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Abstract

Modeling expressive cross-modal interactions
seems crucial in multimodal tasks, such as
visual question answering. However, some-
times high-performing black-box algorithms
turn out to be mostly exploiting unimodal sig-
nals in the data. We propose a new diagnos-
tic tool, empirical multimodally-additive func-
tion projection (EMAP), for isolating whether
or not cross-modal interactions improve per-
formance for a given model on a given task.
This function projection modifies model pre-
dictions so that cross-modal interactions are
eliminated, isolating the additive, unimodal
structure. For seven image+text classification
tasks (on each of which we set new state-of-
the-art benchmarks), we find that, in many
cases, removing cross-modal interactions re-
sults in little to no performance degradation.
Surprisingly, this holds even when expressive
models, with capacity to consider interactions,
otherwise outperform less expressive models;
thus, performance improvements, even when
present, often cannot be attributed to con-
sideration of cross-modal feature interactions.
We hence recommend that researchers in mul-
timodal machine learning report the perfor-
mance not only of unimodal baselines, but also
the EMAP of their best-performing model.

1 Introduction

Given the presumed importance of reasoning
across modalities in multimodal machine learn-
ing tasks, we should evaluate a model’s ability to
leverage cross-modal interactions. But such evalu-
ation is not straightforward; for example, an early
Visual Question-Answering (VQA) challenge was
later “broken” by a high-performing method that
ignored the image entirely (Jabri et al., 2016).
One response is to create multimodal-reasoning
datasets that are specifically and cleverly balanced
to resist language-only or visual-only models; ex-
amples are VQA 2.0 (Goyal et al., 2017), NLVR2
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Figure 1: We introduce EMAP, a diagnostic for clas-
sifiers that take in textual and wisual inputs. Given a
(black-box) trained model, EMAP computes the pre-
dictions of an image/text ensemble that best approx-
imates the full model predictions via empirical func-
tion projection. Although the projected predictions lose
visual-textual interaction signals exploited by the orig-
inal model, they often perform suprisingly well.
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(Suhr et al., 2019), and GQA (Hudson and Man-
ning, 2019). However, a balancing approach not
always desirable. For example, if image+text data
is collected from an online social network (such
as for popularity prediction or sentiment analy-
sis), post-hoc rebalancing may obscure trends in
the original data-generating processs. So, what al-
ternative diagnostic tools are available for better
understanding what models learn?

The main tool utilized by prior work is model
comparison. In addition to comparing against
text-only and image-only baselines, often, two
multimodal models with differing representational
capacity (e.g., a cross-modal attentional neural
network vs. a linear model) are trained and their
performance compared. The argument commonly
made is that if model A, with greater expres-
sive capacity, outperforms model B, then the per-
formance differences can be at least partially at-
tributed to that increased expressivity.

But is that a reliable argument? Model perfor-
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mance comparisons are an opaque tool for anal-
ysis, especially for deep neural networks: per-
formance differences versus baselines, frequently
small in magnitude, can often be attributed to hy-
perparameter search schemes, random seeds, the
number of models compared, etc. (Yogatama
and Smith, 2015; Dodge et al., 2019). Thus,
while model comparisons are an acceptable start-
ing point for demonstrating whether or not a
model is learning an interesting set of (or any!)
cross-modal factors, they provide rather indirect
evidence.

We propose Empirical Multimodally—Additive1
function Projection (EMAP) as an additional di-
agnostic for analyzing multimodal classification
models. Instead of comparing two different mod-
els, a single multimodal classifier’s predictions are
projected onto a less-expressive space: the result
is equivalent to a set of predictions made by the
closest possible ensemble of text-only and visual-
only classifiers. The projection process is com-
putationally efficient, has no hyperparameters to
tune, can be implemented in a few lines of code,
is provably unique and optimal, and works on any
multimodal classifier: we apply it to models rang-
ing from polynomial kernel SVMs to deep, pre-
trained, Transformer-based self-attention models.

We first verify that EMAPS do degrade per-
formance for synthetic cases and for visual ques-
tion answering cases where datasets have been
specifically designed to require cross-modal rea-
soning. But we then examine a test suite of
several recently-proposed multimodal prediction
tasks that have nor been specifically balanced in
this way. We first achieve state-of-the-art per-
formance for all of the datasets using a linear
model. Next, we examine more expressive inter-
active models, e.g., pretrained Transformers, capa-
ble of cross-modal attention. While these models
sometimes outperform the linear baseline, EMAP
reveals that performance gains are (usually) not
due to multimodal interactions being leveraged.
Takeaways: For future work on multimodal clas-
sification tasks, we recommend authors report
the performance of: 1) unimodal baselines; 2)
any multimodal models they consider; and, criti-
cally, 3) the empirical multimodally-additive pro-
Jjection (EMAP) of their best performing multi-
modal model (see §6 for our full recommenda-
tions).

"Tn §3, we more formally introduce additivity.

862

2 Related Work

Constructed multimodal classification tasks. In
addition to image question answering/reasoning
datasets already mentioned in §1, other multi-
modal tasks have been constructed, e.g., video
QA (Lei et al., 2018; Zellers et al., 2019), visual
entailment (Xie et al., 2018), hateful multimodal
meme detection (Kiela et al., 2020), and tasks
related to visual dialog (de Vries et al., 2017).
In these cases, unimodal baselines are shown to
achieve lower performance relative to their expres-
sive multimodal counterparts.

Collected multimodal corpora. Recent compu-
tational work has examined diverse multimodal
corpora collected from in-vivo social processes,
e.g., visual/textual advertisements (Hussain et al.,
2017; Ye and Kovashka, 2018; Zhang et al., 2018),
images with non-literal captions in news arti-
cles (Weiland et al., 2018), and image/text in-
structions in cooking how-to documents (Alikhani
et al., 2019). In these cases, multimodal classi-
fication tasks are often proposed over these cor-
pora as a means of testing different theories from
semiotics (Barthes, 1988; O’Toole, 1994; Lemke,
1998; O’Halloran, 2004, inter alia); unlike many
VQA-style datasets, they are generally not specif-
ically balanced to force models to learn cross-
modal interactions.

Without rebalancing, should we expect cross-
modal interactions to be useful for these multi-
modal communication corpora? Some semioti-
cians posit: yes! Meaning multiplication (Barthes,
1988) between images and text suggests, as sum-
marized by Bateman (2014):

under the right conditions, the value of a com-
bination of different modes of meaning can be
worth more than the information (whatever that
might be) that we get from the modes when used
alone. In other words, text ‘multiplied by’ im-
ages is more than text simply occurring with or
alongside images.

Jones et al. (1979) provide experimental evi-
dence of conditional, compositional interactions
between image and text in a humor setting, con-
cluding that “it is the dynamic interplay be-
tween picture and caption that describes the mul-
tiplicative relationship” between modalities. Tax-
onomies of the specific types of compositional re-
lationships image-text pairs can exhibit have been
proposed (Marsh and Domas White, 2003; Mar-
tinec and Salway, 2005).



Model Interpretability. In contrast to meth-
ods that design more interpretable algorithms for
prediction (Lakkaraju et al., 2016; Ustun and
Rudin, 2016), several researchers aim to explain
the behavior of complex, black-box predictors on
individual instances (étrumbelj and Kononenko,
2010; Ribeiro et al., 2016). The most related
of these methods to the present work is Ribeiro
et al. (2018), who search for small sets of “an-
chor” features that, when fixed, largely determine
a model’s output prediction on the input points.
While similar in spirit to ours and other meth-
ods that “control for” a fixed subset of features
(e.g., Breiman (2001)), their work 1) focuses only
on high-precision, local explanations on single in-
stances; 2) doesn’t consider multimodal models
(wherein feature interactions are combinatorially
more challenging in comparison to unimodal mod-
els); and 3) wouldn’t guarantee consideration of
multimodal “anchors.”

3 EMAP

Background. We consider models f that assign
scores to textual-visual pairs (¢,v), where ¢ is a
piece of text (e.g., a sentence), and v is an im-
age.” In multi-class classification settings, values
f(t,v) € R? typically serve as per-class scores.
In ranking settings f(¢1,v1) may be compared to
f(t2,v2) via a ranking objective.

We are particularly interested in the types of
compositionality that f uses over its visual and
textual inputs to produce scores. Specifically, we
distinguish between additive models (Hastie and
Tibshirani, 1987) and interactive models (Fried-
man, 2001; Friedman and Popescu, 2008).3 A
function f of a representation z of n input features
is additive in I if it decomposes as

f(2) = fr(z1) + fir(20),

where (setting Z = {1,...,n} for convenience)
I C 7 indexes a subset of the features, \I = Z\ I,
and for any S C Z, zg is the restriction of z to
only those features whose indices appear in .S.

In our case, because features are the union of
Textual and Visual predictors, we say that a model

The methods introduced here can be easily extended be-
yond just text/image pairs (e.g., to videos, audio, etc.), and to
more than two modalites.

3The multimedia commonly makes a related distinction
between early fusion (joint multimodal processing) and late
fusion (ensembles) (Snoek et al., 2005).

863

is multimodally additive if it decomposes as

ft,0) = fr(t) + fv(v) (1)

Additive multimodal models are simply ensem-
bles of unimodal classifiers and as such, may be
considered underwhelming to multiple communi-
ties. A recent ACL paper, for example, refers to
such ensembles as “naive.” On the semiotics side,
the conditionality implied by meaning multiplica-
tion (Barthes, 1988) — that the joint semantics
of an image/caption depends non-linearly on its
accompaniment — cannot be modeled additively:
multimodally additive models posit that each im-
age, independent of its text pairing, contributes a
fixed score to per-class logits (and vice versa).

In contrast, multimodally interactive models are
the set of functions that cannot be decomposed as
in Equation 1 — that is, f’s output conditionally
depends on its inputs in a non-additive fashion.
Machine learning models. One canonical multi-
modally additive model is a linear model trained
over a concatenation of textual and visual features
[t; 0], i.e.,

ft,v) =wl ;o] +b=wlt+wlv+b. (2)
~ ——
fr(®) fv(v)

We later detail several multimodally interactive
models, including multi-layer neural networks,
polynomial kernel SVMs, pretrained Transformer
attention-based models, etc. @ However, even
though interactive models are theoretically capa-
ble of modeling a more expressive set of relation-
ships, it’s not clear that they will learn to exploit
this additional expressivity, particularly when sim-
pler patterns suffice.
Empirical multimodally-additive projections:
EMAP. Given a fixed, trained model f (usu-
ally one theoretically capable of modeling visual-
textual interactions) and a set of IV labelled data-
points {(vi, %, 4:)}Y.,, we aim to answer: does f
utilize cross-modal feature interactions to produce
more accurate predictions for these datapoints?
Hooker (2004) gives a general method for com-
puting the projection of a function f onto a set of
functions with a specified ANOVA structure (see
also Sobol (2001); Liu and Owen (2006)): our al-
gorithmic contributions are to extend the method
to multimodal models with d > 1 dimensional
outputs, and to prove that the multimodal empiri-
cal approximation is optimal. Specifically: we are



Algorithm 1 Empirical Multimodally-Additive Projection
(EMAP); worked example in Appendix G.
Input: a trained model f that outputs logits; a set of
text/visual pairs D = {(t;, v:)}1vq
Output: the predictions of f, the empirical projection of
f onto the set of multimodally-additive functions, on D.

Jeache = Onxnxa;predsy = Onxa
fori,j €{1,2,...,N} x{1,2,...,N} do
fca,che(ivj) = f(tiv vj)

end for
ﬁ Zi,]’ fcache (7/7 ])

peRY =
forie {1,2,...,N} do
proj, = % Z;\Ll fcachﬁ(iaj)
proj, = % S.1ey feache (4, )
preds[i] = proj, + proj, — i
end for
return preds B

interested in f , the following projection of f onto
the set of multimodally-additive functions:

f(tv U) = IE:[J%L U)] +ItE[f(t; U)] - tl%[f(t? U)]
Jr(t) fv(v) ’ w

where E,[f(,v)], a function of ¢, is the partial
dependence of f ont,i.e., fr(t) = Ey[f(t,v)] =
[ f(t,v)p(v)dv,* and similarly for the other ex-
pectations. An empirical approximation of the
partial dependence function for a given ¢; can be
computed by looping over all observations:

. 1 X
frit) =+ D f(tivg).
=1

We similarly arrive at fv(vi) and /i, yielding
Fti, ) = fr(ta) + fv(vi) + i (3)

which is what EMAP, Algorithm 1, computes for
each (¢;,v;). Note that Algorithm 1 involves eval-
uating the original model f on all N (v;, t;) pairs
— even mismatched image/text pairs that do not
occur in the observed data. In practice, we rec-
ommend only computing this projection over the
evaluation set.’ Once the predictions of f and f
are computed over the evaluation points, then their
performance can be compared according to stan-
dard evaluation metrics, e.g., accuracy or AUC.

“Both Friedman (2001) and Hooker (2004) argue that
this expectation should be taken over the marginal p(v) rather
than the conditional p(v|t).

> When even restricting to the evaluation set would be too
expensive, as in the case of the R-POP data we experiment

with later, one can repeatedly run EMAP on randomly-drawn
500-instance (say) samples from the test set.
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In Appendix A, we prove that the (mean-
centered) sum of empirical partial dependence
functions is optimal with respect to squared error,
that is:

Claim. Subject to the constraint that f is multi-
modally additive, Algorithm I produces a unique
and optimal solution to

arg minz | f(ti,v5) — f(tia UJ)H%

fvalues 4 j

“4)

4 Sanity Check: EMAP Hurts in Tasks
that Require Interaction

In §5.1, we will see that EMAP provides a very
strong baseline for “unbalanced” multimodal clas-
sification tasks. But first, we first seek to verify
that EMAP degrades model performance in cases
that are designed to require cross-modal interac-
tions.

Synthetic data

We generate a set of “visual”/“textual”/label data
(v,t,7) according to the following process:®

1. Sample random projection V € R%*¢ and T' € R¥2*¢
from U(—.5, .5).

. Sample v,t € R* ~ N(0, 1); normalize to unit length.

. If |u - ¢| > & proceed, else, return to the previous step.
.Ifv-t>0,theny =1,elsey = 0.

. Return the data point (Vv, T't, y).

DA~ W

This function challenges models to learn
whether or not the dot product of two randomly
sampled vectors in d dimensions is positive or neg-
ative — a task that, by construction, requires mod-
eling the multiplicative interaction of the features
in these vectors. To complicate the task, the vec-
tors are randomly projected to two “modalities” of
different dimensions, d; and d respectively.

We trained a linear model, a polynomial kernel
SVM, and a feed-forward neural network on this
data: the results are in Table 1. The linear model is
additive and thus incapable of learning any mean-
ingful pattern on this data. In contrast, the ker-
nel SVM and feed-forward NN, interactive mod-
els, are able to fit the test data almost perfectly.
However, when we apply EMAP to the interactive
models, as expected, their performance drops to
random.

®We sample 5K points in an 80/10/10 train/val/test split
with (d, d1, d2, ) = (100, 2000, 1000, .25), though similar
results were obtained with different parameter settings.



Linear (A) Poly 1) NN ()

LXMERT —EMAP Const Pred

Test Acc
L + EMAP

52.8% 99.6%  99.0%
52.8% 49.4%  53.8%

70.3 40.5 23.4
60.3 41.0 18.1

VQA2
GOQA

Table 1: Prediction accuracy on synthetic dataset us-
ing additive (A) models, interactive (I) models, and
their EMAP projections. Random guessing achieves
50% accuracy. Under EMAP, the interactive models
degrade to (close to) random, as desired. See §5 for
training details.

Balanced VQA Tasks

Our next sanity check is to verify that EMAP
hurts the performance of interactive models on two
real multimodal classification tasks that are specif-
ically balanced to require modeling cross-modal
feature interactions: VQA 2.0 (Goyal et al., 2017)
and GQA (Hudson and Manning, 2019).

First, we fine-tuned LXMERT (Tan and Bansal,
2019), a multimodally-interactive, pretrained, 14-
layer Transformer model (See §5 for full descrip-
tion) that achieves SOTA on both datasets. The
LXMERT authors frame question-answering as
a multi-class image/text-pair classification prob-
lem — 3.1K candidate answers for VQA2, and
1.8K for GQA. In Table 2, we compare, in cross-
validation, the means of: 1) accuracy of LXMERT,
2) accuracy of the EMAP of LXMERT, and 3) ac-
curacy of simply predicting the most common an-
swer for all questions. As expected, EMAP de-
creases accuracy on VQA2/GQA by 30/19 abso-
lute accuracy points, respectively: this suggests
LXMERT is utilizing feature interactions to pro-
duce more accurate predictions on these datasets.
On the other hand, performance of LXMERT’s
EMAP remains substantially better than constant
prediction, suggesting that LXMERT’s logits do
nonetheless leverage some unimodal signals in
this data.’

5 ‘“Unbalanced” Datasets + Tasks

We now return to our original setting: multimodal
classification tasks that have not been specifically
formulated to force cross-modal interactions. Our
goal is to explore what additional insights EMAP
can add on top of standard model comparisons.
We consider a suite of 7 tasks, summarized
in Table 3. These tasks span a wide variety of
"EMAPed LXMERT’s performance is comparable to

LSTM-based, text-only models, which achieve 44.3/41.1 ac-
curacy on the full VQA2/GQA test set, respectively.
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Table 2: As expected, for VQA2 and GQA, the mean
accuracy of LXMERT is substantially higher than its
empirical multimodally additive projection (EMAP).
Shown are averages over kK = 15 random subsamples
of 500 dev-set instances.

goals, sizes, and structures: some aim to clas-
sify semiotic properties of image+text posts, e.g.,
examining the extent of literal image/text over-
lap (I-SEM, I-CTX, T-VIS); others are post-hoc
annotated according to taxonomies of social in-
terest (I-[INT, T-ST1, T-ST2); and one aims to
directly predict community response to content
(R-POP).8 In some cases, the original authors
emphasize the potentially complex interplay be-
tween image and text: Hessel et al. (2017) won-
der if “visual and the linguistic interact, some-
times reinforcing and sometimes counteracting
each other’s individual influence;” Kruk et al.
(2019) discuss meaning multiplication, emphasiz-
ing that “the text+image integration requires infer-
ence that creates a new meaning;” and Vempala
and Preotiuc-Pietro (2019) attribute performance
differences between their “naive” additive base-
line and their interactive neural model to the no-
tion that “both types of information and their in-
teraction are important to this task.”

Our goal is not to downplay the importance of
these datasets and tasks; it may well be the case
that conditional, compositional interactions occur
between images and text, but the models we con-
sider do not yet take full advantage of them (we
return to this point in item 6). Our goal, rather,
is to provide diagnostic tools that can provide ad-
ditional clarity on the remaining shortcomings of
current models and reporting schemes.

Additive and Unimodal Models

The additive model we consider is the linear model
from Equation 2 trained over the concatenation of
image and text representations.’ To represent im-

8In Appendix B, we include descriptions of our repro-
duction efforts for each dataset/task, but please see the origi-
nal papers for fuller descriptions of the data/tasks.

°For all linear models in this work, we select optimal
hyperparameters according to grid search, optimizing valida-
tion model performance for each cross-validation split sepa-
rately. We optimize: regularization type (L1, L2, vs. L1/L2),



Original paper Task (structure)

Abbrv.  # image+text pairs we recovered

Kruk et al. (2019) Instagram

L, intent (7-way classification)

L, semiotic (3-way ¢

1f)

L, contextual (3-way clf)

Vempala and Preotiuc-Pietro (2019)
Hessel et al. (2017)

Borth et al. (2013)

Niu et al. (2016)

Twitter visual-ness (4-way clf)
Reddit popularity (pairwise ranking)
Twitter sentiment (binary clf)
Twitter sentiment (binary clf)

I-INT 1.3K
I-SEM 1.3K
I-CTX 1.3K
T-VIS 39K
R-POP 87.2K
T-ST1 .6K
T-ST2 4.0K

Table 3: The tasks we consider are not specifically balanced to force the learning of cross-modal interactions.

ages, we extract a feature vector from a pretrained
EfficientNet B4'" (Tan and Le, 2019). To repre-
sent text, we extract ROBERTa (Liu et al., 2019)
token features, and mean pool.!' Our single-
modal baselines are linear models fit over Effi-
cientNet/RoBERTa features directly.

Interactive Models

Kernel SVM. We train an SVM with a poly-
nomial kernel using RoBERTa text features and
EfficientNet-B4 image features as input. A poly-
nomial kernel endows the model with capacity
to model multiplicative interactions between fea-
tures.!?

Neural Network. We train a feed-forward neu-
ral network using the RoBERTa/EfficientNet-B4
features as input. Following Chen et al. (2017),
we first project text and image features via an
affine transform layer to representations ¢ and v,
respectively, of the same dimension. Then, we ex-
tract new features, feeding the concatenated fea-
ture vector [¢; v; v —t; v © t] to a multi-layer, feed-
forward network.'3

Fine-tuning a Pretrained Transformer. We
fine-tuned LXMERT (Tan and Bansal, 2019) for
our tasks. LXMERT represents images using 36
predicted bounding boxes, each of which is as-
regularization strength (10%*(-7,-6,-5,-4,-3,-2,-1,0,1.0)), and
loss type (logistic vs. squared hinge). We train models using
lightning (Blondel and Pedregosa, 2016).

1%For reproducibility, we used ResNet-18 features for the
Kruk et al. (2019) datasets; more detail in Appendix E.

"Feature extraction approaches are known to produce
competitive results relative to full fine-tuning (Devlin et al.,
2019, §5.3); in some cases, mean pooling has been found to
be similarly competitive relative to LSTM pooling (Hessel
and Lee, 2019).

12We again use grid search to optimize: polynomial ker-
nel degree (2 vs. 3), regularization strength (10%**(-5,-4,-3,-
2,-1,0)), and gamma (1, 10, 100).

Parameters are optimized with the Adam optimizer
(Kingma and Ba, 2015). We decay the learning rate when
validation loss plateaus. The hyperparameters optimized in
grid search are: number of layers (2, 3, 4), initial learning

rate (.01, .001, .0001), activation function (relu vs. gelu), hid-
den dimension (128, 256), and batch norm (use vs. don’t).
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signed a feature vector by a Faster-RCNN model
(Ren et al., 2015; Anderson et al., 2018). This
model uses ResNet-101 (He et al., 2016) as a
backbone and is pretrained on Visual Genome
(Krishna et al., 2017). Bounding box features
are fed through LXMERT’s 5-layer Transformer
(Vaswani et al., 2017) model. Text is processed
by a 9-layer Transformer. Finally, a 5-layer, cross-
modal transformer processes the outputs of these
unimodal encoders jointly, allowing for feature
interactions to be learned. LXMERT’s parame-
ters are pre-trained on several cross-modal rea-
soning tasks, e.g., masked image region/language
token prediction, cross-modal matching, and vi-
sual question answering. LXMERT achieves high
performance on balanced tasks like VQA 2.0:
thus, we know this model can learn compositional,
cross-modal interactions in some settings.'*
LXMERT + logits: We also trained versions of
LXMERT where fixed logits from a pretrained
linear model (described above) are fed in to the
final classifier layer. In this case, LXMERT is
only tasked with learning the residual between the
strong additive model and the labels. Our intu-
ition was that this augmentation might enable the
model to focus more closely on learning inter-
active, rather than additive, structure in the fine-
tuning process.

5.1 Results

Our main prediction results are summarized in Ta-
ble 4. For all tasks, the performance of our base-
line additive linear model is strong, but we are usu-
ally able to find an interactive model that outper-
forms this linear baseline, e.g., in the case of T-
ST2, a polynomial kernel SVM outperforms the
linear model by 4 accuracy points. This observa-
tion alone seems to provide evidence that models

4We follow the original authors’ fine-tuning recommen-
dations, but also optimize the learning rate according to val-
idation set performance for each cross-validation split/task
separately between le-6, 5e-6, le-5, Se-5, and 1le-4.



I-[INT I[-SEM I-CTX T-VIS R-POP T-ST1 T-ST2
Metric AUC AUC AUC Weighted F1  ACC AUC ACC
Cross-val Setup 5-fold 5-fold 5-fold 10-fold 15-fold 5-fold 5-fold
Constant Pred. 50.0 50.0 50.0 17.2 50.0 50.0 66.2
Prev. SOTA 85.3 69.1 78.8 44 62.7 N/A 70.5
Our image-only 73.6 56.5 61.0 47.2 59.1 73.3 67.2
Our text-only 89.9 71.8 81.2 37.6 61.1 69.0 73.1
Neural Network (I)
Polykernel SVM (I) 91.3 74.4 81.5 - 80.9
FT LXMERT (I
L + Linear Logits (I) /53.4\ /64.1 \ /75.5\
Linear Model (A) 90.4 j 72.8 j 80.9 j 51.3} 63.7\) 75.6\) 76.1 j
Our Best Interactive (I) \ 91.3 74.4 81.5 534 64.2 75.5 80.9
L + EMAP (A) 91.1 74.2 81.3 51.0 64.1 75.9 80.7

Table 4: Prediction results for 7 multimodal classification tasks. First block: the evaluation metric, setup, constant
prediction performance, and previous state-of-the-art results (we outperform these baselines mostly because we
use RoBERTa). Second block: the performance of our image only/text only linear models. Third block: the
predictive performance of our (I)nteractive models. Fourth block: comparison of the performance of the best
(Dnteractive model to the (A)dditive linear baseline. Crucially, we also report the EMAP of the best interactive
model, which reveals whether or not the performance gains of the (I)nteractive model are due to modeling cross-
modal interactions, or not. Italics=computed using 15 fold cross-validation over each cross-validation split (see
footnote 5). Bolded values are within half a point of the best model.

are taking advantage of some cross-modal inter-
actions for performance gains. Previous analyses
might conclude here, arguing that cross-modal in-
teractions are being utilized by the model mean-
ingfully. But is this necessarily the case?

We utilize EMAP as an additional model diag-
nostic by projecting the predictions of our best-
performing interactive models. Surprisingly, for
I-INT, I-SEM, I-CTX, T-ST1, T-ST2, and R-
POP, EMAP results in essentially no performance
degradation. Thus, even (current) expressive in-
teractive models are usually unable to leverage
cross-modal feature interactions to improve per-
formance. This observation would be obfus-
cated without the use of additive projections, even
though we compared to a strong linear baseline
that achieves state-of-the-art performance for each
dataset. This emphasizes the importance of not
only comparing to additive/linear baselines, but
also to the EMAP of the best performing model.

In total, for these experiments, we observe a sin-
gle case, LXMERT + Linear Logits trained on T-
VIS, wherein modeling cross-modal feature inter-
actions appears to result in noticeable performance
increases — here, the EMAPed model is 2.4 F1
points worse.
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How much does EMAP change a model’s pre-
dictions? For these datasets, a model and its
EMAP usually make very similar predictions. For
all datasets except T-VIS (where EMAP degrades
performance) the best model and its EMAP agree
on the most likely label in more than 95% of cases
on average. For comparison, retraining the full
models with different random seeds results in a
96% agreement on average. (Full results are in
Appendix C.)

6 Implication FAQs

Q1: What is your recommended experimen-
tal workflow for future work examining mul-
timodal classification tasks?

A: With respect to automated classifiers, we rec-
ommend reporting the performance of:

1. A constant and/or random predictor

to provide perspective on the interplay
between the label distribution and the
evaluation metrics.

2. As-strong-as-possible single-modal models
f(t,v) = g(t) and f(t,v) = h(v)

to understand how well the task can be

addressed unimodally with present techniques.



. An as-strong-as-possible multimodally addi-
tive model f(t,v) = fr(t) + fv(v)
to understand multimodal model performance
without access to sophisticated cross-modal
reasoning capacity.
An as-strong-as-possible multimodally interac-
tive model, e.g., LXMERT,

to push predictive performance as far as
possible.

. The EMAP of the strongest multimodally inter-
active model.

to determine whether or not the best
interactive model is truly using cross-modal
interactions to improve predictive
performance.

We hope this workflow can be extended with addi-
tional, newly developed model diagnostics going
forward.

Q2: Should papers proposing new tasks be re-
jected if image-text interactions aren’t shown to
be useful?

A: Not necessarily. The value of a newly proposed
task should not depend solely on how well current
models perform on it. Other valid ways to demon-
strate dataset/task efficacy: human experiments,
careful dataset design inspired by prior work, or
real-world use-cases.

Q3: Can EMAP tell us anything fundamental
about the type of reasoning required to address
different tasks themselves?

A: Unfortunately, no more than model compar-
isons can (at least for real datasets). EMAP is
a tool that, like model comparison, provides in-
sights about how specific, fixed models perform
on specific, fixed datasets. In FAQ 5, we attempt
to bridge this gap in a toy setting where we are
able to fully enumerate the sample space.

Q4: Can EMARP tell us anything about individ-
ual instances?

A: Yes; but with caveats. While a model’s behav-
ior on individual cases is difficult to draw conclu-
sions from, EMAP can be used to identify single
instances within evaluation datasets for which the
model is performing enough non-additive com-
putation to change its ultimate prediction, i.e.,
for a given (¢, v), it’s easy to compare f(t,v) to
EMAP(f(t,v)): these correspond to the inputs
and outputs respectively of Algorithm 1. An ex-
ample instance-level qualitative evaluation of T-
VIS is given in Appendix F.
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Q5: Do the strong EMAP results imply that
most functions of interest are actually multi-
modally additive?

Short A: No.

Long A: A skeptical reader might argue that,
while multimodally-additive models cannot ac-
count for cross-modal feature interactions, such
feature interactions may not be required for cross-
modal reasoning. While we authors are not aware
of an agreed-upon definition,'> we will assume
that “cross-modal reasoning tasks” are those that
challenge models to compute (potentially arbi-
trary) logical functions of multimodal inputs. Un-
der this assumption, we show that additive models
cannot fit (nor well-approximate) most non-trivial
logical functions.

Consider the case of multimodal boolean target
functions f(t,v) € {0,1}, and assume our im-
age/text input feature vectors each consist of n bi-
nary features, i.e., t,v = (t1,...tn), (V1,...Up)
where t;, v; € {0, 1}. Our goal will be to measure
how well multimodally additive models can fit ar-
bitrary logical functions f. To simplify our analy-
sis in this idealized case: we assume 1) access to a
training set consisting of all 22" input vector pairs,
and only measure training accuracy (vs. the harder
task of generalization) and 2) “perfect” unimodal
representations in the sense that ¢, v contain all of
the information required to compute f(t,v) (this
is not the case for, e.g., CNN/RoBERTa features
for actual tasks).

For very small cross-modal reasoning tasks,
additive models can suffice. Atn = 1, there
are 16 possible binary functions f(t1,v1), and
14/16 can be perfectly fit by a function of the
form fr(t1) + fv(v1) (the exceptions being XOR
and XNOR). For n = 2, non-trivial functions are
still often multimodally additively representable;
an arguably surprising example is this one:
(t2 AN —02) V (t1 At2 Avl) V (=tl A —wl A —02).
But for cross-modal reasoning tasks with more
variables,' even in this toy setting, multimodally-

SSuhr et al. (2019), for example, do not define “visual
reasoning with natural language,” but do argue that some
tasks offer a promising avenue to study “reasoning that re-
quires composition” via visual-textual grounding.

16 As a lower bound on the number of variables required in
a more realistic case, consider a cross-modal reasoning task
where questions are posed regarding the counts of, say, 1000
object types in images. It’s likely that a separate image vari-
able representing the count of each possible type of object
would be required. While an oversimplification, for most
cross-modal reasoning tasks, 2n = 6 variables is still rela-
tively small.



additive models ultimately fall short: for the n = 3
case, we sampled over 5 million random logical
circuits and none were perfectly fit by the additive
models. To better understand how well additive
models can approximate various logical functions,
we fit two types of them for the n > 2 case: 1)
the EMAP of the input function f directly, and 2)
AdaBoost (Freund and Schapire, 1995) with the
weak learners restricted to unimodal models.'”
For a reference interactive model, we employ
AdaBoost without the additivity restriction.

Figure 2 plots the AUC 100
of the 3 models on the
training set; we sample
10K random logical cir-
cuits for each problem
size. As the number
of variables increases, the
performance of the addi-
tive models quickly de-
creases (though full Ad-
aBoost gets 100% accu-
racy in all cases). While these experiments are
only for a toy case, they show that EMAPS, and
additive models generally, have very limited ca-
pacity to compute or approximate logical func-
tions of multimodal variables.

— Ada-Full
Ada-Add
EMAP

==« Random

90

80

AUC

70
60

5 10
# Variables

Figure 2: Perf. of ad-
ditive models on fit-
ting logical circuits.

7 Conclusion and Future Work

The last question on our FAQ list in §6 leaves us
with the following conundrum: 1) Additive mod-
els are incapable of most cross-modal reasoning;
but 2) for most of the unbalanced tasks we con-
sider, EMAP finds an additive approximation that
makes nearly identical predictions to the full, in-
teractive model. We postulate the following poten-
tial explanations, pointing towards future work:

* Hypothesis 1: These unbalanced tasks don’t re-
quire complex cross-modal reasoning. This pur-
ported conclusion cannot account for gaps be-
tween human and machine performance: if an
additive model underperforms relative to human
judgment, the gap could plausibly be explained
by cross-modal feature interactions. But even
in cases where an additive model matches or ex-
ceeds human performance on a fixed dataset, ad-
ditive models may still be insufficient. The mere
fact that unimodal and additive models can often

17 AdaBoost is chosen because it has strong theoretical
guarantees to fit to training data: see Appendix D.
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be disarmed by adding valid (but carefully se-
lected) instances post hoc (as in, e.g., Kiela et al.
(2020)) suggests that their inductive bias can si-
multaneously be sufficient for train/test general-
ization, but also fail to capture the spirit of the
task. Future work would be well-suited to ex-
plore 1) methods for better understanding which
datasets (and individual instances) can be rebal-
anced and which cannot; and 2) the non-trivial
task of estimating additive human baselines to
compare against.

Hypothesis 2: Modeling feature interactions can

be data-hungry. Jayakumar et al. (2020) show

that feed-forward neural networks can require a

very high number of training examples to learn

feature interactions. So, we may need mod-
els with different inductive biases and/or much
more training data. Notably, the feature inter-
actions learned even in balanced cases are often

not interpretable (Subramanian et al., 2019).

* Hypothesis 3: Paradoxically, unimodal models
may be too weak. Without expressive enough
single-modal processing methods, opportuni-
ties for learning cross-modal interaction patterns
may not be present during training. So, improve-
ments in unimodal modeling could feasibly im-
prove feature interaction learning.

Concluding thoughts. Our hope is that future
work on multimodal classification tasks report
not only the predictive performance of their best
model + baselines, but also the EMAP of that
model. EMAP (and related algorithms) has prac-
tical implications beyond image+text classifica-
tion: there are straightforward extensions to non-
visual/non-textual modalities, to classifiers using
more than 2 modalities as input, and to single-
modal cases where one wants to check for feature
interactions between two groups of features, e.g.,
premise/hypothesis in NLI.
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A Theoretical Analysis of Algorithm 1

We assume we are given a (usually evaluation)
dataset D = {(t;,v;)}", and a trained model f
that maps (¢;, v;) pairs to a d-dimensional vector
of scores. We seek a multimodally-additive func-
tion f that matches the values of f on any (ti,vj)
for which there exist v, ¢’ such that (¢;,v") € D
and (t',v;) € D; thatis, (t;,v;) represents any
text-image pair we could construct if we decou-
pled the existing pairs in D.'3

For simplicity, first assume that d 1
(we handle the d > 1 case later). Since f
is multimodally-additive by assumption, 3 ft, fv
such that f(t;,v;) = fi(t )+ fu(vj) Our goal
is to find the “best” 2n values ft( i) fo(vy), 0
writing f; for f(t;,v;), 7; for fi(t;), and ¢j for
fv(vj) for notational convenience — to find 74, ¢;
minimizing

;)

i )

1
=322 -
i g
Claim 1. L is convex.

Proof. The first-order partial derivatives are:

oL
o Tl+z ~ Ju)
?—n ¢J+Z fz;
and the Hessian H is
_Ind 1 nxn
7—[—[1 nl]’ I,1eR

It suffices to show that # is positive semi-definite,
i.e., forany z € R?", 2THz > 0. Indeed,

¥Note that multimodally-additive models do not rely on
particular ¢;, v; couplings, as this family of functions decom-
poses as f(ti,v;) = fi(t:) + fo(v;); thus, a multimodally-
additive f should be able to fit any image-text pair we could
construct from D, not just the image-text pairs we observe.
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Now, for the optimal solutions to our minimiza-
tion problem, we can set the first-order partial
derivatives to 0 and solve for our 2n parameters
i, ¢;j. These solutions will correspond to global
minima due to the convexity result we established
above. It turns out to be equivalent to find solu-
tions to:

> fur
L k=1
T1 :
T i fnk
Higl="= 6)
! > i
k=1
o) |
Z fkn
Lk=1 N

We can do this by finding one solution s to the
above, and then analyzing the nullspace of H,



which will turn out to be the 1-dimensional sub-
space spanned by

r=(1,1,...1, —=1,—-1,... = 1)
S———mm—

n n

That Hr = 0 can be verified by direct calcula-
tion. Then, all solutions will have the form s + cr
for any ¢ € R."°

Claim 2. Algorithm 1 computes a solution to
Equation 6 as a byproduct.

Proof. Algorithm 1 computes s = (7;, ¢;) as:

Ti:%Zfik_%ZZfij (7
I T

¢j:%2fkj ®)
P

s is a solution to Equation 6, as can be verified by
direct substitution. O

Claim 3. The rank of H is 2n — 1, which implies
that its nullspace is 1-dimensional.

Proof. Solutions to Hx = Az occur when:

n 2n
)\:n,():inandOZ ij

=1 j=n+1
A=2n,z=1

A=0,z=r

So, zero is an eigenvalue of H with multiplicity 1,
which shows that 7{’s rank is 2n — 1.2 O

Because the nullspace of H is 1-dimensional,
all solutions to Equation 6 are given by s + cr for
any ¢ € R. Returning to the notation of the origi-
nal problem, we see that all optimal solutions are
given by:

Ti:%z.fik_%zz.fij“‘c &)
k g

1
¢j:nzk:fkj_c

¥Proof: Assume that s’ is a solution of Equation 6. s’ — s
will be in the nullspace of H. Clearly, s’ = s + (s’ — s), so
s’ can be written as s +  for x in the nullspace of H.

2OWe can make explicit the eigenbasis for the A = 7 so-
lutions. Let M € R™*(™~V be I,,_; with an additional row
of —1 concatenated as the n*® row. The eigenbasis is given

by the columns of
M 0
0o M|

(10)

Claim 4. Algorithm 1 produces a unique solution
for the values of f.

Proof. We have shown that Algorithm 1 produces
an optimal solution, and have derived the paramet-
ric form of all optimal solutions in Equation 9 and
Equation 10. Note that Algorithm 1 outputs 7;+¢;
(rather than 7;, ¢; individually). This cancels out
the free choice of c. Thus, any algorithm that out-
puts optimal 7; + ¢; will have the same output as
Algorithm 1. O

Extension to multiple dimensions. So far, we
have shown that Algorithm 1 produces an optimal
and unique solution for Equation 4, but only in
cases where f;;, 7, ¢; € R. In general, we need to
show the algorithm works for multi-dimensional
outputs, too. The full loss function includes a sum-
mation over dimension as:

L= é Z Z Z(fijd —Tia— ¢ja)® (A1)
7 7 d

This objective decouples entirely over dimension
d, i.e., the loss can be rewritten as:

;(Z(fijl — i1 — ¢j1)" +

1

L1

Z(fiﬂ — T2 — ¢j2)2 +...

v

Lo

> (fija—Tia — ¢jd)2)

ij

Ly

Furthermore, notice that the parameters in £; are
disjoint from the parameters in L; if ¢ # j.
Thus, to minimize the multidimensional objective
in Equation 11, it suffices to minimize the ob-
jective for each £; independently, and recombine
the solutions. This is precisely what Algorithm 1
does.

B Dataset Details and Reproducibility
Efforts

B.1 I-INT, I-SEM, I-CTX

This data is available from https://github.
com/karansikkal/documentIntent_

emnlpl9. We use the same 5 random splits
provided by the authors for evaluation. The
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authors provide ResNetl8 features, which we
use for our non-LXMERT experiments instead
of EfficientNet-B4 features.  After contacting
the authors, they extracted bottom-up-top-down
FasterRCNN features for us, so we were able
to compare to LXMERT. State of the art perfor-
mance numbers are derived from the above github
repo; these differ slightly from the values reported
in the original paper because the github versions
are computed without image data augmentation.

B.2 T-VIS

This data is available from https:
//github.com/danielpreotiuc/text—
image-relationship/. The raw images are
not available, so we queried the Twitter API for
them. The corpus has 4472 tweets in it initially,
but we were only able to re-collect 3905 tweets
(87%) when we re-queried the API. Tweets can
be missing for a variety of reasons, e.g., the
tweet being permanently deleted, or the account’s
owner making the their account private at the time
of the API request. A handful of tweets were
available, but were missing images when we tried
to re-collect them. This can happen when the
image is a link to an external page, and the image
is deleted from the external page.

B.3 R-POP

This data is available from Thttp:
//www.cs.cornell.edu/~Jjhessel/
cats/cats.html. We just use the pics sub-
reddit data. We attempted to rescrape the pics
images from the imgur urls. We were able to
re-collect 87215/88686 of the images (98%).
Images can be missing if they have been, e.g.,
deleted from imgur. We removed any pairs with
missing images from the ranking task; we trained
on 42864/44343 (97%) of the original pairs. The
data is distributed with training/test splits. From
the training set for each split, we reserve 3K pairs
for validation. The state of the art performance
numbers are taken from the original releasing
work.

B4 T-ST1

This http:
//www.ee.columbia.edu/1ln/dvmm/

vso/download/twitter_dataset.html
and consists of 603 tweets (470 positive, 133
negative). The authors distribute data with 5 folds
pre-specified for cross-validation performance

data is available from

reporting. However, we note that the original
paper’s best model achieves 72% accuracy in
this setting, but a constant prediction baseline
achieves higher performance: 470/(470+133) =
78%. Note that the constant prediction baseline
likely performs worse according to metrics other
than accuracy, but only accuracy is reported. We
attempted to contact the authors of this study but
did not receive a reply. We also searched for ad-
ditional baselines for this dataset, but were unable
to find additional work that uses this dataset in
the same fashion. Thus, given the small size of
the dataset, lack of reliable measure of SOTA
performance, and label imbalance, we decided to
report ROC AUC prediction performance.

B.S T-ST2

This data is available from https:
//www.mcrlab.net/research/mvsa-
sentiment—-analysis—-on-multi-
view-social-data/. We use the MVSA-
Single dataset because human annotators examine
both the text and image simultaneously; we chose
not to use MVSA-Multiple because human anno-
tators do not see the tweet’s image and text at the
same time. However, the dataset download link
only comes with 4870 labels, instead of the 5129
described in the original paper. We contacted the
authors of the original work about the missing
data, but did not receive a reply.

We follow the preprocessing steps detailed in
Xu and Mao (2017) to derive a training dataset.
After preprocessing, we are left with 4041 data
points, whereas prior work compares with 4511
points after preprocessing. The preprocessing
consists of removing points that are (positive, neg-
ative), (negative, positive), or (neutral, neutral),
which we believe matches the description of the
preprocessing in that work. We contacted the
authors for details, but did not receive a reply.
The state-of-the-art performance number for this
dataset is from Xu et al. (2018).

C Are EMAPSs just regularizers?

One reason why EMAPS may often offer strong
performance is by acting as a regularizer: pro-
jecting to a less expressive hypothesis space may
reduce variance/overfitting. But in many cases,
the original model and its EMAP achieve sim-
ilar predictive accuracy. This suggests two ex-
planations: either the EMAPed version makes
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I-[INT I-SEM I-CTX T-VIS R-POP T-ST1 T-ST2
Metric AUC AUC AUC Weighted F1 ACC AUC ACC
Num Classes 7 3 3 4 2 2 2
Setup 5-fold 5-fold 5-fold 10-fold 15-fold 5-fold 5-fold
Best Interactive Poly Poly Poly LXMERT LXMERT LXMERT  Poly
Original Perf. 91.3 74.4 81.5 53.4 64.2 75.5 80.9
Original EMAP 91.1 74.2 81.3 51.0 64.1 75.9 80.7
DiffSeed Perf. 91.3 74.5 81.4 53.2 64.1 75.3 81.3
Match Orig + EMAP 95.6 95.9 97.4 85.5 96.3 98.0 96.7
Match Orig + DiffSeed  99.9 99.1 100.0 75.5 87.6 92.4 97.9
% Inst. Orig. Better 51.2 52.0 51.5 55.2 51.2 5/12 cases  53.0

(= 6/12 = 50%)

Table 5: Consistency results. The first block provides details about the task and the model that performed best
on it. The second block gives the performance (italicized results represent cross-validation EMAP computation
results; see footnote 5). The third block gives the percent of time the original model’s prediction is the same as for
EMAP, and, for comparison, the percent of time the original model’s predictions match the identical model trained
with a different random seed: in all cases except for T-VIS, the original model and the EMAP make the same
prediction in more than 95% of cases. The final row gives the percent of instances (among instances for which the
original model and the EMAP disagree) that the original model is correct. Except for T-VIS, when the EMAP and
the original model disagree, each is right around half the time.

significantly different predictions with respect the
original model (e.g., because it is better regular-
ized), but it happens that those differing predic-
tions “cancel out” in terms of final prediction ac-
curacy; or, the original, unprojected functions are
quite close to additive, anyway, and the EMAP
doesn’t change the predictions all that much.

We differentiate between these two hypotheses
by measuring the percent of instances for which
the EMAP makes a different classification predic-
tion than the full model. Table 5 gives the re-
sults: in all cases except T-VIS, the match between
EMAP and the original model is above 95%. For
reference, we retrained the best performing mod-
els with different random seeds, and measured the
performance difference under this change.

When EMAP changes the predictions of the
original model, does the projection generally
change to a more accurate label, or a less accu-
rate one? We isolate the instances where a label
swap occurs, and quantify this using: (num orig
better) / (num orig better + num proj better). In
most cases, the effect of projecting improves and
degrades performance roughly equally, at least ac-
cording to this metric. For T-VIS, however, the
original model is better in over 55% of cases: this
is also reflected in the corresponding F-scores.
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D Logic Experiment Details

In §6, we describe experiments using AdaBoost.
We chose AdaBoost (Freund and Schapire, 1995)
to fit to the training set because of its strong con-
vergence guarantees. In short: if AdaBoost can
find a weak learner at each iteration (that is: if it
can find a candidate classifier with above-random
performance) it will be able to fit the training set.
A more formal statement of AdaBoost’s properties
can be found in the original work.

The AdaBoost classifiers we consider use de-
cision trees with max depth of 15 as base esti-
mators. We choose a relatively large depth be-
cause we are not concerned with overfitting: we
are just measuring training fit. The additive ver-
sion of AdaBoost we consider is identical to the
full AdaBoost classifier, except, at each iteration,
either the image features or the text features indi-
vidually are considered.

E Additional Reproducibility Info

Computing Hardware. Linear models and
feed-forward neural networks were trained us-
ing consumer-level CPU/RAM configurations.
LXMERT was fine-tuned on single, consumer
GPUs with 12GB of vRAM.

Runtime. The slowest algorithm we used was
LXMERT (Tan and Bansal, 2019), and the biggest



Throwback Someone

to my brought a
favorite bear into
dog w/ _ the doggie
eyebrows 4l day care

Oorig:

Text Represented

EMAP: X Text Not Represented

Heartfelt
and teary
eyed
thanks and
respect to
all
warriors..

Intro to the
composition
I'm working
il on! Really
M loving the
™ horn solo

Orig: ¥/ Text Not Represented
EMAP: X Text Represented

Figure 3: Examples of cases from for which EMAP degrades the performance of LXMERT + Logits. All cases
are labelled as “image does not add meaning” in the original corpus. Text of tweets may be gently modified for

privacy reasons.

dataset we fine-tuned on was R-POP. LXMERT
was fine-tuned on the order of 1500 times. De-
pending on the dataset, the fine-tuning process
took between 10 minutes and an hour. Overall,
we estimate that we spent on the order of 50-100
GPU days doing this work.

Number of Parameters. The RoBERTa features
we used were 2048-dimensional, and the Efficient-
NetB4 features were 1792 dimensional. The linear
models and feed forward neural networks operated
on those. We cross-validated the number of layers
and the width, but the maximal model, for these
cases, has on the order of millions of parameters.
The biggest model we used was LXMERT, which
has a comparable memory footprint to the original
BERT Base model.

F Qualitative Analysis of T-VIS

To demonstrate the potential utility of EMAP
in qualitative examinations, we identified the in-
dividual instances in T-VIS for which EMAP
changes the test-time predictions of the LXMERT
+ Linear Logits model. Recall that in this dataset,
EMAP hurts performance.

In introducing this task, Vempala and Preotiuc-
Pietro (2019) propose categorizing image+text
tweets into four categories: “Some or all of the
content words in the text are represented in the im-
age” (or not) x “Image has additional content that
represents the meaning of the text and the image”
(or not).

As highlighted in Table 5, when EMAP changes
the prediction of the full model (14.5% of cases),
the prediction made is incorrect more often not:
among label swapping cases, when the EMAP or
the original model is correct, the original predic-
tion is correct in 55% of the cases.

The most common label swaps of this form
are between the classes: “image does not add” x
{“text is represented”, “text is not represented”};
as shorthand for these two classes, we will write

IDTR (“image doesn’t add, text represented”) and
IDTN (“image doesn’t add, text not represented”).
Across the 10 cross-validation splits, EMAP in-
correctly maps the original model’s correct pre-
diction of INTR — IDTN 255 times. For refer-
ence, there are 165 cases where EMAP maps the
incorrect INTR prediction of the original model to
the correct IDTN label. So, when EMAP makes
the change INTR — IDTN, in 60% of cases the
full model is correct. Similarly, EMAP incorrectly
maps the original model’s correct prediction of
INTN — IDTR 77 times (versus 48 correct map-
pings, original model correct in 62% of cases).

Figure 3 gives some instances from T-VIS
where images do not add meaning and the EMAP
projection causes a swap from a correct to an in-
correct prediction. While it’s difficult to draw con-
clusions from single instances, some preliminary
patterns emerge. There are a cluster of animal im-
ages coupled with captions that may be somewhat
difficult to map. In the case of the dog with eye-
brows, the image isn’t centered on the animal, and
it might be difficult to identify the eyebrows with-
out the prompt of the caption (hence, interactions
might be needed). Similarly, the bear-looking-
dog case is difficult: the caption doesn’t explic-
itly mention a dog, and the image itself depicts an
animal that isn’t canonically canine-esque; thus,
modeling interactions between the image and the
caption might be required to fully disambiguate
the meaning.

Figure 3 also depicts two cases where the orig-
inal model predicts that the text is not represented
(but EMAP does). They are drawn from a cluster
of similar cases where the captions seem indirectly
connected to the image. Consider the 4", mu-
sic composition example: just looking at the text,
one could envision a more literal manifestation:
i.e., a person playing a horn. Similarly, looking
just at the screenshot of the music production soft-
ware, one could envision a more literal caption,
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e.g., “producing a new song with this software.”
But, the real connection is less direct, and might
require additional cross-modal inferences. Other
common cases of INTR — IDTN are “happy birth-
day” messages coupled with images of their in-
tended recipients and selfies taken at events (e.g.,
sports games), with descriptions (but not direct vi-
sual depictions).

G Worked Example of EMAP

We adopt the notation of Appendix A and give an
concrete worked example of EMAP. Consider the
following f output values, which are computed on
three image+text pairs for a binary classification
task. We assume that f outputs an un-normalized
logit that can be passed to a scaling function like
the logistic function o for a probability estimate

over the binary outcome, e.g., fi1 = —1.3 and
o(fi1) =Py=1)~.21.
fll =-13 f12 =.3 f13 = -2
Jo1 =8 fo=3  faz=11
far =11 fso=—1 fa3=.7
We can write this equivalently in matrix form:
fir fiz fis ~1.3 03 -02
for foo fes| =108 3.0 1.1
f31 [fs2 [f33 .1 -1 07

Note that the mean logit predicted by f over
these 3 examples is .6. We use Equation 8
to compute the ¢;s; this is equivalent to tak-
ing a column-wise mean of this matrix, which
yields (approximately) [.2,1.07,.53]. Similarly,
we can use Equation 7, equivalent to taking a
row-wise mean of this matrix, which yields (ap-
proximately) [—.4, 1.63, .57], and then subtract the
overall mean .6 to achieve [—1,1.03, —.03]. Fi-
nally, we can sum these two results to compute
[fn, fgg, f33] [—.8,2.1,.5]. These predictions
are the closest approximations to the full evalua-
tions [fn, f22, f33] = [—1.3, 3, .7] for which the
generation function obeys the additivity constraint
over the three input pairs.
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