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Abstract

Both human and machine translation play a
central role in cross-lingual transfer learning:
many multilingual datasets have been created
through professional translation services, and
using machine translation to translate either
the test set or the training set is a widely used
transfer technique. In this paper, we show that
such translation process can introduce subtle
artifacts that have a notable impact in existing
cross-lingual models. For instance, in natu-
ral language inference, translating the premise
and the hypothesis independently can reduce
the lexical overlap between them, which cur-
rent models are highly sensitive to. We show
that some previous findings in cross-lingual
transfer learning need to be reconsidered in the
light of this phenomenon. Based on the gained
insights, we also improve the state-of-the-art
in XNLI for the translate-test and zero-shot ap-
proaches by 4.3 and 2.8 points, respectively.

1 Introduction

While most NLP resources are English-specific,
there have been several recent efforts to build
multilingual benchmarks. One possibility is to
collect and annotate data in multiple languages
separately (Clark et al., 2020), but most exist-
ing datasets have been created through translation
(Conneau et al., 2018; Artetxe et al., 2020). This ap-
proach has two desirable properties: it relies on ex-
isting professional translation services rather than
requiring expertise in multiple languages, and it
results in parallel evaluation sets that offer a mean-
ingful measure of the cross-lingual transfer gap
of different models. The resulting multilingual
datasets are generally used for evaluation only, re-
lying on existing English datasets for training.

Closely related to that, cross-lingual transfer
learning aims to leverage large datasets avail-
able in one language—typically English—to build

multilingual models that can generalize to other
languages. Previous work has explored 3 main
approaches to that end: machine translating the
test set into English and using a monolingual En-
glish model (TRANSLATE-TEST), machine translat-
ing the training set into each target language and
training the models on their respective languages
(TRANSLATE-TRAIN), or using English data to fine-
tune a multilingual model that is then transferred
to the rest of languages (ZERO-SHOT).

The dataset creation and transfer procedures de-
scribed above result in a mixture of original,1
human translated and machine translated data
when dealing with cross-lingual models. In fact,
the type of text a system is trained on does not
typically match the type of text it is exposed to at
test time: TRANSLATE-TEST systems are trained on
original data and evaluated on machine translated
test sets, ZERO-SHOT systems are trained on orig-
inal data and evaluated on human translated test
sets, and TRANSLATE-TRAIN systems are trained on
machine translated data and evaluated on human
translated test sets.

Despite overlooked to date, we show that such
mismatch has a notable impact in the perfor-
mance of existing cross-lingual models. By using
back-translation (Sennrich et al., 2016) to para-
phrase each training instance, we obtain another
English version of the training set that better re-
sembles the test set, obtaining substantial improve-
ments for the TRANSLATE-TEST and ZERO-SHOT ap-
proaches in cross-lingual Natural Language Infer-
ence (NLI). While improvements brought by ma-
chine translation have previously been attributed
to data augmentation (Singh et al., 2019), we re-
ject this hypothesis and show that the phenomenon
is only present in translated test sets, but not in
original ones. Instead, our analysis reveals that

1We use the term original to refer to non-translated text.
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this behavior is caused by subtle artifacts arising
from the translation process itself. In particular,
we show that translating different parts of each
instance separately (e.g., the premise and the hy-
pothesis in NLI) can alter superficial patterns in the
data (e.g., the degree of lexical overlap between
them), which severely affects the generalization
ability of current models. Based on the gained in-
sights, we improve the state-of-the-art in XNLI,
and show that some previous findings need to be
reconsidered in the light of this phenomenon.

2 Related work

Cross-lingual transfer learning. Current cross-
lingual models work by pre-training multilingual
representations using some form of language mod-
eling, which are then fine-tuned on the relevant
task and transferred to different languages. Some
authors leverage parallel data to that end (Conneau
and Lample, 2019; Huang et al., 2019), but training
a model akin to BERT (Devlin et al., 2019) on the
combination of monolingual corpora in multiple
languages is also effective (Conneau et al., 2020).
Closely related to our work, Singh et al. (2019)
showed that replacing segments of the training data
with their translation during fine-tuning is help-
ful. However, they attribute this behavior to a data
augmentation effect, which we believe should be
reconsidered given the new evidence we provide.

Multilingual benchmarks. Most benchmarks
covering a wide set of languages have been cre-
ated through translation, as it is the case of XNLI
(Conneau et al., 2018) for NLI, PAWS-X (Yang
et al., 2019) for adversarial paraphrase identifica-
tion, and XQuAD (Artetxe et al., 2020) and MLQA
(Lewis et al., 2020) for Question Answering (QA).
A notable exception is TyDi QA (Clark et al., 2020),
a contemporaneous QA dataset that was separately
annotated in 11 languages. Other cross-lingual
datasets leverage existing multilingual resources,
as it is the case of MLDoc (Schwenk and Li, 2018)
for document classification and Wikiann (Pan et al.,
2017) for named entity recognition. Concurrent to
our work, Hu et al. (2020) combine some of these
datasets into a single multilingual benchmark, and
evaluate some well-known methods on it.

Annotation artifacts. Several studies have
shown that NLI datasets like SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018) contain
spurious patterns that can be exploited to obtain

strong results without making real inferential deci-
sions. For instance, Gururangan et al. (2018) and
Poliak et al. (2018) showed that a hypothesis-only
baseline performs better than chance due to cues on
their lexical choice and sentence length. Similarly,
McCoy et al. (2019) showed that NLI models tend
to predict entailment for sentence pairs with a high
lexical overlap. Several authors have worked on
adversarial datasets to diagnose these issues and
provide a more challenging benchmark (Naik et al.,
2018; Glockner et al., 2018; Nie et al., 2020). Be-
sides NLI, other tasks like QA have also been found
to be susceptible to annotation artifacts (Jia and
Liang, 2017; Kaushik and Lipton, 2018). While
previous work has focused on the monolingual sce-
nario, we show that translation can interfere with
these artifacts in multilingual settings.

Translationese. Translated texts are known to
have unique features like simplification, explicita-
tion, normalization and interference, which are re-
fer to as translationese (Volansky et al., 2013). This
phenomenon has been reported to have a notable
impact in machine translation evaluation (Zhang
and Toral, 2019; Graham et al., 2019). For instance,
back-translation brings large BLEU gains for re-
versed test sets (i.e., when translationese is on the
source side and original text is used as reference),
but its effect diminishes in the natural direction
(Edunov et al., 2020). While connected, the phe-
nomenon we analyze is different in that it arises
from translation inconsistencies due to the lack of
context, and affects cross-lingual transfer learning
rather than machine translation.

3 Experimental design

Our goal is to analyze the effect of both human
and machine translation in cross-lingual models.
For that purpose, the core idea of our work is to (i)
use machine translation to either translate the train-
ing set into other languages, or generate English
paraphrases of it through back-translation, and (ii)
evaluate the resulting systems on original, human
translated and machine translated test sets in com-
parison with systems trained on original data. We
next describe the models used in our experiments
(§3.1), the specific training variants explored (§3.2),
and the evaluation procedure followed (§3.3).

3.1 Models and transfer methods
We experiment with two models that are represen-
tative of the state-of-the-art in monolingual and
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cross-lingual pre-training: (i) ROBERTA (Liu et al.,
2019), which is an improved version of BERT that
uses masked language modeling to pre-train an En-
glish Transformer model, and (ii) XLM-R (Conneau
et al., 2020), which is a multilingual extension of
the former pre-trained on 100 languages. In both
cases, we use the large models released by the au-
thors under the fairseq repository.2 As discussed
next, we explore different variants of the training
set to fine-tune each model on different tasks. At
test time, we try both machine translating the test
set into English (TRANSLATE-TEST) and, in the case
of XLM-R, using the actual test set in the target
language (ZERO-SHOT).

3.2 Training variants

We try 3 variants of each training set to fine-tune
our models: (i) the original one in English (ORIG),
(ii) an English paraphrase of it generated through
back-translation using Spanish or Finnish as pivot
(BT-ES and BT-FI), and (iii) a machine translated
version in Spanish or Finnish (MT-ES and MT-FI).
For sentences occurring multiple times in the train-
ing set (e.g., premises repeated for multiple hy-
potheses), we use the exact same translation for
all occurrences, as our goal is to understand the in-
herent effect of translation rather than its potential
application as a data augmentation method.

In order to train the machine translation systems
for MT-XX and BT-XX, we use the big Transformer
model (Vaswani et al., 2017) with the same settings
as Ott et al. (2018) and SentencePiece tokeniza-
tion (Kudo and Richardson, 2018) with a joint vo-
cabulary of 32k subwords. For English-Spanish,
we train for 10 epochs on all parallel data from
WMT 2013 (Bojar et al., 2013) and ParaCrawl
v5.0 (Esplà et al., 2019). For English-Finnish, we
train for 40 epochs on Europarl and Wiki Titles
from WMT 2019 (Barrault et al., 2019), ParaCrawl
v5.0, and DGT, EUbookshop and TildeMODEL
from OPUS (Tiedemann, 2012). In both cases,
we remove sentences longer than 250 tokens, with
a source/target ratio exceeding 1.5, or for which
langid.py (Lui and Baldwin, 2012) predicts a
different language, resulting in a final corpus size
of 48M and 7M sentence pairs, respectively. We
use sampling decoding with a temperature of 0.5
for inference, which produces more diverse transla-
tions than beam search (Edunov et al., 2018) and
performed better in our preliminary experiments.

2https://github.com/pytorch/fairseq

3.3 Tasks and evaluation procedure
We use the following tasks for our experiments:

Natural Language Inference (NLI). Given a
premise and a hypothesis, the task is to determine
whether there is an entailment, neutral or contra-
diction relation between them. We fine-tune our
models on MultiNLI (Williams et al., 2018) for 10
epochs using the same settings as Liu et al. (2019).
In most of our experiments, we evaluate on XNLI
(Conneau et al., 2018), which comprises 2490 de-
velopment and 5010 test instances in 15 languages.
These were originally annotated in English, and the
resulting premises and hypotheses were indepen-
dently translated into the rest of the languages by
professional translators. For the TRANSLATE-TEST

approach, we use the machine translated versions
from the authors. Following Conneau et al. (2020),
we select the best epoch checkpoint according to
the average accuracy in the development set.

Question Answering (QA). Given a context
paragraph and a question, the task is to identify
the span answering the question in the context.
We fine-tune our models on SQuAD v1.1 (Ra-
jpurkar et al., 2016) for 2 epochs using the same
settings as Liu et al. (2019), and report test results
for the last epoch. We use two datasets for eval-
uation: XQuAD (Artetxe et al., 2020), a subset
of the SQuAD development set translated into 10
other languages, and MLQA (Lewis et al., 2020)
a dataset consisting of parallel context paragraphs
plus the corresponding questions annotated in En-
glish and translated into 6 other languages. In both
cases, the translation was done by professional
translators at the document level (i.e., when trans-
lating a question, the text answering it was also
shown). For our BT-XX and MT-XX variants, we
translate the context paragraph and the questions
independently, and map the answer spans using the
same procedure as Carrino et al. (2020).3 For the
TRANSLATE-TEST approach, we use the official ma-
chine translated versions of MLQA, run inference
over them, and map the predicted answer spans
back to the target language.4

3We use FastAlign (Dyer et al., 2013) for word alignment,
and discard the few questions for which the mapping method
fails (when none of the tokens in the answer span are aligned).

4We use the same procedure as for the training set except
that (i) given the small size of the test set, we combine it with
WikiMatrix (Schwenk et al., 2019) to aid word alignment, (ii)
we use Jieba for Chinese segmentation instead of the Moses
tokenizer, and (iii) for the few unaligned spans, we return the
English answer.

https://github.com/pytorch/fairseq
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Model Train en fr es de el bg ru tr ar vi th zh hi sw ur avg

Test set machine translated into English (TRANSLATE-TEST)

ROBERTA

ORIG 91.2 82.2 84.6 82.4 82.1 82.1 79.2 76.5 77.4 73.8 73.4 76.7 70.5 67.2 66.8 77.7 ±0.6

BT-ES 91.6 85.7 87.4 85.4 85.1 85.1 83.6 81.3 81.5 78.7 78.2 81.1 76.3 72.7 71.5 81.7 ±0.2

BT-FI 91.4 86.0 87.4 85.7 85.7 85.4 84.4 82.3 82.1 79.0 79.3 81.8 77.6 73.5 73.6 82.3 ±0.2

XLM-R

ORIG 90.3 82.2 84.2 82.6 81.9 82.0 79.3 76.7 77.5 75.0 73.7 77.5 70.9 67.8 67.2 77.9 ±0.3

BT-ES 90.2 84.1 86.3 84.5 84.5 84.1 82.2 79.6 80.7 78.5 77.3 80.8 75.2 72.5 71.2 80.8 ±0.3

BT-FI 89.5 84.9 85.5 84.5 84.5 84.6 82.9 80.6 81.4 78.9 78.1 81.5 76.3 73.3 72.5 81.3 ±0.2

MT-ES 89.8 83.2 85.6 84.2 84.0 83.6 81.6 78.4 79.3 77.6 76.7 80.0 74.3 71.3 70.1 80.0 ±0.6

MT-FI 89.8 84.4 85.3 84.7 84.1 84.0 82.0 79.8 80.3 77.4 77.7 80.6 74.7 71.8 71.3 80.5 ±0.3

Test set in target language (ZERO-SHOT)

XLM-R

ORIG 90.4 84.4 85.5 84.3 81.9 83.6 80.1 80.1 79.8 81.8 78.3 80.3 77.7 72.8 74.5 81.0 ±0.2

BT-ES 90.2 86.0 86.9 86.5 84.0 85.3 83.2 82.5 82.7 83.7 80.7 83.0 79.7 75.6 77.1 83.1 ±0.2

BT-FI 89.5 86.0 86.2 86.2 83.9 85.1 83.4 82.2 83.0 83.9 81.2 83.9 80.1 75.2 78.1 83.2 ±0.1

MT-ES 89.9 85.7 87.3 85.6 83.9 85.4 82.9 82.0 82.3 83.6 80.0 82.6 79.9 75.5 76.8 82.9 ±0.4

MT-FI 90.2 85.9 86.9 86.5 84.4 85.5 83.4 83.0 82.4 83.6 80.5 83.6 80.4 76.5 77.9 83.4 ±0.2

Table 1: XNLI dev results (acc). BT-XX and MT-XX consistently outperform ORIG in all cases.

Both for NLI and QA, we run each system 5
times with different random seeds and report the
average results. Space permitting, we also report
the standard deviation across the 5 runs. In our re-
sult tables, we use an underline to highlight the best
result within each block, and boldface to highlight
the best overall result.

4 NLI experiments

We next discuss our main results in the XNLI devel-
opment set (§4.1, §4.2), run additional experiments
to better understand the behavior of our different
variants (§4.3, §4.4, §4.5), and compare our results
to previous work in the XNLI test set (§4.6).

4.1 TRANSLATE-TEST results
We start by analyzing XNLI development results
for TRANSLATE-TEST. Recall that, in this approach,
the test set is machine translated into English, but
training is typically done on original English data.
Our BT-ES and BT-FI variants close this gap by
training on a machine translated English version of
the training set generated through back-translation.
As shown in Table 1, this brings substantial gains
for both ROBERTA and XLM-R, with an average im-
provement of 4.6 points in the best case. Quite re-
markably, MT-ES and MT-FI also outperform ORIG

by a substantial margin, and are only 0.8 points be-
low their BT-ES and BT-FI counterparts. Recall that,
for these two systems, training is done in machine
translated Spanish or Finnish, while inference is
done in machine translated English. This shows
that the loss of performance when generalizing

from original data to machine translated data is
substantially larger than the loss of performance
when generalizing from one language to another.

4.2 ZERO-SHOT results

We next analyze the results for the ZERO-SHOT ap-
proach. In this case, inference is done in the test set
in each target language which, in the case of XNLI,
was human translated from English. As such, dif-
ferent from the TRANSLATE-TEST approach, neither
training on original data (ORIG) nor training on ma-
chine translated data (BT-XX and MT-XX) makes
use of the exact same type of text that the system
is exposed to at test time. However, as shown in
Table 1, both BT-XX and MT-XX outperform ORIG

by approximately 2 points, which suggests that our
(back-)translated versions of the training set are
more similar to the human translated test sets than
the original one. This also provides a new per-
spective on the TRANSLATE-TRAIN approach, which
was reported to outperform ORIG in previous work
(Conneau and Lample, 2019): while the original
motivation was to train the model on the same lan-
guage that it is tested on, our results show that
machine translating the training set is beneficial
even when the target language is different.

4.3 Original vs. translated test sets

So as to understand whether the improvements ob-
served so far are limited to translated test sets or
apply more generally, we conduct additional ex-
periments comparing translated test sets to original
ones. However, to the best of our knowledge, all
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XNLI dev Our dataset

OR HT OR HT MT
Model Train (en) (es) (es) (en) (en)

ROBERTA

ORIG 92.1 - - 78.7 79.0
BT-ES 91.9 - - 80.3 80.5
BT-FI 91.4 - - 80.5 80.5

XLM-R

ORIG 90.5 85.5 81.0 77.5 78.5
BT-ES 90.3 87.1 81.4 78.6 79.4
BT-FI 89.7 86.5 80.8 78.8 79.2
MT-ES 90.2 87.5 81.3 78.4 78.9
MT-FI 90.4 87.1 81.1 78.3 78.9

Table 2: NLI results on original (OR), human trans-
lated (HT) and machine translated (MT) sets (acc).
BT-XX and MT-XX outperform ORIG in translated sets,
but do not get any clear improvement in original ones.

existing non-English NLI benchmarks were cre-
ated through translation. For that reason, we build
a new test set that mimics XNLI, but is annotated
in Spanish rather than English. We first collect the
premises from a filtered version of CommonCrawl
(Buck et al., 2014), taking a subset of 5 websites
that represent a diverse set of genres: a newspa-
per, an economy forum, a celebrity magazine, a
literature blog, and a consumer magazine. We then
ask native Spanish annotators to generate an entail-
ment, a neutral and a contradiction hypothesis for
each premise.5 We collect a total of 2490 exam-
ples using this procedure, which is the same size
as the XNLI development set. Finally, we create a
human translated and a machine translated English
version of the dataset using professional translators
from Gengo and our machine translation system
described in §3.2,6 respectively. We report results
for the best epoch checkpoint on each set.

As shown in Table 2, both BT-XX and MT-XX

clearly outperform ORIG in all test sets created
through translation, which is consistent with our
previous results. In contrast, the best results on
the original English set are obtained by ORIG, and
neither BT-XX nor MT-XX obtain any clear improve-
ment on the one in Spanish either.7 This confirms
that the underlying phenomenon is limited to trans-
lated test sets. In addition, it is worth mentioning
that the results for the machine translated test set in
English are slightly better than those for the human

5Unlike XNLI, we do not collect 4 additional labels for
each example. Note, however, that XNLI kept the original
label as the gold standard, so the additional labels are irrelevant
for the actual evaluation. This is not entirely clear in Conneau
et al. (2018), but can be verified by inspecting the dataset.

6We use beam search instead of sampling decoding.
7Note that the standard deviations are around 0.3.

Competence Distraction Noise

Model Train AT NR WO NG LN SE

ROBERTA
ORIG 72.9 65.7 64.9 59.1 88.4 86.5
BT-FI 56.6 57.2 80.6 67.8 87.7 86.6

XLM-R

ORIG 78.4 56.8 67.3 61.2 86.8 85.3
BT-FI 60.6 51.7 76.7 64.6 86.2 85.4
MT-FI 64.3 50.3 77.8 68.5 86.4 85.3

Table 3: NLI Stress Test results (combined matched
& mismatched acc). AT = antonymy, NR = numerical
reasoning, WO = word overlap, NG = negation, LN =
length mismatch, SE = spelling error. BT-FI and MT-FI
are considerably weaker than ORIG in the competence
test, but substantially stronger in the distraction test.

translated one, which suggests that the difficulty
of the task does not only depend on the translation
quality. Finally, it is also interesting that MT-ES is
only marginally better than MT-FI in both Spanish
test sets, even if it corresponds to the TRANSLATE-

TRAIN approach, whereas MT-FI needs to ZERO-SHOT

transfer from Finnish into Spanish. This reinforces
the idea that it is training on translated data rather
than training on the target language that is key in
TRANSLATE-TRAIN.

4.4 Stress tests

In order to better understand how systems trained
on original and translated data differ, we run addi-
tional experiments on the NLI Stress Tests (Naik
et al., 2018), which were designed to test the ro-
bustness of NLI models to specific linguistic phe-
nomena in English. The benchmark consists of a
competence test, which evaluates the ability to un-
derstand antonymy relation and perform numerical
reasoning, a distraction test, which evaluates the
robustness to shallow patterns like lexical overlap
and the presence of negation words, and a noise
test, which evaluates robustness to spelling errors.
Just as with previous experiments, we report results
for the best epoch checkpoint in each test set.

As shown in Table 3, ORIG outperforms BT-FI

and MT-FI on the competence test by a large mar-
gin, but the opposite is true on the distraction test.8

In particular, our results show that BT-FI and MT-FI

are less reliant on lexical overlap and the presence
of negative words. This feels intuitive, as translat-
ing the premise and hypothesis independently—as
BT-FI and MT-FI do—is likely to reduce the lexical
overlap between them. More generally, the trans-

8We observe similar trends for BT-ES and MT-ES, but
omit these results for conciseness.
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lation process can alter similar superficial patterns
in the data, which NLI models are sensitive to (§2).
This would explain why the resulting models have
a different behavior on different stress tests.

4.5 Output class distribution
With the aim to understand the effect of the previ-
ous phenomenon in cross-lingual settings, we look
at the output class distribution of our different mod-
els in the XNLI development set. As shown in Ta-
ble 4, the predictions of all systems are close to the
true class distribution in the case of English. Nev-
ertheless, ORIG is strongly biased for the rest of lan-
guages, and tends to underpredict entailment and
overpredict neutral. This can again be attributed to
the fact that the English test set is original, whereas
the rest are human translated. In particular, it is
well-known that NLI models tend to predict entail-
ment when there is a high lexical overlap between
the premise and the hypothesis (§2). However, the
degree of overlap will be smaller in the human
translated test sets given that the premise and the
hypothesis were translated independently, which
explains why entailment is underpredicted. In con-
trast, BT-FI and MT-FI are exposed to the exact same
phenomenon during training, which explains why
they are not that heavily affected.

So as to measure the impact of this phenomenon,
we explore a simple approach to correct this bias:
having fine-tuned each model, we adjust the bias
term added to the logit of each class so the model
predictions match the true class distribution for
each language.9 As shown in Table 5, this brings
large improvements for ORIG, but is less effective
for BT-FI and MT-FI.10 This shows that the perfor-
mance of ORIG was considerably hindered by this
bias, which BT-FI and MT-FI effectively mitigate.

4.6 Comparison with the state-of-the-art
So as to put our results into perspective, we com-
pare our best variant to previous work on the XNLI
test set. As shown in Table 6, our method improves
the state-of-the-art for both the TRANSLATE-TEST and
the ZERO-SHOT approaches by 4.3 and 2.8 points,

9We achieve this using an iterative procedure where, at
each step, we select one class and set its bias term so the class
is selected for the right percentage of examples.

10Note that we are adjusting the bias term in the evaluation
set itself, which requires knowing its class distribution and
is thus a form of cheating. While useful for analysis, a fair
comparison would require adjusting the bias term in a separate
validation set. This is what we do for our final results in §4.6,
where we adjust the bias term in the XNLI development set
and report results on the XNLI test set.

EN EN → XX (avg)

Model Train ent neu con ent neu con

ROBERTA
(translate-test)

ORIG 33.4 32.8 33.8 23.2 40.7 36.1
BT-FI 34.5 31.9 33.6 30.2 35.7 34.1

XLM-R
(zero-shot)

ORIG 32.4 33.2 34.4 27.0 37.8 35.2
BT-FI 34.3 31.6 34.1 33.1 32.9 34.0
MT-FI 33.6 32.6 33.9 30.8 35.3 33.9

Gold Standard 33.3 33.3 33.3 33.3 33.3 33.3

Table 4: Output class distribution on XNLI dev. All
systems are close to the true distribution in English, but
ORIG is biased toward neu and con in the transfer lan-
guages. BT-FI and MT-FI alleviate this issue.

Model Train Base Unbias +∆

ROBERTA
(translate-test)

ORIG 77.7 ±0.6 80.6 ±0.2 2.9 ±0.5

BT-FI 82.3 ±0.2 82.8 ±0.1 0.4 ±0.2

XLM-R
(zero-shot)

ORIG 81.0 ±0.2 82.4 ±0.2 1.4 ±0.3

BT-FI 83.2 ±0.1 83.3 ±0.1 0.1 ±0.1

MT-FI 83.4 ±0.2 83.8 ±0.1 0.4 ±0.2

Table 5: XNLI dev results with class distribution un-
biasing (average acc across all languages). Adjusting
the bias term of the classifier to match the true class
distribution brings large improvements for ORIG, but is
less effective for BT-FI and MT-FI.

respectively. It also obtains the best overall results
published to date, with the additional advantage
that the previous state-of-the-art required a ma-
chine translation system between English and each
of the 14 target languages, whereas our method
uses a single machine translation system between
English and Finnish (which is not one of the target
languages). While the main goal of our work is not
to design better cross-lingual models, but to ana-
lyze their behavior in connection to translation, this
shows that the phenomenon under study is highly
relevant, to the extent that it can be exploited to
improve the state-of-the-art.

5 QA experiments

So as to understand whether our previous findings
apply to other tasks besides NLI, we run addi-
tional experiments on QA. As shown in Table 7,
BT-FI and BT-ES do indeed outperform ORIG for the
TRANSLATE-TEST approach on MLQA. The improve-
ment is modest, but very consistent across different
languages, models and runs. The results for MT-ES

and MT-FI are less conclusive, presumably because
mapping the answer spans across languages might
introduce some noise. In contrast, we do not ob-
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Model en fr es de el bg ru tr ar vi th zh hi sw ur avg

Fine-tune an English model and machine translate the test set into English (TRANSLATE-TEST)

BERT (Devlin et al., 2019) 88.8 81.4 82.3 80.1 80.3 80.9 76.2 76.0 75.4 72.0 71.9 75.6 70.0 65.8 65.8 76.2
Roberta (Liu et al., 2019) 91.3 82.9 84.3 81.2 81.7 83.1 78.3 76.8 76.6 74.2 74.1 77.5 70.9 66.7 66.8 77.8
Proposed (ROBERTA – BT-FI) 90.6 85.4 86.3 84.3 85.2 85.7 82.3 80.6 81.5 77.8 78.6 81.2 77.1 73.5 72.3 81.5

+ Unbiasing (tuned in dev) 90.5 85.8 86.6 84.6 85.5 85.8 82.9 81.2 82.3 78.7 79.7 82.3 77.6 74.4 72.9 82.1

Fine-tune a multilingual model on all machine translated training sets (TRANSLATE-TRAIN-ALL)

Unicoder (Huang et al., 2019) 85.6 81.1 82.3 80.9 79.5 81.4 79.7 76.8 78.2 77.9 77.1 80.5 73.4 73.8 69.6 78.5
XLM-R (Conneau et al., 2020) 88.7 85.2 85.6 84.6 83.6 85.5 82.4 81.6 80.9 83.4 80.9 83.3 79.8 75.9 74.3 82.4

Fine-tune a multilingual model on the English training set (ZERO-SHOT)

mBERT (Devlin et al., 2019) 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
XLM (Conneau and Lample, 2019) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
Unicoder (Huang et al., 2019) 85.1 79.0 79.4 77.8 77.2 77.2 76.3 72.8 73.5 76.4 73.6 76.2 69.4 69.7 66.7 75.4
XLM-R (Conneau et al., 2020) 88.8 83.6 84.2 82.7 82.3 83.1 80.1 79.0 78.8 79.7 78.6 80.2 75.8 72.0 71.7 80.1
Proposed (XLM-R – MT-FI) 88.8 84.8 85.7 84.6 84.2 85.7 82.9 81.8 82.0 82.1 79.9 81.8 79.8 75.9 76.7 82.4

+ Unbiasing (tuned in dev) 88.7 85.0 86.1 84.8 84.8 86.1 83.5 82.2 82.4 83.0 80.8 82.6 80.3 76.0 77.3 82.9

Table 6: XNLI test results (acc). Results for other methods are taken from their respective papers or, if not
provided, from Conneau et al. (2020). For those with multiple variants, we select the one with the best results.

serve any clear improvement for the ZERO-SHOT

approach on this dataset. Our XQuAD results in
Table 8 are more positive, but still inconclusive.

These results can partly be explained by the
translation procedure used to create the different
benchmarks: the premises and hypotheses of XNLI
were translated independently, whereas the ques-
tions and context paragraphs of XQuAD were trans-
lated together. Similarly, MLQA made use of par-
allel contexts, and translators were shown the sen-
tence containing each answer when translating the
corresponding question. As a result, one can ex-
pect both QA benchmarks to have more consistent
translations than XNLI, which would in turn di-
minish this phenomenon. In contrast, the questions
and context paragraphs are independently trans-
lated when using machine translation, which ex-
plains why BT-ES and BT-FI outperform ORIG for
the TRANSLATE-TEST approach. We conclude that
the translation artifacts revealed by our analysis are
not exclusive to NLI, as they also show up on QA
for the TRANSLATE-TEST approach, but their actual
impact can be highly dependent on the translation
procedure used and the nature of the task.

6 Discussion

Our analysis prompts to reconsider previous find-
ings in cross-lingual transfer learning as follows:

The cross-lingual transfer gap on XNLI was
overestimated. Given the parallel nature of
XNLI, accuracy differences across languages are
commonly interpreted as the loss of performance

when generalizing from English to the rest of lan-
guages. However, our work shows that there is
another factor that can have a much larger impact:
the loss of performance when generalizing from
original to translated data. Our results suggest that
the real cross-lingual generalization ability of XLM-

R is considerably better than what the accuracy
numbers in XNLI reflect.

Overcoming the cross-lingual gap is not what
makes TRANSLATE-TRAIN work. The original
motivation for TRANSLATE-TRAIN was to train the
model on the same language it is tested on. How-
ever, we show that it is training on translated data,
rather than training on the target language, that is
key for this approach to outperform ZERO-SHOT as
reported by previous authors.

Improvements previously attributed to data
augmentation should be reconsidered. The
method by Singh et al. (2019) combines machine
translated premises and hypotheses in different
languages (§2), resulting in an effect similar to
BT-XX and MT-XX. As such, we believe that this
method should be analyzed from the point of view
of dataset artifacts rather than data augmentation,
as the authors do.11 From this perspective, having
the premise and the hypotheses in different lan-
guages can reduce the superficial patterns between
them, which would explain why this approach is
better than using examples in a single language.

11Recall that our experimental design prevents a data aug-
mentation effect, in that the number of unique sentences and
examples used for training is always the same (§3.2).
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Model Train en es de ar vi zh hi avg

Test set machine translated into English (TRANSLATE-TEST)

ROBERTA

ORIG 84.7 / 71.4 70.1 / 49.7 60.5 / 41.2 55.7 / 32.5 65.6 / 40.8 53.5 / 26.0 42.7 / 20.7 61.8 ±0.1 / 40.3 ±0.2

BT-ES 84.4 / 71.2 70.9 / 50.7 61.0 / 41.6 56.5 / 33.3 66.7 / 41.8 54.4 / 27.1 43.0 / 21.1 62.4 ±0.1 / 41.0 ±0.2

BT-FI 83.8 / 70.4 70.3 / 50.1 61.1 / 41.9 56.5 / 33.4 66.8 / 42.1 54.9 / 27.5 42.8 / 21.3 62.3 ±0.1 / 40.9 ±0.2

XLM-R

ORIG 84.1 / 71.0 69.9 / 49.2 60.8 / 42.5 55.2 / 31.8 65.4 / 40.6 54.3 / 27.8 43.6 / 21.3 61.9 ±0.1 / 40.6 ±0.1

BT-ES 83.8 / 70.8 70.5 / 50.0 61.4 / 43.5 56.1 / 33.1 66.5 / 41.6 55.4 / 29.0 44.0 / 22.2 62.5 ±0.2 / 41.5 ±0.2

BT-FI 82.7 / 69.6 70.0 / 49.7 61.1 / 43.3 56.0 / 33.1 66.2 / 41.5 55.6 / 29.2 43.7 / 22.0 62.2 ±0.1 / 41.2 ±0.2

MT-ES 83.4 / 69.7 70.0 / 49.1 61.0 / 42.7 55.6 / 32.2 65.9 / 40.9 54.9 / 28.1 43.9 / 21.6 62.1 ±0.3 / 40.6 ±0.2

MT-FI 82.6 / 69.0 69.7 / 48.6 61.0 / 42.8 55.7 / 32.3 65.8 / 40.9 54.8 / 27.9 43.9 / 21.6 61.9 ±0.3 / 40.4 ±0.2

Test set in target language (ZERO-SHOT)

XLM-R

ORIG 84.1 / 71.0 74.5 / 56.3 70.3 / 55.1 66.5 / 45.9 74.3 / 53.1 67.8 / 43.4 71.6 / 53.4 72.7 ±0.1 / 54.0 ±0.1

BT-ES 83.8 / 70.8 74.7 / 56.8 70.3 / 55.2 66.9 / 46.5 74.3 / 53.0 68.2 / 43.8 71.4 / 53.6 72.8 ±0.2 / 54.3 ±0.2

BT-FI 82.7 / 69.6 74.1 / 56.3 69.8 / 54.5 66.6 / 46.0 73.3 / 52.3 67.9 / 43.4 71.0 / 53.2 72.2 ±0.2 / 53.6 ±0.2

MT-ES 83.4 / 69.7 75.2 / 57.3 70.5 / 55.1 67.5 / 46.5 74.5 / 53.2 67.5 / 42.5 71.7 / 52.7 72.9 ±0.3 / 53.9 ±0.4

MT-FI 82.6 / 69.0 74.1 / 56.0 70.2 / 54.6 66.9 / 46.0 73.7 / 52.6 67.2 / 41.5 71.9 / 53.4 72.4 ±0.2 / 53.3 ±0.4

Table 7: MLQA test results (F1 / exact match).

Model Train en es de el ru tr ar vi th zh hi avg

XLM-R
(zero-shot)

ORIG 88.2 82.7 80.8 80.9 80.1 76.1 76.0 80.1 75.4 71.9 76.4 79.0 ±0.2

BT-ES 87.9 83.5 80.5 81.2 80.7 76.8 77.4 80.2 76.4 73.0 76.9 79.5 ±0.3

BT-FI 87.1 82.5 80.2 80.7 79.8 75.7 76.6 79.4 75.7 71.5 76.8 78.7 ±0.3

MT-ES 87.1 84.1 80.3 81.2 80.1 76.0 77.4 80.9 76.7 72.7 77.1 79.4 ±0.3

MT-FI 86.3 81.4 80.2 80.5 80.2 76.6 77.0 80.3 77.6 74.5 77.8 79.3 ±0.2

Table 8: XQuAD results (F1). Results for the exact match metric are similar.

The potential of TRANSLATE-TEST was underesti-
mated. The previous best results for TRANSLATE-

TEST on XNLI lagged behind the state-of-the-art
by 4.6 points. Our work reduces this gap to only
0.8 points by addressing the underlying transla-
tion artifacts. The reason why TRANSLATE-TEST

is more severely affected by this phenomenon is
twofold: (i) the effect is doubled by first using
human translation to create the test set and then ma-
chine translation to translate it back to English, and
(ii) TRANSLATE-TRAIN was inadvertently mitigating
this issue (see above), but equivalent techniques
were never applied to TRANSLATE-TEST.

Future evaluation should better account for
translation artifacts. The evaluation issues
raised by our analysis do not have a simple so-
lution. In fact, while we use the term translation
artifacts to highlight that they are an unintended
effect of translation that impacts final evaluation,
one could also argue that it is the original datasets
that contain the artifacts, which translation simply
alters or even mitigates.12 In any case, this is a
more general issue that falls beyond the scope of

12For instance, the high lexical overlap observed for the
entailment class is usually regarded a spurious pattern, so
reducing it could be considered a positive effect of translation.

cross-lingual transfer learning, so we argue that
it should be carefully controlled when evaluating
cross-lingual models. In the absence of more robust
datasets, we recommend that future multilingual
benchmarks should at least provide consistent test
sets for English and the rest of languages. This
can be achieved by (i) using original annotations
in all languages, (ii) using original annotations in
a non-English language and translating them into
English and other languages, or (iii) if translating
from English, doing so at the document level to
minimize translation inconsistencies.

7 Conclusions

In this paper, we have shown that both human and
machine translation can alter superficial patterns in
data, which requires reconsidering previous find-
ings in cross-lingual transfer learning. Based on the
gained insights, we have improved the state-of-the-
art in XNLI for the TRANSLATE-TEST and ZERO-SHOT

approaches by a substantial margin. Finally, we
have shown that the phenomenon is not specific
to NLI but also affects QA, although it is less pro-
nounced there thanks to the translation procedure
used in the corresponding benchmarks. So as to
facilitate similar studies in the future, we release
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our NLI dataset,13 which, unlike previous bench-
marks, was annotated in a non-English language
and human translated into English.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Proceed-
ings of the Eighth Workshop on Statistical Machine
13https://github.com/artetxem/esxnli

Translation, pages 1–44, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Christian Buck, Kenneth Heafield, and Bas van Ooyen.
2014. N-gram counts and language models from
the Common Crawl. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 3579–3584, Reyk-
javik, Iceland. European Language Resources Asso-
ciation (ELRA).

Casimiro Pio Carrino, Marta R. Costa-jussà, and José
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