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Abstract

Sentiment analysis is crucial for the advance-
ment of artificial intelligence (AI). Sentiment
understanding can help AI to replicate hu-
man language and discourse. Studying the
formation and response of sentiment state
from well-trained Customer Service Represen-
tatives (CSRs) can help make the interaction
between humans and AI more intelligent.

In this paper, a sentiment analysis pipeline
is first carried out with respect to real-world
multi-party conversations - that is, service
calls. Based on the acoustic and linguistic fea-
tures extracted from the source information, a
novel aggregated method for voice sentiment
recognition framework is built. Each party’s
sentiment pattern during the communication
is investigated along with the interaction sen-
timent pattern between all parties.

1 Introduction

The natural reference for AI systems is human be-
havior. In human social life, emotional intelligence
is important for successful and effective communi-
cation. Humans have the natural ability to compre-
hend and react to the emotions of their communica-
tion partners through vocal and facial expressions
(Kotti and Paternò, 2012; Poria et al., 2014a). A
long-standing goal of AI has been to create affec-
tive agents that can recognize, interpret and express
emotions.
Early-stage research in affective computing and
sentiment analysis has mainly focused on under-
standing affect towards entities such as movie,
product, service, candidacy, organization, action
and so on in monologues, which involves only one
person’s opinion. However, with the advent of
Human-Robot Interaction (HRI) such as voice as-
sistants and customer service chatbots, researchers
have started to build empathetic dialogue systems
to improve the overall HRI experience by adapting
to customers’ sentiment.

Sentiment study of Human-Human Interactions
(HHI) can help machines identify and react to hu-
man non-verbal communication which makes the
HRI experience more natural. The call center is a
rich resource of communication data. A large num-
ber of calls are recorded daily in order to assess
the quality of interactions between CSRs and cus-
tomers. Learning the sentiment expressions from
well-trained CSRs during communication can help
AI understand not only what the user says, but also
how he/she says it so that the interaction feels more
human.
In this paper, we target and use real-world data
- service calls, which poses additional challenges
with respect to the artificial datasets that have been
typically used in the past in multimodal sentiment
researches (Cambria et al., 2017), such as variabil-
ity and noises. The basic ‘sentiment’ can be de-
scribed on a scale of approval or disapproval, good
or bad, positive or negative, and termed polarity
(Poria et al., 2014b).
In the service industry, the key task is to enhance
the quality of services by identifying issues that
may be caused by systems of rules, or service
qualities. These issues are usually expressed by
a caller’s anger or disappointment on a call. In ad-
dition, service chatbots are widely used to answer
customer calls. If customers get angry during HRI,
the system should be able to transfer the customers
to a live agent. In this study, we mainly focuses on
identifying ‘negative’ sentiment, especially ‘angry’
customers. Given the non-homogeneous nature of
full call recordings, which typically include a mix-
ture of negative, and nonnegative statements, sen-
timent analysis is addressed at the sentence level.
Call segments are explored in both acoustic and
linguistic modalities. The temporal sentiment pat-
terns between customers and CSRs appearing in
calls are described.
The paper is organized as follows: Section 2 covers
a brief literature review on sentiment recognition
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from different modalities; Section 3 proposes a
pipeline which features our novelties in training
data creation using real-world multi-party conver-
sations, including a description of the data acqui-
sition, speaker diarization, transcription, and semi-
supervised learning annotation; the methodologies
for acoustic and linguistic sentiment analysis are
presented in Section 4; Section 5 illustrates the
methodologies adopted for fusing different modali-
ties; Section 6 presents experimental results includ-
ing the evaluation measures and temporal sentiment
patterns; finally, Section 7 concludes the paper and
outlines future work.

2 Related Work

In this section, we provide a brief overview of re-
lated work about text-based and audio-based senti-
ment analysis.

2.1 Text-based Sentiment Analysis

Sentiment analysis has focused primarily on the
processing of text and mainly consists of either rule-
based classifiers that make use of large sentiment
lexicons, or data-driven methods that assume the
availability of a large annotated corpora.
Sentiment lexicon is a list of lexical features (e.g.
words) which are generally labeled according to
their semantic orientation as either positive or neg-
ative (Liu, 2010). Widely used lexicons include bi-
nary polarity-based lexicons, such as Harvard Gen-
eral Inquirer (Stone et al., 1966), Linguistic Inquiry
and Word Count (LIWC, pronounced ‘Luke’) (Pen-
nebaker et al., 2007, 2001), Bing (Liu, 2012), and
valence-based lexicons, such as AFINN (Nielsen,
2011), SentiWordNet (Alhazmi et al., 2013), and
SnticNet (Cambria et al., 2010). Employing these
lexical, researchers can apply their own rules or
use existing rule-based modeling, such as VADER
(Hutto and Gilbert, 2015), to do sentiment analysis.
One big advantage for the rule-based models is that
these approaches require no training data and gen-
eralize to multiple domains. However, since words
are annotated based on their context-free semantic
orientation, word-sense disambiguation (Hutto and
Gilbert, 2015) may occur when the word has multi-
ple meanings. For example, words like ‘defeated’,
‘envious’, and ‘stunned’ are classified as ‘positive’
in Bing, but ‘-2’ (negative) in AFINN. Although
the rule-based algorithm is known to be noisy and
limited, a sentiment lexicon is a useful component
for any sophisticated sentiment detection algorithm

and is one of the main resources to start from (Poria
et al., 2014b).
Another major line of work in sentiment analysis
consists of data-driven methods based on a large
dataset annotated for polarity. The most widely
used datasets include the MPQA corpus which is
a collection of manually annotated news articles
(Wiebe et al., 2005; Wilson et al., 2005), movie
reviews with two polarity (Pang and Lee, 2004a),
a collection of newspaper headlines annotated for
polarity (Strapparava and Mihalcea, 2007). With
a large annotated datasets, supervised classifiers
have been applied (Go et al., 2009; Pang and Lee,
2004b; dos Santos and Gatti, 2014; Socher et al.,
2013; Wang et al., 2016). Such approaches step
away from blind use of keywords and word co-
occurrence count, but rather rely on the implicit
features associated with large semantic knowledge
bases (Cambria et al., 2015).

2.2 Audio-based Sentiment Analysis

Vocal expression is a primary carrier of affec-
tive signals in human communication. Speech as
signals contains several features that can extract
linguistic, speaker-specific information, and emo-
tional. Related work about audio-based sentiment
analysis along with multimodal fusion is reviewed
in this section.
Studies on speech-based sentiment analysis have
focused on identifying relevant acoustic features.
Use open source software such as OpenEAR (Ey-
ben et al., 2009), openSMILE (Eyben et al., 2010),
JAudio toolkit (McEnnis et al., 2005) or library
packages (McFee et al., 2015; Sueur et al., 2008)
to extract features. These features along with some
of their statistical derivates are closely related to
the vocal prosodic characteristics, such as a tone,
a volume, a pitch, an intonation, an inflection, a
duration, etc.
Supervised or unsupervised classifiers can be fit-
ted based on the statistical derivates of these fea-
tures (Jain et al., 2018; Pan et al., 2012). Sequence
models can be fitted based on filter banks, Mel-
frequency cepstral coefficients (MFCCs), or other
low-level descriptors extracted from raw speech
without feature engineering (Aguilar et al., 2019).
However, this approach usually requires highly ef-
ficient computation and large annotated audio files.
Multimodal sentiment analysis has started to draw
attention recently because of the unlimited mul-
timodality source of information online, such as
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videos and audios (Cambria et al., 2017; Poria,
2016; Poria et al., 2015). Most of the multimodal
sentiment analysis is focused on monologue videos.
In the last few years, sentiment recognition in
conversations has started to gain research inter-
est, since reproducing human interaction requires
a deep understanding of conversations, and senti-
ment plays a pivotal role in conversations. The
existing conversation datasets are usually recorded
in a controlled environment, such as a lab, and
segmented into utterances, transcribe to text and
annotated with emotion or sentiment labels manu-
ally. Widely used datasets include AMI Meeting
Corpus (Carletta et al., 2006), IEMOCAP (Busso
et al., 2008), SEMAINE (Mckeown et al., 2013)
and AVEC (Schuller et al., 2012).
Recently, a few recurrent neural network (RNN)
models are developed for emotion detection in con-
versations, e.g. DialogueRNN (Majumder et al.,
2019) or ICON(Hazarika et al., 2018). However
they are less accurate in emotion detection for the
utterances with emotional shift (Poria et al., 2019)
and the training data requires the speaker informa-
tion. The conversation models are not employed
in our polarity sentiment analysis because of the
quality of the data and the approach used to gain
the training data. More detailed explanations can
be found in Section 3.4.
At the heart of any multimodal sentiment analy-
sis engine is the multimodal fusion (Shan et al.,
2007; Zeng et al., 2007). The multimodal fusion
integrates all single modalities into a combined
single representation. Features are extracted from
each modality of the data independently. Decision-
level fusion feeds the features of each modality
into separate classifiers and then combines their
decisions. Feature-level fusion concatenates the
feature vectors obtained from all modalities and
feeds the resulting long vector into a supervised
classifier. Recent research on multimodal fusion
for sentiment recognition has been conducted at ei-
ther the feature level or decision level (Poria, 2016;
Poria et al., 2015).

3 Dataset and Pipeline

The data resources used for our experiments are
described in Section 3.1. Data preparation includ-
ing speech transcription and speaker diarization is
discussed in Section 3.2. The sentiment annota-
tion guideline is introduced in Section 3.3. Section
3.4 presents a semi-supervised learning annotation

pipeline that chains data preparation, model train-
ing, model deploying and data monitor.

3.1 BSCD: Benefits Service Call Dataset
The main dataset we created in this paper consists
of service calls collected from a health care benefits
Call Center (named BSCD). Calls are focused on
customers looking for help or support with com-
pany provided benefits such as health insurance.
500 calls are collected from the call center database
covering diverse topics, such as insurance plan in-
formation, insurance id card, dependent coverage,
etc. The call dataset has female and male speakers
randomly selected with their age ranging approx-
imately from 16-80. Calls involving translators
are eliminated to keep only speakers expressing
themselves in English. All the calls are presented
in Wave format with a sample rate of 8000 Hertz
and duration varying from 4 minutes to 26 minutes.
All calls are pre-processed to eliminate repetitive
introductions. The beginning of each call contains
an introduction of the users’ company name by a
robot. To address this issue, the segment before the
first pause (silence duration> 1 second) is removed
from each call.
A robust computational model of sentiment analy-
sis needs to be able to handle real-world variability
and noises. While the previous researches on multi-
modal sentiment or emotion analysis use audio and
visual recorded in laboratory settings (Busso et al.,
2008; Mckeown et al., 2010, 2013); the BSCD gath-
ers real-world calls which contain ambient noise
present in most audio recordings, as well as diver-
sity in person-to-person communication patterns.
Both of these conditions result in difficulties that
need to be addressed in order to effectively extract
useful data from these sources.

3.2 Data Preparation
To discard noise and long pauses (silence duration
> 5 seconds) in calls, Voice Activity Detection
(VAD) is applied, followed by the application of
Automatic Speech Recognition (ASR) and Auto-
matic Speaker Diarization (ASD) to transcribe the
verbal statements, extract the start and end time
of each utterance, and identify the speaker of each
utterance. Each call is segmented into an average
of 69 utterances. The duration of the utterances is
right-skewed with a median of 2.9 seconds; first
and third quantiles 1.6 and 5.1 seconds.
By searching keywords such as ‘How can I help’ in
the content of each utterance, speakers are labeled
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Thank you for calling this night or 
benefits center is the same . How 
can I help you ?

Okay . Let me get your account 
pulled up . I could take a look and 
see if there's been an update on it 
yet . Um , could I have your first 
and last name ?

Hey , Sam , I'm just trying to find 
out what's going on with my , um

Yeah . Yeah . Chapter on a Friday .

Speaker Diarization Speech Recognition

Discarded

CSR

Customer 

Noise or silence.   

Voice Activity Detection

Figure 1: Data preparation workflow

as CSR or customer. Each utterance is linked to
the corresponding audio stream, auto transcription,
as well as speaker label. The workflow and cor-
responding results for the first 23 seconds of one
selected call are shown in Figure 1, where the orig-
inal input is a call audio sample. After data prepa-
ration, segments of noise and silence are discarded.
This call sample is segmented into 4 utterances.
The audio streams are from the original audio and
split based on the start and end time of each ut-
terance. Auto transcriptions are more likely to be
ungrammatical if the recording quality is bad or
the conversation contains words that ASR cannot
identify or the speakers do not express themselves
clearly. The ungrammatical transcriptions usually
occur in customer parts and the frequency of un-
grammaticality varies from case to case. Although
the sentiment recognition of a whole call tends to
be robust with respect to speech recognition er-
rors, the sensitivity of each utterance analysis to
ASR errors is not reparable given our study. The
speaker labels are from ASD output which can be
misclassified because of the occurrence of speak-
ers overlapping or speakers with similar acoustic
features. Conversation sentiment pattern study can
be misleading due to the misclassified ASD output,
although misclassified ASD is rare.

This process allows us to study features from both
modalities: transcribed words and acoustics. Dis-
tinguishing different parties gives us the ability to
study the temporal sentiment transitions of individ-

ual speakers and interactions among speakers in
a conversation. However, since the data prepara-
tion is part of the pipeline described in section 3.4,
which runs in real-time, sentiment analysis must
rely on error-prone ASR and ASD outputs.

3.3 Sentiment Annotation
Sentiment annotation is a challenging task as the
label depends on the annotators’ perspective, and
the differences inherent in the way people express
emotions. The sentiment is opinion-based, not fact-
based. This study aims at identifying negative ex-
pressions in calls, especially angry customers who
are not satisfied with the services, or the business
rules, or the systems of rules. By identifying and
studying these types of cases, the business can im-
prove call center services and fix the possible busi-
ness or system issues.
Guidelines are set up for the annotation. The cus-
tomer negative tag is for negative emotions (e.g. “I
hate the system”), attitudes (e.g. “I am not follow-
ing you”), evaluations (e.g. “your service is the
worst”), and negative facts caused by other parties
(e.g. “I never received my card”). Other negative
facts are not considered as negative (e.g. “My wife
died, I need to remove her from my dependents”).
The guidelines for CSRs are different. Well trained
CSRs usually do not respond negatively, but there
are cases that they cannot help the customers. We
identify these cases as negative. Cases where a
CSR cannot help the customer usually involve busi-
ness process or system issues.
The sentiment is not always explicit in the text.
Borderline linguistic utterances stated loudly and
quickly are usually identified as negative (e.g. the
utterance “Trust me, it could be done” is classified
as negative, since it is in the context that the rep-
resentative fails to help the customer to enroll in
the health plan, and in the audio, the customer is
irritated). In all the multimodal sentiment analysis,
the labels of all modalities are kept consistent for
the same utterance. In our data annotation process,
we also keep both text and audio labels that agree
with each other and the annotation is based on the
audio segments.

3.4 Semi-supervised Learning Annotation
Pipeline

To successfully run and train analytical models,
massive quantities of stored data are needed. Cre-
ating large annotated datasets can be a very time
consuming and labor-intensive process. To keep
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Database
Committee classifiers 

CT and CA

Automatic 
Annotation 

DL ={DLT , DLA}

Data 
Preparation 

Human 
Correction

Accept 
Machine Label

DU’ (I) DU
’ (M)

Yes

No

Fusion with 
Certainty 

DU ={DUT , DUA} D’U ={D’UT , D’UA}

Figure 2: Semi-supervised learning annotation pipeline

the human annotation effort to a minimum, a semi-
supervised learning annotation scheme is applied
to tag the polarity of utterances as negative, or non-
negative. Figure 2 illustrates the process which
is similar to active learning annotation. It takes
as input a set of labeled examples DL including
text DLT and audio DLA, as well as a larger set
of unlabeled examples DU = {DUT , DUA}, and
produces committee classifiersC = {CT , CA} and
a relatively small set of newly labeled data D′U (I)
and D′U (M) (Olsson, 2008).
Semi-supervised learning annotation cooperates
with humans and machines and combines both
semi-supervised learning and multiple classifiers
approach for corpus annotation. This pipeline con-
sists of several steps: data generation to obtain DU

(Section 3.2), model training for both modalities
to obtain CT and CA using DLT and DLA (Sec-
tion 4), model deployment to get machine label
D′U = {D′UT , D

′
UA}, model fusion (Section 5) and

results evaluation to decide whether to accept ma-
chine label D′U (M) or ask a human annotator for
classifications of the utterances to obtain D′U (I),
then move D′U (I) and D′U (M) from D′U to DL. It
is cyclical and iterative as every step is repeated to
continuously improve the accuracy of the classifier
and achieve a successful algorithm.
Note, the classifiers in committee C = {CT , CA}
are modified based onDL in each iteration. The an-
notation process starts with 20 calls selected from
the service center by human domain experts, 20
calls are chunked to 1410 segments via data prepa-
ration processing and annotated by three annotators
manually as DL. For the first three iterations, set
CT={Support Vector Machine (SVM), VADER,
AWSSA∗, AWSCC†, GoogleSA‡} requires a small
size of training data or no extra training data. As
the size of DLT increases, we form a new com-

∗AWS Comprehend Sentiment Analysis API
†AWS Custom Classification API
‡Google Language Sentiment Analysis API

mittee CT = {SVM, Long Short-Term Memory
(LSTM), Bidirectional Long Short-Term Memory
(BLSTM)}. These classifiers are described in Sec-
tion 4.1. Section 4.2 introduced CA = {Elastic-Net
Regularized Generalized Linear Models (Elastic-
Net), K-Nearest Neighbors (KNN), Random For-
est (RF), Gaussian Mixture Model (unsupervised
GMM) }. In the later iterations, Recurrent Neural
Networks (RNN) such as LSTM and BLSTM are
applied.
If one call has a long duration (T > 10 minutes)
and a high percentage of negative utterances based
on D′U (> 40% for customer or > 20% for CSR),
then we say this call is potentially negative and
informative. We then ask an annotator to manually
correct the annotated tags D′U by listening to the
call, and move the results D′U (I) to DL. For all
the other calls, we only keep the utterances where
classifiers all agree as D′U (M). We then remove
chunks that are too short (duration < 1s) or too
long (duration >20s). Finally, we discard chunks
where the annotator cannot discern classification.
Using the pipeline, 6,565 negative and 10,322 non-
negative call clips are annotated as the training
dataset. The training data DLT still include tran-
scription errors, even though the threshold dis-
cussed in the above paragraph is set to eliminate
these utterances to add to the training dataset. In
addition, 18,705 cleaned text chat data collected
from chat windows are also added to DLT via the
annotation pipeline to improve the CT accuracy.
Instead of checking fusion with certainty, we only
keep the utterances with classifiers in CT all agree
as D′U (M) = D′UT (M).
Because of the quality of the calls, the poor per-
formance of the ASR for some cases, and the
threshold used to annotate the utterances, more
than half of the original call segments are dis-
carded∗, and 18,705 text chat data are added to
∗The accuracy on the test data decreases by 8% when

including all the call segments in the training dataset.
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DLT={transcription data, chat data} without the
corresponding audio files in DLA. It is hard to
consider the context of the conversation since the
segments are not continuing in the training dataset.
Therefore, conversation models are not considered
in our committee classifiers C.

4 Bimodal Sentiment Analysis

To model information for sentiment analysis from
calls, we first obtain the streams corresponding to
each modality via the methods described in Section
3.2, followed by the extraction of a representative
set of features for each modality. These features
are then used as cues to build classifiers of binary
sentiment.

4.1 Sentiment Analysis of Textual Data

General approaches such as sentiment lexicons and
sentiment APIs are easy to apply. Both approaches
are employed in CT to monitor the utterance pre-
diction labels in the early stage of semi-supervised
learning annotation to extend training data.
VADER (Hutto and Gilbert, 2015) is a simple rule-
based model for general sentiment analysis. The
results have four categories: compound, negative,
neutral, and positive. We classify utterances with
negative output as negative, neutral and positive
as nonnegative† so that it is consistent with BSCD
annotation. This model has many advantages, such
as being less computationally expensive and easily
interpretable. However, one of the main issues with
only using lexicons is that most utterances do not
contain polarized words. The utterances without
polarized words are usually classified as neutral or
nonnegative‡.
Sentiment analysis API is another way to classify
sentiment without extra training data. Amazon of-
fers Sentiment Analysis in Amazon Comprehend
(AWSSA), which uses machine learning to find
insights and relationships in a text. The result re-
turns Mixed, Negative, Neutral, or Positive clas-
sification. To be consistent with the BSCD we
created, Neutral and Positive are combined as one
class: nonnegative†. Another sentiment analysis on
Google Cloud Natural Language API (GoogleSA)
also performs sentiment analysis on text. Sentiment
analysis attempts to determine the overall attitude

† Utterances with compound or mixed class are very few,
and they are discarded to keep the training data clear.
‡This conclusion is verified by the high Rec(+) and low

Rec(-) shown in table 1.

and is represented by numerical scores and magni-
tude values. We simply set utterances with negative
scores as negative and nonnegative otherwise.
For machine learning-oriented techniques by lin-
guistic features, we evaluated well-known SVM,
LSTM, and BLSTM models. Since the data is un-
balanced and we want the model to focus more on
the negative class, we apply weighted loss func-
tions during the training. Hyperparameters are
tuned for each model, and ensemble models are
also developed by taking the weighted majority
vote.

4.2 Sentiment Analysis of Acoustic Data

Feature engineering heavily relies on expert knowl-
edge about data features. To better understand the
human hearing process, we study the acoustic fea-
tures based on human perception. Three perceptual
categories are described in this section. Their cor-
responding features are usually short-term based
features that are extracted from every short-term
window (or frame). Long-term features can be
generated by aggregating the short-term features
extracted from several consecutive frames within a
time window. For each short-term acoustic feature,
we calculated nine statistical aggregations: mean,
standard deviation, quantiles (5%, 25%, 50%, 75%,
95%), range (95%-5% quantile), and interquartile
range (75%-25% quantile) to get the long-term fea-
tures of each segment.

• Loudness is the subjective perception of sound
pressure which is related to sound intensity. Am-
plitude and mean frequency spectrum features are
extracted to measure loudness. The greater the am-
plitude of the vibrations, the greater the amount of
energy carried by the wave, and the more intense
the sound will be.

• Sharpness is a measure of the high-frequency
content of a sound, the greater the proportion of
high frequencies the sharper the sound. Fundamen-
tal frequency (pitch) and dominant frequency are
extracted.

• Speaking rate is normally defined as the num-
ber of words spoken per minute. In general, the
speaking rate is characterized by different parame-
ters of speech such as pause and vowel durations.
In our study, speaking rate is measured by pause
duration, character per second (CPS), and word per
second (WPS) which are calculated as following
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for the ith segment:

Pause durationi =
T silence
i

T total
i

CPSi =
N character

i

T total
i

, WPSi =
Nword

i

T total
i

where for segment i, Ti denotes the time, and Ni

denotes the number of characters or words in the
corresponding transcription. Pause duration can be
interpreted as the percentage of the time where the
speaker is silent in each segment. The three vari-
ables are aggregated statistics, long-term features.

In nonnegative cases, speakers are in a relaxed and
normal emotional state. An agitated or angry emo-
tional state speaker is typically characterized by
increased vocal loudness, sharpness, and speaking
rate. CA ={Elastic-Net, KNN, RF, GMM} are built
based on the 39 selected features.
Hand-crafted features are generally very success-
ful for specificity sound analysis tasks. One of the
main drawbacks of feature engineering is that it
relies on transformations that are defined before-
hand and ignore some particularities of the signals
observed at runtime such as recording conditions
and recording devices. A more common approach
is to select and adapt features initially introduced
for other tasks. A now well-established example
of this trend is the popularity of MFCC features
(Serizel et al., 2018). In our experiments, MFCC
is extracted from each segment and fed to RNN
models in later iterations with |DLA| > 10, 000.

5 Fusion

There are two main fusion techniques: feature-level
fusion and decision-level fusion. In our experi-
ments, we employ decision-level fusion. Decision-
level fusion has many advantages (Poria et al.,
2015). One benefit of the decision-level fusion
is we can use classifiers for text and audio features
separately. The unimodal classifier can use data
from another communication channel of the same
type to improve its accuracy, e.g. text data from
the chat windows is borrowed to improve the CT

accuracy in our study. Separating modalities per-
mit us to use any learner suitable for the particular
problem at hand. In practice, the two unimodal
classifiers can be applied separately, e.g. to analyze
text data from chat windows DU = DUT , apply
CT only to get sentiment labels D′UT , then add

D′UT (M) to DLT . Another benefit of the decision-
level fusion is its processing speed since fewer fea-
tures are used for each classifier and separate clas-
sifiers can be run in parallel.
Decision-level fusion usually adds probabilities or
summarized predictions from each unimodal clas-
sifier with weights or takes the majority voting
among the predicted class labels by unimodal clas-
sifiers.
In this paper, various fusion methods are evaluated,
including two novel approaches that use linguis-
tic ensemble results as the baseline, while then
checking acoustic results to modify classification
decisions. In Fus1, if the audio ensemble classifies
negative and one or more text models classifies neg-
ative, we then reclassify the result to negative. In
Fus2, if the audio ensemble classifies a sample as
negative, we then reclassify the result to negative
directly without checking the linguistic modality.
The Fus1 and Fus2 approaches are proposed, be-
cause for borderline linguistic utterances, acoustic
features are more important than linguistic features
to understand the spoken intention of the speaker.

6 Experiment Results

The test dataset consists of 21 calls with 1,890 utter-
ances, which are manually annotated for negative
(848) and nonnegative (1,042).

6.1 Evaluation Measures

As evaluation measures, we rely on accuracy and
weighted F1-score, which is the weighted harmonic
mean of precision and recall. Precision is the prob-
ability of returning values that are correct. Recall,
also known as sensitivity is the probability of rele-
vant values that the algorithm outputs.
As shown in Table 1, general approaches in CT ,
Vader and APIs, tend to have a low negative re-
call. The semantic knowledge based classifiers
have more than 20% higher weighted F1-score than
the general approaches. The classifiers are trained
on DLT={transcription data, chat data}. The over-
all weighted F1-score is more than 10% higher
than the classifiers trained on call transcription only
data§.
BLSTM on MFCC performs better than CA =
{Elastic-Net (penalty 0.2||β||1 + 0.4||β||22), KNN
(k = 3), RF, GMM} on acoustic features. Using
audio features alone, a weighted F1-score of 0.584

§Weighted F1-scores are 0.718 (SVM), 0.719 (LSTM) and
0.714 (BLSTM).
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Methods
Text Audio

SVM LSTM BLSTM Vader AWSSA GoogleSA Elastic-Net KNN RF GMM BLSTM
Acc. 0.814 0.853 0.843 0.498 0.651 0.637 0.570 0.544 0.585 0.546 0.601
F1 (w) 0.814 0.852 0.842 0.347 0.628 0.615 0.500 0.534 0.549 0.500 0.584
Prec.(+) 0.770 0.802 0.781 0.494 0.594 0.586 0.528 0.518 0.541 0.513 0.561
Prec.(-) 0.871 0.92 0.934 0.742 0.821 0.779 0.860 0.589 0.741 0.685 0.693
Rec. (+) 0.886 0.929 0.946 0.991 0.908 0.881 0.964 0.697 0.883 0.872 0.811
Rec. (-) 0.746 0.779 0.745 0.024 0.404 0.402 0.205 0.402 0.309 0.252 0.402

Table 1: Binary classification of sentiment polarity on test data: Accuracy (Acc.), weighted F1-score (F1 (w)),
precision (Prec.) and recall (Rec.) for the nonnegative (+) and negative (-) classes

Methods
Ensemble Fusion

Text Audio T+A Fus1 Fus2
Acc. 0.851 0.586 0.846 0.858 0.871
F1 (w) 0.851 0.525 0.846 0.858 0.871
Prec.(+) 0.779 0.531 0.800 0.790 0.818
Prec.(-) 0.949 0.927 0.896 0.946 0.933
Rec. (+) 0.953 0.979 0.894 0.950 0.933
Rec. (-) 0.761 0.240 0.804 0.777 0.817

Table 2: Binary classification of sentiment polarity on
both linguistic and acoustic modalities

can be reached, which is acceptable considering
that the real world audio-only system exclusively
analyzes the tone of the speaker’s voice and doesn’t
consider any language information.
The acoustic modality is significantly weaker than
the linguistic modality. Usually, speakers’ tones
are not signifcantly different from the tones under
normal emotional state even the content is negative
(e.g. “We messed up.” with negative tag ). 97%
of the segments with correct D′UT but wrong D′UA

have negative as true tag. The other 3% are the
nonnegate segments with emphasized words (e.g. “
But I do have a newborn coming.” with nonnegtive
tag).
In most cases, text already includes enough infor-
mation to judge the sentiment. A few observed typi-
cal situations leading to linguistic modality misclas-
sification are the presence of misleading linguistic
cues caused by overlapping or other issues (e.g.
ASR “Customer: I love it. It can be done.” and
true transcription “CSR: I... Customer: Drop it.
It can be done.” with negative tag), ambiguous
linguistic utterances whose sentiment polarity are
highly dependent on the context described in ear-
lier or later part of the call (e.g. “But I got a call
from your service center today apologizing, saying,
Yeah, we made a mistake.” with nonnegative tag),
or nonnegative linguistic utterances stated angrily
(e.g. “So I think you should honor those amounts.”
with negative tag).

In order to achieve better accuracy, we combine
the two modalities together to exploit complemen-
tary information. We simply combine results of the
three semantic knowledge based classifiers and all
the five audio classifiers by taking the weighted ma-
jority vote. The T+A ensemble results are shown
in Table 2 and they do not improve when compared
to the unimodal text ensemble results.
Since the unimodal performance of linguistic
modality is notably better than acoustic modality,
our decision-level fusion methods use linguistic
ensemble results as the base-line, while acoustic
results are used as supplemental information to cal-
ibrate each classification. Fus1 reclassifies the am-
biguous linguistic utterances, and Fus2 reclassifies
the nonnegative/ambiguous linguistic utterances
based on audio ensemble classifies. The two novel
fusion approaches discussed in Section 5 are tested.
The Fus2 bimodal system yields a 2% improve-
ment in weighted F1-score than the text unimodal
system.
McNemar’s test is applied to compare the accuracy
of text only results D′UT and Fus2 results D′UF2

χ2 =
(14− 52)2

14 + 52
= 21.88,

where the number of segments with correct D′UT

wrong D′UF2 is 14, and wrong D′UT correct D′UF2

is 52. The McNemar’s test gives χ2 = 21.88 and
P < 0.001, which implies a statistically significant
effect by adding acoustic features using the Fus2
approach.
The acoustic modality provides important cues to
identify borderline linguistic segments with neg-
ative emotions. Our results show that relying on
the joint use of linguistic and acoustic modalities
allows us to better sense the sentiment being ex-
pressed as compared to the use of only one modal-
ity at a time. The acoustic feature analysis helps
us to better understand the spoken intention of the
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Figure 3: The (cumulative) negative score pattern between customers (C) and CSRs (R)

speaker, which is not normally expressed through
text.

6.2 Tempo Sentiment Pattern

The sentiment is not only regarded as an internal
psychological phenomena but also interpreted and
processed communicatively through social inter-
actions. Conversations exemplify such a scenario
where inter-personal sentiment influences persist.
The left panel in Figure 3 shows the negative scores
of customers and CSRs in 21 test calls. The neg-
ative score, a weighted negative segment percent-
age, is calculated to analyze the overall sentiment.
Weights 0.8, 1, and 1.2 are assigned to the first third,
second third and last third of each call. Since long
pauses in calls are discarded in the data prepara-
tion process, these segments do not have sentiment
labels and do not contribute to the negative score.
The negative scores of CRSs are commonly lower
than customers’, and usually high negative scores
for customers correspond to high negative scores
for CSRs. We can conclude from the figure that
sentiment can be affected by other parties during a
conversation.
To further analyze the interactions between cus-
tomers and CSRs, the cumulative negative scores
for call 6, 15, and 16 are drawn on the right panel
of Figure 3. The x-axis shows time of the whole
call in seconds including noise and long pauses.
Call 6 shows the sentiment patterns of a typical
bad call, which is characterized by long duration
and long pauses. The two long pauses are from
444s to 607s and from 921s to 1008s. Between the
two long pauses, there are three customer and CSR
overlapping segments, but the Automatic Speaker
Diarization recognizes all of them as CSRs. The
customer has a high negative score from beginning
to end, and the CSR fails to help the customer dur-
ing the call. Call 15 is a typical good call. The
overall negative score is low and the negative score

pattern goes down for both the customer and the
CSR, which means the problem is resolved by the
end of the call. Call 16 is another type of call, in
which the customer does not get angry even though
the CSR is unable to solve his/her issues.

7 Discussion and Future Work

A new dataset BSCD consisting of real-world con-
versation, the service calls, is introduced. Human
communication is a dynamic process, and our even-
tual goal is to develop a bimodal sentiment analysis
engine with the ability to learn the temporal interac-
tion sentiment patterns among conversation parties.
In the process of fusion, we have approached the
study of audio sentiment analysis from an angle
that is somewhat different from most people’s.
Future research will concentrate on evaluations us-
ing larger data sets, exploring more acoustic fea-
ture relevance analysis, and striving to improve the
decision-level fusion process.
A call is constituent of a group of utterances that
have contextual dependencies among them. How-
ever, in our semi-supervised learning annotation
pipeline, about half of the segments in calls are
discarded. Therefore the interdependent modeling
is out of the scope of this paper and we include it
as future work.

Acknowledgements

The author wishes to express sincere appreciation
to Sony SungChu for the support of the project and
the comments that greatly improved the manuscript,
and the anonymous reviewers for their insightful
suggestions to help clarify the manuscript.

References
Gustavo Aguilar, Viktor Rozgic, Weiran Wang, and
Chao Wang. 2019. Multimodal and multi-view models
for emotion recognition. arXiv:1906.10198. Version
1.

https://arxiv.org/abs/1906.10198
https://arxiv.org/abs/1906.10198


33

Samah Alhazmi, Bill Black, and J McNaught. 2013.
Arabic SentiWordNet in relation to SentiWordNet 3.0.
International Journal of Computational Linguistics,
4:1–11.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower Provost, Samuel Kim,
Jeannette Chang, Sungbok Lee, and Shrikanth
Narayanan. 2008. IEMOCAP: Interactive emotional
dyadic motion capture database. Language Resources
and Evaluation, 42:335–359.

Erik Cambria, J. Fu, Federica Bisio, and Soujanya Po-
ria. 2015. AffectiveSpace 2: Enabling affective intu-
ition for concept-level sentiment analysis. Proc. AAAI,
pages 508–514.

Erik Cambria, Devamanyu Hazarika, Soujanya
Poria, Amir Hussain, and Rbv Subramanyam.
2017. Benchmarking multimodal sentiment analysis.
arXiv:1707.09538. Version 1.

Erik Cambria, Robyn Speer, C. Havasi, and Amir Hus-
sain. 2010. SenticNet: A publicly available semantic
resource for opinion mining. AAAI Fall Symposium -
Technical Report, pages 14–18.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav Kadlec,
Vasilis Karaiskos, Wessel Kraaij, Melissa Kronenthal,
Guillaume Lathoud, Mike Lincoln, Agnes Lisowska,
Iain McCowan, Wilfried Post, Dennis Reidsma, and
Pierre Wellner. 2006. The AMI meeting corpus: A
pre-announcement. In Proceedings of the Second In-
ternational Conference on Machine Learning for Mul-
timodal Interaction, pages 28–39, Berlin, Heidelberg.
Springer-Verlag.
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