second problem (P2), we propose a framework
consisting of two key steps: (1) using a basic re-
trieval (i.e. BM25) to find initial lists of candidate
FC-articles and then (2) re-ranking the initial lists
by using advanced models for ranking refinement.
In the first step, since original tweets’ text may
be insufficient to find correct articles as shown in
Fig. 1 where there is no meaningful information
in the text but in the image, we propose to expand
original tweets’ text by using text inside original
tweets’ images. For the second step, we propose an
attention mechanism to focus on key textual match-
ing signals and jointly integrate them with visual
information to boost ranking quality. By tackling
these issues, our contributions are as follows:

• To the best of our knowledge, our study is the
first one that searches for fact-checking articles
to increase users’ awareness of fact-checked in-
formation when they are exposed to fake news.

• We propose a novel neural ranking model
which jointly utilizes textual and visual match-
ing signals. The model is also integrated with a
novel attention mechanism.

• Experiments on two datasets demonstrate ef-
fectiveness and generality of our model over
state-of-the-art retrieval techniques.

2 Related Work

Fake News and Fact-checking. Fake news detec-
tion methods mainly use linguistics and textual con-
tent (Zellers et al., 2019; Zhao et al., 2015; Wang,

2017; Shu et al., 2019), temporal spreading pat-
terns (Liu and Wu, 2018; Ma et al., 2018), network
structures (Wu and Liu, 2018; Liu et al., 2020) and
users’ feedbacks (Vo and Lee, 2019, 2020; Shu
et al., 2019). Studies about multimodal fake news
detection (Gupta et al., 2013; Wang et al., 2018b)
are different from ours since their inputs are text
and images of tweets while our inputs are pairs of
a multimodal tweet and a FC-article.

Our work is closely related to evidence-aware
fact-checking. Thorne et al. (2018); Nie et al.
(2019) built a pipeline to find documents and sen-
tences to fact-check mutated claims generated from
Wikipedia pages, Wang et al. (2018a) aimed to
find webpages related to given FC-articles and
predict their stances on claims in the FC-articles.
Popat et al. (2018) only focused on fact-checking
and (Shaar et al., 2020) detected previously fact-
checked claims. Our paper deviates from these
work since we aim to find FC-articles given multi-
modal fake news in social media posts. As our goal
is to increase users’ awareness of verified news,
studies about fact-checkers (Vo and Lee, 2018,
2019; You et al., 2019) are close to ours.

Neural Ranking Models for Text Search. Neural
ranking models for text search mainly fall into two
groups: semantic matching and relevance matching
models. The former one seeks to learn representa-
tions of a query and a document, and measure their
similarity (Huang et al., 2013; Shen et al., 2014;
Severyn and Moschitti, 2015; Nie et al., 2019; Zhu
et al., 2019), while the later one (Chen et al., 2018;
Hui et al., 2017; Pang et al., 2016; Guo et al., 2016;
Xiong et al., 2017; Hui et al., 2018; Dai et al., 2018)
aims to capture relevant matching signals between
a query and a document based on word interactions.
There are methods unifying two categories such as
Mitra et al. (2017); Rao et al. (2019a). Our model
can be viewed as a relevance matching method in
which a novel attention mechanism is designed to
focus on crucial word interactions.

Neural Models for Multimodal Retrieval. Mul-
timodal data (e.g. text and images) are used in
cross-modal retrieval (Cao et al., 2016; Wang et al.,
2017; Balaneshin-kordan and Kotov, 2018; Chen
et al., 2016), visual Q&A task (Kim et al., 2018),
product search (Laenen et al., 2018; Guo et al.,
2018) and so on. Our work is the first using mul-
timodal data in social media posts to search for
verified information.
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3 Our framework

Given an original tweet q and a FC-article d, where
every original tweet q contains text and images and
the article d contains text and/or images, we aim
to derive function f(q, d) which determines their
relevancy1. We use f(q, d) to rank all FC-articles.

Following (Thorne et al., 2018), we adopt the
re-ranking methodology as follows: (1) quickly re-
trieving candidate FC-articles/documents2 for each
original tweet/query3 by a basic retrieval and (2) re-
ranking the candidates by our MAN (Multimodal
Attention Network) as shown in Fig. 2. We de-
scribe our input representations, basic retrieval and
MAN in following subsections.

3.1 Input Representations
We denote text and images of an original tweet
q as (qtext, qimages) where qtext is a sequence of
N words {wq

i }Ni=1 and qimages is a list of X im-
ages {vqi }Xi=1. Similarly, text and images of a fact-
checking article d are denoted as (dtext, dimages)
where dtext is a sequence of M words {wd

j }Mj=1

and dimages is a list of Y images {vdj }Yj=1.

3.2 Basic Retrieval
We use BM25 as a basic retrieval due to its good
performance compared with several ranking mod-
els (McDonald et al., 2018; Pang et al., 2017).
Since using tweets’ text may be insufficient to find
relevant articles, we expand queries’ text by us-
ing text extracted from images. For example, in
Fig. 1, text extracted from the image is Breaking
News: Obama: ”I won’t leave if Trump is elected”.
Following (Vosoughi et al., 2018), we use a tool
(OCR Space, 2020) to extract text in images. To
our knowledge, our work is the first one using text
in images to find verified information.

3.3 Multimodal Attention Network (MAN)
MAN has four components: (1) projection layers,
(2) textual matching layer (3) visual matching layer
and (4) unifying textual and visual information.

3.3.1 Projection Layers
We use two projection layers: one for Glove em-
beddings and the other one for contextual word
embeddings.
Projection layer for Glove embeddings. Each
word w, which can be wq

i or wd
j , is mapped into a

1Relevance means that the fact-checking article fact-checks the query
2We use fact-checking articles, articles and documents interchangeably
3We use original tweets and queries interchangeably

vector t ∈ R300 by a fixed word embedding layer
initialized by Glove embeddings (Pennington et al.,
2014). Then, the vector t is projected into g ∈ RP

by a trainable linear layer shown in Eq. 1.

g = tanh(W1 · t + b1) (1)

where W1 ∈ RP×300, b1 ∈ RP . P is projection di-
mensions. After going through the linear layer, we
denote gqi ∈ RP and gdj ∈ RP as representations
of word wq

i and word wd
j , respectively.

Projection layer for contextual word embed-
dings. Since Glove embeddings do not reflect
context of words in queries and articles, we inte-
grate ELMo (Peters et al., 2018) as a static encoder
to generate contextual word embeddings. ELMo
maps each word w, which can be wq

i or wd
j , into

a vector ` ∈ R1024 which is then projected into
h ∈ RP by a trainable linear layer shown in Eq. 2.

h = tanh(W2 · `+ b2) (2)

where W2 ∈ RP×1024, b2 ∈ RP . P is projection
dimensions. After going through the linear layer,
we denote hq

i ∈ RP and hd
j ∈ RP as contextual

representations of words wq
i and wd

j , respectively.

3.3.2 Textual Matching Layer

We derive (1) Glove embeddings interactions, (2)
attended interaction matrix and (3) contextual word
embedding interactions, and input them to convolu-
tion neural networks (CNNs) for feature extraction.
Glove Embeddings Interactions. An article may
be relevant to an original tweet if they have over-
lapping words or similar words. To capture such
signals, we use cosine similarity to derive matrix
S ∈ RN×M as shown in Eq. 3.

Sij =
gqi

T · gdj
||gqi || × ||gdj ||

, i = 1..N, j = 1..M (3)

Let’s look at an example of matrix S in Fig. 4(a)
where x-axis is an article and y-axis is a query.
Roughly speaking, matrix S looks like a gray-scale
image in which the overlapping phrase ‘at a cos-
tume party’ is like a segment at the bottom of the
image, suggesting the article is relevant to the query.
To capture such patterns, CNNs are widely used.
Attended Interaction Matrix. Matrix S captures
overlapping words between a query and an article.
However, when word wq

i is same as word wd
j , some-

time they may not have the same meaning. Thus,
we need an attention mechanism to avoid over-
reliance on raw similarities in matrix S. Inspired
by Tay et al. (2019), we measure how dissimilar wq

i
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Figure 2: Our proposed model MAN

and wd
j are based on Euclidean distance between

their contextual representations as follows:

Gij = 2×σ(−||hq
i −hd

j ||), i = 1..N, j = 1..M (4)

where σ(.) is a sigmoid function. Since Euclidean
distance is non negative, σ(−||hq

i − hd
j ||) will be

in (0, 0.5] and Gij will be in (0, 1]. Therefore, we
can use Gij to attend to Sij as follows:

Aij = Sij ×Gij , i = 1..N, j = 1..M (5)

It is clear to see that when the distance between hq
i

and hd
j is large, Gij will be closer to 0 which helps

downgrade impact of Sij . From Eq. 5, we can form
attended interaction matrix A ∈ RN×M .

To our knowledge, our work is the first one using
dissimilarity between contextual word embeddings
to attend to interactions of Glove embeddings.
Contextual Word Embeddings Interactions. In
our case studies in Section 6.5, we find that con-
textual word embeddings are able to capture high
similarity between a typo and a normal word (e.g.
hillar vs. hillary) while Glove embeddings fail to
do so. To further exploit contextual embeddings,
we derive matrix C ∈ RN×M as follows:

Cij =
hq
i
T · hd

j

||hq
i || × ||hd

j ||
, i = 1..N, j = 1..M (6)

Again, we can view matrix C as a greyscale image
as shown in Fig. 4(d). In addition to cosine simi-
larities, we found that using bilinear function (Rao
et al., 2019a) works pretty well as well.
Textual Feature Extraction. We stack matrices
S (Eq. 3), A (Eq. 5) and C (Eq. 6) and S − C to
generate a tensor Z ∈ RN×M×4 shown in Eq. 7.
The matrix S−C is used to make our model aware

of differences between interaction matrices.

Z = [S⊕ A⊕ C⊕ (S− C)] (7)

‘⊕’ denotes matrix stacking. We apply n CNNs
on tensor Z to extract features. The ith CNN is
performed with kernel size, stride and the number
of filters equal to i× i× 4, 1 and F , respectively.
The output feature map of the ith CNN layer is
Pi ∈ RN×M×F , i ∈ {1..n}. Note, padding zeros
are used to ensure Pi has size of N ×M × F .

Next, we apply k-max pooling on each jth out-
put channel of Pi denoted as Pi[: , : , j] ∈ RN×M

to generate vector oi,j ∈ RK as shown in Eq. 8.

oi,j = kmax(Pi[: , : , j]), i = 1..n, j = 1..F (8)

Finally, nF vectors oi,j are concatenated to create
textual features vector o ∈ RnFK shown in Eq. 9.

o = [o1,1; ...; oi,j ; ...; on,F ] ∈ RnFK (9)

3.4 Visual Matching Layer

A fixed pretrained ResNet50 (He et al., 2016) maps
an image v, which is either an image of an original
tweet vqi or an image of a FC-article vdj , into vector
v ∈ RH which is then projected into vector m ∈
RT by a trainable linear layer: m = W3 · v + b3

, where W3 ∈ RT×H and b3 ∈ RT . H and T
are set to 2048 and 300, respectively. After the
linear layer, we denote mq

i ∈ RT and md
j ∈ RT as

representations of vqi and vdj , respectively.

Intuitively, an article is relevant to a query if the
article has images similar to the query’s images.
Thus, we derive matrix V ∈ RX×Y of pairwise
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similarities of images in Eq. 10.

Vij =
mq

i
T ·md

j

||mq
i || × ||md

j ||
, i = 1..X, j = 1..Y (10)

Similar to (Rao et al., 2019a,b), we pool the largest
pairwise similarity s as a visual feature as follows:

s = max(V),where s ∈ R (11)

When the article has no images, s is set to −1.

3.5 Unifying Textual and Visual Information

We unify textual and visual information by append-
ing scalar s (Eq. 11) to vector o (Eq. 9), denoted as
[o; s], and derive f(q, d) as shown in Eq. 12.

f(q, d) = W6 · relu(W5 · relu(W4 · [o; s])) (12)

where W4 ∈ R128×(nFK+1), W5 ∈ R64×128 and
W6 ∈ R1×64. We remove biases to avoid clut-
ter. Our model is trained on triples consisting of
a query q, relevant document d+ and non-relevant
document d−, minimizing hinge loss in Eq. 13.

L(q, d+, d−) = max(0, 1− f(q, d+) + f(q, d−)) (13)

4 Data Collection

Finding FC-articles, which address an original
tweet, is laborious since we have to read many
FC-articles even when using search engines (Popat
et al., 2017, 2018). To reduce labeling efforts, we
looked at existing datasets (Jiang and Wilson, 2018;
Vosoughi et al., 2018; Vo and Lee, 2019) and found
that a dataset in Vo and Lee (2019) met our need.
The dataset provides non-anonymized pairs of an
original tweet and its reply in which FC-articles,
from two major fact-checking sites snopes.com and
politifact.com, are embedded. Fact-checkers in Vo
and Lee (2019) replied to the original tweet posters
with FC-articles as evidence. From the original
tweets’ replies, we generate pairs of an original
tweet q and a FC-article d. We also only kept origi-
nal tweets where text and images are both available.

After preprocessing, we have 19,341 original
tweet in English and FC-article pairs (q, d) in
which there are 18,961 unique original tweets
and 2,845 FC-articles. Following Vosoughi et al.
(2018), a labeling step is conducted to ensure that
in each pair, the article fact-checks the original
tweet. We hired native U.S. English speakers since
they were more likely to be familiar with topics in
the tweets and FC-articles. The labelers labeled
each pair (q, d) as 1 if the article d fact checked the
tweet q. Otherwise, they labeled it as 0. They were
trained directly by the authors and were asked to

label several examples as exercises to ensure that
they fully understood the task. We required label-
ers to read the original tweet’s text, the article’s text
and images, and developed a labeling UI to help
labelers to quickly explore the linked FC-articles
shown in Fig. 5 in our appendix. For each pair,
three different labelers labeled it. The final label
is based on the majority vote. The Kappa value is
0.56, suggesting moderate agreement among the
labelers (Viera et al., 2005).

The moderate agreement between labelers was
because there were many pairs of an original tweet
and a FC-article where the tweet and the article are
topically similar but the article does not fact-check
the tweet. For example, the tweet is about Hillary
Clinton’s mishandled classified emails while the
article fact-checks if she gave uranium to Russia.
Both the tweet and the article were about Hillary
Clinton but the article did not precisely fact-check
the tweet’s content. As we utilized the dataset in
(Vo and Lee, 2019) which was collected during the
2016 U.S. presidential election, many tweets and
FC-articles were about misinformation related to
Hillary Clinton and Donald Trump, leading to top-
ically similar pairs which might confuse labelers.
After labeling, we have a full dataset of 13,239
positive pairs made by 13,091 original tweets and
2,170 FC-articles.

We observe that there may be false negatives
in the full dataset, meaning that a FC-article actu-
ally fact-checks an original tweet but the article is
viewed as an irrelevant one (i.e., 100% precision
but less than 100% recall) because the FC-article
was not embedded in a fact-checker’s reply. For
example, an original tweet is fact-checked by both
a Snopes article and a Politifact one but only the
Snopes article was embedded in the fact-checker’s
reply to the original tweet while the Politifact one
was not included in the reply. If we build a model
on the full dataset, the false negatives may mislead
our model. To mitigate impact of this problem, we
split the full dataset into two sub datasets called
Snopes and Politifact datasets. The former one con-
tains pairs where FC-articles are from snopes.com
and the later one contains pairs where FC-articles
are from politifact.com. Note, there still may be
false negatives in each sub dataset since an original
tweet may have multiple fake news stories fact-
checked by different articles from the same fact-
checking website but a fact-checker did not embed
all of the articles in the reply. But the number of
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false negatives under this case would be smaller
than those in the full dataset. In Snopes dataset, we
have 11,202 positive pairs made by 11,167 tweets
and 1,703 FC-articles. In PolitiFact dataset, we
have 2,037 positive pairs made by 2,026 tweets and
467 FC-articles. There are 102 overlapping tweets
between the two datasets. The number of unique
original posters is 8,277 and 1,482 in Snopes and
Politifact respectively. On average, each original
poster posted ∼1.35 tweets in our datasets.

5 Data Analysis

Topics of original tweets/queries. Since the topic
of an original tweet is related to the topic of a
corresponding FC-article, we extracted topics of
relevant FC-articles to understand the topical dis-
tribution of tweets. By analyzing each FC-article,
top 5 topics of tweets in Snopes are as follows: Pol-
itics (42.3%), Fauxtography (22.7%), Junk News
(8.1%), Uncategorized (6.8%), Quotes (4.8%). For
Politifact, tweets’ topics are mostly about politics
due to its political mission. In conclusion, our
datasets captured various topics.
Similarity of text in tweets and text in images.
As we utilize text in images to enhance ranking per-
formance, we seek to understand how similar text
in tweets and text in images. For each query/tweet
having text in its images, we transformed its text in
tweet and its text in images into two vectors of TF-
IDF values, and computed their cosine similarity.
From all queries of a dataset, we computed mean
cosine similarity. The mean similarity is 0.083 and
0.102 for Snopes and Politifact respectively, indi-
cating that text in tweets is less similar to text in
images. The number of tweets/queries containing
text in images is 8,494 (76%) and 1,742 (86%) for
Snopes and Politifact respectively.

6 Experiments

6.1 Neural Ranking Baselines
We compare with 9 state-of-the-art neural ranking
baselines, divided into 3 groups as follows: (1) mul-
timodal retrieval methods including DVSH (Cao
et al., 2016) and TranSearch (Guo et al., 2018), (2)
semantic matching models including ESIM (Chen
et al., 2017) and NSMN (Nie et al., 2019), and
(3) relevance matching methods including Match-
Pyramid (Pang et al., 2016), KNRM (Xiong et al.,
2017), ConvKNRM (Dai et al., 2018), CoPACRR
(Hui et al., 2018) and DUET (Mitra et al., 2017).
Please see the appendix for details of the baselines.
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Figure 3: Performance of basic retrieval methods

6.2 Experimental Design

Evaluation Metrics. We adopt NDCG@K
(Xiong et al., 2017) and HIT@K (He et al., 2017)
as evaluation metrics. We report mean HIT@K and
NDCG@K where K ∈ [1, 3, 5] based on all queries.
Since over 99.5% queries have only one relevant
document, HIT@K is almost equal to Recall@K.
Note, HIT@1 is equal to NDCG@1.
Performance of the Basic Retrieval. We test
BM25 in three cases shown in Fig. 3: (1) queries
are tweets’ text (BM25-T), (2) queries are text in
tweets’ images (BM25-I) and (3) queries are tweets’
text + text in tweets’ images (BM25-TI).

In Fig. 3(a), HIT@50 of BM25-T is only 50%
while BM25-I’s HIT@50 is 70%, suggesting that a
lot of fake news appear in images. This is because
tweets’ text has at most 280 characters. Images are
more attractive to online users and easier to convey
fake news to them. When K is larger, BM25-I’s
HIT@K saturates quickly since only 76% queries
have text inside their images. Finally, BM25-TI is
the best. Its HIT@50 is 89.6%. Similar patterns
appear in Politifact in Fig. 3(b). With BM25-TI,
HIT@50 is 94%. From these results, we choose
BM25-TI as the basic retrieval of our framework.
Split Datasets. We need to choose value of K - the
number of initial candidates for each query. If K
is too small, initial candidates may not have rele-
vant articles, leading to a meaningless re-ranking
step. If K is too large, rerankers’ running time may
be high for online apps. We set K to 50 for both
datasets. The number of queries, each of which has
at least one relevant article in top 50 candidates, is
10,003 out of 11,167 for Snopes and 1,870 out of
2,026 for Politifact. Similar to Thorne et al. (2018),
from these queries of each dataset, we randomly
split them into train, validation and testing sets with
ratio 80%/10%/10% as shown in Table 1. There are
1,164 and 156 leftover queries in Snopes and Poli-
tifact, respectively. Note, having leftover queries
is a common issue for re-ranking based systems
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Table 1: Split datasets

Datasets Snopes Politifact
Items Train Valid Test Train Valid Test
|Original Tweets| 8,002 1,000 1,001 1,496 187 187
|FC-Articles| 1,703 1,697 1,697 467 467 467

(Thorne et al., 2018). Initial candidates output by
BM25-TI are used by all neural ranking models.
Testing Scenarios. All models are tested in the re-
ranking step with 2 scenarios (SC1 and SC2). The
main difference between them is whether to extract
text from images of original tweets and FC-articles,
and to incorporate the text with the other informa-
tion (i.e., text and images of both the tweets and
FC-articles). SC1 and SC2 are without text from
images and with text from images, respectively.
Experimental Settings. For all baselines and our
model, we use Adam optimizer (Kingma and Ba,
2014) with learning rate set to 0.001, and early stop
training based on HIT@3 and NDCG@3 on a vali-
dation set with patience set to 10 epochs. Weight
decay of L2-norm is 0.001. Batch size is 16. The
number of negative documents sampled for each
positive document during training is 3. Maxinum
|words| in queries is 50 for SC1 and 100 for SC2
respectively. Maximum |words| in documents is
1,000. Vocab size V in Snopes dataset is 25,932 in
SC1 and 40,670 in SC2 respectively. Vocab size V
in Politifact dataset is 10,957 in SC1 and 15,747 in
SC2 respectively. Maxinum |images| in queries is
4. Maxinum |images| in docs is 17. Images’ shape
is (224, 224, 3).

For our model, the number of projection di-
mensions P is chosen from {64, 128, 256, 512}.
The number of output channels F is chosen from
{16, 24}. The value of k in kmax pooling is cho-
sen from {16, 32, 48}. The number of CNNs n is
chosen from {1, 2, 3}. Our model performs best
on Snopes with P , F , k and n equal to 256, 16, 32
and 2, respectively. It performs best on PolitiFact
with P , F , k and n equal to 256, 16, 48 and 3, re-
spectively. We implement our model with PyTorch
0.4.1 and test it on a NVIDIA 1080 GTX GPU.

6.3 Performance of Multimodal Attention
Network and Variants

We also show results of MAN’s variants as follows:
(1) only using text (Eq. 9) and (2) only using im-
ages (Eq. 11). We call the former Contextual Text
Matching (CTM) and the later Visual Matching Net-
work (VMN). We show MAN’s improvements wrt.
the best result of baselines in each metric.
SC1: Re-ranking using images and text in

tweets. In Table 2, our CTM outperforms the best
baselines, achieving maximum improvements of
4.7% on NDCG@1. Our VMN amazingly out-
performs text-based ranking baselines in Snopes
perhaps because fauxtography is one of the most
popular categories on Snopes (Friggeri et al., 2014)
while Politifact mainly fact-checks political claims.
By using both text and images, our MAN shows an
average increase of 17.2% over the best baselines
with the maximum improvement of 39.6%.

SC2: Re-ranking using images, tweets’ text and
images’ text. We omit VMN from Table 3 since
its results are same as Table 2. In Table 3, both
our MAN and CTM outperform baselines on two
datasets. Interestingly, MAN has lower perfor-
mance than CTM on Snopes while it has higher
performance than CTM on Politifact. We suspect
that the abundance of textual signals between origi-
nal tweets and FC-articles in SC2 unintentionally
makes MAN tend to favor textual signals and ne-
glect visual signals. To remedy this issue, we pro-
pose to augment training data in SC2 with training
data in SC1 while keeping the same validation and
testing set from SC2. Intuitively, the augmented
training data may regularize MAN better (Yu et al.,
2018) by letting it observe both rich textual over-
lapping pairs in SC2 and pairs with sparse textual
signals in SC1. We name our model trained under
the augmented training data as MAN-A. In Table 3,
MAN-A mitigates the above issue with an average
increase of 4.8% over the best baselines with the
maximum improvement of 11.2%. Text in images
has a high impact on performance of CTM and
MAN. In Table 3, when using text in images to
expand textual content of queries, performance of
CTM and MAN increased by 17∼34% compared
with their performances in Table 2.

From Tables 2 and 3, semantic matching mod-
els and multimodal baselines perform worse than
relevance matching methods because the first two
groups’ goal is to compress whole queries and arti-
cles into dense vectors and measure their similari-
ties. However, when compressing textual contents,
some irrelevant information may be captured, lead-
ing to poor representations (Rao et al., 2019a).

In conclusion, our model MAN outperforms all
baselines in both two testing scenarios .

Experiments on the leftover original tweets (i.e.,
1,164 tweets in Snopes and 156 tweets in Politi-
fact). We further test benefits of using text and
images on each leftover query where we rank its x
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Table 2: Performance of our models and baselines when using images and text in tweets

Ranking
Models Types

Ranking
Models

Snopes Politifact
NDCG@1 NDCG@3 HIT@3 NDCG@5 HIT@5 NDCG@1 NDCG@3 HIT@3 NDCG@5 HIT@5

Exact Matching BM25-T 0.20579 0.27642 0.32867 0.30420 0.39461 0.18182 0.29162 0.37968 0.31348 0.43316
Multimodal

Retrieval (Group 1)
DVSH-B 0.38661 0.51091 0.60040 0.54084 0.67333 0.26203 0.33333 0.38503 0.36003 0.44920
TransSearch 0.31668 0.46081 0.56444 0.50062 0.66034 0.28342 0.37925 0.44920 0.40040 0.50267

Semantic Matching
(Group 2)

ESIM 0.33367 0.46608 0.56444 0.50372 0.65534 0.14973 0.28722 0.39037 0.34871 0.53476
NSMN 0.45754 0.60097 0.70330 0.63220 0.77822 0.37968 0.47718 0.55080 0.53128 0.67914

Relevance Matching
(Group 3)

DUET 0.36863 0.48875 0.57842 0.52628 0.66833 0.29412 0.41009 0.49733 0.43505 0.55615
MatchPyramid 0.48052 0.58523 0.66034 0.61565 0.73327 0.29412 0.38903 0.45455 0.40812 0.50267
KNRM 0.48951 0.61081 0.69730 0.63686 0.76124 0.42246 0.54935 0.63636 0.58456 0.72193
ConvKNRM 0.52148 0.63168 0.70929 0.65942 0.77522 0.45989 0.57229 0.65241 0.62117 0.77005
CoPACRR 0.53247 0.64469 0.72328 0.67208 0.78921 0.45455 0.59344 0.69519 0.62761 0.77540

Ours
CTM 0.55744 0.67555 0.75624 0.70156 0.81918 0.47059 0.61669 0.71658 0.64292 0.78075
VMN 0.68931 0.73540 0.76723 0.75019 0.80320 0.24599 0.26821 0.31551 0.28363 0.35829
MAN 0.74326 0.82197 0.87712 0.83447 0.90609 0.55080 0.65435 0.73262 0.67644 0.78610

MAN vs. the best result of baselines 39.59% 27.50% 21.27% 24.16% 14.81% 19.77% 10.26% 5.38% 7.78% 1.38%

Table 3: Performance of our models and baselines when using images, text in tweets and text in images

Ranking
Models Types

Ranking
Models

Snopes Politifact
NDCG@1 NDCG@3 HIT@3 NDCG@5 HIT@5 NDCG@1 NDCG@3 HIT@3 NDCG@5 HIT@5

Exact Matching BM25-TI 0.63736 0.69650 0.73826 0.71058 0.77223 0.27807 0.34928 0.40642 0.38909 0.50267
Multimodal

Retrieval (Group 1)
DVSH-B 0.32667 0.46849 0.56843 0.49640 0.63636 0.21925 0.29335 0.34759 0.32626 0.42246
TransSearch 0.45854 0.58410 0.67433 0.61832 0.75724 0.39572 0.50878 0.58824 0.52397 0.62567

Semantic Matching
(Group 2)

ESIM 0.61139 0.70660 0.77323 0.72999 0.83117 0.33155 0.44658 0.52941 0.48617 0.62567
NSMN 0.78821 0.85732 0.90809 0.87148 0.94106 0.58824 0.70002 0.77540 0.73500 0.86096

Relevance Matching
(Group 3)

DUET 0.51848 0.63605 0.71928 0.67075 0.80220 0.41711 0.53087 0.60963 0.55757 0.67380
MatchPyramid 0.86513 0.91150 0.94406 0.91791 0.95904 0.64171 0.74872 0.82353 0.77702 0.89305
KNRM 0.84815 0.89118 0.92008 0.90271 0.94805 0.65775 0.75464 0.82353 0.77237 0.86631
ConvKNRM 0.85914 0.90829 0.94306 0.91401 0.95704 0.66310 0.79163 0.88235 0.80705 0.91979
CoPACRR 0.86913 0.91166 0.94006 0.91851 0.95604 0.66845 0.77419 0.84492 0.79191 0.88770

Ours
CTM 0.89910 0.93191 0.95504 0.94008 0.97502 0.71123 0.82512 0.89840 0.84331 0.94118
MAN 0.88412 0.92563 0.95604 0.93238 0.97203 0.72193 0.83104 0.90374 0.85313 0.95722
MAN-A 0.90909 0.94204 0.96503 0.94892 0.98202 0.74332 0.84905 0.91979 0.85987 0.94652

MAN-A vs. best result of baselines 4.60% 3.33% 2.22% 3.31% 2.40% 11.20% 7.25% 4.24% 6.54% 2.91%

Table 4: Ranking performances on leftover queries
when using images, text in tweets and text in images

Ranking
Models

Snopes Politifact
NDCG@1 NDCG@3 HIT@3 NDCG@1 NDCG@3 HIT@3

TransSearch 0.20361 0.31856 0.40292 0.12821 0.23542 0.31410
NSMN 0.32646 0.41123 0.47595 0.34615 0.46871 0.55769
MatchPyramid 0.26031 0.33194 0.38488 0.28846 0.34257 0.37821
ConvKNRM 0.29124 0.40280 0.48282 0.36538 0.53479 0.65385
CoPACRR 0.30928 0.40748 0.48024 0.33333 0.43887 0.51923
MAN-A 0.58591 0.68348 0.75258 0.51282 0.64598 0.73718
Impr. MAN-A 79.47% 66.20% 55.87% 40.35% 20.79% 12.74%

Table 5: Effects of contextual word embeddings

Ranking
Models

Snopes PolitiFact
NDCG@1 NDCG@3 HIT@3 NDCG@1 NDCG@3 HIT@3

Glove 0.84216 0.90017 0.94106 0.60428 0.75713 0.86096
ELMo 0.88511 0.92865 0.95804 0.70588 0.80080 0.86631
Glove+ELMo 0.89910 0.93191 0.95504 0.71123 0.82512 0.89840

relevant articles against 50−x negative documents
randomly sampled by following Wan et al. (2016);
Wu et al. (2017). It means there are 50 FC-articles
per query/tweet. Table 4 shows results of our best
model MAN-A and best baselines in each group.
As expected, MAN-A outperforms all the baselines
due to sparse textual content in leftover queries.

6.4 Effect of Contextual Word Embeddings

To understand effects of word embeddings on our
model, we remove visual information and study re-
ranking results of our model when (1) using only
Glove embeddings, (2) using only contextual word
embeddings from ELMo and (3) Glove+ELMo. In

Table 5, when combining Glove and ELMo, we
consistently achieve best NDCG in both datasets.

6.5 Case Studies
Qualitative comparison with the best baseline.
An example tweet is ‘You won’t have to wait long
4’ embedded with a picture of an Antifa member
beating a police officer. Clearly, the tweet’s text
does not have any meaningful information while
the image contains useful information. Given the
tweet, the best baseline CoPACRR failed to find rel-
evant FC-articles, whereas MAN ranked the correct
FC-article (Evon, 2017) in top-3 results.
Visualization of interaction matrices and at-
tended matrix Fig. 4 visualizes matrices S, G, A
and C in Eq. 3, 4, 5, 6 respectively of an orig-
inal tweet and its FC-article from a testing set.
Note, these matrices are learned by our model. In
Fig. 4(a), Glove embeddings help reveal overlap-
ping phrases (e.g. at a costume party, clinton)
but closeness of hillar and hillary is not well cap-
tured (i.e. sim(hillar, hillary) = 0.3). In contrast,
sim(hillar, hillary) is 0.86 in Fig. 4(d), indicating
quality of contextual word embeddings. The matrix
G in Fig. 4(b) has high values for key interactions
(e.g. a list of values for at a costume party is [0.56,

4https://bit.ly/3ngtsBK

https://bit.ly/3ngtsBK
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(a) Matrix S in Eq. 3
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(b) Matrix G in Eq. 4
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(c) Matrix A in Eq. 5
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(d) Matrix C in Eq. 6

Figure 4: Visualization of matrix S, matrix G, attended matrix A and matrix C (Best viewed in color)

0.66, 0.68, 0.69]) in lieu of uniform values [1.0,
1.0, 1.0, 1.0] in matrix S). When combing matrix
S and G, we have a sparse matrix A in Fig. 4(c)
which pays more attention to key interactions (e.g.
costume and party). In conclusion, the attention
mechanism helps us capture key matching signals.
Impact of Searching for FC-Articles. We mea-
sure how much impact we can make on online users
when correct FC-articles are retrieved (i.e. HIT@1
= 1). Totally, our best model, MAN-A, accurately
finds FC-articles for 910 original tweets in test set
of Snopes dataset. From these tweets, the total
number of their retweets is 527,299 and total num-
ber of followers of the original posters who posted
910 original tweets is 233M. Roughly speaking, we
can inform fact-checked information to millions of
users. Security systems can prevent half million
shares of fake news in those original tweets.

7 Discussion

Since Snopes and Politifact are the most popular
fact-checking sites, building two models for them
is an acceptable cost. When facing a real-life so-
cial media post, we run two trained models sequen-
tially. If there is no found FC-article, we can inform
users that the post is unverified and suggest related
pages from verified sites (e.g. governments’ sites).
When tweets do not have any images, we can use
CTM which may find less relevant articles com-
pared with MAN. However, CTM still performed
better than the baselines as shown in Tables 2 and 3.
We also built our best model (MAN-A) on the full
dataset but observed some reduction in NDCG@1
and NDCG@3, but not HIT@3 compared with re-
sults of SC2 on separate datasets maybe because of
the false negatives described in Section 4. However,
our model still outperformed the baselines.

There are a few things our work could be im-
proved. First, our basic retrieval BM25-TI does

not consider images’ similarities. To improve
BM25-TI, we may combine images’ similarities
and BM25’s score. We leave it as future work.
Second, we create train/test data based on unique
original tweets. Though there are no retweets and
quotes, it is hard to completely ensure all queries’s
content are unique. However, our settings are ap-
plied to all models for fair comparisons. In addi-
tion, as shown in Fig. 1, online users tend to re-post
fake news. Therefore, it may be reasonable to have
similar original tweets’ content. Third, we tried to
fine tune BERT but did not achieve good results
perhaps because we did not have enough data. In-
terestingly, prior work (Shaar et al., 2020) also had
a similar observation when fine-tuning BERT.

8 Conclusions

In this paper, we propose a novel method to alle-
viate the spread of fake news. By searching for
FC-articles and incorporating fact-checked infor-
mation into social media posts, we can warn users
about fake news and discourage them from spread-
ing misinformation. Our framework uses text and
images to search for FC-articles, achieving an aver-
age increase of 4.8% over best baselines with the
maximum improvement of 11.2%. Complementary
to fake news detection methods, our method proac-
tively scales up verified content on social media.

Our framework can be used for other multimodal
retrieval tasks (e.g. searching for verified sites as
we suggested in the previous section).
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A Appendix for the Reproducibility

A.1 Labeling UI

We developed a labeling UI as shown in Fig. 5 to
support labelers to quickly explore linked articles.
It includes text and images of original tweets as
well as text and images of a FC-article.

A.2 Descriptions and Hyperparameters of
the Baselines

Multimodal Retrieval Models. DVSH (Cao et al.,
2016) accepts a pair of a multimodal query and a
multimodal article, and outputs similarity score.
It uses cosine max-margin loss. We also tried to
compare with DVSH by using hashcode of queries’
text to match articles’ images and vice versa. How-
ever, DVSH did not perform well perhaps because
queries’ text and documents’ images may be not
semantically similar. We implemented DVSH by
ourselves because there is no publicly download-
able code. We set its hidden size to 300 and used
AlexNet to extract visual features by following
(Cao et al., 2016).

TranSearch (Guo et al., 2018) learns represen-
tations of queries by using queries’ text and repre-
sentations of documents by using text and images
of the documents. For TranSearch, we omitted
the pretraining step because our datasets do not
have also viewed or buy after viewing information.
VGG19 was used to extract visual features by fol-
lowing (Guo et al., 2018). We used the publicly
accessible TranSearch implementation.
Semantic Matching Models. We compare with
ESIM (Chen et al., 2017) and NSMN (Nie et al.,
2019). Both models utilize BiLSTM encoders to
learn contextual representations and measure simi-
larity between queries and documents. NSMN also
uses contextual word embeddings from ELMo with
skip connections for better performance. The pre-
trained ELMo5 with 93.6M parameters was used
for NSMN and our proposed models. Its hidden
size was 4,096, and output size was 512 with using
2 highway layers.

In ESIM, a hidden size was set to 300. In NSMN,
we set its hidden size to 100 to all BiLSTM layers.
We also tried to set its hidden size to {200, 300} but
we got out-of-memory error on our GPU because
NSMN is memory-intensive due to concatenation
of word embeddings, contextual embeddings from

5https://allennlp.org/elmo

ELMo and multiple BiLSTM layers on our docu-
ments with 1,000 tokens.
Relevance Matching Models. We compare with
several state-of-the-art models in this category.
MatchPyramid (Pang et al., 2016) uses CNN to cap-
ture spatial patterns. KNRM (Xiong et al., 2017)
and ConvKNRM (Dai et al., 2018) use RBF kernel
to pool n-gram matching signals. CoPACRR (Hui
et al., 2018) uses similarities between queries’ rep-
resentations and context-aware representations of
words in documents to attend to matching signals.
DUET (Mitra et al., 2017) unifies semantic and
relevance matching signals into one model.

Implementation of MatchPyramid, KNRM, Con-
vKNRM, and DUET was obtained from Match-
Zoo (Guo et al., 2019). In MatchPyramid, we
used default setting of MatchZoo. The number
of kernels of KNRM and ConvKNRM was chosen
from {7, 9, 11}. In ConvKNRM, we set |filters|
to 300 like the word embeddings’ dimension size.
n-gram was chosen from {1, 2, 3}. In DUET, we
followed the same architecture proposed in (Mitra
et al., 2017).

In CoPACRR, the number of CNN layers was
chosen from {2, 3, 4}, the number of filters was
chosen from {5, 10, 15}, top k largest matching
signals ns was chosen from {5, 10, 15}. The num-
ber of segments to conduct k-max pooling cpos
was chosen from {4, 5, 6} and context windows
were chosen from {5, 9, 11}. We used the publicly
accessible CoPACRR implementation.
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Figure 5: Labeling UI


