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Joshua Ainslie, Santiago Ontañón, Chris Alberti, Vaclav Cvicek,
Zachary Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, Li Yang

Google Research
{jainslie, santiontanon, chrisalberti, vcvicek,

zachfisher, phillypham, braineater, sumitsanghai, wqfcr, lyliyang}@google.com

Abstract

Transformer models have advanced the state
of the art in many Natural Language Pro-
cessing (NLP) tasks. In this paper, we
present a new Transformer architecture, Ex-
tended Transformer Construction (ETC), that
addresses two key challenges of standard
Transformer architectures, namely scaling in-
put length and encoding structured inputs. To
scale attention to longer inputs, we introduce
a novel global-local attention mechanism be-
tween global tokens and regular input tokens.
We also show that combining global-local at-
tention with relative position encodings and
a Contrastive Predictive Coding (CPC) pre-
training objective allows ETC to encode struc-
tured inputs. We achieve state-of-the-art re-
sults on four natural language datasets requir-
ing long and/or structured inputs.

1 Introduction

Models based on Transformers (Vaswani et al.,
2017), such as BERT (Devlin et al., 2018), or other
variants (Yang et al., 2019; Lan et al., 2019; Raffel
et al., 2019) have yielded state-of-the-art results in
many NLP tasks such as language modeling (Child
et al., 2019; Sukhbaatar et al., 2019; Rae et al.,
2019; Kitaev et al., 2020), question answering (Lan
et al., 2019; Beltagy et al., 2020), and summariza-
tion (Zhang et al., 2019). We present the Extended
Transformer Construction (ETC) architecture1, tar-
geting two limitations of the original models: (1)
scaling input length, (2) encoding structured inputs.

The computational and memory complexity of
attention in the original Transformer scales quadrat-
ically with the input length, typically limiting input
length to around 512 tokens. While 512 might
be enough for some tasks (e.g., co-reference res-
olution seems to benefit from even smaller input
lengths (Joshi et al., 2019)), this is problematic in

1Code at goo.gle/research-etc-model

others. Consider question answering (QA) tasks
that require reasoning across multiple documents
(e.g., the HotpotQA dataset (Yang et al., 2018)) all
of which must simultaneously fit in the model input.
Other examples are summarization, or QA on long
documents. Many approaches have been proposed
to address this, like hierarchical processing (Zhang
et al., 2019), sparse attention (Child et al., 2019),
and segment-level recurrence (Dai et al., 2019).

A second limitation is that few models focus on
structured inputs, by which we refer to any underly-
ing graph or hierarchical structure among the input
tokens. Although ETC can encode more general
graph structure, in this work we focus on represent-
ing hierarchical structure in NLP tasks, not usually
modeled by Transformer models. For example, text
is organized into sentences and paragraphs, and
while these have a sequential order, different input
documents might not hold any order between them
(e.g., the HotpotQA dataset). Additionally, web
text contains markup and is laid out using a DOM
tree, giving additional structure. We show ETC can
represent these and other types of structure, like
linking different entity mentions.

To address these challenges, we present a novel
attention mechanism called global-local attention,
which divides the input into two sequences (which
we call the global input and the long input). This
mechanism introduces local sparsity to reduce
the quadratic scaling of the attention mechanism.
When this is coupled with relative position encod-
ings (Shaw et al., 2018), it allows for handling
structured inputs in a natural way. Additionally,
unlike previous Transformer extensions, ETC can
be initialized from existing pre-trained standard
BERT models (which together with a GPU/TPU-
friendly implementation, allows for efficient model
training)2. Our results show that initializing from

2An exception to this is Longformer (Beltagy et al., 2020),

goo.gle/research-etc-model
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RoBERTa (Liu et al., 2019) significantly improves
performance. Finally, we show that by adding a
pre-training Contrastive Predictive Coding (CPC)
task (Oord et al., 2018), performance improves
even further for tasks where structure is important,
as CPC plays the role of a masked language model
(MLM) task, but at a sentence level of granularity.

We report experiments on four datasets: Natural
Questions (NQ) (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), WikiHop (Welbl et al.,
2018), and OpenKP (part of MS MARCO) (Xiong
et al., 2019), which have long and/or structured
inputs. We set a new state of the art in all of them.

Moreover, although in this paper we strictly fo-
cus on ETC, in a related model called BigBird (Za-
heer et al., 2020), we experimented with an alter-
native set of ideas to handle long inputs and its
extensions to a decoder for text generation. The
focus of BigBird is on the idea of adding random
sparse attention patterns to global-local attention,
and on showing under which conditions models
like BigBird/ETC are universal approximators of
sequence functions and are Turing complete. While
the key ideas and techniques required to achieve
the state-of-the-art results mentioned above for QA
tasks are the focus of this paper, the reader is re-
ferred to the BigBird work for a joint evaluation of
ETC (referred to as BigBird-ETC in that work) and
the idea of random sparse attention patterns.

2 Background

Many variants of the original Transformer
model (Vaswani et al., 2017) have been proposed
for scaling up training (RoBERTa, Liu et al., 2019),
the internal representation (ALBERT, Lan et al.,
2019), or both (T5, Raffel et al., 2019), outper-
forming BERT (Devlin et al., 2018) in tasks such
as GLUE (Wang et al., 2018), SQuAD (Rajpurkar
et al., 2016) or RACE (Lai et al., 2017). However,
these models typically limit inputs to n = 512 to-
kens due to theO(n2) cost of attention. We classify
prior approaches to scale up attention into four cat-
egories: sparse attention, recurrence, hierarchical
mechanisms, and compressed attention.

Sparse Attention involves limiting each token
to attend to a subset of the other tokens. For ex-
ample, the Sparse Transformer (Child et al., 2019)
used predefined attention patterns for both text and
image generation. They showed that attending only

a new model developed concurrently to ETC, which also al-
lows initialization from BERT/RoBERTa.

to previous pixels in the same row or column was
enough to generate high quality images, while keep-
ing attention cost at O(n

√
n). In the Adaptive At-

tention Span Transformer (Sukhbaatar et al., 2019)
each attention head is associated with a decaying
learnable masking function, which limits the num-
ber of tokens it can attend to. They show that lower
layers learn to use short attention spans, and only
in higher layers are attention spans longer. Sparse
attention has also been used to increase the inter-
pretability of attention heads by allowing attention
to assign exactly zero weight to certain input to-
kens (Correia et al., 2019). The Reformer (Kitaev
et al., 2020) model finds the nearest neighbors of
the attention query (those input tokens that would
result in the highest attention weights) using local-
ity sensing hashing (Andoni et al., 2015) and only
uses those for attention. This reduces attention cost
to O(n log(n)). The Routing Transformer (Roy
et al., 2020) learns dynamic sparse attention pat-
terns using online k-means, reducing complexity to
O(n1.5). Finally, the most related approach to the
work presented in this paper is Longformer (Belt-
agy et al., 2020), developed concurrently to ETC,
and which features a very similar global-local at-
tention mechanism as ETC’s but does not directly
encode graph or hierarchical structure (more de-
tailed comparison in Section 3).

Recurrence incorporates elements of recur-
rent neural networks into Transformer models to
lengthen their attention span. Transformer-XL (Dai
et al., 2019) takes this approach, dividing the input
sequence into segments and then processing these
segments one at a time. At each layer, the model
attends to the layer immediately below for both the
current and previous input segments. The effect is
that layer k is influenced by the current segment
and the k − 1 previous segments, as shown in the
top-right of Figure 1.

In Hierarchical Mechanisms the input se-
quence is split into blocks that are ingested inde-
pendently to produce summary embeddings that
represent the whole block. Then, separate layers
ingest the concatenation of these embeddings. For
example, HIBERT (Zhang et al., 2019) uses this
idea at the sentence level for extractive summariza-
tion (illustrated in the bottom-left of Figure 1). Hi-
erarchical attention in Transformers has also been
applied to other NLP tasks such as neural machine
translation (Maruf et al., 2019). Moreover, notice
that this idea of processing the input hierarchically
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Figure 1: An illustration of mechanisms to scale attention to long inputs, including our proposed model, ETC.

is not specific to Transformer models, and it has
been applied to recurrent neural network models
both at the level of sentences (Yang et al., 2016;
Miculicich et al., 2018) and blocks (Shen et al.,
2018).

Compressed Attention takes the idea of hier-
archical attention one step further by selectively
compressing certain parts of the input. The BP-
Transformer (Ye et al., 2019) model builds a binary
partitioning tree over the input, and only lets the
model attend to the leaves (the raw tokens) for
nearby tokens, and higher nodes in the tree (sum-
maries of groups of tokens) as tokens grow more
distant (see Figure 1, middle top). Other ideas
include memory compressed attention (Liu et al.,
2018) where groups of k tokens are compressed
via a convolution filter before they are attended
to, and the Star Transformer (Guo et al., 2019),
where each token can attend only to its immedi-
ate left/right neighbors and to a separate special
auxiliary token that represents a summary of the
whole input (see Figure 1, left). The Compressive
Transformer (Rae et al., 2019) integrates this idea
into Transformer-XL by compressing tokens in the
input that are far away. The model benefits from
detailed attention to nearby tokens, while using
summarized information for more distant tokens
(see Figure 1, lower right).

3 Extended Transformer Construction

Our model follows the original Transformer archi-
tecture (Vaswani et al., 2017), with key modifi-

cations to tackle long and structured inputs: rela-
tive position encoding, global-local attention, and
a CPC pre-training task, explained below. In this
paper, we consider only the encoder side of the
Transformer, and leave the decoder for future work.

3.1 Relative Position Encoding

Inspired by the work of Shaw et al. (2018), ETC re-
places absolute position encodings with relative po-
sition encodings, which provide information about
the relative position of tokens in the input sequence
with respect to one another. Given the input se-
quence x = (x1, ..., xn), we can see it as a labeled
fully connected and directed graph, where lij is the
label of the edge that connects xi to xj . Given a
maximum clipping distance k, Shaw et al. define
2k + 1 relative position labels: l−k, ..., lk. The la-
bel of the edge between two input tokens depends
only on their relative position j − i. For input
pairs with j − i ≥ k, label lk is given, and with
j − i ≤ −k, l−k is given. Each label then becomes
a learnable vector aKl , which modifies the attention
mechanism (equations in the next section)3.

Relative position encodings are independent of
input length, so it is easy to adapt a model to greater
input lengths than seen during pre-training. As
other recent work (Shaw et al., 2019), ETC’s at-
tention mechanism uses relative position labels not
just for relative positions in a sequence but also to
express arbitrary pairwise token relations useful for

3In the work of Shaw et al., a second aV
l vector was used,

but their ablations showed it may not affect performance.
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Figure 2: Sparsity diagram showing which attention queries (rows) can attend to which attention keys (columns)
a) for standard Transformer attention with input size n; b) for global-local attention with input sizes ng , nl, and
radius r; c) how the l2l attention piece is reshaped into a much smaller attention matrix, limited by local radius.

structured inputs, as explained below.

3.2 Global-Local Attention
Global-local attention is a generalization of several
of the models presented above. ETC receives two
separate input sequences: the global input xg =
(xg1, ..., x

g
ng) and the long input xl = (xl1, ..., x

l
nl
).

Typically, the long input contains the input a stan-
dard Transformer would receive, while the global
input contains a much smaller number of auxiliary
tokens (ng � nl). Attention is then split into four
separate pieces: global-to-global (g2g), global-to-
long (g2l), long-to-global (l2g), and long-to-long
(l2l). Attention in the l2l piece (the most compu-
tationally expensive piece) is restricted to a fixed
radius r � nl. To compensate for this limited at-
tention span, the tokens in the global input have un-
restricted attention, and thus long input tokens can
transfer information to each other through global
input tokens. Accordingly, g2g, g2l, and l2g pieces
of attention are unrestricted.

This concept is illustrated in Figure 2, where
each cell (row i, column j) is shaded grey if token
xi can attend to token xj . As we can see, in a
regular Transformer, attention is unrestricted (full
n × n attention). ETC, illustrated in Figure 2b,
however, restricts the l2l piece to a local radius,
significantly reducing computational and memory
complexity for very long inputs. Conceptually, the
l2l attention piece is reshaped into a nl × (2r + 1)
matrix as illustrated in Figure 2c.4

If r = 1 and ng = 1, we recover exactly the Star
Transformer (Section 2). Similarly, placing all the
tokens in the global input and setting nl = 0 yields
standard Transformer attention. Attention in ETC
isO(ng(ng+nl)+nl(ng+2r+1)). If we assume

4In practice, for GPU/TPU efficiency, a different reshaping
occurs that yields identical outputs (see the appendices).

ng = O(2r + 1), we see attention is linear in the
size of the long input: O(n2g + ngnl).

To provide flexible attention and help with struc-
tured inputs, per-instance Boolean attention matri-
cesMg2g,Mg2l,M l2g, andM l2l exist, with zeroes
for those pairs of tokens that should not attend to
one another. Each g2g attention head works as fol-
lows. Given the global input xg = (xg1, ..., x

g
ng),

which is a sequence of token representations xgi ∈
Rdx , the output of attention is zg = (zg1 , ..., z

g
ng),

where each zgi ∈ Rdz is calculated as follows:

zgi =

ng∑
j=1

αg2g
ij xgjW

V

αg2g
ij =

exp(eg2gij )∑n
`=1 exp(e

g2g
i` )

eg2gij =
xgiW

Q(xgjW
K + aKij )

T

√
dz

− (1−Mg2g
ij )C

where: Mg2g is a binary attention mask,WQ,WK ,
and W V are learnable weight matrices, and aKij are
learnable vectors representing the relative position
labels, and C is a large constant (C = 10000 in
our experiments to follow the same convention as
BERT). Attention for the other 3 pieces is analo-
gous. We experiment with having separate WK

and W V across all four attention pieces, or sharing
them. And for WQ, we experiment with having
one for g2g and g2l, and a separate one for l2g
and l2l; or sharing them also. To recover BERT as
a special case when r is large enough to remove
sparsity, attention is actually only split into 2 pieces
internally instead of 4, as g2g+g2l can be computed
jointly (top half of Figure 2c), and l2g+l2l can also
be computed jointly (bottom half of Figure 2c). A
single softmax is used to jointly calculate αg2g

ij and

αg2l
ij , and another for αl2g

ij and αl2l
ij .
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Figure 3: Example attention patterns for handling (a)
long inputs and (b) structured inputs. White back-
ground means attention is masked via M , and the other
colors indicate different relative position labels.

Thus, the output of global-local attention is a
sequence of length ng and one of length nl. These
sequences go through a layer normalization and
feed forward layer in the same way as in the stan-
dard transformer.

3.3 Long Inputs and Global-Local Attention

Let us illustrate how ETC can be used to encode
long inputs. A general way to handle long inputs
in ETC is to place the entire sequence of input to-
kens (e.g., word pieces) in the long input, and then
assuming some sort of division into segments (e.g.,
sentences), place one auxiliary token in the global
input per segment in the long input. We then use
one relative position label to link the global seg-
ment tokens with the word piece tokens that belong
to them, and a different label for those that do not.
Moreover, as we will show in the experiments be-
low, we have seen that using the Mg2l attention
masks to perform hard masking in one direction
(g2l) can bring performance gains in some datasets.
This last asymmetric hard-masking is illustrated in
Figure 3a, where we used different colors to indi-
cate different relative position labels. In this way,
although tokens in the long input can only attend
to the local neighborhood defined by the radius k,
they can indirectly attend to all other tokens in the
input sequence via the global tokens.

3.4 Structured Inputs

A standard Transformer resembles a graph neural
network (Scarselli et al., 2008) over a fully con-
nected graph g; see Ye et al. (2019). Thanks to the
combination of global-local attention and relative
position labels, ETC exploits this relation to encode
structured inputs. Given the input x = (x1, ..., xn),
we use the term structure to refer to the relations
that exist between the tokens in x. When x is a

plain ordered sequence, the only relation is the se-
quential order of tokens, which is the only structure
captured by BERT (encoded by absolute position
encodings, used to modify attention). We define
structured inputs as those that have additional rela-
tions between the tokens beyond sequential order.
In principle, we could think of inputs with arbitrary
graph structure (such as chemical molecule graphs),
but here we focus on structure in NLP tasks.

ETC is particularly well suited to capture hi-
erarchical structure thanks to three mechanisms.
First, as originally conceived, the vocabulary of
relative position labels is used to represent token
relative positions. However, seeing a Transformer
as a graph neural network over a graph g (with one
vertex per token in x, and edges representing their
relations), we can expand this vocabulary to label
some edges with labels for relations such as is-a,
part-of, or others. Second, the division between
long and global input induces a natural structure
where the global input contains summary tokens
of sets of tokens in x (a 2-level hierarchy). How-
ever, we can also have tokens summarizing sets of
summary tokens (constructing a 3-level hierarchy,
or beyond). Third, if some pairs of tokens should
not have an edge between them, this can be cap-
tured with theMg2g,Mg2l,M l2g,M l2l masks. An
illustration of all these concepts is shown in Fig-
ure 3b, which uses masking and relative position
labels to represent a context-sentence-token hierar-
chy that includes within-context order of sentences
but no order between contexts. Another example
would be social community graphs structure, where
we could partition the graph into components, use
M l2l to constrain attention to within components,
and add per-component global tokens, linked to al-
low information to propagate from one component
to another in a hierarchical way.

3.5 Pre-training Tasks

We use two pre-training tasks: (1) a masked lan-
guage model (MLM) task with whole word mask-
ing (if one word piece token is masked, then all
other tokens of the same word are masked); and
(2) instead of using BERT’s next sentence predic-
tion (NSP), we adapt Contrastive Predictive Coding
(CPC) (Oord et al., 2018) for ETC.

The goal of CPC is to predict subsequent inputs
in latent space, i.e., to predict internal hidden rep-
resentations of blocks of tokens. We adapted this
idea in ETC by using global input sentence sum-
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mary tokens. Given an input sequence containing n
sentences, we mask all the tokens corresponding to
a subset of sentences (but leave the sentence sum-
mary tokens in the global input). We then train the
model to minimize the difference between the hid-
den representation of the global sentence summary
tokens for the masked sentences with respect to
that of a global summary token that can see the un-
masked sentence and nothing else. We use a Noise
Contrastive Estimation (NCE) loss as in the work
of Oord et al. (2018) (details in the appendices).

Having described ETC, we can now compare
it with Longformer (Beltagy et al., 2020), which
uses a similar attention mechanism, except Long-
former has a single input sequence with some to-
kens marked as global (the only ones that use
full attention). The key differences are that (1)
ETC’s combination of global-local attention with
relative position encodings and flexible masking
enables it to encode structured inputs in a simi-
lar way as graph neural networks do; (2) global
tokens in Longformer are never pre-trained with
anything like our CPC loss, and thus their use must
be learned during fine-tuning.

3.6 Lifting Weights from Existing Models

ETC and BERT share enough similarities that
BERT parameters are useful to perform a warm
start. The parameters are compatible because the
global-local attention mechanism includes BERT
as a special case if the input is small enough or the
local radius is large enough to eliminate sparsity.
Moreover, when lifting weights from BERT into
an ETC model with separate WQ, WK , and W V

projection matrices, BERT’s parameters are just
copied over to the different matrices of ETC.

Although pre-training is still required to adapt
the weights to use global tokens and relative po-
sition encodings, we show that initializing from
RoBERTa results in significant performance im-
provements compared to pre-training from scratch.
Specifically, we initialized from the RoBERTa
checkpoints reported in the work of Rothe et
al. (Rothe et al., 2020).

4 Empirical Evaluation

This section focuses on evaluating our two main
contributions: (1) long inputs, and (2) structure in
text inputs, as well as initialization from existing
BERT models. We chose four datasets (Table 1)
with long inputs or interesting input structure.

Instances Instance length
Dataset Training Dev Median 95% Max
NQ 307373 7830 4004 17137 156551
HotpotQA 90447 7405 1227 1810 3560
WikiHop 43738 5129 1541 3994 20337
OpenKP 133724 6610 761 4546 89183

Table 1: Dataset stats (length in word piece tokens).

NQ (Kwiatkowski et al., 2019): in Google’s Nat-
ural Questions (NQ) dataset the input consists of a
question and a full Wikipedia article. The task is to
identify both a short answer (a few words from the
article) and a long answer (e.g., a whole paragraph),
if they exist within the article (and otherwise, return
null answers). Performance is measured based on
the F1 score of the model predictions with respect
to the human generated answers.

HotpotQA (Yang et al., 2018) is a question an-
swering dataset where the goal is to combine evi-
dence from multiple contexts. We use the distrac-
tor setting, where 10 paragraphs are provided: two
of them contain useful information to answer the
question, and the rest are distractors. The task is
both to answer the question, and also to identify
the supporting facts that are relevant to answer the
questions (at a sentence granularity).

WikiHop (Welbl et al., 2018) is similar in struc-
ture to HotpotQA. The contexts correspond to por-
tions of Wikipedia articles, and the goal is to an-
swer about properties of an entity that cannot be
found in the entity’s article. Each instance con-
tains a query, a collection of candidate answers,
and a collection of contexts from which to obtain
information to select among the candidate answers.

OpenKP (Xiong et al., 2019) is a keyphrase
extraction dataset. Each document contains up to
3 short keyphrases to be identified. We selected
this dataset as the input is not flat text sequences,
but websites, including the hierarchical and spatial
relations between the different DOM elements on
the website, as well as other visual properties.

4.1 Training Configuration

We use two basic configurations: base and large.
Base uses 12 layers, 768 hidden size, 12 attention
heads, local attention radius r = 84, and relative
position maximum distance k = 12. Large uses
24 layers, 1024 hidden size, 16 heads, r = 169,
and k = 24. We used 128, 230 and 460 global
tokens for models with 512, 4096 and 8192 long
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Model Input length Configuration #Params Long answer F1 Short answer F1
BERT-base 512 110M 0.634 0.475
BERT-large 512 340M 0.647 0.527
RikiNet 512 lifting from RoBERTalarge - 0.753 0.593
ETC 512 shared, no CPC, no hard g2l 109M 0.645 0.478
ETC 4096 shared, no CPC, no hard g2l 109M 0.692 0.497
ETC 4096 fixed blocks, shared, no CPC, no hard g2l 109M 0.697 0.508
ETC 4096 shared, no hard g2l 109M 0.717 0.524
ETC 4096 shared 109M 0.721 0.514
ETC 4096 - 166M 0.725 0.522
ETC 8192 166M 0.740 0.542
ETC 4096 2x local radius 166M 0.737 0.530
ETC 4096 2x relative vocab 166M∗ 0.733 0.532
ETC 4096 2x pre-training 166M 0.746 0.558
ETC-large 4096 539M 0.761 0.565
ETC-large 4096 lifting from RoBERTa 558M 0.782 0.585

Table 2: Empirical results on the dev sev set for the Natural Questions (NQ) dataset. Best results for base and
large models highlighted. BERT-large results obtained from Alberti et al. (2019). ∗ although not visible due to
rounding to the closest million, doubling the relative position encoding vocabulary adds about 600k parameters.

input size respectively in NQ5, 256 global tokens in
HotpotQA, 430 in WikiHop, and 512 in OpenKP.

Pre-training: We place all word piece tokens
in the long input and add one auxiliary token per
sentence to the global input. We defaulted to
BERT’s 30k English uncased word piece vocab-
ulary. Models were pre-trained using the original
BERT datasets, except that documents with fewer
than 7 sentences were filtered out. Unless stated
otherwise, base models were pre-trained with the
same total number of tokens as the original BERT,
and for large models, twice as many. We used the
LAMB optimizer (You et al., 2019) with learning
rate set to

√
8× 10−3.

Fine-tuning: we put all input tokens in the long
input (CLS, question, and context tokens for QA
datasets), and use relative position labels to encode
structure (see Section 3.4). Global input has a CLS
token, tokens mirroring the question tokens in long,
and one summary token per paragraph/sentence (or
VDOM block in OpenKP). OpenKP had no CLS
nor question tokens. For WikiHop, we also add
one global token per candidate answer, and used a
different relative position label to link these tokens
to their string-matched mentions in the text (more
details in the appendices).

4.2 Results on the Dev Set
NQ: We used NQ to study the different parts of
ETC via ablations. Results are shown in Table 2.
The first three rows show baseline models: BERT-
base, BERT-large, and RikiNet (Liu et al., 2020)
(one of the best models in the NQ leaderboard).

5With gradient checkpointing, ETC can scale beyond this,
but we limit our experiments to 8192 tokens for this paper.

BERT’s performance is comparable to ETC using
input length of 512. The smaller local radius of
ETC (84) puts ETC at a disadvantage with respect
to BERT, but other ETC improvements, such as
dynamic whole word masking seem to compensate.

The rest of Table 2 shows performance under dif-
ferent ablations. Our default configuration (marked
with a “-” in the configuration column) is ETC-base
with long input length of 4096 tokens, using CPC,
hard g2l masking, and separateWQ,WK , andW V

matrices for long/global inputs. We tested the fol-
lowing ablations: shared (sharing all model param-
eters for attention across both the global and long
inputs), no CPC (removing the CPC pre-training
task), no hard g2l (not having a hard g2l mask),
and fixed blocks (which configures the global in-
put to just have one global token per 97 long input
tokens, to keep the same proportion as without
fixed-blocks, ignoring sentence boundaries, and
not having any other tokens in the global input for
pre-training or fine-tuning). Sharing WQ, WK ,
and W V and removing CPC significantly hurt the
performance of ETC in NQ7. Using fixed blocks,
surprisingly, seems to slightly help without CPC.

Increasing long input from 512 to 4096 signifi-
cantly helped performance, and going to 8192 in-
creased performance further to 0.740 / 0.542, high-
lighting the importance of longer inputs. Increasing
the local radius, relative position vocabulary, or the
amount of pre-training all helped performance (es-
pecially the latter, reaching 0.746 / 0.558). Moving
to a large model also helped, especially when lift-
ing from RoBERTa (both large models used the

7Separate projection matrices were also found to be helpful
in other models, like Longformer (Beltagy et al., 2020).
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Model Input length Configuration #Params HotpotQA WikiHop
Ans. F1 / Sup. F1 Acc.

Longformer 4096 149M∗ 0.743 / 0.844 75.0
Longformer-large 4096 435M∗ 0.788 / 0.8606 77.6
ETC 4096 flat structure, no CPC, no hard g2l 166M 0.722 / 0.857 70.0
ETC 4096 flat structure 166M 0.748 / 0.870 70.7
ETC 4096 no CPC 166M 0.747 / 0.866 73.0
ETC 4096 no hard g2l 166M 0.743 / 0.864 75.9
ETC 4096 shared 109M 0.733 / 0.866 73.7
ETC 4096 - 166M 0.751 / 0.869 73.2
ETC-large 4096 539M 0.798 / 0.890 77.0
ETC-large 4096 lifting from RoBERTa 558M 0.813 / 0.894 79.8

Table 3: Empirical results on HotpotQA and WikiHop (dev set results). ∗Longformer parameter counts provided
by the authors via personal communication.

Model Input length Configuration #Params OpenKP F1@3
RoBERTa-JointKPE 512 - 0.398
ETC 512 fixed blocks, no CPC, no hard g2l, no visual features 166M 0.399
ETC 4096 fixed blocks, no CPC, no hard g2l, no visual features 166M 0.400
ETC 4096 no CPC, no hard g2l, no visual features 166M 0.400
ETC 4096 no hard g2l, no visual features 166M 0.400
ETC 4096 no visual features 166M 0.402
ETC 4096 - 166M 0.409
ETC 4096 shared 109M 0.409
ETC 4096 max loss 166M 0.416
ETC-large 4096 max loss 539M 0.419
ETC-large 4096 max loss, lifting from RoBERTa 558M 0.423

Table 4: Empirical results on OpenKP (dev set F1@3 results).

Leaderboard Result Position
NQ long answer 0.7778 1st
NQ short answer 0.5786 18th
HotpotQA Sup. F1 0.8909 1st
HotpotQA Overall 0.7362 3rd
WikiHop 0.8225 1st
OpenKP 0.4205 1st

Table 5: Official leaderboard results for ETC at the time
of submission.

RoBERTa vocabulary). Lifting from RoBERTa
achieved our best scores: 0.782 / 0.585, beating
the best dev scores in the literature for long answer
(compare with 0.754 / 0.593 for RikiNet). For short
answer, we still lag behind RikiNet.

HotpotQA, WikiHop: Table 3 shows our re-
sults in HotpotQA and WikiHop. We show two
Longformer models as baselines (which is currently
the state-of-the-art model in WikiHop), as well as
ablations to study the effect of structure in the re-
sults. In particular, we consider a flat structure
ablation where: (1) we do not break long input at-
tention by context boundaries, (2) we limit relative
position labels between global and long tokens to
representing only sentence-level relationships (this
removes any special attention in WikiHop between
candidate answers and their mentions).

Our results show that both our base and large

models outperform their corresponding Long-
former models in both HotpotQA and WikiHop.
Besides parameter counts, the main factors that can
explain this difference in performance are the dif-
ferent pre-training strategies and the different han-
dling of structure in ETC and Longformer. Remov-
ing the CPC pre-training task, and not using a hard
g2l mask significantly hurt the performance of the
model in HotpotQA, going from a performance of
0.751 / 0.869 for the baseline model to 0.722 / 0.857
using none of those features. Using a flat structure
(but keeping CPC and hard g2l) did not seem to
hurt in HotpotQA. WikiHop shows a slightly dif-
ferent picture, as it seems that hard g2l masking
and especially flat structure hurt performance in
this dataset. Our best model is the base configura-
tion without hard g2l masking, which achieves an
accuracy of 75.9. Interestingly, sharing WQ, WK ,
and W V seems to help performance in WikiHop.
This is our smallest dataset, and maybe the added
capacity of the model without sharing parameters
leads it to overfit.

OpenKP: Table 4 shows our results on the
OpenKP dataset, using RoBERTa-JointKPE (Sun
et al., 2020) as the baseline, which is currently #1
in the leaderboard. This is an interesting struc-
tured dataset, and thus, we performed additional



276

ablations to investigate the effect of removing such
structural information. Our results show that even
the most constrained ETC model already achieves
very good performance (0.399), and scaling to 4096
length seems to give a slight boost. Using hard g2l
also helps, and adding the visual features brings
the largest benefit. Finally, we see that using a
large model, and especially lifting weights from
RoBERTa improve results significantly. As with
WikiHop, sharing WQ, WK , and W V does not
hurt performance. Our default model uses the first
occurrence of a keyphrase, but we saw that using
the maximum logit of all occurrences (max loss)
improved results.

4.3 Official Leaderboard Results

Finally, Table 5 shows official results on the leader-
boards of each dataset. The model submitted to
the leaderboards was the model with best dev set
results (shown at the bottom of the respective re-
sults tables, lifting weights from RoBERTa). We
set a new state of the art in WikiHop and OpenKP,
NQ long answer, and HotpotQA Support F1. Re-
markably, our submissions were all single model,
outperforming the leaderboard ensemble models.

5 Conclusions

This paper introduced the Extended Transformer
Construction (ETC), an architecture designed to (1)
scale up the input length (linearly with input), and
(2) encode structured inputs. ETC allows lifting
weights from existing BERT models, improving
results significantly. The key ideas are a new global-
local attention mechanism, coupled with relative
position encodings and a CPC pre-training task.

We showed that significant gains can be obtained
thanks to increased input sequence length. The
ability to represent dataset structure in ETC further
improves the model quality. We hypothesize that
CPC helps the model train the usage of the higher-
level global input summary tokens, as CPC plays
a role akin to MLM, but at the global input level.
Notice that although our datasets contain a limited
amount of structure (compared to graph datasets),
our experiments show that ETC was able to exploit
this existing structure.

As future work, we would like to investigate
complementary attention mechanisms like those of

7Better results were reported for Longformer-large using a
2 stage approach, reaching 81.0 / 85.8 (Beltagy et al., 2020),
but our table shows single-model results only, for comparison.

Reformer (Kitaev et al., 2020) or Routing Trans-
former (Roy et al., 2020), push scalability with
ideas like those from RevNet (Gomez et al., 2017),
and study the performance of ETC in datasets with
even richer structure.
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Appendix A: Implementation Details

Global-Local Attention Implementation
This appendix provides further details on the
TPU/GPU-friendly implementation of global-local
attention. Our implementation of sliding win-
dow local attention is similar to the approach
in the local attention 1d layer in Ten-
sor2Tensor 8, but with the addition of flexible mask-
ing, relative position encoding, and global tokens
as side keys/values. We use a simple example
to describe the internal blocking logic. Let’s say
the input corresponds to embeddings for the fol-
lowing word pieces, each represented by a letter:
ABCDEFG.

As usual, we project these embeddings into
queries, keys, and values, yielding the following
(for each attention head):

Queries: AqBqCqDqEqFqGq
Keys: AkBkCkDkEkFkGk
Values: AvBvCvDvEvFvGv

Let’s say we want to perform sliding window
local attention with local radius r = 2. Internally,
we split the input into blocks of length r + 1 (3 in
our example) and add padding blocks to the left and
right, resulting in the following five blocks for the
queries (and similarly for keys and values), with 0
representing padding:
000 AqBqCq DqEqFq Gq00 000
Conceptually we’d like to compare each query

with the 2r + 1 (5 in our example) surrounding
keys, as follows:

Queries Keys
Aq 00AkBkCk
Bq 0AkBkCkDk
Cq AkBkCkDkEk
Dq BkCkDkEkFk
Eq CkDkEkFkGk
Fq DkEkFkGk0
Gq EkFkGk00

But materializing each window of keys would
be memory-intensive. Instead, we allow each block
of queries to attend to 3 blocks of keys (the same
block, and the blocks immediately to the left and
right), resulting in the following:

Queries Keys
AqBqCq 000 AkBkCk DkEkFk
DqEqFq AkBkCk DkEkFk Gk00
Gq00 DkEkFk Gk00 000

Now each query can potentially see a few more
tokens than it’s strictly allowed to by the local ra-

8https://arxiv.org/abs/1803.07416

dius r. For example, Aq takes a dot product with
Dk, Ek and Fk, but this is easy to simply mask out,
yielding the same sliding window local attention
result. In this way, the blocking mechanism saves
memory at the expense of some extra compute.

The values are also divided into the same blocks
as the keys (concatenating 3 at a time), and stan-
dard scaled dot product attention is applied inde-
pendently for each row in the table below, where
Keys have been truncated for brevity:

Queries Keys Values
AqBqCq ... 000 AvBvCv DvEvFv
DqEqFq ... AvBvCv DvEvFv Gv00
Gq00 ... DvEvFv Gv00 000

Efficient Relative Attention Implementation

To efficiently implement relative position encod-
ing (a.k.a. relative attention), we take an ap-
proach similar to the optimization in Music Trans-
former (Huang et al., 2018) but generalized to al-
low arbitrary pairwise labels rather than adhering
to a relative position pattern. We briefly describe
our implementation in the case of full attention
(with a single sequence length n), but the approach
naturally extends to the case of the four attention
pieces used in ETC. The original relative attention
work (Shaw et al., 2018) reported O(n2dz) mem-
ory overhead (Section 3.3) by materializing aKij for
every query-key pair while sharing aKij across all
heads (or O(hn2dz) if not sharing across heads),
where dz is the dimension per head and h is the
number of heads. We instead take a dot product
between each query vector and all unique aKij vec-
tors in the relative attention vocabulary. Then we
gather these scalar results for each query-key pair.
This avoids the O(n2dz) memory overhead and al-
lows us to use different aKij per attention head with
no additional activation memory cost. Note that
our relative attention vocabulary sizes are notice-
ably smaller than n, so our implementation reduces
the number of dot products required for relative
attention also.

Appendix B: CPC Loss in ETC

We adapted the original formulation of CPC for
ETC by modeling it as a dual encoder problem.
We have two instances of the same ETC model g1
and g2 (using the same weights). g1 is the main
encoder we are training, and we divide its long in-
put into segments (e.g., sentences) and have one
global token in global input for each segment. We

https://arxiv.org/abs/1803.07416
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mask some segments in the long input, and encode
those segments independently using g2 (by having
as input just the tokens of that segment in the long
input, and a single global token in the global in-
put). Then, we train g1 and g2 so that the encodings
of the global tokens corresponding to the masked
segments should be as similar as possible as the
encoding of the global segment token obtained via
g2. We use within-batch random negatives for this
process as well, and use a Noise Contrastive Es-
timation (NCE) loss, in the same way as in the
original CPC work (Oord et al., 2018).

Appendix C: Training Details

Our default pre-training procedure used the same
Wikipedia and Books training corpora as BERT, but
we filtered to remove those documents with fewer
than 7 sentences. Models were pre-trained for 33
epochs to match the amount of pre-training of the
original BERT model, which used batches of 256
sequences of 512 tokens each, and pre-trained for
1,000,000 iterations. Instead, we used batches of
512 sequences of 4096 tokens each and pre-trained
for 63,000 iterations. The ETC-large models were
pre-trained for 66 epochs by using a batch size of
1024 instead. When lifting weights from RoBERTa,
we found that decreasing the learning rate to 2 ×
10−3 improved model quality.

When pre-training models, we split any in-
put documents that are longer than the long in-
put length. For efficiency, we also concatenate
as many shorter documents as will fit into the
512/4096/8192 window and mask attention to pre-
vent them from influencing each other. This results
in a roughly 3x speedup in pre-training time for
4096-token models, highlighting once more the
advantage of flexible masking.

When pre-training with CPC, we randomly se-
lect 10% of sentences to be masked for the CPC
task. Subsequently, 15% of the remaining tokens
are masked for MLM.

In the models where we use both MLM and CPC,
we used a 0.8 weight for MLM and a 0.2 weight
for CPC to combine them into a single loss.

NQ

Data Download Link: https://ai.google.

com/research/NaturalQuestions/download

Data Pre-processing: Following Alberti’s
BERT implementation (Alberti et al., 2019), long
input in NQ contains a CLS token followed by the

question word pieces, then a separator followed by
the long document, a final separator, and padding.
Global input contains a CLS token, one special
“question” token per token in the question, and then
one special “segment” token per paragraph (long
answer candidate) in the long input. Moreover,
since the ground truth indexes in this dataset are
word indexes, in order to be able to align tokens
with words, sentences are first tokenized by words,
and then each word is given to the BERT/RoBERTa
tokenizer.

Fine-Tuning: After pre-training, all models
were fine-tuned with a hyperparameter sweep con-
sisting of learning rates in {3 × 10−5, 5 × 10−5}
and number of epochs in {3, 5} ({2, 3} for large
models) with a batch size of 64 on the NQ train-
ing set using the Adam optimizer. The model is
trained to predict four logits coming out of the long
input tokens: long answer start, long answer end,
short answer start, and short answer end. A final
prediction (predicted from the long input CLS to-
ken embedding) is the answer type (null, yes, no,
short, long). For NQ instances that are longer than
long input size, a sliding window approach is used
(with stride 128 for input lengths of 512, 2048 for
input lengths of 4096, and 4096 for input lengths
of 8192).

Model Selection: we performed a single hyper-
parameter sweep for each model (i.e., we tested a
single random seed per parameter configuration).
The best model was selected as the highest average
F1 score on dev at the end of fine-tuning. Our best
model (large, lifting from RoBERTa) was trained
for 2 epochs with learning rate 3× 10−5.

Inference: Final predictions are then aggregated
similarly as in the work of Alberti et al. (2019), but
with two improvements: First, instead of predicting
start and end of short/long answer separately, we
first select the best start position, and then select
the best end location that occurs after the start po-
sition. For short answer, we also filter out all end
positions further than 38 words from the start posi-
tion. Second, when the logit for a yes/no answer is
higher than the logits for short, long or null answer,
we replace the short answer with a corresponding
yes/no.

HotpotQA

Data Download Link: https://hotpotqa.

github.io/

Data Pre-processing: Only 90,431 out of the

https://ai.google.com/research/NaturalQuestions/download
https://ai.google.com/research/NaturalQuestions/download
https://hotpotqa.github.io/
https://hotpotqa.github.io/
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90,447 instances were used for training, as we
model the task as extractive QA and thus filtered
out the 16 instances where the answer could not
be found in the contexts. Long input in HotpotQA
is organized as follows: CLS token followed by
question tokens followed by all the context tokens.
Each context is represented as the concatenation
of its title, and then all the sentences. Global input
has a CLS token, and then one token per question
token (as in NQ), followed by global tokens repre-
senting the contexts. For every context, in global,
we have one token representing the whole context,
and then one per sentence. We did not use any
windowing approach for longer instances, and just
fit as many tokens as possible within the 4096 long
input. Global input length was set to 256.

Fine-Tuning: After pre-training, all base mod-
els were fine-tuned with a hyperparameter sweep
consisting of learning rates in {3 × 10−5, 5 ×
10−5}, number of epochs in {3, 5, 7, 9}, batch
size in {32, 64}, and supporting fact threshold
in linspace(0, 1, 11) on the training set using the
Adam optimizer. Large models were tested with
learning rate in {1×10−5, 2×10−5, 3×10−5, 5×
10−5, 7×10−5}, number of epochs in {2, 5, 9, 13},
and batch size in {32, 64, 128}.

Model Selection: we performed a single hyper-
parameter sweep to determine the best parameter
configuration for each model, and then we tried 3
different random seeds for the best configuration.
The best model was selected as the one with the
best joint F1 score on dev. Our best model (large,
lifting from RoBERTa) was trained for 5 epochs,
with a learning rate of 3× 10−5, batch size of 32
and supporting fact threshold of 0.4.

Inference: In order to make predictions, sup-
porting facts are predicted using a single dense
layer taking the global input embeddings as input
with a threshold over the output logits. Output
type is predicted with a single dense layer from the
global CLS token. Answer spans where predicted
also with dense layers, but using the long input
embeddings as inputs, using the following crite-
ria: begin/end positions must be in sentences or
titles, begin/end must be in the same sentence/title,
spans must belong to a supporting fact, begin must
be before end, and spans cannot exceed a maxi-
mum answer length of 30 tokens. Within spans
satisfying those criteria, a single span with top
begin prob ∗ end prob is selected.

WikiHop

Data Download Link: https://qangaroo.cs.

ucl.ac.uk/

Data Pre-processing: Global and Long input
was set similarly as in HotpotQA, except that global
input was set to 430, and that instead of a CLS to-
ken in global, we have one token per candidate an-
swer (WikiHop provides a list of candidate answers,
and the model needs to select among them). We
used a relative position label (the same used to link
sentence summary tokens with its corresponding
tokens) to link candidate answers to their mentions
in the text, where mentions are determined only by
string matching. Also, as in HotpotQA, no sliding
window was used, and instances were just cropped
to a length of 4096. A MaxHeap was used to en-
sure that in case a context is truncated, truncation
happens from the contexts with the larger number
of sentences.

Fine-Tuning: After pre-training, all base mod-
els were fine-tuned with a hyperparameter sweep
consisting of learning rates in {1 × 10−5, 2 ×
10−5, 3 × 10−5, 4 × 10−5, 5 × 10−5}, and num-
ber of epochs in {5, 10, 15} with a batch size of
64 on the training set using the Adam optimizer.
For large models, we narrowed down the hyperpa-
rameter sweep to learning rates in {2× 10−5, 3×
10−5, 4× 10−5, 5× 10−5}, and number of epochs
in {5, 10}. For this dataset we also experimented
with the LAMB optimizer (in addition to Adam),
which was used for our leaderboard submission.

Model Selection: we performed a single hyper-
parameter sweep to determine the best parameter
configuration for each model (i.e., single random
seed per parameter configuration). The best model
was selected as the one with the highest accuracy on
dev. Our best model (large, lifting from RoBERTa)
was trained for 10 epochs, with a learning rate of
5× 10−5. Finally, for the final leaderboard submis-
sion, we selected the checkpoint of the model that
had the highest dev set accuracy.

Inference: For final prediction, we used a dense
layer from the global input embeddings, after that,
the candidate with the highest logit is selected as
the final prediction.

OpenKP

Data Download Link: https://microsoft.

github.io/msmarco/

Data Pre-processing: Long input in OpenKP
contains all the word pieces of the input. One

https://qangaroo.cs.ucl.ac.uk/
https://qangaroo.cs.ucl.ac.uk/
https://microsoft.github.io/msmarco/
https://microsoft.github.io/msmarco/
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global token per VDOM node was added to the
global input (notice this is like the pre-training
setup, except instead of sentences we have VDOM
nodes as the higher-level units). No sliding win-
dowing was used, and we simply truncate instances
to whichever of max tokens in long input or max
VDOM tokens in global ends up being more con-
straining. Long input length was set to 4096 and
global input length to 512 by default in this dataset.
After url deduplication and skipping examples with-
out keyphrases in the truncated document, there
were 133,374 valid training examples. Regarding
visual features, we embed font sizes based on 24
bucket ranges, and we also construct an embedding
for the cross of “block”, “heading”, and “bolded”
Boolean features in the input data. All other visual
features were treated as dense features, with the
floating point features clipped to reasonable ranges
and re-scaled to the [−1, 1] interval. These dense
features are then transformed to the same embed-
ding space as the other embeddings, and all visual
feature embeddings are added to both the relevant
long and global input tokens.

Fine-Tuning: After pre-training, all models
were fine-tuned with a hyperparameter sweep con-
sisting of learning rates in {3 × 10−5, 5 × 10−5}
and number of epochs in {2, 3} with a batch size
of 64 on the OpenKP training set using the Adam
optimizer. To generate predictions, we first sum the
embeddings (from the long input) of all the word
pieces for each word to form word embeddings.
Then we run convolutions with kernel size 1, 2,
3, 4, and 5 to form the respective n-gram embed-
dings. Finally, a dense linear layer is used to form
logits for all the n-grams and concatenate them
together for one combined softmax. The loss is
cross entropy where the ground truth probabilities
are divided equally among the keyphrase labels (up
to 3). By default we used the first occurrence of
each keyphrase as the label. Our improved “max
loss” takes the max of logits across all occurrences
of the same keyphrase in the text, rather than just
the first occurrence.

Model Selection: we performed a single hyper-
parameter sweep to determine the best parameter
configuration for each model (i.e., single random
seed per parameter configuration). The best model
was selected as the one with the highest F1@3
on dev. Our best model (large, max loss, lifting
from RoBERTa) was trained for 2 epochs, with a
learning rate of 3× 10−5.

Model Time Hardware
ETC (share) 11h 13m 256 core TPU v3
ETC 11h 46m 256 core TPU v3
ETC-large 63h 41m 512 core TPU v3

Table 6: Time taken for pre-training the different model
types used in our experiments, together with the hard-
ware configuration used (2 cores = 1 chip). This cor-
responds to 63k pre-training iterations, with batch size
512 for base models (33 epochs), and 1024 for large
models (66 epochs).

Dataset Epochs Time Hardware
NQ 5 10h 47m 32 core TPU v3
HotpotQA 9 2h 59m 32 core TPU v3
WikiHop 15 5h 55m 32 core TPU v3
OpenKP 3 2h 5m 32 core TPU v3

Table 7: Time taken for fine-tuning the baseline ETC
(base) model on different datasets, together with the
hardware configuration used (2 cores = 1 chip). As
we did a hyper-parameter sweep with different number
of epochs, we report the time of the largest number of
epochs we tried.

Inference: During inference, we select the top
5 keyphrases ordered by logits, removing any du-
plicates. All keyphrases were treated as uncased
for the purpose of deduplication.

Appendix D: Lifting Weights from
BERT/RoBERTa

When lifting weights from BERT or RoBERTa, the
weights that can be lifted are (for every Transformer
layer): feed forward layer, WQ, WK , W V (since
BERT/RoBERTa only have one copy of such matri-
ces, in models where we use different matrices for
global and long inputs, we initialize both sets of
matrices to the same BERT/RoBERTa weights), at-
tention output projection, and layer normalization.
Additionally, we can also lift the token embedding
matrix. Absolute position embeddings and next
sentence prediction weights from BERT are dis-
carded. After that, weights for the layers necessary
for the CPC loss, and those involved in relative
position encodings are randomly initialized.

For lifting to be possible, the number of lay-
ers, hidden size, number of attention heads, and
size of the feed forward intermediate layers of the
BERT/RoBERTa model need to match with the
ETC model.
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Figure 4: Wall time per step for different input lengths
for both BERT and ETC with their base configurations.
For ETC, global input length was set to 1/16th of the
long input length until reaching a ceiling of 512 global
length at 8192 long length, and Sequence Length is the
sum of long and global lengths.
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Figure 5: Illustration of structure encoding with ETC
(using the same example shown in Figure 3b). Top:
each box represents an input token, and arrows repre-
sent attention. The different colors and dash patterns
in arrows represent the different relative position labels.
Bottom: illustration of where each token would appear
in the input of ETC.

Appendix E: Model Computational
Requirements

Memory: To gauge headroom for scaling input
lengths beyond what we used in this paper, we ran
some additional experiments on TPU v3 hardware
with gradient checkpointing and removing the ex-
tra gradient moments required by optimizers like
Adam and LAMB. Fixing global input length to
512 tokens, we were able to push base models to
long input size of 22656, and large models to long
input size of 8448 before running out of memory
on a single TPU v3 core. We leave for future work
experimentation with more memory-efficient op-
timizers like Adafactor (Shazeer and Stern, 2018)
and model-parallelism techniques in ETC.

Compute: As stated above, the computational
complexity of attention in ETC is O(ng(ng +nl)+

Model Parameters
ETC base (shared) 109M
ETC base 166M
ETC large (RoBERTa vocab) 558M
BERT base 110M
BERT large (RoBERTa vocab) 355M

Table 8: Number of trainable parameters for the differ-
ent models evaluated in this paper.

nl(ng+2r+1)) and if we assume ng = O(2r+1),
this results in a complexity ofO(n2g+ngnl), which
is linear in the size of the long input. Table 6 shows
pre-training times in our experiments, together with
the hardware used in each experiment. Table 7
shows the fine-tuning times taken by the baseline
ETC model on the different datasets. Notice that
pre-training is the most computational intensive
part, and thus, we used significantly more hardware.
In order to gain further insights into the common
use case of running the models using GPUs, Fig-
ure 4 shows a comparison of the wall-time used
per step when using a single NVIDIA Tesla V100
GPU as the input length increases, for both BERT
and ETC in their base configurations. As the plot
shows ETC is initially slower, but it becomes faster
than BERT for input lengths larger than about 1500.
Moreover, the BERT plot ends earlier due to mem-
ory constraints. Finally, notice that the ETC wall
time is not linear in this figure, as we also increased
the size of the global input together with the long
input.

Parameters: Finally, Table 8 shows the total
number of parameters of the ETC model for the
different configurations used in our experiments.
The most important consideration is that the num-
ber of trainable parameters does not depend on the
input length. As a matter of fact, it only depends
on: the embedding dimensionality (d), the number
of layers (l), and the number of relative position
labels (which depends on k). The parameter count
also depends on the fully connected feed forward
intermediate size, but this is 4d by convention and
for all ETC models in this paper. Our baseline
model uses separate WQ, WK , W V , and output
projection matrices for global and long inputs, re-
sulting in about 50% more parameters than BERT.
But the configuration with shared WQ, WK , W V ,
and output projection has a similar number of pa-
rameters as BERT. Parameter count for BERT base
is reported from the original paper (Devlin et al.,
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2018) and BERT large (RoBERTa vocab) from the
original RoBERTa paper (Liu et al., 2019).

Appendix F: Structured Input Example

Figure 3b shows an illustration of a possible atten-
tion pattern for a dataset like WikiHop, where the
input consists of contexts, made out of sentences.
There is no order among the contexts, but there is
among the sentences within a context. Figure 5
illustrates how this can be encoded in ETC, putting
all the word piece tokens in the long input, and
using the global input for special “context” and
“sentence” tokens. Different relative position labels
are used to indicate the different relations (token
part of a sentence, sentence part of a context, order
between sentences, order between tokens, etc.).


