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Abstract

We propose the task of unsupervised morpho-
logical paradigm completion. Given only raw
text and a lemma list, the task consists of gen-
erating the morphological paradigms, i.e., all
inflected forms, of the lemmas. From a nat-
ural language processing (NLP) perspective,
this is a challenging unsupervised task, and
high-performing systems have the potential
to improve tools for low-resource languages
or to assist linguistic annotators. From a
cognitive science perspective, this can shed
light on how children acquire morphological
knowledge. We further introduce a system
for the task, which generates morphological
paradigms via the following steps: (i) EDIT
TREE retrieval, (ii) additional lemma retrieval,
(iii) paradigm size discovery, and (iv) inflec-
tion generation. We perform an evaluation
on 14 typologically diverse languages. Our
system outperforms trivial baselines with ease
and, for some languages, even obtains a higher
accuracy than minimally supervised systems.1

1 Introduction

Morphologically rich languages express syntac-
tic and semantic properties—like tense or case—
of words through inflection, i.e., changes to the
surface forms of the words. The set of all in-
flected forms of a lemma—the canonical form—is
called its paradigm. While English does not man-
ifest a rich inflectional morphology, Polish verbs
have around a hundred different forms (Sadowska,
2012), and Archi paradigms, an extreme example,
can have over 1.5 million slots (Kibrik, 1977).

Morphologically rich languages constitute a
challenge for natural language processing (NLP)
systems: because each lemma can take on a vari-
ety of surface forms, the frequency of each indi-
vidual inflected word decreases drastically. This
yields problems for speech recognition (Creutz

1Our implementation is available under https://github.
com/cai-lw/morpho-baseline.

Sé	vigilante	y	confirma	las	otras	cosas	que
están	para	morir	,	porque	no	he	hallado	tus 
obras	bien	acabadas	delante	de	Dios	.
Acuérdate	,	pues	,	de	lo	que	has	recibido	y	oído	;
guárdalo	y	arrepiéntete	,	pues	si	no	velas	vendré	sobre
ti	como	ladrón	y	no	sabrás	a	qué	hora	vendré	sobre	ti	.
El	vencedor	será	vestido	de	vestiduras	blancas	,	y	no
borraré	su	nombre	del	libro	de	la	vida	,	y	confesaré	su
nombre	delante	de	mi	Padre	y	delante	de	sus	ángeles	.
El	que	tiene	oído	,	oiga	lo	que	el	Espíritu	dice	a	las
iglesias	.	’	”
»	Escribe	al	ángel	de	la	iglesia	en	Filadelfia	:	»	“	Esto
dice	el	Santo	,	el	Verdadero	,	el	que	tiene	la	llave	de
David	,	el	que	abre	y	ninguno	cierra	,	y	cierra	y	ninguno
abre	:
...

estar
tener
empezar
pasar
...

(1) EDIT
TREES

(2) NEW
LEMMAS

morir   TAG1  mueres
morir   TAG2  mueren
morir   TAG3  morirás
...
saber   TAG1  sabes
saber   TAG2  saben
...

(3) PARADIGM
SIZE DISCOVERY

(4) GENERATION

morir
saber
vestir
...

morir - mueres

saber - sabes

TAG1

Figure 1: Our unsupervised paradigm completion sys-
tem, which takes raw text and a lemma list as inputs.
We describe it in detail in §4.

et al., 2007), parsing (Seeker and Çetinoğlu, 2015),
and keyword spotting (Narasimhan et al., 2014),
inter alia. For unsupervised machine translation,
Guzmán et al. (2019) encounter difficulties when
translating into the morphologically rich languages
Nepalese and Sinhalese.

Children acquire morphological knowledge from
raw utterances and, in particular, without access to
explicit morphological information (Berko, 1958).
Do they have an innate capacity that enables them
to learn a language’s morphology? Or can morphol-
ogy be learned in an unsupervised fashion? This
question—in addition to practical considerations
like benefits for the aforementioned NLP tasks—
has motivated work on unsupervised morphologi-
cal analyses (Goldsmith, 2001; Creutz, 2003). To
the best of our knowledge, no previous work has
considered unsupervised morphological genera-
tion.2 However, over the last few years, there has

2Kann et al. (2017), which performs a zero-shot inflection
experiment, uses prior information about paradigm size and
related languages and, thus, cannot draw the same conclusions.

https://github.com/cai-lw/morpho-baseline
https://github.com/cai-lw/morpho-baseline
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been a lot of progress on morphological genera-
tion tasks with limited amounts of supervision, in
particular on morphological inflection (Cotterell
et al., 2018) and paradigm completion (Kann and
Schütze, 2018), which can potentially be leveraged
for unsupervised solutions.

Here, we fill the gap between unsupervised mor-
phological analysis and morphological generation
with limited training data by proposing the task of
unsupervised morphological paradigm completion.
That is, we aim to construct and fill inflection tables
exclusively from raw text and a lemma list for a
known part of speech (POS), in a situation similar
to those encountered by field linguists. We further
present a system for the task (see Figure 1) which
employs state-of-the-art methods common in NLP
and computational morphology. It performs the
following four steps: (i) EDIT TREE (Chrupała,
2008) retrieval (§4.1), (ii) additional lemma re-
trieval (§4.2), (iii) paradigm size discovery using
distributional information (§4.3), and (iv) inflection
generation (§4.4).

To evaluate our approach, we design a metric
for unsupervised paradigm completion, best-match
accuracy (§5.4), and experiment on 14 languages
from 7 families. As we are tackling a novel task
with no baselines in the NLP literature, we perform
an extensive ablation study to demonstrate the im-
portance of all steps in our pipeline. We further
show that our system outperforms trivial baselines
and, for some languages, even obtains higher accu-
racy than a minimally supervised system.

2 Related Work

Morphological Generation Versions of our task
with varying degrees of supervision—though never
totally unsupervised—have been explored in the
past. Yarowsky and Wicentowski (2000) is the pre-
vious work most similar to ours. They also assume
raw text and a word list as input, but additionally
require knowledge of a language’s consonants and
vowels, as well as canonical suffixes for each part
of speech. Dreyer and Eisner (2011) assume access
to seed paradigms to discover paradigms in an em-
pirical Bayes framework. Ahlberg et al. (2015) and
Hulden et al. (2014) combine information about
paradigms and word frequency from corpora to per-
form semi-supervised paradigm completion. Our
work differs from them in that we do not assume
any gold paradigms to be given.

Durrett and DeNero (2013), Nicolai et al. (2015),
and Faruqui et al. (2016) explore a fully super-
vised approach, learning morphological paradigms
from large annotated inflection tables. This frame-
work has evolved into the SIGMORPHON shared
tasks on morphological inflection (Cotterell et al.,
2016), which have sparked further interest in mor-
phological generation (Kann and Schütze, 2016;
Aharoni and Goldberg, 2017; Bergmanis et al.,
2017; Makarov et al., 2017; Zhou and Neubig,
2017; Kann and Schütze, 2018). We integrate
two systems (Cotterell et al., 2017; Makarov and
Clematide, 2018b) produced for SIGMORPHON
shared tasks into our framework for unsupervised
morphological paradigm completion.

Morphological Analysis Most research on unsu-
pervised systems for morphology aims at develop-
ing approaches to segment words into their smallest
meaning-bearing units, called morphemes (Gold-
smith, 2001; Creutz, 2003; Creutz and Lagus, 2007;
Snyder and Barzilay, 2008). Unsupervised morpho-
logical paradigm completion differs from segmen-
tation in that, besides capturing how morphology is
reflected in the word form, it also requires correctly
clustering transformations into paradigm slots as
well as generating unobserved forms. The model
by Xu et al. (2018) recovers something akin to mor-
phological paradigms. However, those paradigms
are a means to a segmentation end, and Xu et al.
(2018) do not explicitly model information about
the paradigm size as required for our task.

Other unsupervised approaches to learning mor-
phological analysis and generation rely on projec-
tions between word embeddings (Soricut and Och,
2015; Narasimhan et al., 2015); however, these
approaches rely on billions of words to train em-
beddings; at a minimum, Narasimhan et al. (2015)
use 129 million word tokens of English Wikipedia.
As we will describe later on (§5.1), we, in contrast,
are concerned with the setting with mere thousands
of sentences.

For a detailed survey of unsupervised approaches
to problems in morphology, we refer the reader to
Hammarström and Borin (2011).

SIGMORPHON 2020: Unsupervised Morpho-
logical Paradigm Completion After multiple
shared tasks on morphological inflection starting
with Cotterell et al. (2016), in 2020, SIGMOR-
PHON (the ACL special interest group on compu-
tational morphology and phonology) is organizing
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its first shared task on unsupervised morphological
paradigm completion.3 The system presented here
is the official shared task baseline system. The first
other approach applicable to this shared task has
been developed by Erdmann et al. (2020). Their
pipeline system is similar in spirit to ours, but the
individual components are different, e.g., a trans-
former model (Vaswani et al., 2017) is used for
inflection generation.

3 Formal Task Description

Given a corpus D = w1, . . . , w|D| with a vocabu-
lary V of word types {wi} and a lexicon L = {`j}
with |L| lemmas belonging to the same part of
speech, the task of unsupervised morphological
paradigm completion consists of generating the
paradigms {π(`)}`∈L of the entries in the lexicon.

Following Matthews and Matthews (1972) and
Aronoff (1976), we treat a paradigm as a vector of
inflected forms belonging to a lemma `. Paradigm
completion consists of predicting missing slots in
the paradigm π(`):

π(`) =
〈
f(`,~tγ)

〉
γ∈Γ(`)

, (1)

where f : Σ∗ × T → Σ∗ transforms a lemma
into an inflected form,4 ~tγ ∈ T is a vector of inflec-
tional features describing paradigm slot γ, and Γ(`)
is the set of slots in lemma `’s paradigm. Since we
only consider lemmas that belong to the same part
of speech, we will use Γ and Γ(`) interchange-
ably in the following. Furthermore, we will denote
f(`,~tγ) as fγ(`) for simplicity.

Remarks on Task Design In general, not all
paradigm entries will be present in the corpus D.
Thus, the task requires more than a keyword search.

On another note, it is not necessary to predict
the features ~tγ corresponding to each slot γ; as
the exact denotation of features is up to human
annotators, they cannot be inferred by unsupervised
systems. For our task, it is enough to predict the
ordered vector π(`) of inflected forms.

4 Methodology

Our system implicitly solves two subtasks: (i) de-
termining the number of paradigm slots; and (ii)
generating the inflected form corresponding to each
paradigm slot for each lemma. It is organized as a

3https://sigmorphon.github.io/sharedtasks/
2020/task2/

4We assume a discrete alphabet of symbols Σ.

Split(3, 6)

Replace 𝑛𝑎𝑗, 𝜀 Split(5, 0)

Replace 𝑖𝑒𝑗𝑠𝑧, 𝜀 Replace 𝜀, 𝜀

Figure 2: Visualization of the EDIT TREE constructed
from najtrudniejszy to trudny (Chrupała, 2008).

pipeline consisting of multiple components. Our
system is highly modular: individual components
can be exchanged easily. In the remainder of this
section, we will dedicate each subsection to one
component.

4.1 Retrieval of Relevant EDIT TREES

The first component in our pipeline identifies words
in the corpusD which could belong to the paradigm
of one of the lemmas in the lexicon L. We call
those words paradigm candidates. It then uses the
discovered paradigm candidates to identify EDIT

TREE (Chrupała, 2008) operations that correspond
to valid inflections.

Paradigm Candidate Discovery For most
paradigms, all participating inflected forms share
some characteristics—usually substrings—which
humans use to identify the paradigm any given
word belongs to. Given a pair (`, w) of a lemma `
and a word form w, the first step in our pipeline is
to determine whether w is a paradigm candidate
for lemma `. For example, studied is likely to be an
inflected form of the English lemma study, while
monkey is not. We identify paradigm candidates C`
of a lemma ` by computing the longest common
substring (LCS) between ` and w for all words
w in the vocabulary V . If the ratio between the
LCS’s length and the length of ` is higher than a
threshold λP , w is a paradigm candidate for `:

C` =

{
w ∈ V

∣∣∣∣ |LCS(`, w)|
|`|

> λP

}
. (2)

EDIT TREE Discovery Surface form changes,
which we denote as ψ, define a modification of
a word’s surface form. Our system employs EDIT

TREES (Chrupała, 2008) to represent ψ.
Given two strings x[1...n] and x′[1...m],

EDIT TREE(x[1...n], x
′
[1...m]) is constructed by

first determining the LCS between x and x′. We
then recursively model the substrings before and
after the LCS. If the length of the LCS is zero, the

https://sigmorphon.github.io/sharedtasks/2020/task2/
https://sigmorphon.github.io/sharedtasks/2020/task2/
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EDIT TREE consists of the substitution operation
of the first string with the second. For example,
EDIT TREE(najtrudniejszy, trudny)5 could be visu-
alized as in Figure 2, where Split(i, j) represents
taking the substring x[i...n−j].

An EDIT TREE can be applied to new input
strings. The EDIT TREE in Figure 2, for example,
could be applied to najappleiejszs, and the result-
ing string would be apples. Note that not all EDIT

TREES can be applied to all strings. For example,
the EDIT TREE in Figure 2 can only be applied to
words starting with naj.

Our system constructs EDIT TREES from all pairs
(`, w) of lemmas ` and their paradigm candidates
w and counts their frequencies:

nψ =
∑
`∈L
w∈C`

1 [EDIT TREE(`, w) = ψ] . (3)

It then discards EDIT TREES with frequencies nψ
below a threshold λFC(|L|), which is a function of
the size of the lexicon L:

λFC(|L|) = max {2, φFC · |L|} , (4)

where φFC ∈ R is a hyperparameter. The idea is
that an EDIT TREE is only valid if it can be applied
to multiple given lemmas. EDIT TREES which we
observe only once are always considered unreliable.
Our system then retains a set of frequent surface
form changes

Ψ = {ψ | nψ ≥ λFC(|L|)} (5)

represented by EDIT TREES. Assuming an one-to-
one mapping between surface form changes and
paradigm slots (that is, that |Ψ| = |Γ| and that each
ψ is equivalent to a particular inflection function
fγ), we now have a first basic paradigm completion
system (PCS-I), which operates by applying all
suitable EDIT TREES to all lemmas in our lexicon.

Complexity and Runtime The time complex-
ity to compute EDIT TREE(x[1...n], x

′
[1...m]) is

O(max3{n,m}). Computing EDIT TREES can triv-
ially be parallelized, and in practice this computa-
tion does not take much time.

4.2 Retrieval of Additional Lemmas
Since we assume a low-resource setting, our lexi-
con is small (≤ 100 entries). However, the more

5Polish form–lemma pair meaning hardest and hard. Ex-
ample from Chrupała (2008).

lemmas we have, the more confident we can be that
the EDIT TREES retrieved by the first component
of our system represent valid inflections. An in-
tuitive method to obtain additional lemmas would
be to train a lemmatizer and to generate new lem-
mas from words in our corpus. However, due to
the limited size of our initial lemma list, such a
lemmatizer would most likely not be reliable.

The second component of our system employs
another method, which guarantees that additionally
retrieved lemmas are valid words: It is based on the
intuition that a word w ∈ V is likely to be a lemma
if the pseudo–inflected forms of w, obtained by
applying the EDIT TREES from §4.1, also appear in
V . For a word w ∈ V , we say it is a discovered
lemma if w /∈ L and∑

ψ∈Ψ

1 [ψ(w) ∈ V ] > λNL(|Ψ|) (6)

for

λNL(|Ψ|) = max {3, φNL · |Ψ|} , (7)

with φNL ∈ R being a hyperparameter. Similar to
Equation 4, λNL depends on the number of discov-
ered EDIT TREES, but is never smaller than 3. We
set this minimum to require evidence for at least
two transformations in addition to the identity.

We can now bootstrap by iteratively computing
additional paradigm candidates and EDIT TREES,
and then retrieving more lemmas. We denote the
paradigm completion systems resulting from one
and two such iterations as PCS-II-A and PCS-II-
B, respectively. Since we cannot be fully confident
about retrieved lemmas, we associate each addi-
tional lemma with a weight θ` = θitNL, where θNL

is a preset hyperparameter and it identifies the it-
eration in which a lemma is added, i.e., it = 0 for
gold lemmas and it = i for lemmas retrieved in
the ith iteration. The weights θ` are used in later
components of our system.

4.3 Paradigm Size Discovery

Until now, we have assumed a one-to-one mapping
between paradigm slots and surface form changes.
However, different EDIT TREES may indeed rep-
resent the same inflection. For example, the past
tense inflection of verbs in English involves multi-
ple EDIT TREES, as shown in Figure 3.

Thus, the next step is to group surface form
changes based on the paradigm slots they realize.
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Split(0, 0)

Replace 𝜀, 𝜀 Replace 𝜀, 𝑒𝑑

(a)

Split(0, 0)

Replace 𝜀, 𝜀 Replace 𝜀, 𝑑

(b)

Figure 3: Visualization of the EDIT TREES representing
(a) work 7→ worked and (b) continue 7→ continued.

4.3.1 One EDIT TREE per Lemma and Slot
Our algorithm for grouping surface form changes
is based on two assumptions. First, since EDIT

TREES are extracted from (`, w) pairs, different
EDIT TREES belonging to the same paradigm slot
cannot be extracted from the same lemma.6 Thus:

Assumption 1 For each lemma, at most one in-
flected form per paradigm slot can be found in the
corpus.

Formally, for a multi-to-one mapping from EDIT

TREES to paradigm slots z : Ψ→ Γ, we define the
EDIT TREE set Ψγ of a potential paradigm slot γ as
Ψγ = {ψ | z(ψ) = γ}, with

⋃
γ Ψγ = Ψ. Then,

for any lemma ` ∈ L and proposed paradigm slot
γ ∈ Γ, we have:

|{w ∈ V | ψ(`) = w ∧ ψ ∈ Ψγ}| ≤ 1. (8)

4.3.2 One Paradigm Slot per EDIT TREE

Our second assumption is a simplification,7 but
helps to reduce the search space during clustering:

Assumption 2 Each surface form change ψ ∈ Ψ
belongs to exactly one paradigm slot.

Formally, we partition Ψ into disjoint subsets:

Ψγ ∩Ψγ′ = ∅ ∀γ 6= γ′. (9)

4.3.3 Paradigm Slot Features and Similarity
In addition to Assumptions 1 and 2, we make use
of a feature function r(γ) and a score function
s(r(γ), r(γ′)), which measures the similarity be-
tween two potential paradigm slots.

Our feature function makes the connection be-
tween paradigm slots and the instances of inflected
forms in the corpus by utilizing the part-of-speech
(POS) tags as context information. In our imple-
mentation, we employ an unsupervised POS tagger

6Exceptions to this do exist. However, they are rare enough
that we do not expect them to hurt our algorithm.

7This assumption ignores syncretism.
8Note that this example is simplified. The system does not

need to actually know the tags like PST and V.

the sun stopped shining .
DT N V V .

Sentence:
Tags:

i2bi
�H2T?D?K

C�Mm�`v kyRN

R AMi`Q/m+iBQM
!r Sah
[L,o,o] Y4 1

_272`2M+2b

R

Figure 4: An example of the distributionally informed
feature function with window size 3 for the past tense
slot (PST). stop ∈ L and fPST(stop) = stopped. When
the sliding window arrives to this instance of stopped,
~r PST[N,V,V] is increased by 1.8

(Stratos et al., 2016) to extract tags for each word
in the corpus D.

This tagger assigns an anchor word, i.e., a
pseudo POS tag, to each word wi in the corpus by
using an anchor hidden Markov model (HMM)
with 8 hidden states. Our feature function counts
the tag tuples within a sliding window centered
on each instance of inflected forms of a potential
paradigm slot.

Formally, we denote the set of lemmas that sur-
face form change ψ is applied to as Lψ, the set of
lemmas that express a potential paradigm slot γ as
Lγ , and the corresponding inflected forms as Vγ :

Lψ = {` ∈ L|ψ(`) = w ∧ w ∈ V } (10)

Lγ =
⋃
ψ∈Ψγ

Lψ (11)

Vγ =
⋃
ψ∈Ψγ

{ψ(`)}`∈Lψ . (12)

We further refer to the set of available POS tag
labels as P = {p1, . . . , p8}. For a corpus D =
w1, . . . , w|D|, a window size 2d+1, and a potential
paradigm slot γ, our feature function is defined as:

~r γ = r(γ;D, 2d+ 1), (13)

where ~r γ is a vector with one dimension for each
possible tag tuple sequence of length 2d+1. Its
values are computed as:

~r γ[
pj1 ,...,pj2d+1

] =
∑
wi∈D

1
[
wi ∈ Vγ (14)

∧ p̂i−d = pj1 ∧ · · · ∧ p̂i+d = pj2d+1

]
∀
(
p̂j1 , . . . , p̂j2d+1

)
∈ P 2d+1.

In practice, we initialize ~r γ to the zero vector,
and iterate the sliding window over the corpus.
When the central word wi ∈ Vγ , the corresponding
value of ~r γ at the POS tuple within the sliding
window is incremented by 1. Figure 4 shows an
example in English.

We assume that paradigm slots γ and γ′ are sim-
ilar if the words in Vγ and Vγ′ frequently appear in
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Algorithm 1: Surface Form Change Grouping
Result: Γ, {Ψγ}γ∈Γ

Initialize Γ s.t. |Γ| = |Ψ| and fγi = ψi for all ψi ∈ Ψ;
Initialize Ψγi = {ψi} for all ψi ∈ Ψ;
while ∃ (γ, γ′) s.t. Lγ ∩ Lγ′ = ∅ do
−−−→score← ~0;
for (γ, γ′) s.t. Lγ ∩ Lγ′ = ∅ do
−−−→score(γ,γ′) ← s(r(γ), r(γ′));

end
(γ̂, γ̂′) = arg max(γ,γ′){−−−→score(γ,γ′)};
if −−−→score(γ̂,γ̂′) > λS then

denote the new paradigm slot γmerge;
Ψγmerge = Ψγ̂ ∪Ψγ̂′ ;
Γ← (Γ \ {γ̂, γ̂′}) ∪ {γmerge};

else
break;

end
end

similar contexts, i.e., within similar tag sequences.
With the feature function defined above, our system
uses cosine similarity as the score function s.

We then develop Algorithm 1 to group one-
to-one mappings from surface form changes to
paradigm slots into many-to-one mappings. The
idea is to iteratively merge the most similar slots
if this is not violating Assumption 1 until the sim-
ilarity gets too low. λS ∈ (0, 1) is a threshold
parameter.9

4.4 Generation

Now, one paradigm slot can be represented by mul-
tiple EDIT TREES. Our system, thus, needs to learn
to apply the correct transformation for a combina-
tion of lemma and paradigm slot. However, map-
ping lemmas and paradigm slots to inflected forms
corresponds exactly to the morphological inflection
task, which has been the subject of multiple shared
tasks over the last years (Cotterell et al., 2018).

Our morphological inflection models take
(slot, lemma,word) tuples extracted by the previ-
ous components of our system as training data. For-
mally, they are trained on the training set:

{
(~tγ , `, fγ(`)) | γ ∈ Γ ∧ ` ∈ Lγ ∧ fγ(`) ∈ V

}
.

(15)

We explore two morphological inflection models
from the literature.

9This does not result in a functional paradigm completion
system, since we still lack a method to decide which surface
form change to apply to realize a paradigm slot for a lemma.

Affix Editing The baseline system of the
CoNLL–SIGMORPHON 2017 shared task10 (Cot-
terell et al., 2017) is a simple approach, which is
very suitable for low-resource settings. The system
breaks each word into PREFIX, STEM, and SUFFIX,
and then stores the PREFIX editing rules and the
STEM+SUFFIX editing rules. At test time, it applies
the longest possible PREFIX and STEM+SUFFIX

editing rules to the input lemma. We denote the
surface form change grouping in combination with
this system as PCS-III-C.

Transducer-Based Hard-Attention We further
experiment with a transducer-based hard-attention
model (Makarov and Clematide, 2018a). Unlike
widely used soft-attention sequence-to-sequence
models (Bahdanau et al., 2015), which predict the
target tokens directly, it predicts edit action se-
quences to transform the input sequence into out-
puts, and it disposes of a hard attention mechanism.
We denote the surface form change grouping in
combination with this system as PCS-III-H.

5 Experiments

5.1 Data

To evaluate our approach in a real-world setting,
we restrict our data to resources typically available
to a field linguist: a small written corpus (≤ 100k
tokens) and a small lexicon.

For our corpora, we use the JHU Bible Corpus
(McCarthy et al., 2020), which allows future work
to build systems in 1600 languages. The Bible
is frequently available even in low-resource lan-
guages: Ethnologue identifies 3,995 written lan-
guages, and the New Testament has been translated
into 2,246. The Bible is also highly representa-
tive of a language’s core vocabulary: Resnik et al.
(1999) find high overlap with both the Longman
Dictionary of Contemporary English (Summers
and Gadsby, 1995) and the Brown Corpus (Francis
and Kucera, 1964). Furthermore, the Bible is multi-
parallel and, thus, allows for a fair comparison
across languages without confounds like domain.

For evaluation of our methods only, we addition-
ally obtain ground-truth morphological paradigms
from UniMorph (Kirov et al., 2018), which pro-
vides paradigms for over 100 languages.

From the intersection of languages in the Bible
and UniMorph, we select 14 typologically diverse

10https://github.com/sigmorphon/conll2017/
tree/master/baseline

https://github.com/sigmorphon/conll2017/tree/master/baseline
https://github.com/sigmorphon/conll2017/tree/master/baseline
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languages from 7 families, each of which display
inflectional morphology: Basque (EUS), Bulgar-
ian (BUL), English (ENG), Finnish (FIN), German
(DEU), Kannada (KAN), Navajo (NAV), Spanish
(SPA), and Turkish (TUR) as test languages, and
Maltese (MLT), Persian (FAS), Portuguese (POR),
Russian (RUS), and Swedish (SWE) for develop-
ment. To create test data for all and development
data for our development languages, we sample
100 paradigms for each set from UniMorph, then
take their lemmas as our lexicon L.11

5.2 Baselines and Skylines

Lemma Baseline (LB) Our first, trivial baseline
predicts inflected forms identical to the lemma for
all paradigm slots. We compare to one version of
this baseline that has access to the ground-truth
paradigm size (LB-Truth), and a second version
which predicts the paradigm size as the average
over the development languages (LB-Dev).

One/Ten-Shot Inflection Model Our second
baseline could be seen as a skyline, since it lever-
ages morphological information our proposed sys-
tem does not have access to. In particular, we train
the baseline system of CoNLL–SIGMORPHON
2017 (Cotterell et al., 2017) on one (CoNLL17-1)
and ten (CoNLL17-10) paradigms. For this, we
randomly sample paradigms from UniMorph, ex-
cluding those in our test data.

5.3 Hyperparameters

We choose the hyperparameters by grid search over
intuitively reasonable ranges, using the develop-
ment languages. No test language data is seen be-
fore final testing. Note also that only the corpus and
the lexicon can be accessed by our system, and no
ground-truth morphological information (including
paradigm size) is given.

Our final hyperparameters are λP = 0.5, φFC =
0.05, φNL = 0.2, θNL = 0.5, and λS = 0.3. The
window size 2d+1 for feature extraction is set to 3.
For CoNLL17-1, we average over the results for
10 different sampled paradigms for each language.

5.4 Evaluation Metrics

Systems for supervised or semi-supervised
paradigm completion are commonly being evalu-
ated using word-level accuracy (Dreyer and Eisner,
2011; Cotterell et al., 2017). However, this is not

11For Basque, Kannada, and Maltese, we only take 20
paradigms for each set, due to limited availability.

possible for our task because our system cannot
access the gold data paradigm slot descriptions and,
thus, does not necessarily produce one word for
each ground-truth inflected form. Furthermore, the
system outputs pseudo-tags, and the mapping from
pseudo-tags to paradigm slots is unknown.

Therefore, we propose to use best-match accu-
racy (BMAcc), the best accuracy among all map-
pings from pseudo-tags to paradigm slots, for evalu-
ation. Let Γ = {γi}Ni=1 and Γ̂ = {γ̂j}Mj=1 be the set
of all paradigm slots in the ground truth and the pre-
diction, respectively, with transformation functions
f : Σ∗ × Γ→ Σ∗ ∪ {∅} and f̂ : Σ∗ × Γ̂→ Σ∗,12

where fγ(`) = ∅ if the corresponding inflection is
missing in the ground truth.13 We define two types
of BMAcc:

Macro-averaged BMAcc This is the average
per-slot accuracy for the best possible matching
of slots. For any γi, γ̂j , we define gt(L, γi, γ̂j) as
the number of correct guesses (true positives) if γ̂j
maps to γi, ga(L, γi) as the number of ground truth
inflections for γi, and acc(L, γi, γ̂j) as the per-slot
accuracy:

gt(L, γi, γ̂j) = |{` ∈ L | fγi(`) = f̂γj (`) 6= ∅}|
ga(L, γi) = |{` ∈ L | fγi(`) 6= ∅}|, (16)

and

acc(L, γi, γ̂j) =
gt(L, γi, γ̂j)
ga(L, γi)

. (17)

Then, we construct a complete bipartite graph
with Γ and Γ̂ as two sets of vertices and
acc(L, γi, γ̂j) as edge weights. The maximum-
weight full matching can be computed efficiently
with the algorithm of Karp (1980). With such a
matchingM = {(γm, γ̂m)}min{N,M}

m=0 , the macro-
averaged BMAcc is defined as:

BMAcc-macro(L,Γ, Γ̂) (18)

=

∑
(γm,γ̂m)∈M acc(L, γm, γ̂m)

max{N,M}

The normalizing factor 1
max{N,M} rewards predict-

ing the correct number of paradigm slots. In the
case when acc(L, γm, γ̂m) = 1 for all (γm, γ̂m) ∈
M, BMAcc-macro(L,Γ, Γ̂) reaches its maximum
if and only if N = M .

12These are equivalent to our definition in §3, since the
system does not need to predict the inflectional features.

13In practice, we merge paradigm slots that are identical for
all lemmas in both the predictions and gold standard before
evaluating.
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Test

Method Test Ave. EUS BUL ENG FIN DEU KAN NAV

LB-Truth 4.94 / 5.25 0.03 / 0.05 (1659) 1.89 / 2.16 (56) 20.40 / 20.40 (5) 0.96 / 0.96 (141) 15.66 / 15.68 (29) 1.18 / 1.19 (85) 2.89 / 5.39 (50)
LB-Dev 2.22 / 2.53 0.03 / 0.05 (48) 1.89 / 2.16 (48) 2.13 / 2.15 (48) 0.96 / 0.96 (48) 9.46 / 9.47 (48) 1.18 / 1.19 (48) 2.89 / 5.39 (48)
CoNLL17-1 18.70 / 18.70 0.00 / 0.00 (1659) 12.34 / 12.24 (56) 59.92 / 59.92 (5) 3.52 / 3.52 (141) 26.71 / 26.73 (29) 5.74 / 5.82 (85) 0.00 / 0.00 (50)
CoNLL17-10 35.58 / 35.56 0.00 / 0.00 (1659) 43.75 / 43.58 (56) 70.58 / 70.58 (5) 24.51 / 24.51 (141) 35.75 / 35.77 (29) 34.53 / 34.51 (85) 0.00 / 0.00 (50)

PCS-I 16.09 / 16.39 0.11 / 0.11 (51) 18.01 / 19.18 (39) 56.17 / 56.17 (6) 3.40 / 3.40 (23) 18.28 / 18.30 (19) 14.29 /14.15 (209) 2.19 / 3.74 (8)
PCS-I+II-A 17.60 / 17.89 0.11 / 0.11 (51) 22.72 / 23.87 (52) 56.17 / 56.17 (6) 5.70 / 5.70 (71) 20.57 / 20.56 (32) 12.60 / 12.48 (237) 2.19 / 3.74 (19)
PCS-I+II-B 17.60 / 17.89 0.11 / 0.11 (51) 22.72 / 23.87 (57) 56.17 / 56.17 (6) 5.70 / 5.70 (71) 20.57 / 20.56 (32) 12.60 / 12.48 (237) 2.19 / 3.74 (18)
PCS-I+III-C 15.90 / 16.19 0.07 / 0.10 (27) 16.18 / 17.24 (16) 63.20 / 63.20 (5) 3.58 / 3.58 (15) 5.19 / 5.18 (14) 17.82 / 17.82 (162) 2.19 / 3.74 (8)
PCS-I+III-H 17.45 / 17.67 0.04 / 0.04 (27) 16.95 / 18.16 (16) 62.20 / 62.20 (5) 3.78 / 3.78 (15) 19.98 / 19.96 (14) 15.83 / 15.85 (162) 2.55 / 4.78 (8)
PCS-I+II+III-C 19.10 / 19.41 0.07 / 0.10 (27) 16.77 / 17.94 (16) 72.80 / 72.80 (4) 3.51 / 3.51 (15) 23.28 / 23.31 (13) 18.03 / 17.90 (161) 2.16 / 3.81 (7)
PCS-I+II+III-H 18.76 / 19.06 0.06 / 0.08 (27) 17.39 / 18.65 (16) 74.00 / 74.00 (4) 3.77 / 3.77 (15) 18.87 / 18.89 (13) 17.90 / 17.90 (161) 2.0 / 3.41 (7)

Test Development

Method SPA TUR Dev. Ave. MLT FAS POR RUS SWE

LB-Truth 1.43 / 1.43 (70) 0.00 / 0.00 (120) 7.94 / 7.87 9.21 / 7.69 (24) 2.04 / 2.04 (136) 6.53 / 6.53 (76) 5.47 / 5.17 (55) 16.44 / 17.91 (11)
LB-Dev 1.43 / 1.43 (48) 0.00 / 0.00 (48) 4.33 / 4.18 4.25 / 3.55 (52) 2.04 / 2.04 (33) 6.53 / 6.53 (43) 5.47 / 5.17 (47) 3.35 / 3.65 (54)
CoNLL17-1 60.07 / 60.07 (70) 0.00 / 0.00 (120) 33.68 / 34.73 11.82 / 12.08 (24) 46.68 / 46.68 (136) 82.87 / 82.87 (76) 7.75 / 10.98 (55) 19.30 / 21.03 (11)
CoNLL17-10 76.23 / 76.23 (70) 34.88 / 34.88 (120) 49.3 / 53.02 13.07 / 13.33 (24) 64.26 / 64.26 (136) 89.54 / 89.54 (76) 19.22 / 36.75 (55) 60.41 / 61.22 (11)

PCS-I 25.04 / 25.04 (30) 7.40 / 7.40 (186) 18.72 / 21.66 12.21 / 12.00 (25) 6.36 / 6.36 (35) 36.47 / 36.47 (45) 8.24 / 20.98 (22) 30.31 / 32.47 (20)
PCS-I+II-A 31.03 / 31.03 (39) 7.33 / 7.33 (237) 17.06 / 20.77 8.45 / 8.50 (38) 6.50 / 6.50 (52) 37.14 / 37.14 (92) 12.56 / 30.66 (53) 20.65 / 21.06 (33)
PCS-I+II-B 31.03 / 31.03 (39) 7.33 / 7.33 (237) 17.02 / 20.80 7.83 / 7.88 (41) 6.51 / 6.51 (52) 37.14 / 37.14 (92) 12.95 / 31.42 (55) 20.65 / 21.06 (33)
PCS-I+III-C 24.10 / 24.10 (29) 10.73 / 10.73 (91) 22.43 / 23.78 15.79 / 11.54 (17) 6.24 / 6.24 (30) 27.22 / 27.22 (29) 11.56 / 20.48 (15) 51.36 / 53.43 (11)
PCS-I+III-H 24.36 / 24.36 (29) 11.69 / 11.69 (91) 21.27 / 23.13 14.69 / 9.94 (17) 4.90 / 4.90 (30) 28.36 / 28.36 (29) 7.98 / 20.12 (15) 50.40 / 52.34 (11)
PCS-I+II+III-C 24.01 / 24.01 (29) 11.35 / 11.35 (91) 22.74 / 24.79 8.55 / 6.73 (13) 6.34 / 6.34 (29) 31.71 / 31.71 (31) 12.02 / 21.74 (15) 55.07 / 57.41 (11)
PCS-I+II+III-H 24.30 / 24.30 (29) 10.54 / 10.54 (91) 23.53 / 25.43 12.94 / 11.22 (13) 6.35 / 6.35 (29) 32.43 / 32.43 (31) 13.37 / 22.05 (15) 52.58 / 55.12 (11)

Table 1: Macro- and micro-averaged BMAcc (in percentage) as well as the predicted number of paradigm slots (in
brackets), for each method. Overall best scores are bold, and the best scores of our system are underlined.

Micro-averaged BMAcc Our second metric is
conceptually closer to word-level accuracy. We
start with the same process of bipartite graph
matching, but instead use gt(L, γi, γ̂j) as edge
weights. Given the optimal matchingM, the micro-
averaged BMAcc is defined as:

BMAcc-micro(L,Γ, Γ̂) =

N

max{N,M}

∑
(γm,γ̂m)∈M gt(L, γm, γ̂m)∑

γi∈Γ ga(L, γi)
. (19)

5.5 Results and Discussion
Overall Results We present our experimental re-
sults in Table 1. The performance of our system
varies widely across languages, with best results
for ENG (74% BMAcc). On average over lan-
guages, our final system obtains 18.76%/19.06%
BMAcc on the test set, as compared to the baseline
of 4.94%/5.25% and skylines of 18.70%/18.70%
and 35.58%/35.56%. Compared to versions of our
system without selected components, our final sys-
tem performs best on average for both development
and test languages. Leaving out step II or step III
leads to a reduction in performance.

Notably, variants of our system outperform the
skyline CoNLL17-1, which has seen one training
example and, thus, knows the correct paradigm
size in advance, on EUS, BUL, ENG, FIN, KAN,
NAV, TUR, MLT, RUS, and SWE. Moreover, it even
outperforms CoNLL17-10 on EUS, ENG, and NAV,

which shows that unsupervised paradigm comple-
tion has promise even in cases where a limited num-
ber of training examples—but not large amounts—
are available.

Differences between Languages We hypothe-
size that the large differences between languages—
over 73% between EUS and ENG—can be explained
in parts by the following reasons:

Intuitively, the larger the paradigm, the more
difficult the task. If the number of slots is huge,
each individual inflection is rare, and it is hard for
any unsupervised paradigm completion system to
distinguish true inflections (e.g., rise→ rises) from
false candidates (e.g., rise → arise). This could
explain the high performance on ENG and the low
performance on EUS, FIN, and FAS.

Related to the last point, in a limited corpus such
as the Bible, some inflected forms might not appear
for any lemma, which makes them undetectable for
unsupervised paradigm completion systems. For
example, a FAS paradigm has 136 slots in Uni-
Morph, but only 46 are observed.14 Additional
statistics can be found in Table 2.

Furthermore, Assumption 2 does not hold for all
languages. Surface forms can be shared between
paradigm slots, as, for instance, in English for he
studied and he has studied. Different languages

14We had to estimate that number based on available data
in UniMorph: a slot is considered observed if at least one
inflected form for that slot can be found.
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Language
ET

Match
Rep.

Words
Absent/Total

Slots

MLT 18.13 58.18 0/16
FAS 12.10 28.66 90/136
POR 56.52 30.56 4/76
RUS 24.69 25.45 4/55
SWE 72.91 13.98 0/11

Table 2: Statistics for our development languages, com-
puted with UniMorph. ET Match is the percentage of
gold (`, w) pairs that can be matched to an EDIT TREE.
Rep. Words denotes the percentage of inflected forms
that represent multiple paradigm slots. Absent/Total
Slots is the numbers of unobservable and total slots.

show different degrees of this phenomenon called
syncretism.

Pipeline Effects Different combinations of com-
ponents result in major performance differences. In
particular, each step of our system has the potential
to introduce errors. This demonstrates a pitfall of
pipeline methods also discussed in McCarthy et al.
(2020): the quality of individual steps, here, e.g.,
EDIT TREE discovery and retrieval of additional
lemmas, can greatly affect the results of PCS-II
and PCS-III.

Differences in Components Details of individ-
ual components also affect the results. On the
one hand, applying more than one iteration of ad-
ditional lemma retrieval impacts the results only
slightly, as those lemmas are assigned very small
weights. On the other hand, we see performance
differences > 2% between PCS-III-C and PCS-III-
H for DEU, MLT, and SWE.

Analysis of EDIT TREE Quality As it is the
first step in our pipeline, the quality of the EDIT

TREE discovery strongly affects the performance of
later components. For our development languages,
we show in Table 2 the percentage of (`, w) pairs
for which the system predicts an EDIT TREE ψ
such that ψ(`) = w appears in the gold paradigm
of `. This corresponds to the highest possible per-
formance after PCS-I. FAS has the worst perfor-
mance (12.10%), while the results for SWE are
high (72.91%). As expected, languages with lower
values here also obtain lower final results.

Analysis of Syncretism We further hypothesize
that syncretism could be a source of errors, due to
Assumption 2. Table 2 shows the percentage of
words that are the inflected forms corresponding to
multiple paradigm slots of the same lemma.

We observe that SWE has a low degree of syn-
cretism, and, in fact, our system predicts the cor-
rect paradigm size for SWE. A high degree of syn-
cretism, in contrast, might contribute to the low
performance on MLT.

6 Conclusion

We proposed unsupervised morphological
paradigm completion, a novel morphological
generation task. We further developed a system for
the task, which performs the following steps: (i)
EDIT TREE retrieval, (ii) additional lemma retrieval,
(iii) paradigm size discovery, and (iv) inflection
generation. Introducing best-match accuracy, a
metric for the task, we evaluated our system on
a typologically diverse set of 14 languages. Our
system obtained promising results for most of our
languages and even outperformed a minimally
supervised baseline on Basque, English, and
Navajo. Further analysis showed the importance of
our individual components and detected possible
sources of errors, like wrongly identified EDIT

TREES early in the pipeline or syncretism.
In the future, we will explore the following di-

rections: (i) A difficult challenge for our proposed
system is to correctly determine the paradigm size.
Since transfer across related languages has shown
to be beneficial for morphological tasks (Jin and
Kann, 2017; McCarthy et al., 2019; Anastasopou-
los and Neubig, 2019, inter alia), future work could
use typologically aware priors to guide the num-
ber of paradigm slots based on the relationships
between languages. (ii) We plan to explore other
methods, like word embeddings, to incorporate con-
text information into our feature function. (iii) We
aim at developing better performing string trans-
duction models for the morphological inflection
step. By substituting the current transducers in our
pipeline, we expect that we will be able to improve
the overall performance of our system.
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