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Abstract
Discourse representation structures (DRSs)
are scoped semantic representations for texts
of arbitrary length. Evaluation of the accu-
racy of predicted DRSs plays a key role in de-
veloping semantic parsers and improving their
performance. DRSs are typically visualized
as nested boxes, in a way that is not straight-
forward to process automatically. COUNTER,
an evaluation algorithm for DRSs, transforms
them to clauses and measures clause overlap
by searching for variable mappings between
two DRSs. Unfortunately, COUNTER is com-
putationally costly (with respect to memory
and CPU time) and does not scale with longer
texts. We introduce DSCORER, an efficient
new metric which converts box-style DRSs
to graphs and then measures the overlap of
n-grams in the graphs. Experiments show that
DSCORER computes accuracy scores that cor-
relate with scores from COUNTER at a fraction
of the time.

1 Introduction

Discourse Representation Theory (DRT) is a popu-
lar theory of meaning representation (Kamp, 1981;
Kamp and Reyle, 2013; Asher, 1993; Asher et al.,
2003) designed to account for a variety of lin-
guistic phenomena within and across sentences.
The basic meaning-carrying units in DRT are Dis-
course Representation Structures (DRSs). They
consist of discourse referents (e.g., x1, x2) rep-
resenting entities in the discourse and conditions
(e.g., male.n.02(x1), Agent(e1, x1)) representing
information about discourse referents. Every vari-
able and condition are bounded by a box label
(e.g., b1) which implies that the variable or con-
dition are interpreted in that box. DRSs are con-
structed recursively. An example of a DRS in box-
style notation is shown in Figure 1(a).

DRS parsing differs from related parsing tasks
(e.g., Banarescu et al. 2013) in that it can create rep-

resentations that go beyond individual sentences.
Despite the large amount of recently developed
DRS parsing models (van Noord et al., 2018b; van
Noord, 2019; Evang, 2019; Liu et al., 2019b; Fan-
cellu et al., 2019; Le et al., 2019), the automatic
evaluation of DRSs is not straightforward due to
the non-standard DRS format shown in Figure 1(a).
It is neither a tree (although a DRS-to-tree conver-
sion exists; see Liu et al. 2018, 2019a for details)
nor a graph. Evaluation so far relied on COUNTER

(van Noord et al., 2018a) which converts DRSs to
clauses shown in Figure 1(b).

Given two DRSs with n and m (n ≥ m) vari-
ables each, COUNTER has to consider n!

(n−m)! pos-
sible variable mappings in order to find an optimal
one for evaluation. The problem of finding this
alignment is NP-complete, similar to other metrics
such as SMATCH (Cai and Knight, 2013a) for Ab-
stract Meaning Representation. COUNTER uses a
greedy hill-climbing algorithm to obtain one-to-one
variable mappings, and then computes precision,
recall, and F1 scores according to the overlap of
clauses between two DRSs. To get around the prob-
lem of search errors, the hill-climbing search im-
plementation applies several random restarts. This
incurs unacceptable runtime, especially when eval-
uating document-level DRSs with a large number
of variables.

Another problem with the current evaluation is
that COUNTER only considers local clauses with-
out taking larger window sizes into account. For
example, it considers “b4 sing e2” and “b3 NOT b4”
as separate semantic units. However, it would also
make sense to assess “ b3 NOT b4 sing e2” as a
whole without breaking it down into smaller parts.
By considering higher-order chains, it is possible
to observe more global differences in DRSs which
are important when assessing entire documents.

In order to address the above issues, we propose
DSCORER, a highly efficient metric for the evalu-
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ation of DRS parsing on texts of arbitrary length.
DSCORER converts DRSs (predicted and gold) to
graphs from which it extracts n-grams, and then
computes precision, recall and F1 scores between
them. The algorithm operates over n-grams in a
fashion similar to BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), which are metrics widely
used for evaluating the output of machine transla-
tion and summarization systems. While BLEU
only calculates precision with a brevity penalty (it
is not straightforward to define recall given the
wide range of possible translations for a given in-
put), ROUGE is a recall-oriented metric since the
summary length is typically constrained by a pre-
specified budget.1 However, in DRS parsing, there
is a single correct semantic representation (gold-
standard reference) and no limit on the maximum
size of DRSs. Our proposed metric, DSCORER,
converts box-style DRSs to a graph format used for
evaluation and computes F1 with high efficiency
(7,000 times faster compared to COUNTER). We re-
lease our code, implementing the metric, at https:
//github.com/LeonCrashCode/DRSScorer.

2 DSCORER

The proposed metric converts two box-style DRSs
into graphs, extracts n-grams from these graphs,
and then computes precision, recall, and F1 score
based on the n-gram overlap.

2.1 Graph Induction
Following the work of van Noord et al. (2018a),
box-style DRSs can be converted to clauses as
shown in Figure 1(b). For example, box b1 is in a
contrast relationship to box b4 within box b0 which
corresponds to the clause b0 CONTRAST b1 b4;
variable b2 : x1 is converted to clause b2 REF x1,
and the condition b1 : t1 < “now” is converted to
b1 TPR t1 “now”.2

We now explain how we convert DRSs to
graphs. There are two types of clauses depend-
ing on the number of arguments: 2-argument
clauses (e.g., b2 male.n.02 x1) and 3-argument
ones (e.g., b1 Agent e1 x1). The two types of

clauses can be formatted as node
edge−−−→ node and

node
edge−−−→ node

edge−−−→ node, respectively. For
example, clause “b2 male.n.02 x1” is rendered as

1See https://github.com/tensorflow/
tensor2tensor for computing ROUGE F1.

2REF and TPR are operators abbreviating “referent” and
“temporally precedes”, respectively; see https://pmb.
let.rug.nl/drs.php for more detail.

He didn’t play the piano. But she sang.

b0

b0 : ¬ b2 : x1, b3 : x2,
b1 : e1, b1 : t1 b1

b2 : male.n.02(x1)
b1 : time.n.08(t1)
b1 : t1 < “now”
b1 : play.v.03(e1)
b1 : Time(e1, t1)
b1 : Theme(e1, x2)
b1 : Agent(e1, x1)
b3 : piano.n.01(x2)

b0 : b5 : x3, b4 : e2,
b4 : t2 b4

b5 : female.n.02(x3)
b4 : time.n.08(t2)
b4 : t2 < “now”
b4 : sing.v.01(e2)
b4 : Time(e2, t2)
b4 : Agent(e2, x3)

CONTRAST(b1, b4)

(a)

b0 CONTRAST b1 b4 b3 REF x2
b0 NOT b1 b3 piano “n.01” x2
b2 REF x1 b5 REF x3
b2 male “n.02” x1 b5 female “n.02” x3
b1 REF e1 b4 REF e2
b1 REF t1 b4 REF t2
b1 Agent e1 x1 b4 Agent e2 x3
b1 TPR t1 “now” b4 TPR t2 “now”
b1 Theme e1 x2 b4 Time e2 t2
b1 Time e1 t1 b4 sing “v.01” e2
b1 play “v.03” e1 b4 time “n.08” t2
b1 time “n.08” t1

(b)
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Figure 1: (a) Box-style DRS for the text “He didn’t
play the piano but she sang.”; (b) Clause-style DRS for-
mat for COUNTER; (c) Proposed graph-style DRS for-
mat (abridged version shown; complete graphs can be
found in the Appendix).

b2
male.n.02−−−−−−→ x1, and clause “b1 Agent e1 x1” as

b1
Agent-A1−−−−−−→ e1

Agent-A2−−−−−−→ x1. Same nodes are
further merged to a single node. For example,

x1 nodes in b2
male.n.02−−−−−−→ x1 and e1

Agent-A2−−−−−−→ x1
are merged to a single node x1. The induced

graph is directed and yields the chain b1
Agent-A1−−−−−−→

e1
Agent-A2−−−−−−→ x1. In order to capture interactions

between chains, (e.g., chain b2
male.n.02−−−−−−→ x1, as-

signs x1 as a predicate “male.n.02” but x1 is also

https://github.com/LeonCrashCode/DRSScorer
https://github.com/LeonCrashCode/DRSScorer
https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
https://pmb.let.rug.nl/drs.php
https://pmb.let.rug.nl/drs.php
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an agent), we make edges bidirectional (red in Fig-
ure 1(c)) if they do not connect the two b nodes.

Next, we rewrite the nodes, keeping their type3

(e.g., B, X , E, S, P , and T ) but not their indices
and the resulting graph is shown in Figure 1(c).
In addition to being typed, variables can be distin-
guished by their neighboring nodes and connecting
edges. For example, the two E nodes are differ-

ent. One is on the path B
play.v.03−−−−−→ E

Theme-A2−−−−−−→
X

piano.n.01−−−−−−→ B showing that the Theme of the
predicate play is piano, and the other is on the path

B
sing.v.01−−−−−→ E

Agent-A2−−−−−−→ X
female.n.02−−−−−−−→ B show-

ing that the Agent of the predicate sing is female.
To compare two graphs, we compute the overlap
between extracted paths instead of searching for
best node mappings, which saves computational
resources (i.e., CPU memory and time).

2.2 Evaluation Based on n-grams
An n-gram in our case is an Euler path4 on a graph
with n edges. For example, B Theme-A1−−−−−−→ E is a
1-gram as it contains a single edge, B Theme-A1−−−−−−→
E

Theme-A2−−−−−−→ X
piano.n.01−−−−−−→ B is a 3-gram since it

has three edges, and a single node is a 0-gram. We
extract the n-grams for each node in a graph. Due
to the high sparsity of graphs typical for DRSs, the
number of n-grams does not explode as the size of
graphs increases, |G| = |N |+ |E|, where |N | and
|E| are the number of nodes and edges in graph G,
respectively. Given the n-grams of predicted and
gold DRS graphs, we compute precision pk and
recall rk as:

pk =
|k-gramspred ∩ k-gramsgold|

|k-gramspred|
(1)

rk =
|k-gramspred ∩ k-gramsgold|

|k-gramsgold|
(2)

where k-gramspred and k-gramsgold are
k-grams on predicted and gold DRS
graphs, respectively, and fk = 2pkrk

pk+rk
, where

p0 = r0 = f0 =
min(|Npred|,|Ngold|)
max(|Npred|,|Ngold|) . DSCORER

calculates precision, recall, and F1 as:

DSCORERnF = exp

(
n∑

k=1

wk logFk

)
(3)

3B refers to box labels, X to entities, E to events, S refers
to states, P to propositions, and T to time.

4An Euler path is a path that visits every edge of a graph
exactly once (allowing for revisiting nodes).
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Figure 2: Number of n-grams in (a) GMB and (b) PMB.
Red points are 4-grams, blue points are 3-grams, green
points are 2-grams and black points are 1-grams.

where wk is a fixed weight for k-gram (0 ≤ k ≤ n)
counts, and F ∈ {p, r, f}.

3 Experiments

In our experiments, we investigate the correlation
between DSCORER and COUNTER, and the ef-
ficiency of the two metrics. We present results
on two datasets, namely the Groningen Meaning
Bank (GMB; Bos et al. 2017) and the Parallel
Meaning Bank (PMB; Abzianidze et al. 2017).
We compare two published systems on the GMB:
DRTS-sent which is a sentence-level parser (Liu
et al., 2018) and DRTS-doc which is a document-
level parser (Liu et al., 2019a). On the PMB,
we compare seven systems: Boxer, a CCG-based
parser (Bos, 2015), AMR2DRS, a rule-based parser
that converts AMRs to DRSs, SIM-SPAR giving
the DRS in the training set most similar to the cur-
rent DRS, SPAR giving a fixed DRS for each sen-
tence, seq2seq-char, a character-based sequence-to-
sequence clause parser (van Noord et al., 2018b),
seq2seq-word, a word-based sequence-to-sequence
clause parser, and a transformer-based clause parser
(Liu et al., 2019b).

3.1 Metric Settings
COUNTER takes 100 hill-climbing restarts to search
for the best variable mappings on PMB and 10
restarts on GMB. Both DSCORER and COUNTER

are computed on one CPU (2.10GHz). The weight
w0 is set to 0.1 and the weights wk (1 ≤ k ≤ n) in
DSCORER are set to 0.9/n, where n = 4.

3.2 Analysis
We analyze the number of n-grams extracted by
DSCORER; we also report the values obtained by
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Systems COUNTER
DSCORER

P R F1
PMB

SPAR 39.7 6.5 19.7 9.2
AMR2DRS 43.2 17.5 23.3 19.7
SIM-SPAR 56.8 41.8 39.2 40.2
Boxer 74.3 56.7 58.4 57.6
seq2seq-word 83.1 72.4 75.1 73.7
seq2seq-char 83.6 71.9 75.3 73.5
transformer 87.4 79.8 82.1 80.9

GMB
DRTS-sent 77.9 66.7 65.3 65.9
DRTS-doc 66.7 60.0 62.9 61.4

Table 1: System evaluation according to COUNTER and
DSCORER which runs on 4-grams.

dataset |G| |NG| COUNTER DSCORER

PMB 39.93 7.83 0.006 0.004
GMB-sent 122.07 20.28 3.03 0.14
GMB-doc 801.87 120.86 14428.68 2.35

Table 2: Average runtime (secs) for a pair of DRSs,
where |G| is the average graph size and |NG| is the
average number of nodes in a graph.

DSCORER and COUNTER on the two datasets, their
correlation, and efficiency.

Number of n-grams Figure 2(a) shows the num-
ber of n-grams across graphs in GMB where the
largest size of 4-grams extracted on one graph
is 1.47 × 106. Figure 2(b) shows the number of
n-grams across graphs in PMB where the largest
size of 4-grams extracted on one graph is 2.27×103.
The number of n-grams will increase exponentially
with n or as the size of the graph increases. Nev-
ertheless, the number of 4-grams remains manage-
able. We set k = 4 for computing our metric
(see Equations (1) and (2)) as 4-grams are detailed
enough to capture differences between meaning
representations whilst avoiding overly strict match-
ing (which would render the similarity between
predicted and gold DRSs unncessarily low and not
very useful).

Metric Values Table 1 shows the various scores
assigned by DSCORER and COUNTER to the dif-
ferent systems. We observe similar trends for both
metrics; DSCORER penalizes more harshly SPAR
and SIM-SPAR, which output random DRSs with-
out any parsing algorithm. Generally speaking,
the two metrics are highly correlated; across sys-
tems and datatasets, Pearson’s correlation coeffi-
cient r is 0.93 on 1-grams, 0.94 on 2-grams, 0.91
on 3-grams, and 0.88 on 4-grams, with 2-grams be-
ing most correlated. This is not surprising, 2-grams
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Figure 3: Pearson’s r between DSCORER (on 4-grams)
and COUNTER (across systems and datasets).

in DSCORER are most similar to COUNTER which
only considers predicates with at most two argu-
ments. Figure 3 shows the 4-gram correlation be-
tween COUNTER and DSCORER. We found most
points are around the curve of y = x3, which
means that considering high-order grams renders
the two metrics less similar, but nevertheless allows
to more faithfully capture similarities or discrepan-
cies between DRSs.

Efficiency Table 2 shows the average run-time
for COUNTER and DSCORER on a pair of DRSs.
Both metrics have similar run-times on PMB which
mostly consists of small graphs. However, in GMB,
which consists of larger graphs with many nodes,
the run-time of COUNTER explodes (more than 4
hours per graph), while DSCORER evaluates DRSs
within an acceptable time frame (2.35 seconds per
graph). In GMB-doc, DSCORER runs seven thou-
sand times faster than COUNTER, showing it is very
efficient at comparing large graphs.

3.3 Case Study

We further conducted a case study in order to an-
alyze what the two metrics measure. Figure 4
shows two different sentences in their clause-style
DRS format used by COUNTER and graph-style
DRS format used by DSCORER. Note that the
two sentences have totally different meanings (dis-
tinguished using various meaning constructs in
the corresponding DRSs). Using COUNTER to
compare the two sentences yields an F1 of 47.06,
which drops to 16.11 when employing DSCORER

on 4-grams. Note that DSCORER on 1-grams ob-
tains an F1 of 46.42 which is close to COUNTER.

COUNTER takes matching clauses into account
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Tom is putting the children to bed . He smiled .
b1 REF x1 b3 Agent e1 x1
b1 Name x1 “tom” b3 Theme e1 x2
b1 male “n.02” x1 b3 put “v.01” e1
b3 Time e1 t1 b2 REF x2
b4 REF t1 b2 child “n.01” x2
b4 EQU t1 “now” b3 Destination e1 x3
b4 time “n.08” t1 b3 REF x3
b3 REF e1 b3 bed “n.01” x3

b1 REF x1 b2 Agent e1 x1
b1 male “n.02” x1 b2 REF e1
b3 REF t1 b2 Time e1 t1
b3 TPR t1 “now” b2 smile “v.01” e1
b3 time “n.08” t1

b3(B)

e1(E)

t1(T )

x1(X) x3(X)

x2(X)

b1(B)“tom”

b4

“now”

b2

put.v.01

A
gent-A

1

Agent-A2

T
hem

e-A
1

Theme-A2

Tim
e-A

1

Tim
e-A

2

D
estination-A

1

Destination-A2

bed.n.01

N
am

e-
A

1N
am

e-A
2

EQU-A1 EQU-A2

tim
e.n.08

ch
ild

.n.
01

b2(B)

e1(E)

t1(T )

x1(X)

b1(B)

b3

“now”

sm
ile.v.01

A
gent-A

1

Agent-A2

Tim
e-A

1

Tim
e-A

2

tim
e.n.08

TPR-A1
TPR-A2

sm
ile

.v
.0

1

(a) (b)

Figure 4: (a) DRS for the sentence “Tom is putting the children to bed.”; (b) DRS for the sentence “He smiled.”;
we omit the “REF” relation from the graph for the sake of clarity.

(marked as red in Figure 4), which might inflate the
similarity between two sentences without actually
measuring their core meaning. For example, the
common relation “b3 Time e1 t1” is matched to “b2
Time e1 t1” without considering what e1 and t1 are.
Instead, DSCORER aims to find matches for paths
B

T ime−A1−−−−−−→ e1
T ime−A2−−−−−−→ t1 and B

smile.v.01−−−−−−→
e1

T ime−A2−−−−−−→ t1 as well. And the mismatch of the
second path reduces the final score.

4 Related Work

The metric SEMBLEU (Song and Gildea, 2019) is
most closely related to ours. It evaluates AMR
graphs by calculating precision based on n-gram
overlap. SEMBLEU yields scores more consis-
tent with human evaluation than SMATCH (Cai and
Knight, 2013b), an AMR metric which is the basis
of COUNTER. SEMBLEU cannot be directly used
on DRS graphs due to the large amount of indexed
variables and the fact that the graphs are not explic-
itly given; moreover, our metric outputs F1 scores
instead of precision only.

Opitz et al. (2020) propose a set of principles for
AMR-related metrics, showing the advantages and
drawbacks of alignment- and BLEU-based AMR
metrics. However, efficiency of the metric is crucial

for the development of document-level models of
semantic parsing. Basile and Bos (2013) propose
to represent DRSs via Discourse Representation
Graphs (DRGs) which are acyclic and directed.
However, DRGs are similar to flattened trees, and
not able to capture clause-level information (e.g., b1
Agent e1 x1) required for evaluation (van Noord
et al., 2018a).

5 Conclusions

In this work we proposed DSCORER, as a DRS eval-
uation metric alternative to COUNTER. Our metric
is significantly more efficient than COUNTER and
considers high-order DRSs. DSCORER allows to
speed up model selection and development remov-
ing the bottleneck of evaluation time.
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A Appendix

Figure 5 shows the complete graph for Figure 1(c).
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Figure 5: The complete DRS graph for Figure 1(c)


