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Abstract

In this paper, we consider the task of digitally
voicing silent speech, where silently mouthed
words are converted to audible speech based
on electromyography (EMG) sensor measure-
ments that capture muscle impulses. While
prior work has focused on training speech
synthesis models from EMG collected dur-
ing vocalized speech, we are the first to train
from EMG collected during silently articu-
lated speech. We introduce a method of train-
ing on silent EMG by transferring audio tar-
gets from vocalized to silent signals. Our
method greatly improves intelligibility of au-
dio generated from silent EMG compared to
a baseline that only trains with vocalized data,
decreasing transcription word error rate from
64% to 4% in one data condition and 88% to
68% in another. To spur further development
on this task, we share our new dataset of silent
and vocalized facial EMG measurements.

1 Introduction

In this paper, we are interested in in enabling
speech-like communication without requiring
sound to be produced. By using muscular sen-
sor measurements of speech articulator movement,
we aim to capture silent speech - utterances that
have been articulated without producing sound. In
particular, we focus on the task which we call dig-
ital voicing, or generating synthetic speech to be
transmitted or played back.

Digitally voicing silent speech has a wide array
of potential applications. For example, it could be
used to create a device analogous to a Bluetooth
headset that allows people to carry on phone conver-
sations without disrupting those around them. Such
a device could also be useful in settings where the
environment is too loud to capture audible speech
or where maintaining silence is important. Alter-
natively, the technology could be used by some

Figure 1: Electromyography (EMG) electrodes placed
on the face can detect muscle movements from speech
articulators.

people who are no longer able to produce audible
speech, such as individuals whose larynx has been
removed due to trauma or disease (Meltzner et al.,
2017). In addition to these direct uses of digital
voicing for silent speech, it may also be useful as a
component technology for creating silent speech-
to-text systems (Schultz and Wand, 2010), making
silent speech accessible to our devices and digi-
tal assistants by leveraging existing high-quality
audio-based speech-to-text systems.

To capture information about articulator move-
ment, we make use of surface electromyography
(EMG). Surface EMG uses electrodes placed on top
of the skin to measure electrical potentials caused
by nearby muscle activity. By placing electrodes
around the face and neck, we are able to capture
signals from muscles in the speech articulators. Fig-
ure 1 shows the EMG electrodes used to capture
signals, and Figure 2 shows an example of EMG
signals captured. We collect EMG measurements
during both vocalized speech (normal speech pro-
duction that has voicing, frication, and other speech
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Figure 2: The three components of our data that we will use in our model. The vocalized speech signals Ay and
Ey, are collected simultaneously and so are time-aligned, while the silent signal Eg is a separate recording of the
same utterance without vocalization. During training we use all three signals, and during testing we are given just
Eg, from which we must generate audio. Colors represent different electrodes in the EMG data. Note that the
silent EMG signal Eg is qualitatively different from its vocalized counterpart Ey . Not pictured, but also included
in our data are the utterance texts, in this case: “It is possible that the infusoria under the microscope do the same.”

(from H.G. Well’s The War of the Worlds).

sounds) and silent speech (speech-like articulations
which do not produce sound). We denote these
EMG signals Ey and Eg, respectively. During the
vocalized speech we can also record audio Ay, but
during silent speech there is no meaningful audio
to record.

A substantial body of prior work has explored
the use of facial EMG for silent speech-to-text in-
terfaces (Jou et al., 2006; Schultz and Wand, 2010;
Kapur et al., 2018; Meltzner et al., 2018). Sev-
eral initial attempts have also been made to convert
EMG signals to speech, similar to the task we ap-
proach in this paper (Toth et al., 2009; Janke and
Diener, 2017; Diener et al., 2018). However, these
works have focused on the artificial task of recov-
ering audio from EMG that was recorded during
vocalized speech, rather than the end-goal task of
generating from silent speech. In terms of signals
in Figure 2, prior work learned a model for pro-
ducing audio Ay from vocalized EMG FEy and
tested primarily on other vocalized EMG signals.
While one might hope that a model trained in this
way could directly transfer to silent EMG E'g, Toth
et al. (2009) show that such a transfer causes a sub-
stantial degradation in quality, which we confirm
in Section 4. This direct transfer from vocalized
models fails to account for differences between fea-
tures of the two speaking modes, such as a lack
of voicing in the vocal folds and other changes in
articulation to suppress sound.

In this paper, we extend digital voicing to train

on silent EMG Eg rather than only vocalized EMG
Ey . Training with silent EMG is more challenging
than with vocalized EMG, because when training
on vocalized EMG data we have both EMG inputs
and time-aligned speech targets, but for silent EMG
any recorded audio will be silent. Our solution is to
adopt a target-transfer approach, where audio out-
put targets are transferred from vocalized record-
ings to silent recordings of the same utterances.
We align the EMG features of the instance pairs
with dynamic time warping (Rabiner and Juang,
1993), then make refinements to the alignments us-
ing canonical correlation analysis (Hotelling, 1936)
and audio feature outputs from a partially trained
model. The alignments can then be used to asso-
ciate speech outputs with the silent EMG signals
Eg, and these speech outputs are used as targets
for training a recurrent neural transduction model.

We validate our method using both human and
automatic metrics, and find that a model trained
with our target transfer approach greatly outper-
forms a model trained on vocalized EMG alone. On
a closed-vocabulary domain (date and time expres-
sions §2.1), transcription word error rate (WER)
from a human evaluation improves from 64% to
just 4%. On a more challenging open vocabulary
domain (reading from books §2.2) intelligibility
measurements improve by 20% — from 88% to
68% with automatic transcription or 95% to 75%
with human transcription.

We release our dataset of EMG signals collected
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during both silent and vocalized speech. The
dataset contains nearly 20 hours of facial EMG
signals from a single speaker. To our knowledge,
the largest public EMG-speech dataset previously
available contains just 2 hours of data (Wand et al.,
2014), and many papers continue to use private
datasets. We hope that this public release will en-
courage development on the task and allow for fair
comparisons between methods.

2 Data Collection

We collect a dataset of EMG signals and time-
aligned audio from a single speaker during both
silent and vocalized speech. Figure 2 shows an ex-
ample from the data collected. The primary portion
of the dataset consists of parallel silent / vocalized
data, where the same utterances are recorded us-
ing both speaking modes. These examples can be
viewed as tuples (Eg, Ey, Ay ) of silent EMG, vo-
calized EMG, and vocalized audio, where Ey and
Ay are time-aligned. Both speaking modes of an
utterance were collected within a single session to
ensure that electrode placement is consistent be-
tween them. For some utterances, we record only
the vocalized speaking mode. We refer to these
instances as non-parallel data, and represent them
with the tuple (Ey, Ay ). Examples are segmented
at the utterance level. The text that was read is
included with each instance in the dataset, and is
used as a reference when evaluating intelligibility
in Section 4.

For comparison, we record data from two do-
mains: a closed vocabulary and open vocabulary
condition, which are described in Sections 2.1 and
2.2 below. Section 2.3 then provides additional
details about the recording setup.

2.1 Closed Vocabulary Condition

Like other speech-related signals, the captured
EMG signals from a particular phoneme may look
different depending on its context. For this reason,
our initial experiments will use a more focused vo-
cabulary set before expanding to a large vocabulary
in Section 2.2 below.

To create a closed-vocabulary data condition,
we generate a set of date and time expressions for
reading. These expressions come from a small
set of templates such as “<weekday> <month>
<year>" which are filled in with randomly se-
lected values (over 50,000 unique utterances are
possible from this scheme). Table 1 summarizes

Closed Vocabulary Condition

Parallel silent / vocalized speech
(Es, Ev, Ay)
26 minutes silent / 30 minutes vocalized
Single session
500 utterances
Average of 4 words per utterance
67 words in vocabulary

Table 1: Closed vocabulary data summary

the properties of the data collected in this condition.
A validation set of 30 utterances and a test set of
100 utterances are selected randomly, leaving 370
utterances for training.

2.2 Open Vocabulary Condition

The majority of our data was collected with open-
vocabulary sentences from books. We use public
domain books from Project Gutenberg.! Unlike the
closed-vocabulary data which is collected in a sin-
gle sitting, the open-vocabulary data is broken into
multiple sessions where electrodes are reattached
before each session and may have minor changes
in position between different sessions. In addition
to sessions with parallel silent and vocalized utter-
ances, we also collect non-parallel sessions with
only vocalized utterances. A summary of dataset
features is shown in Table 2. We select a validation
and test set randomly from the silent parallel EMG
data, with 30 and 100 utterances respectively. Note
that during testing, we use only the silent EMG
recordings Eg, so the vocalized recordings of the
test utterances are unused.

2.3 Recording Details

EMG signals are recorded using an OpenBCI Cy-
ton Biosensing Board and transmitted to a com-
puter over WiFi. Eight channels are collected at a
sample rate of 1000 Hz. The electrode locations
are described in Table 3. Gold-plated electrodes
are used with Ten20 conductive electrode paste.
We use a monopolar electrode configuration, with
a shared reference electrode behind one ear. An
electrode connected to the Cyton board’s bias pin
is placed behind the other ear to actively cancel
common-mode interference. A high pass Butter-
worth filter with cutoff 2 Hz is used to remove
offset and drift in the collected signals, and AC

"https://www.gutenberg.org/
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Open Vocabulary Condition

Parallel Silent / Vocalized Speech
(Es, By, Ay)
3.6 hours silent / 3.9 hours vocalized
Average session has 30 min. of each mode
1588 utterances
Non-parallel Vocalized Speech
(Bv,Ay)
11.2 hours
Average session length 67 minutes
5477 utterances

Total
18.6 hours
Average of 16 words per utterance
9828 words in vocabulary

Table 2: Open vocabulary data summary

ized EMG data (E, to A{,), training this model is
straightforward. However, our experiments show
that training on vocalized EMG alone leads to poor
performance when testing on silent EMG (Sec-
tion 4) because of differences between the two
speaking modes.

A core contribution of our work is a method of
training the transducer model on silent EMG sig-
nals, which no longer have time-aligned audio to
use as training targets. We briefly describe our
method here, then refer to section Section 3.2 for
more details. Using a set of utterances recorded in
both silent and vocalized speaking modes, we find
alignments between the two recordings and use
them to associate speech features from the vocal-
ized instance (A{,) with the silent EMG EY. The
alignment is initially found using dynamic time
warping between EMG signals and then is refined
using canonical correlation analysis (CCA) and

Location

predicted audio from a partially trained model.

left cheek just above mouth

left corner of chin

below chin back 3 cm

throat 3 cm left from Adam’s apple
mid-jaw right

right cheek just below mouth

right cheek 2 cm from nose

back of right cheek, 4 cm in front of ear
ref  below left ear

bias below right ear

0NN AW

Finally, to generate audio from predicted speech
features, we use a WaveNet decoder, as described
in Section 3.3.

3.1 EMBG to Speech Feature Transducer

When converting EMG input signals to audio out-
puts, our first step is to use a bidirectional LSTM to
convert between featurized versions of the signals,
E’ and A’. Both feature representations operate
at the same frequency, 100 Hz, so that each EMG
input E'[i] corresponds to a single time-aligned

Table 3: Electrode locations.

output A’[i]. Our primary features for representing
EMG signals are the time domain features from
Jou et al. (2006), which are commonly used in

electrical noise is removed with notch filters at 60  the EMG-speech-to-text literature. After splitting
Hz and its harmonics. Forward-backward filters  the signal from each channel into low and high-

are used to avoid phase delay.

frequency components (T4, and Tpign) using a

Audio is recorded from a built-in laptop micro-  triangular filter with cutoff 134 Hz, the signal is
phone at 16kHz. Background noise is reduced us-  windowed with a frame length of 27 ms and shift of
ing a spectral gating algorithm,”> and volume is nor- 10 ms. For each frame, five features are computed
malized across sessions based on peak root-mean-  as follows:

square levels.

3 Method

7 7

Our method is built around a recurrent neural trans-

speech features (Section 3.1). We will denote the

. Al 1 )
duction model from EMG features to time-aligned = Z |Zhignli]], ZCR(2hign)
1

featurized version of the signals used by the trans-
duction model Ef , and Ay, for EMG and au-
dio respectively. When training solely on vocal-

>https://pypi.org/project/noisereduce/

where ZCR is the zero-crossing rate. In addition
to the time domain features, we also append mag-
nitude values from a 16-point Short-time Fourier
transform for each 27 ms frame, which gives us
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9 additional features. The two representations re-
sult in a total of 112 features to represent the 8
EMG channels. Speech is represented with 26 Mel-
frequency cepstral coefficients (MFCCs) from 27
ms frames with 10 ms stride. All EMG and au-
dio features are normalized to approximately zero
mean and unit variance before processing. To help
the model to deal with minor differences in elec-
trode placement across sessions, we represent each
session with a 32 dimensional session embedding
and append the session embedding to the EMG
features across all timesteps of an example before
feeding into the LSTM.

The LSTM model itself consists of 3 bidirec-
tional LSTM layers with 1024 hidden units, fol-
lowed by a linear projection to the speech feature
dimension. Dropout 0.5 is used between all layers,
as well as before the first LSTM and after the last
LSTM. The model is trained with a mean squared
error loss against time-aligned speech features us-
ing the Adam optimizer. The initial learning rate
is set to .001, and is decayed by half after every
5 epochs with no improvement in validation loss.
We evaluate a loss on the validation set at the end
of every epoch, and select the parameters from
the epoch with the best validation loss as the final
model.

3.2 Audio Target Transfer

To train the EMG to speech feature transducer, we
need speech features that are time-aligned with
the EMG features to use as target outputs. How-
ever, when training with EMG from silent speech,
simultaneously-collected audio recordings do not
have any audible speech to use as targets. In this
section, we describe how parallel utterances, as
described in Section 2, can be used to transfer
audio feature labels from a vocalized recording
to a silent one. More concretely, given a tuple
(EYg, EY,, A},) of features from silent speech EMG,
vocalized speech EMG, and vocalized speech au-
dio, where Ey and Ay are collected simultane-
ously, we estimate a set of audio features fl’s that
time-align with £’y and represent the output that
we would like our transduction network to predict.
A diagram of the method can be found in Figure 3.

Our alignment will make use of dynamic time
warping (DTW) (Rabiner and Juang, 1993), a
dynamic programming algorithm for finding a
minimum-cost monotonic alignment between two
sequences s1 and s3. DTW builds a table d[i, j] of

A A

Transducer
Model

Figure 3: Our audio target transfer method for training
on silent EMG FEg. Details in Section 3.2.

the minimum cost of alignment between the first ¢
items in s and the first j items in so. The recursive
step used to fill this table is d[i,j] = 0[i,j] +
min (d[i — 1, j],d[i,j —1],d[i — 1,7 — 1]),
where 04, j] is the local cost of aligning s1[i] with
so[j]. After the dynamic program, we can follow
backpointers through the table to find a path of
(i,7) pairs representing an alignment. Although
the path is monotonic, a single position ¢ may
repeat several times with increasing values of j.
We take the first pair from any such sequence to
form a mapping as, s, [¢| — Jj from every position ¢
in s1 to a position j in sa.

For our audio target transfer, we perform DTW
as described above with s; = E and sy = E,.
Initially, we use euclidean distance between the
features of Ey and EY, for the alignment cost
(Oemali, j) = || B[] — EY[7]|D, but will describe
several refinements to this choice in Sections 3.2.1
and 3.2.2 below. DTW results in an alignment
asv[i] — j that tells us a position j in £, for ev-
ery position ¢ in E'5. We can then create a warped
audio feature sequence fl’s that aligns with E' us-
ing A5[i] = A} [asy[i]]. During training of the
EMG to audio transduction model, we will use fl’s
as our targets for the transduction outputs flfg when
calculating a loss.

This procedure of aligning signals to translate
between them is reminiscent of some DTW-based
methods for the related task of voice conversion
(Kobayashi and Toda, 2018; Desai et al., 2009).
The difference between these tasks is that our task
operates on triples ( E'g, Ey/, Ay) and must account
for the difference in modality between the input E'g
and output Ay, while voice conversion operates
in a single modality with examples of the form

(A1, Ag).
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In addition to training the transducer from E
to A’,, we also find that training on the vocalized
signals (Ef, to A},) improves performance. The
vocalized samples are labeled with different session
embeddings to allow the model to specialize to
each speaking mode. Each training batch contains
samples from both modes mixed together. For the
open vocabulary setting, the full set of examples to
sample from has 3 sources: (EY, flfg) created from
parallel utterances, (Ey, Ay ) from the vocalized
recording of the parallel utterances, and (Ey, Ay)
from the non-parallel vocalized recordings.

321 CCA

While directly aligning EMG features Eg and EY,
can give us a rough alignment between the signals,
doing so ignores the differences between the two
signals that lead us to want to train on the silent
signals in the first place (e.g. inactivation of the
vocal folds and changes in manner of articulation
to prevent frication). To better capture correspon-
dences between the signals, we use canonical cor-
relation analysis (CCA) (Hotelling, 1936) to find
components of the two signals which are more
highly correlated. Given a number of paired vec-
tors (v1, v2), CCA finds linear projections P; and
P, that maximize correlation between correspond-
ing dimensions of Pjv; and Povs.

To get the initial pairings required by CCA, we
use alignments found by DTW with the raw EMG
feature distance dpmg. We aggregate aligned Eg
and EY, features over the entire dataset and feed
these to a CCA algorithm to get projections Pg and
Py. CCA allows us to choose the dimensionality
of the space we are projecting to, and we use 15
dimensions for all experiments. Using the projec-
tions from CCA, we define a new cost for DTW

dceali, j] = || PsEsli] — Py Ey[j]]|

Our use of CCA for DTW is similar to Zhou and
Torre (2009), which combined the two methods for
use in aligning human pose data, but we found their
iterative approach did not improve performance
compared to a single application of CCA in our
setting.

3.2.2 Refinement with Predicted Audio

So far, our alignments between the silent and vo-
calized recordings have relied solely on distances
between EMG features. In this section, we pro-
pose an additional alignment distance term that
uses audio features. Although the silent recording

has no useful audio signal, once we start to train
a transducer model from Efg to audio features, we
can try to align the predicted audio features A’S
to vocalized audio features Aj,. Combining with
an EMG-based distance, our new cost for DTW
becomes

Stanli, ] = dccalii ]+ A [ A5l — Ay (]|

where ) is a hyperparameter to control the relative
weight of the two terms. We use A = 10 for all
experiments in this paper.

When training a transducer model using
predicted-audio alignment, we perform the first
four epochs using only EMG-based alignment costs
dcca- Then, at the beginning of the fifth epoch, we
use the partially-trained transducer model to com-
pute alignments with cost dg1. From then on, we
re-compute alignments every five epochs of train-
ing.

3.3 WaveNet Synthesis

To synthesize audio from speech features, we use
a WaveNet decoder (van den Oord et al., 2016),
which generates the audio sample by sample con-
ditioned on MFCC speech features A’. WaveNet
is capable of generating fairly natural sounding
speech, in contrast to the vocoder-based synthe-
sizer used in previous EMG-to-speech papers,
which caused significant degradation in naturalness
(Janke and Diener, 2017). Our full synthesis model
consists of a bidirectional LSTM of 512 dimen-
sions, a linear projection down to 128 dimensions,
and finally the WaveNet decoder which generates
samples at 16 kHz. We use a WaveNet implementa-
tion from NVIDIA® which provides efficient GPU
inference. WaveNet hyperparameters can be found
in Appendix A. During training, the model is given
gold speech features as input, which we found to
work better than training from EMG-predicted fea-
tures. Due to memory constraints we do not use
any batching during training, but other optimiza-
tion hyperparameters are the same as those from
Section 3.1.

4 Experiments

In this section, we run experiments to measure in-
telligibility of audio generated by our model from
silent EMG signals Eg. Since prior work has
trained only on vocalized EMG signals Ey, we

3https://github.com/NVIDIA/nv-wavenet
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compare our method to a direct transfer baseline
which trains a transducer model only on vocalized
EMG Ey before testing on the silent EMG Eg.*
The baseline transducer and wavenet models have
identical architecture to those used by our method,
but are not trained with silent EMG using our tar-
get transfer approach. Since one may hypothesize
that most of the differences between silent and vo-
calized EMG will take place near the vocal folds,
we also test a variant of this baseline where the
electrode placed on the neck is ignored.

We first test on the closed vocabulary data de-
scribed in Section 2.1, then on the open vocabulary
data from Section 2.2. On the open vocabulary
data, we also run ablations to evaluate different
alignment refinements with CCA and predicted au-
dio (see Sections 3.2.1 and 3.2.2).

4.1 Closed Vocabulary Condition

We begin by testing intelligibility on the closed
vocabulary date and time data with a human tran-
scription evaluation. The human evaluator is given
a set of 20 audio output files from each model be-
ing tested (listed below) and is asked to write out
in words what they heard. The files to transcribe
are randomly shuffled, and the evaluator is not told
that the outputs come from different systems. They
are told that the examples will contain dates and
times, but are not given any further information
about what types of expressions may occur. The
full text of the instructions provided to the eval-
uator can be found in Appendix B. We compare
the transcriptions from the human evaluator to the
original text prompts that were read during data
collection to compute a transcription word error
rate (WER):

substitutions + insertions + deletions
WER =

reference length

Lower WER values indicate better models.

Using this evaluation, we compare three differ-
ent models: a direct transfer baseline trained only
on vocalized EMG signals, a variant of this base-
line where the throat electrode is removed to reduce
divergence between speaking modes, and our full
model trained on silent EMG using target-transfer.
All three models were trained on open vocabulary

“Note that because prior work has not released data or
code, we are unable to perform a direct comparison to ex-
periments found in their papers. Our direct transfer baseline
represents a conceptually equivalent model, but with larger
neural networks than prior work.

Model WER
Direct transfer baseline 88.8

Without throat electrode 64.6
Our model 3.6

Table 4: Results of a human intelligibility evaluation on
the closed vocabulary data. Lower WER is better. Our
model greatly outperforms both variants of the direct
transfer baseline.

data (Section 2.2) before being fine-tuned on the
closed vocabulary training set. A single WaveNet
model is used to synthesize audio for all three mod-
els and was also trained on the open vocabulary
data before being fine-tuned in-domain.

The results of our evaluation are shown in Ta-
ble 4. We first observe that removing the throat
electrode substantially improves intelligibility for
the direct transfer baseline. Although this modifi-
cation removes potentially useful information, it
also removes divergence between the silent and vo-
calized EMG signals. Its relative success further
motivates the need for methods to account for the
differences in the two modes, such as our target-
transfer approach. However, even with the throat-
removal modification, the direct transfer approach
is still only partially intelligible.

A model trained with our full approach, includ-
ing CCA and predicted-audio alignment, achieves
a WER of 3.6%. This result represents a high level
of intelligibility and a 94% relative error reduction
from the strongest baseline. Samples of outputs
from our model can be found in the supplementary
material.

4.2 Open Vocabulary Condition

Similar to our evaluation in Section 4.1, we use
a transcription WER to evaluate intelligibility of
model outputs in the open vocabulary condition.
For the open vocabulary setting, we evaluate both
with a human transcription and with transcriptions
from an automatic speech recognizer.

4.2.1 Human Evaluation

Our human evaluation with open vocabulary out-
puts follows the same setup as the closed vocab-
ulary evaluation. Transcripts are collected for 20
audio outputs from each system, with a random
interleaving of outputs from the different systems.
The annotator had no prior information on the con-
tent of the texts being evaluated. We compare two
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Model WER
Direct transfer baseline 91.2
Without throat electrode 88.0
Our model 68.0
Without CCA 69.8
Without audio alignment ~ 76.5

Table 5: Results of an automatic intelligibility evalua-
tion on open vocabulary data. Lower WER is better.

systems: direct transfer without the throat electrode
(the stronger baseline) and our full model.

The results of this evaluation are a 95.1% WER
for the direct transfer baseline and 74.8% WER for
our system. While the intelligibility is much lower
than in the closed vocabulary condition, our method
still strongly out-performs the baseline with a 20%
absolute improvement.

4.2.2 Automatic Evaluation

In addition to the human evaluation, we also per-
form an automatic evaluation by transcribing sys-
tem outputs with a large-vocabulary automatic
speech recognition (ASR) system. Using an au-
tomatic transcription allows for much faster and
more reproducible comparisons between methods
compared to a human evaluation. For our automatic
speech recognizer, we use the open source imple-
mentation of DeepSpeech from Mozilla®> (Hannun
et al., 2014). Running the recognizer on the orig-
inal vocalized audio recordings from the test set
results in a WER of 9.5%, which represents a lower
bound for this evaluation.

Our automatic evaluation results are shown in
Table 5. While the absolute WER values for the
ASR evaluation do not perfectly match those of the
human transcriptions, both evaluations show a 20%
improvement of our system over the best baseline.
Given this correlation between evaluations and the
many advantages of automated evaluation, we will
use the automatic metric throughout the rest of this
work and recommend its use for comparisons in
future work.

We also run ablations of the two alignment re-
finement methods from Sections 3.2.1 and 3.2.2
and include results in Table 5. We see that both
refinements have a positive effect on performance,
though the impact of aligning with predicted audio
is greater.

>https://github.com/mozilla/DeepSpeech

90 —

80 |~

WER
[}

70 |- °

60 \ \ \ |
0 5 10 15 20

Data Amount (Hours)

Figure 4: Effect of data amount on intelligibility.

4.3 Additional Experiments

In the following subsections, we perform additional
experiments on the open vocabulary data to explore
the effect of data size and choice of electrode po-
sitions. These experiments are all evaluated using
the automatic transcription method described in
Section 4.2.

4.3.1 Data Size

In this section we explore the effect of dataset
size on model performance. We train the EMG-to-
speech transducer model on various-sized fractions
of the dataset, from 10% to 100%, and plot the
resulting WER. We select from the parallel (silent
and vocalized) and non-parallel (vocalized only)
portions proportionally here, but will re-visit the
difference later. Although data size also affects
WaveNet quality, we use a single WaveNet trained
on the full dataset for all evaluations to focus on
EMG-specific data needs.

Figure 4 shows the resulting intelligibility mea-
surements for each data size. As would be expected,
the rate of improvement is larger when data sizes
are small. However, there does not seem to be
a plateau in performance, as improvements con-
tinue even when increasing data size beyond fifteen
hours. These continued gains suggest that collect-
ing additional data could provide more improve-
ment in the future.

We also train a model without the non-parallel
vocalized data (vocalized recordings with no asso-
ciated silent recording; see Section 2). A model
trained without this data has a WER of 71.6%, a
loss of 3.6 absolute percentage points. This con-
firms that non-parallel vocalized data can be useful
for silent speech even though it contains only data
from the vocalized speaking mode. However, if we
compare this accuracy to a model where the same
amount of data was removed proportionally from
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the two data types (parallel and non-parallel), we
see that removing a mixture of both types leads to
a much larger performance decrease to 76% WER.
This indicates that the non-parallel data is less im-
portant to the performance of our model, and sug-
gests that future data collection efforts should focus
on collecting parallel utterances of silent and vocal-
ized speech rather than non-parallel utterances of
vocalized speech.

4.3.2 Removing Electrodes

In this section, we experiment with models that
operate on a reduced set of electrodes to assess the
impact on performance and gain information about
which electrodes are most important. We perform
a random search to try to find a subset of four
electrodes that works well. More specifically, we
sample 10 random combinations of four electrodes
to remove (out of 70 possible combinations) and
train a model with each. We then use validation
loss to select the best models.

The three best-performing models removed the
following sets of electrodes (using electrode num-
bering from Table 3): 1) {4,5,7,8} 2) {3,5,7,8}
and 3) {2, 5,7, 8}. We note that electrodes 5, 7, and
8 (which correspond with electrodes on the mid-
jaw, upper cheek, and back cheek) appear in all
of these, indicating that they may be contributing
less to the performance of the model. However, the
best model we tested with four electrodes did have
substantially worse intelligibility compared to an
eight-electrode model, with 76.8% WER compared
to 68.0%. A model that removed only electrodes 5,
7, and 8 also performed substantially worse, with a
WER of 75.3%.

5 Conclusion

Our results show that digital voicing of silent
speech, while still challenging in open domain set-
tings, shows promise as an achievable technology.
We show that it is important to account for differ-
ences in EMG signals between silent and vocal-
ized speaking modes and demonstrate an effective
method of doing so. On silent EMG recordings
from closed vocabulary data our speech outputs
achieve high intelligibility, with a 3.6% transcrip-
tion word error rate and relative error reduction
of 95% from our baseline. We also significantly
improve intelligibility in an open vocabulary condi-
tion, with a relative error reduction over 20%. We
hope that our public release of data will encourage

others to further improve models for this task.°
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A WaveNet Hyperparameters

Hyperparameter Value
n_in_channels 256
n_layers 16
max_dilation 128
n_residual_channels 64
n_skip_channels 256
n_out_channels 256
n_cond_channels 128
upsamp_window 432
upsamp_stride 160

B Human Evaluator Instructions

The instructions given to the human evaluator are
as follows: “Please listen to each of the attached
sound files and write down what you hear as best
you can. There are 60 files, each of which will
contain an expression of some date or time. Write
your transcriptions into a spreadsheet such as Excel
or Google sheets so that the row numbers match
the numbers in the file names. Although many
of the clips will contain numbers, please write
out what you hear as words. For example, you
might write something like: five oh two pm

on Thursday’ Many of the clips may be dif-
ficult to hear. If this is the case, write whatever
words you are able to make out, even if it does not
form a complete expression. For example: five
two pm on If you cannot make out any words,
leave the corresponding row blank.”

C Additional Data Collection Details

During data collection, text prompts consisting of
a single sentence to be read are displayed on a
screen. After reading the sentence, the subject
pressed a key to advance to the next sentence. If
they were unhappy with a recording, they could
press another key to re-record an utterance. A real-
time display of EMG signals was used to monitor
the electrodes for excessive noise. During silent
speech, the subject was instructed to mouth words
as naturally as possible without producing sound.

D Additional Reproducibility
Information

Models were trained for up to two days on a sin-
gle K80 GPU. Hyperparameter search consisted
of a mixture of manual and random search, typi-
cally with less than 10 runs. Hyperparameters were
chosen primarily based validation loss, with major
design decisions also being checked with automatic
transcription evaluation.

"We intentionally used an example that does not match
a pattern in our generation procedure to avoid biasing the
evaluator.

5530



