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Abstract

We introduce a novel chart-based algorithm
for span-based parsing of discontinuous con-
stituency trees of block degree two, including
ill-nested structures. In particular, we show
that we can build variants of our parser with
smaller search spaces and time complexities
ranging from O(n6) down to O(n3). The cu-
bic time variant covers 98% of constituents ob-
served in linguistic treebanks while having the
same complexity as continuous constituency
parsers. We evaluate our approach on Ger-
man and English treebanks (Negra, Tiger, and
DPTB) and report state-of-the-art results in the
fully supervised setting. We also experiment
with pre-trained word embeddings and Bert-
based neural networks.

1 Introduction

Syntactic parsing aims to recover the latent syn-
tactic relations between words in a sentence, ex-
pressed in a given syntactic formalism. In this
paper, we focus on constituency trees where the
syntactic structure is described by the means of a
hierarchical structure composed of nodes: words
are leaf nodes whereas internal nodes represent
labeled constituents or phrases, see Figure 1. Con-
stituency trees can broadly be classified into two
categories. On the one hand, in a continuous con-
stituent tree, each node must dominate a contiguous
sequence of words.1 On the other hand, in a dis-
continuous constituent tree, a node can dominate
a non-contiguous sequence of words. It has been
argued that modeling discontinuity is unavoidable,
see for example McCawley (1982) and Bunt et al.
(1987) for English and Müller (2004) for German.

Phrase-structure grammars have been proposed
to parse and generate constituency trees. For ex-

⇤Work partially done while the author was a postdoc at
University of Amsterdam with Ivan Titov.

1The set of words that a node dominates is the set of leaf
nodes in the subtree for which this node is the root.

ample, Context-Free Grammars (CFG) are able to
process continuous constituent trees whereas Mul-
tiple Context Free Grammars (Seki et al., 1991,
MCFG) and Linear Context-Free Rewriting Sys-
tem (Vijay-Shanker et al., 1987, LCFRS) are able to
process discontinuous constituent trees. CFGs have
been widely studied for practical parsing due to the
availability of time-efficient chart-based parsing al-
gorithms based on dynamic programming: parsing
a sentence of length n is a O(gn3) problem where
g is a grammar related constant (Kasami, 1966;
Younger, 1967; Cocke, 1969). However, parsing
algorithms for MCFGs and LCFRSs are deemed to
be impractical despite their polynomial-time com-
plexity (see Section 2). Therefore, most of the
experimental work in this field has been limited to
parsing short sentences, e.g. sentences that contain
less than 40 words (Kallmeyer and Maier, 2010;
Evang and Kallmeyer, 2011; Maier et al., 2012;
Kuhlmann and Nivre, 2006).

Advances in machine learning led to the devel-
opment of constituency parsers that are no longer
based on phrase-structure grammars. Instead, the
prediction step only ensures the well-formedness
of the resulting structure and does not enforce com-
pliance of the syntactic content represented by the
structure. For example, a verbal phrase is not con-
strained to contain a verb. As such, they can be as-
similated to the mainstream approach to bi-lexical
dependency parsing where one considers candi-
date outputs only in a restricted class of graphs:
non-projective (McDonald et al., 2005), projective
(Eisner, 1997) or bounded block degree and well-
nested spanning aborescences (Gómez-Rodríguez
et al., 2009, 2011; Corro et al., 2016), among others
(Kuhlmann and Nivre, 2006; Satta and Kuhlmann,
2013; Pitler et al., 2012). These approaches assume
that intricate relations in the syntactic content can
be implicitly learned by the scoring function.

Span-based parsing is a grammarless approach
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to constituency parsing that decomposes the score
of a tree solely into the score of its constituents,
originally proposed for continuous constituency
parsing (Hall et al., 2014; Stern et al., 2017; Cross
and Huang, 2016).2 Recovering the highest scor-
ing tree can be done exactly using a slightly up-
dated CYK algorithm or using inexact3 methods
like top-down or transition based algorithms. This
approach has obtained state-of-the art results for
continuous constituency parsing (Stern et al., 2017;
Kitaev and Klein, 2018; Kitaev et al., 2019). In
this work, we propose the first span-based parser
with an exact decoding algorithm for discontinu-
ous constituent parsing. To this end, we introduce
a novel exact chart-based algorithm based on the
parsing-as-deduction formalism (Pereira and War-
ren, 1983) that can parse constituent trees with
a block degree of two, including ill-nested struc-
tures (see Section 3), which have been argued to
be unavoidable to model natural languages (Chen-
Main and Joshi, 2010). Therefore, our constituency
parser is closely related to the dependency parser
of Gómez-Rodríguez et al. (2009, 2011). Despite
its O(n6) time-complexity, where n is the length of
the input sentence, our algorithm is reasonably fast:
in our experiments, all treebanks can be parsed
without removing long sentences. Moreover, we
observe that several deduction rules are of little
use to retrieve trees present in treebanks. There-
fore, we experiment with variants of the algorithm
where we remove specific deduction rules. This
leads to parsing algorithms with lower asymptotic
complexity that experimentally produce accurate
parses. Importantly, we show that a specific form
of discontinuity can be parsed in O(n3), that is
with the same asymptotic complexity as continu-
ous constituency parsing.

Our main contributions can be summarized as
follows:

• we propose a new span-based algorithm for
parsing discontinuous constituency trees of
block degree two with exact decoding and
reasonable average execution time;

• we propose a cubic-time algorithm that can
parse a significant portion of discontinuous

2In contrast, for example, to several transition systems that
can incorporate scores related to actions that where executed
during derivation, or to split point decision and left-right span
scores in the parser of Stern et al. (2017).

3The term inexact refers to the fact that these methods are
not guaranteed to recover the highest scoring structure.

constituents in various corpora while having
the same theoretical complexity as continuous
constituency parsers, without requiring any
preprocessing or post-processing steps con-
trary to the approaches of van Cranenburgh
et al. (2016) and Boyd (2007);

• we report state-of-the-art parsing results on
these treebanks in a fully supervised setting
and experiment with pre-trained word embed-
dings, including Bert based models.

We release the C++/Python implementation of the
parser.4

2 Related Work

Phrase-structure grammars: The LCRFS for-
malism has been widely used in the context
of discontinuous constituency parsing, although
MCFG and Simple Range Concatenation Gram-
mars (Boullier, 1998) have been shown to be equiv-
alent, see Seki et al. (1991) and Boullier (2004).
Kallmeyer and Maier (2010) introduced the first
practical chart-based LCFRS parser for German,
which was subsequently applied to English (Evang
and Kallmeyer, 2011). However, they restrict their
data to sentences that contain less than 25 words.
To improve parsing time, Maier et al. (2012) pro-
posed an experimentally faster parser based on the
A

⇤ search algorithm together with a block degree
two restriction. However, they still limit the sen-
tence size to a maximum of 40 words. A single
sentence of 40 words takes around 3 minutes to
be parsed, an impressive improvement over the
parser of Kallmeyer and Maier (2010) that needs
several hours, but still prohibitively slow for large
scale parsing. Concurrently to this work, Stanoje-
vić and Steedman (2020) proposed a span based
grammar-less LCFRS parser. They also explored
the well-nested variants.

Graph based parsing: A different line of work
proposed to explore constituency parsing as a de-
pendency parsing problem.5 In other words, even
if it is straightforward to represent constituency
trees as hierarchical phrase structures, the same
syntactic content can be represented with differ-
ent mathematical objects (Rambow, 2010), in-
cluding directed graphs commonly used for de-

4https://github.com/FilippoC/
disc-span-parser-release

5Note that opposite line of work also exists, that is reducing
dependency parsing to constituency parsing, see for example
Maier and Kallmeyer (2010).

https://github.com/FilippoC/disc-span-parser-release
https://github.com/FilippoC/disc-span-parser-release
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Figure 1: Example of a discontinuous constituency tree. The
bold red VP node dominates two sequences of words: “What”
and “do”. All other nodes are continuous. Numbers below the
sentence are interstice indices used in the algorithm descrip-
tion.
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Figure 2: Execution time per sentence length
of the chart-based algorithm for the O(n3)
(solid line) and O(n4) (dashed lines) variants.

pendency parsing. Fernández-González and Mar-
tins (2015) reduced the (lexicalized) constituency
parsing task to dependency parsing where the
constituency structure is encoded into arc labels.
Then, discontinuous constituency parsing is re-
duced to the labeled Spanning Arborescence prob-
lem which can be solved in quadratic time. The
same reduction has also been used in a sequence-
to-sequence framework (Fernández-González and
Gómez-Rodríguez, 2020). Corro et al. (2017) pro-
posed a joint supertagging and dependency pars-
ing reduction where vertices represent supertags6

and labeled arcs encode combination operations
(substitution and adjunction). The problem is then
reduced to the labeled Generalized Spanning Ar-
borescence problem which is known to be NP-hard
(Myung et al., 1995). One benefit of these ap-
proaches is that they do not assume any restric-
tion on the constituency structure: they can parse
ill-nested structures and have no block degree re-
striction. However, they cannot impose such con-
straints, which may be beneficial or required and
they factor the score of a tree into dependency, su-
pertag and/or label scores, which means that the
learning objective is not directly related to the eval-
uation metric which focuses on constituents. More-
over, the factorization relies on possibly erroneous
heuristics (head-percolation tables) to lexicalize the
original structure if the information is not present
in the treebank. On the contrary, in this work, we
directly score parts of the syntactic content (i.e. la-
beled constituents). Therefore, at training time we
can optimize an objective directly related to the

6A supertag is an elementary tree that encodes the se-
quence of lexicalized constituents for which a given word is
the head, see Bangalore and Joshi (1999)

end-goal evaluation.
Transition systems: Lastly, transition-based

parsers have been proposed, based on the idea of
the SWAP transition for non-projective dependency
parsing (Nivre, 2009), see Versley (2014) and fol-
lowing work based on shift-reduce strategy (Maier,
2015; Maier and Lichte, 2016; Stanojević and Al-
hama, 2017a). These systems rely on the fact that
a discontinuous tree can be transformed into a con-
tinuous one by changing word order in the input
sentence. They do not require strong independence
assumption on the scoring model which can be
useful to encode richer information, especially for
long-distance relationships. However, the num-
ber of transitions required to parse discontinuities
can impact prediction accuracy. To alleviate this
problem, two different approaches have been ex-
plored: Coavoux and Crabbé (2017) introduced a
two-stack system coupled with a GAP transition
and Maier and Lichte (2016) proposed the SHIFT-
I transition to access non-local elements directly,
therefore reducing the number of transitions. In
exchange for a rich parameterization, transition sys-
tems lose optimality guarantees with respect to the
scoring model and rely on greedy or beam-search
decoding. These approaches achieve state-of-the-
art results while being fast at test time (Coavoux
and Cohen, 2019; Coavoux et al., 2019). On the
contrary, our approach is exact with respect to the
scoring model, i.e. it will always return the highest
scoring structure.

Search space restriction: Previous work in con-
stituency and dependency parsing proposed to re-
strict the search space to improve time complexity
while at the same time ensuring a good coverage
of data. Satta and Schuler (1998) proposed an al-
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gorithm that parses a subclass of Tree Adjoining
Grammar in O(n5) instead of O(n6). Our pars-
ing algorithm is highly related to the dependency
parser of Gómez-Rodríguez et al. (2011) and the
restricted variant of the latter introduce by Pitler
et al. (2012).

3 Parsing Algorithm

We describe our algorithm using the parsing-as-
deduction framework (Pereira and Warren, 1983).
As such, our description is independent of the
value one wants to compute, whether it be the (k-
)best derivation(s), the partition function or span
marginals (Goodman, 1999).7 However, we will
focus on argmax decoding.

We are interested in constituency trees of block
degree two, including ill-nested trees. The block
degree two constraint is satisfied if each node dom-
inate at most two disjoint sequences of words. Let
w1...wn be a sentence. A constituency tree for this
sentence is ill-nested if it contains two nodes domi-
nating disjoint sets of words W (1) and W

(2) such
that there exists wi, wj 2 W

(1) and wk, wl 2 W
(2)

such that i < k < j < l or k < i < l < j.
Filtering: Contrary to CFGs and LCFRS CKY-

style parsers, there is no side-condition constrain-
ing allowed derivations in span-based parsers. The
label of a constituent is independent of the label of
its children.

Binarization: Interestingly, span-based parsers
do not require explicit binarization of the con-
stituency structure. Although grammar based
parsers require binarization of the grammar produc-
tion rules and therefore of the constituency struc-
ture to ensure tractable complexity, span-based
parsers can take care of binarization implicitly by
introducing a supplementary constituency label
with a fixed null score.

Unary rules: We follow Stern et al. (2017) and
merge unary chains into a single constituent with a
new label, e.g. the chain SBARQ ! SQ will result
in a single constituent labeled SBARQ_SQ.

3.1 Items

Let N be the set of non-terminals (labels) and n

the length of the input sentence. We define spans
with interstice indices instead of word indices, see
Figure 1. Items manipulated by our deduction rules

7Note that parsing without grammatical constraints results
in all sentences having a non-empty parse forest, therefore the
recognition problem is ill-defined.

are 5-tuples [A, i, k, l, j] where A 2 N [ {?} is
the constituent label with value ? indicating a null
label used for implicit binarization. Given that
each item represents a constituent, we will use the
same notation to refer to the chart item and to the
linguistic structure interchangeably. Indices i, j 2
N, k, l 2 N [ {�} define the constituent span:

• if the constituent is continuous, then k = l =
� and 0  i < j  n;

• otherwise, the constituent is discontinuous
(with a single gap) and 0  i < k and
l < j  n, with k < l, define its left and
right spans, respectively.

For example, the tree in Figure 1 contains the dis-
continuous constituent [VP, 0, 1, 5, 6].

3.2 Axioms and goal

Axiom items are word level constituents, i.e. items
of the form [A, i,�,�, i + 1] with 0  i < n

and A 2 N [ {?}. In our experiments, axioms
can have a null label, i.e. A = ?, because we
do not include part-of-speech tags as leaves of the
constituency tree.

The goal item is defined as [A, 0,�,�, n] with
A 2 N[{?}. The goal can have a null label, so we
can parse empty trees and disconnected structures
occurring in treebanks without further pre/post-
processing steps.

3.3 Deduction rules

The deduction rules used to derive the goal from
axioms are listed on Figure 3. Each rule takes
exactly two premises. Note that rule (a) is the only
rule needed for continuous constituency parsing.

Rule (b) creates a discontinuous constituent
from two continuous constituents. The set of rules
(e)-(f)-(g)-(h) (resp. (c)) allow to combine one dis-
continuous and one continuous constituent to pro-
duce a discontinuous one (resp. a continuous one).

Finally, there are rules that combine two discon-
tinuous antecedents. Rule (d) is the only such rule
that is allowed for building well-nested trees. The
other four rules (i)-(j)-(k)-(l) are used for the con-
struction of ill-nested trees. As such, it is easy to
control whether ill-nested structures are permitted
or not by including or excluding them.

3.4 Soundness and completness

The algorithm is sound by definition because items
cannot represent constituents with a gap degree
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(a) Combine

[A, i,�,�, k] [B, l,�,�, j]

[C, i, k, l, j]

(b) Create gap

[A, i, k, l, j] [B, k,�,�, l]

[C, i,�,�, j]

(c) Fill gap

[A, i,m, n, j] [B,m, k, l, n]

[C, i, k, l, j]

(d) Wrapped combine

i m

A B
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BA
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i m k l j
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C

i k l m j

A
B

C

[A, i,�,�,m] [B,m, k, l, j]

[C, i, k, l, j]

(e) Combine keeping
gap right

[A, i, k, l,m] [B,m,�,�, j]

[C, i, k, l, j]

(f) Combine keeping
gap left

[A, i,m, l, j] [B,m,�,�, k]

[C, i, k, l, j]

(g) Combine shrinking
gap left

[A, i, k,m, j] [B, k,�,�,m]

[C, i, k, l, j]

(h) Combine shrinking
gap right

i m k n j

A B

C

i m k l n j

A B

C

i m n k l j

A B

C

i k l m n j

BA

C

[A, i,m, k, n] [B,m, k, n, j]

[C, i,�,�, j]

(i) Ill-nested combine
no gap

[A, i,m, l, n] [B,m, k, n, j]

[C, i, k, l, j]

(j) Ill-nested combine
gap center

[A, i,m, n, k] [B,m, n, l, j]

[C, i, k, l, j]

(k) Ill-nested combine
gap right

[A, i, k,m, n] [B, l,m, n, j]

[C, i, k, l, j]

(l) Ill-nested combine
gap left

Figure 3: Deduction rules of our algorithm.

strictly greater than two and every rule deduces an
item representing a constituent spanning a greater
number of words, therefore they cannot construct
invalid trees where a parent constituent spans fewer
words than one of its children.

Completeness can be proved by observing that
every possible binary parent-children combination
can be produced by one of the rules. For the non-
binary case, completeness follows from the fact that
a constituent with 3 or more children can be built by
first deriving intermediary constituents with label
?.

3.5 Complexity

The space and time complexity can be inferred
from item structures and deduction rules: the space
complexity is O(|N |n

4) and time complexity is
O(|N |

3
n
6). In practice, we decompose the score

of a tree into the sum of the score of its con-
stituents only and there are no constraints between
antecedents and consequent labels. Therefore, we
can build intermediary unlabeled items of the form
[i, k, l, j] which replace antecedents in every rule
in Figure 3. With this update, the time complexity
is linear in the number of labels, that is, O(|N |n

6).

We instantiate variants of the algorithm than can-
not parse the full family of block degree two trees
but that can still fit most actual linguistic structures
present in treebanks, with a lower time complexity.
By using only rules (a), (b) and (c) we can build a
parser with a O(n4) time complexity. In the next
section, we show that this specific variant can be op-
timized into a O(n3) time parser. By adding rules
(e), (f), (g), (h) and (i) we build a O(n5) parser. Fi-
nally, we construct O(n5) and O(n6) well-nested
parsers by excluding rules (i), (j), (k) and (l).

3.6 Cubic time discontinuous constituency

parser

A specific variant uses only deduction rules (a), (b)

and (c) from Figure 3, leading to a O(n4) space
and time complexity. In this setting, there is no way
to combine two items representing discontinuous
constituents or to have a discontinuous constituent
that has a discontinuous child in the resulting parse
tree. In this section, we prove that the family of
trees induced by this variant of the parser can actu-
ally be parsed with a O(n3) time complexity, that
is equivalent to continuous constituency parsers.

The intuition goes as follows. We could replace
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rules (b) and (c) with the single rule (m) in Figure 4
where the right hand side condition D 2 N implies
the existence of a discontinuous constituent with
label D,8 with left part spanning words i to k and
right part spanning words l to j. However, observe
that this new rule performs two tests that could be
done independently:

1. the right span boundary of the first antecedent
must match the left span boundary of the sec-
ond one;

2. the right span boundary of the second an-
tecedent must match the left span boundary of
the third antecedent.

Therefore, we can break the deduction into two
sequential deductions, first testing the "k" boundary
then the "l” boundary.9

To this end, we build a parser based on 4-
tuple items [A, ⌧, i, j] where ⌧ 2 {>,?} indi-
cates whether the item represents a continuous
constituent (⌧ = >) or an incomplete discontin-
uous constituent (⌧ = ?). More precisely, an item
[A,?, i, j] represents a partial discontinuous con-
stituent who would be represented as [A, i, ?, j, ?]
in the previous formalization. The right boundary
of its two spans are unknown: the one of the left
span has been "forgotten" and the one on the right
span is yet to be determined. The deduction rules of
this new parser are listed on Figure 4, with axioms
[A, ⌧, i, i+ 1], 0  i < n, and goal [A, ⌧, 0, n].

We report the running time per sentence length
for the O(n4) and O(n3) parsers in Figure 2. As
expected, the running time of the cubic time parser
is way lower for long sentences.

4 Experiments

We experiment on the Discontinuous Penn Tree-
bank (Marcus et al., 1993; Evang and Kallmeyer,
2011, DPTB) with standard split, the Tiger tree-
bank (Brants et al., 2002) with the SPMRL 2014
shared task split (Seddah et al., 2014) and the Negra
treebank (Skut et al., 1997) with the split proposed
by Dubey and Keller (2003).

8Without loss of generality, we assume the label D is not
null. Although it could be without changing the overall idea,
we would just add an extra way to do implicit binarization that
can already be handled with rule (a).

9This idea of breaking up simultaneous tests in a deduc-
tion rule has been previously proposed for improving time
complexity of lexicalized grammar parsers (Eisner and Satta,
1999, 2000)

4.1 Data coverage

One important question is whether our parser has
a good coverage of the dataset as we can only re-
trieve constituents of block degree one and two.
We report the maximum recall that our parser can
achieve in its different variants in Table 1.

First, we observe that our cubic time parser can
recover 98% of all constituents in the three tree-
banks, or around 80% of constituents of block de-
gree of exactly two. Second, the O(n5) variant
of the parser can recover more than 99% of all
treebanks, and, interestingly, there is almost no
coverage change when moving to the full deduc-
tion system. If we consider the parsers with well-
nested restriction, the O(n5) and O(n6) variants
have the same coverage in German datasets and
the latter can only recover 2 additional constituents
in the English treebanks. If we include ill-nested
construction, the difference is either 2 (DPTB and
Negra) or 8 (Tiger) constituents. In practice, we ob-
served that both O(n5) and O(n6) variants predict
the same analysis.

4.2 Neural parameterization

We use a neural architecture based on bidirectional
LSTMs detailed in Appendix A.

Constituent scores Even with the block degree
two restriction, there is a larger number (quartic!)
of constituent scores to compute. In early experi-
ments, we observed that weighting such a number
of constituents without further decomposition blow
up the neural network memory usage and was pro-
hibitively slow. Therefore, we introduce a score
decomposition that results in a quadratic number
of scores to compute.

We decompose the score of a constituent
[A, i, k, l, j] as the sum of a score associated with
its outer boundaries (i.e. indices i and j) and one
with its gap boundaries (i.e. indices k and l). The
score of the constituent is defined as:10

WA,i,k,l,j =

8
>>><

>>>:

S(c. label)
A,i+1,j + S

(c. span)
i+1,j if k = l = �,

S(o. label)
A,i+1,j + S

(o. span)
i+1,j otherwise.

+S(g. label)
A,k+1,l + S

(g. span)
k+1,l

where tensors S(c. label), S(o. label),
S(g. label)

2 R|N[{;}|⇥n⇥n and matrices
10The +1 in tensor indices result of the fact that we use

interstice indices for constituents but that the neural network
layers focus on word indices.
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Continuous O(n3) O(n5) / WN O(n5) O(n6) / WN O(n6)

D
PT

B

All 98.16 99.46 99.81 99.83 99.81 99.83
BD  2 98.32 99.63 99.98 99.99 99.98 100.00
BD = 2 0.00 78.27 99.15 99.98 99.17 100.00

(0) (10713) (13572) (13685) (13574) (13687)

TI
G

ER
All 94.51 98.61 99.37 99.49 99.37 99.49

BD  2 94.99 99.11 99.88 99.99 99.88 100.00
BD = 2 0.00 82.39 97.65 99.95 97.65 100.00

(0) (15324) (18161) (18590) (18161) (18598)

N
EG

R
A All 94.37 98.59 99.32 99.46 99.32 99.46

BD  2 94.87 99.12 99.85 99.99 99.85 100.00
BD = 2 0.00 82.91 97.24 99.97 97.24 100.00

(0) (6106) (7161) (7362) (7161) (7364)

Table 1: Maximum constituent recall that be can obtained using a continuous constituency parser and all the
variants of our parser in three settings: considering all constituents, considering constituents with a block degree
less or equal to two and exactly two. For the last case, we also report the number of constituents. We do not remove
punctuation. The analysis is done on full treebanks.

NEGRA TIGER DPTB

F1 Disc. F1 F1 Disc. F1 F1 Disc. F1

Fully supervised

Fernández-González and Martins (2015) 77.0 77.3
Versley (2016) 79.5
Corro et al. (2017) 89.2
Coavoux and Crabbé (2017) 79.3
Coavoux et al. (2019) 83.2 54.6 82.7 55.9 91.0 71.3

Coavoux and Cohen (2019) 83.2 56.3 82.5 55.9 90.9 67.3
Fernández-González and Gómez-Rodríguez (2020) 83.7 54.7 84.6 57.9

Stanojević and Steedman (2020) 83.6 50.7 83.4 53.5 90.5 67.1
This work, O(n3) 86.2 54.1 85.5 53.8 92.7 64.2
This work, O(n5) and O(n6), well-nested 84.9 46.1 84.8 50.4 92.6 62.6
This work, O(n5) and O(n6) 84.9 46.2 84.9 51.0 92.6 62.9

+ gold part-of-speech tags

Maier (2015) 77.0 19.8 74.7 18.8
Gebhardt (2018) 75.1
Coavoux and Crabbé (2017) 82.2 50.0 81.6 49.2
Corro et al. (2017) 81.6 90.1

Semi-supervised: pre-trained word embeddings

Stanojević and Alhama (2017b) 77.0
Fernández-González and Gómez-Rodríguez (2020), with pred tags 85.4 58.8 85.3 59.1
Fernández-González and Gómez-Rodríguez (2020), without pred tags 85.7 58.6 85.7 60.4

This work, O(n3) 86.3 56.1 85.2 51.2 92.9 64.9

This work, O(n5) and O(n6), well-nested 85.6 52.9 84.9 50.4 92.6 59.4
This work, O(n5) and O(n6) 85.6 53.0 84.9 51.0 92.6 59.7

+ gold POS tags

Stanojević and Alhama (2017b) 82.9 81.6
Fernández-González and Gómez-Rodríguez (2020) 86.1 59.9 86.3 60.7

Semi-supervised: Bert

This work, O(n3) 91.6 66.1 90.0 62.1 94.8 68.9

This work, O(n5) and O(n6), well-nested 90.5 58.8 89.3 57.8 94.5 64.5
This work, O(n5) and O(n6) 90.6 59.6 89.3 58.7 94.5 64.7

Table 2: Discontinuous constituency parsing results on the three test sets. The O(n5) and O(n6) variants produced
exactly the same results in all settings.

NEGRA TIGER DPTB

D. recall D. prec. D. F1 D. recall D. prec. D. F1 D. recall D. prec. D. F1

O(n3) 42.0 76.0 54.1 40.6 79.8 53.8 49.7 90.8 64.2

O(n5) and O(n6), wn 47.0 45.2 46.1 46.9 54.3 50.4 63.8 61.4 62.6
O(n5)and O(n6) 47.3 45.2 46.2 47.8 54.8 51.0 64.0 61.8 62.9

Table 3: Detailed discontinuous constituency parsing results for the fully supervised model.
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(m) Create and fill gap

[A,>, i, k] [B,>, k, l]

[D,?, i, l]

(n) Create partial disc.

[D,?, i, l] [C,>, l, j]

[E,>, i, j]

(o) Complete disc.

Figure 4: (m) The create gap and fill gap rules can be merged into a single rule if there are no other rule with
discontinuous antecedents in the parser. (n)-(o) Rules for the cubic time discontinuous constituency parser. The
rule to combine two continuous constituents follows the previous one.

n. sent. n. tokens nn O(n3) O(n4) O(n5), wn O(n5) O(n6), wn O(n6)
Negra 1000 6842 1.74 0.35 1.10 3.73 4.48 8.82 22.58
Tiger 5000 38597 7.73 2.81 12.96 98.44 133.22 507.84 1841.95
DPTB 2416 44399 4.67 2.13 6.70 19.35 22.71 43.00 105.98

Table 4: Total time in seconds to parse the full test sets: the nn column corresponds to the time taken by the
forward pass of the neural network (max 5000 words per batch on a NVIDIA Tesla V100), each supplementary
column is the time taken by each variant of the chart-based algorithm (without any parallelization).

S(c. span), S(o. span), S(g. span)
2 Rn⇥n are com-

puted using the deep biaffine attention mechanism
(Dozat and Manning, 2016). The tensor W is
never explicitly built: during the dynamic program
execution we lazily compute requested constituent
scores.

Training loss Span-based continuous con-
stituency parsers are usually trained using a de-
composable margin-based objective (Stern et al.,
2017; Kitaev and Klein, 2018; Kitaev et al., 2019).
This approach requires to repeatedly perform loss-
augmented inference during training (Taskar et al.,
2005), which can be prohibitively slow. A cur-
rent trend in dependency parsing is to ignore the
global structure and rely on negative log-likelihood
for head selection independently for each modi-
fier word (Dozat and Manning, 2016; Zhang et al.,
2017). We rely on a similar approach and use as
training objective the negative log-likelihood loss
independently for each span (continuous, outer and
gap), adding a null label with a fixed 0 weight as
label for spans that do not appear in the gold anno-
tation.

4.3 Evaluation

We evaluate our parser on the test sets of the three
treebanks. We report F-measure and discontinuous
F-measure as computed using the disco-dop tool11

with standard parameters in Table 2.
First, we observe that the O(n5) and O(n6) vari-
11https://github.com/andreasvc/

disco-dop

ants of our parsers produced exactly the same re-
sults in all settings. This may be expected as their
cover of the original treebanks are almost similar.
Second, surprisingly, the O(n3) parser produced
better results in terms of F-measure than other vari-
ants in all cases. We report labeled discontinuous
constituent recall and precision measures for the
fully supervised model in Table 3. We observe that
while the O(n5) and O(n6) have an better recall
than the O(n3) parser, their precision is drastically
lower. This highlights a benefit of restricting the
search space: the parser can retrieve less erroneous
constituents leading to an improved overall preci-
sion.

Finally, in almost all cases, we achieve a novel
state-of-the-art for the task in terms of labeled F-
measure. However, we are slightly lower when
evaluating discontinuous constituents only. We
suspect that this is due to the fact that our best
parser is the one with the smallest search space.

4.4 Runtime

The runtime on the test sets of our approach is
reported on Table 4. In all cases, the runtime is rea-
sonably fast and we do not need to remove long sen-
tences. Interestingly, the cubic time parser spends
most of the time for computing scores with the
neural network, even if we use batches to benefit
from the GPU architecture while our chart-based
algorithm is not paralellized on CPU.

https://github.com/andreasvc/disco-dop
https://github.com/andreasvc/disco-dop
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5 Conclusion

We proposed a novel family of algorithms for dis-
continuous constituency parsing achieving state-
of-the art results. Importantly, we showed that a
specific set of discontinuous constituent trees can
be parsed in cubic time while covering most of
the linguistic structures observed in treebanks. De-
spite being based on chart-based algorithms, our
approach is fast at test time and we can parse all sen-
tences without pruning or filtering long sentences.
Future research could explore neural architectures
and training losses tailored to our approach.
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