
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2325–2338
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2325

Interactive Machine Comprehension with Information Seeking Agents

Xingdi Yuan†∗ Jie Fu‡♠∗ Marc-Alexandre Côté† Yi Tay♦

Christopher Pal‡♠♥ Adam Trischler†
†Microsoft Research, Montréal ‡Polytechnique Montréal

♠ Mila ♦ Nanyang Technological University ♥ Canada CIFAR AI Chair
eric.yuan@microsoft.com jie.fu@polymtl.ca

Abstract

Existing machine reading comprehension

(MRC) models do not scale effectively to real-

world applications like web-level information

retrieval and question answering (QA). We ar-

gue that this stems from the nature of MRC

datasets: most of these are static environments

wherein the supporting documents and all nec-

essary information are fully observed. In this

paper, we propose a simple method that re-

frames existing MRC datasets as interactive,

partially observable environments. Specifi-

cally, we “occlude” the majority of a doc-

ument’s text and add context-sensitive com-

mands that reveal “glimpses” of the hidden

text to a model. We repurpose SQuAD and

NewsQA as an initial case study, and then

show how the interactive corpora can be used

to train a model that seeks relevant informa-

tion through sequential decision making. We

believe that this setting can contribute in scal-

ing models to web-level QA scenarios.1

1 Introduction

Many machine reading comprehension (MRC)

datasets have been released in recent years (Ra-

jpurkar et al., 2016; Trischler et al., 2016; Nguyen

et al., 2016; Reddy et al., 2018; Yang et al., 2018) to

benchmark a system’s ability to understand and rea-

son over natural language. Typically, these datasets

require an MRC model to read through a document

to answer a question about information contained

therein.

The supporting document is, more often than not,

static and fully observable. This raises concerns,

since models may find answers simply through

shallow pattern matching; e.g., syntactic similarity

between the words in questions and documents. As

∗ Equal contribution.
1The dataset and implementation of our baseline

agents are publicly available at https://github.com/
xingdi-eric-yuan/imrc_public.

Question: What was the Harvard endowment total in 2011 ?

o1 Harvard has the largest university endowment in the world .

WWWWWWWWWWWWWWWWWWWWwwwwwnext a1

o2 At the end of June 2009, it was worth $25.7 billion, about 30%
less than at the same time in 2008.

Ctrl+F Harvard a2

o3 In December 2008, Harvard announced that its endowment had
lost 22% from July to October 2008, necessitating budget cuts.

Ctrl+F 2011 a3

o4 As of September 2011 , it had nearly regained the loss suffered
during the 2008 recession .

Ctrl+F 2011 a4

o5 It was worth $ 32 billion in 2011 , up from $ 28 billion in
September 2010 and $ 26 billion in 2009 .

stop a5

Prediction: $ 32 billion

Table 1: Example of the interactive machine reading

comprehension behavior.

pointed out by Sugawara et al. (2018), for ques-

tions starting with when, models tend to predict the

only date/time answer in the supporting document.

Such behavior limits the generality and usefulness

of MRC models, and suggests that they do not learn

a proper ‘understanding’ of the intended task. In

this paper, to address this problem, we shift the fo-

cus of MRC data away from ‘spoon-feeding’ mod-

els with sufficient information in fully observable,

static documents. Instead, we propose interactive

versions of existing MRC tasks, whereby the in-

formation needed to answer a question must be

gathered sequentially.

The key idea behind our proposed interactive

MRC (iMRC) is to restrict the document context

that a model observes at one time. Concretely, we

split a supporting document into its component

sentences and withhold these sentences from the

model. Given a question, the model must issue

commands to observe sentences in the withheld

set; we equip models with actions such as Ctrl+F

https://github.com/xingdi-eric-yuan/imrc_public
https://github.com/xingdi-eric-yuan/imrc_public

2326

to search for matches to a QUERY within partially

observed documents. A model searches iteratively,

conditioning each command on the input question

and the sentences it has observed previously. Thus,

our task requires models to ‘feed themselves’ rather

than spoon-feeding them with information. This

casts MRC as a sequential decision-making prob-

lem amenable to reinforcement learning (RL).

Our proposed approach lies outside of traditional

QA work, the idea can be applied to almost all ex-

isting MRC datasets and models to study interac-

tive information-seeking behavior. As a case study

in this paper, we re-purpose two well known, re-

lated corpora with different difficulty levels for our

iMRC task: SQuAD and NewsQA. Table 1 shows

an example of a model performing interactive MRC

on these datasets. Naturally, our reframing makes

the MRC problem harder; however, we believe the

added demands of iMRC more closely match web-

level QA and may lead to deeper comprehension

of documents’ content.

The main contributions of this work are as fol-

lows:

1. We describe a method to make MRC datasets

interactive and formulate the new task as an

RL problem.

2. We develop a baseline agent that combines a

top performing MRC model and two state-of-

the-art RL optimization algorithms and test it

on iMRC tasks.

3. We conduct experiments on several variants of

iMRC and discuss the significant challenges

posed by our setting.

2 Related Works

Skip-reading (Yu et al., 2017; Seo et al., 2017;

Choi et al., 2017) is an existing setting in which

MRC models read partial documents. Concretely,

these methods assume that not all tokens in the

input sequence are equally useful, and therefore

learn to skip irrelevant tokens. Since skipping deci-

sions are discrete, the models are often optimized

by the REINFORCE algorithm (Williams, 1992).

For example, the structural-jump-LSTM (Hansen

et al., 2019) learns to skip and jump over chunks

of text, whereas Han et al. (2019) designed a QA

task where the model reads streaming data without

knowing when the question will be provided. Skip-

reading approaches are limited in that they only

consider jumping forward over a few consecutive

tokens. Based on the assumption that a single pass

of reading may not provide sufficient information,

multi-pass reading methods have also been studied

(Sha et al., 2017; Shen et al., 2017).

Compared to skip-reading and multi-pass read-

ing, our work enables an agent to jump through

a document in a more dynamic manner, in some

sense combining aspects of skip-reading and re-

reading. Specifically, an agent can choose to read

forward, backward, or to jump to an arbitrary po-

sition depending on the query. This also distin-

guishes the model we develop in this work from

ReasoNet (Shen et al., 2017), a model that decides

when to stop forward reading.

Recently, there has been various work on and

around interactive environments. For instance,

Nogueira and Cho (2016) proposed WebNav, a tool

that automatically transforms a website into a goal-

driven web navigation task. They train a neural

agent to follow traces using supervised learning. Qi

et al. (2019) proposed GoldEn Retriever, an itera-

tive retrieve-and-read system that answers complex

open-domain questions, which is also trained with

supervised learning. Although an effective training

strategy, supervised learning requires either human

labeled or heuristically generated trajectories. How-

ever, there often exist multiple trajectories to solve

each question, many of which may not be observed

in the supervised data since it is difficult to exhaust

all valid trajectories. Generalization can be limited

when an agent is trained on such data.

Bachman et al. (2016) introduced a collection

of synthetic tasks to train and test information-

seeking capabilities in neural models. Narasimhan

et al. (2016) proposed an information extraction

system that acquires and incorporates external evi-

dence to improve extraction accuracy in domains

with limited data. Geva and Berant (2018) pro-

posed a DQN-based agent that leverages the (tree)

structure of documents and navigates across sen-

tences and paragraphs. iMRC is distinct from this

body of literature in that it does not depend on ex-

tra meta information to build tree structures, it is

partially-observable, and its action space is as large

as 200,000 (much larger than, e.g., the 5 query tem-

plates in (Narasimhan et al., 2016) and tree search

in (Geva and Berant, 2018)). Our work is also in-

spired directly by QAit (Yuan et al., 2019), a set

of interactive question answering tasks developed

on text-based games. However, QAit is based on

2327

Information Gathering

�ݏܾ݋
1+�ݏܾ݋

�݊݋�ݐܿܽ
Encoder

Action

Generator

Question Answerer

iMRC

��

��

≠ sto
p

＝
st

o
p

answer

question

Question Answering

Figure 1: A demonstration of the proposed iMRC

pipeline, in which the agent is illustrated as a shaded

area. At a game step t, it encodes the question and text

observation into hidden representations Mt. An action

generator takes Mt as input to generate commands to

interact with the environment. If the agent generates

stop at this game step, Mt is used to answer question

by a question answerer. Otherwise, the iMRC environ-

ment will provide new text observation in response to

the generated action.

synthetic and templated language which might not

require strong language understanding components.

This work extends the principle of interactivity to

the natural language setting, by leveraging existing

MRC tasks already written in natural language.

Broadly speaking, our work is also linked to the

query reformulation (QR) task in information re-

trieval literature (Nogueira and Cho, 2017). Specif-

ically, QR aims to automatically rewrite a query so

that it becomes more likely to retrieve relevant doc-

uments. Our task shares the spirit of iterative inter-

action between an agent (reformulator in QR) and

an environment. However, the rewritten queries in

QR tasks keep the semantic meaning of the original

queries, whereas in our task, actions and queries

across different game steps can change drastically

— since our task requires an agent to learn a reason-

ing path (trajectory) towards answering a question,

rather than to search the same concept repeatedly.

3 iMRC: Making MRC Interactive

The iSQuAD and iNewsQA datasets are based

on SQuAD v1.12 (Rajpurkar et al., 2016) and

NewsQA (Trischler et al., 2016). Both original

datasets share similar properties. Specifically, each

data-point consists of a tuple, {p, q, a}, where p

represents a paragraph, q a question, and a is the

answer. The answer is a word span defined by

head and tail positions in p. NewsQA is more chal-

2We choose SQuAD v1.1 because in this preliminary study,
we focus on extractive question answering.

lenging because it has a larger vocabulary, more

difficult questions, and longer source documents.

Every paragraph p is split into a list of sentences

S = {s1, s2, ..., sn}, where n stands for number of

sentences in p. At the start of a question answer-

ing episode, an agent observes the question q, but

rather than observing the entire paragraph p, it sees

only the first sentence s1 while the rest is withheld.

The agent must issue commands to reveal the hid-

den sentences progressively and thereby gather the

information needed to answer q.

The agent should decide when to stop interacting

and output an answer, but the number of interaction

steps is limited.3 Once the agent has exhausted its

step budget, it is forced to answer the question.

3.1 Interactive MRC as a POMDP

As described in the previous section, we convert

MRC tasks into sequential decision-making prob-

lems (which we will refer to as games). These

can be described naturally within the reinforce-

ment learning (RL) framework. Formally, tasks

in iMRC are partially observable Markov decision

processes (POMDP) (Kaelbling et al., 1998). An

iMRC data-point is a discrete-time POMDP de-

fined by (S, T,A,Ω, O,R, γ), where γ ∈ [0, 1]
is the discount factor and the other elements are

described in detail below.

Environment States (S): The environment

state at game step t in the game is st ∈ S. It

contains the environment’s underlying conditions

(e.g., the semantics and information contained in

the document, which part of the document has been

revealed so far), much of which is hidden from an

agent, the agent can only estimate the state from

its partial observations. When the agent issues

an action at, the environment transitions to state

st+1 with probability T (st+1|st, at). In this work,

transition probabilities are either 0 or 1 (i.e., deter-

ministic environment).

Actions (A): At each game step t, the agent

issues an action at ∈ A. We will elaborate on the

action space of iMRC in § 3.2 and § 3.3.

Observations (Ω): The text information per-

ceived by the agent at a given game step t is the

agent’s observation, ot ∈ Ω, which depends on

the environment state and the previous action with

3We use 20 as the maximum number of steps, because
information revealed by 20 interactions can cover a large
portion of the text in either an iSQuAD or iNewsQA paragraph.
A reasonable step budget also speeds up training.

2328

probability O(ot|st). Again, observation probabili-

ties are either 0 or 1 (i.e., noiseless observation).

Reward Function (R): Based on its actions, the

agent receives rewards rt = R(st, at). Its objective

is to maximize the expected discounted sum of

rewards E
[
∑

t γ
trt

]

.

3.2 Easy and Hard Modes

As a question answering dataset, we adopt the stan-

dard output format of extractive MRC tasks, where

a system is required to point to a span within a

given paragraph p as its prediction. However, we

define two difficulty levels in iMRC, which are

based on different action spaces and dynamics dur-

ing the interactive information gathering phase.

Easy Mode: At a step t, an agent can issue one

of the following four actions to interact with the

(partially observable) paragraph p, where p consists

of n sentences. Assume the agent’s observation ot
corresponds to sentence sk, where 1 ≤ k ≤ n.

• previous: jump to

{

sn if k = 1,

sk−1 otherwise;

• next: jump to

{

s1 if k = n,

sk+1 otherwise;

• Ctrl+F QUERY: jump to the sentence that con-

tains the next occurrence of QUERY;

• stop: terminate information gathering phase

and ready to answer question.

Hard Mode: Only the Ctrl+F and stop com-

mands are available (i.e., an agent is forced to gen-

erate QUERY to navigate the partially observable

paragraph p).

3.3 QUERY Types

Given an objective (e.g., a question to answer),

humans search by using both extractive and ab-

stractive queries. For instance, when searching

information about the actor “Dwayne Johnson”,

one may either type his name or “The Rock” in a

search engine. We believe abstractive query search-

ing requires a deeper understanding of the question,

and some background knowledge (one cannot refer

to “Dwayne Johnson” as the “The Rock” if they

know nothing about his wrestling career).

Inspired by this observation, we study the fol-

lowing three settings, where in each, the QUERY is

generated from different sources:

Dataset iSQuAD iNewsQA

#Training Games 82,441 92,550

Vocabulary Size 109,689 200,000

Avg. #Sentence / Document 5.1 29.5

Avg. Sentence Length 26.1 22.2

Avg. Question Length 11.3 7.6

Table 2: Statistics of iSQuAD and iNewsQA.

1. One token from the question: extractive

QUERY generation with a relatively small ac-

tion space.

2. One token from the union of the question and

the current observation: still extractive QUERY

generation, although in an intermediate level

where the action space is larger.

3. One token from the dataset vocabulary: ab-

stractive QUERY generation where the action

space is huge (see Table 2 for statistics of

iSQuAD and iNewsQA).

3.4 Evaluation Metric

Since iMRC involves both MRC and RL, we adopt

evaluation metrics from both settings. First, as a

question answering task, we use F1 score to com-

pare predicted answers against ground-truth, as in

previous work. When there exist multiple ground-

truth answers, we report the max F1 score.

Second, mastering multiple games remains quite

challenging for RL agents. Therefore, we evaluate

an agent’s performance during both its training

and testing phases. Specifically, we report training

curves and test results based on the best validation

F1 scores.

4 Baseline Agent

As a baseline agent, we adopt QA-DQN (Yuan

et al., 2019), we modify it to enable extractive

QUERY generation and question answering.

As illustrated in Figure 1, the baseline agent con-

sists of three components: an encoder, an action

generator, and a question answerer. More precisely,

at a step t during the information gathering phase,

the encoder reads observation string ot and ques-

tion string q to generate the attention aggregated

hidden representations Mt. Using Mt, the action

generator outputs commands (depending on the

mode, as defined in § 3.2) to interact with iMRC.

The information-gathering phase terminates when-

ever the generated command is stop or the agent

2329

has used up its move budget. The question an-

swerer takes the hidden representation at the termi-

nating step to generate head and tail pointers as its

answer prediction.

4.1 Model Structure

In this section, we only describe the difference

between the model our baseline agent uses and the

original QA-DQN. We refer readers to (Yuan et al.,

2019) for detailed information.

In the following subsections, we use “game step

t” to denote the tth round of interaction between

an agent with the iMRC environment.

4.1.1 Action Generator

Let Mt ∈ R
L×H denote the output of the encoder,

where L is the length of observation string and H

is hidden size of the encoder representations.

The action generator takes Mt as input and gener-

ates rankings for all possible actions. As described

in the previous section, a Ctrl+F command is com-

posed of two tokens (the token “Ctrl+F” and the

QUERY token). Therefore, the action generator con-

sists of three multilayer perceptrons (MLPs):

Rt = ReLU(MLPshared(mean(Mt))),

Qt,action = MLPaction(Rt) ·Mmode,

Qt,query = MLPquery(Rt) ·Mtype.

(1)

In which, Qt,action and Qt,query are Q-values of ac-

tion token and QUERY token (when action token is

“Ctrl+F”), respectively. Mmode is a mask, which

masks the previous and next tokens in hard mode;

Mtype is another mask which depends on the cur-

rent QUERY type (e.g., when QUERY is extracted

from the question q, all tokens absent from q are

masked out). Probability distributions of tokens are

further computed by applying softmax on Qt,action

and Qt,query, respectively.

4.1.2 Question Answerer

Following QANet (Yu et al., 2018), we append two

extra stacks of transformer blocks on top of the

encoder to compute head and tail positions:

hhead = ReLU(MLP0([Mt;Mhead])),

htail = ReLU(MLP1([Mt;Mtail])).
(2)

In which, [·; ·] denotes vector concatenation,

Mhead ∈ R
L×H and Mtail ∈ R

L×H are the out-

puts of the two extra transformer stacks.

Similarly, probability distributions of head and

tail pointers over observation string ot can be com-

puted by:

phead = softmax(MLP2(hhead)),

ptail = softmax(MLP3(htail)).
(3)

4.2 Memory and Reward Shaping

4.2.1 Memory

In iMRC tasks, some questions may not be easily

answerable by observing a single sentence. To

overcome this limitation, we provide an explicit

memory mechanism to our baseline agent to serve

as an inductive bias. Specifically, we use a queue

to store strings that have been observed recently.

The queue has a limited number of slots (we use

queues of size [1, 3, 5] in this work). This prevents

the agent from issuing next commands until the

environment is observed fully in memory, in which

case our task degenerates to the standard MRC

setting. We reset the memory slots episodically.

4.2.2 Reward Shaping

Because the question answerer in our agent is a

pointing model, its performance relies heavily on

whether the agent can find and stop at the sentence

that contains the answer. In the same spirit as (Yuan

et al., 2019), we also design a heuristic reward to

guide agents to learn this behavior.

In particular, we assign a reward if the agent

halts at game step k and the answer is a sub-string

of ok (if larger memory slots are used, we assign

this reward if the answer is a sub-string of the mem-

ory at game step k). We denote this reward as the

sufficient information reward, since, if an agent

sees the answer, it should have a good chance of

having gathered sufficient information for the ques-

tion (although this is not guaranteed).

Note this sufficient information reward is part

of the design of the baseline agent, whereas the

question answering score is the only metric used to

evaluate an agent’s performance on the iMRC task.

4.3 Training Strategy

Since iMRC games are interactive environments

and we have formulated the tasks as POMDPs

(in § 3.1), it is natural to use RL algorithms to

train the information gathering components of our

agent. In this work, we study the performance

of two widely used RL algorithms, one based on

Q-Learning (DQN) and the other on Policy Gradi-

ents (A2C). When an agent has reached a sentence

2330

that contains sufficient information to answer the

question, the task becomes a standard extractive

QA setting, where an agent learns to point to a

span from its observation. When this condition is

met, it is also natural to adopt standard supervised

learning methods to train the question answering

component of our agent.

In this section, we describe the 3 training strate-

gies mentioned above. We provide implementation

details in Appendix B.

4.3.1 Advantage Actor-Critic (A2C)

Advantage actor-critic (A2C) was first proposed by

Mnih et al. (2016). Compared to policy gradient

computation in REINFORCE (Williams, 1992),

∇θJ(θ) = Eπ[
T
∑

t=1

∇θ log πθ(at|st)Gt], (4)

where the policy gradient ∇θJ(θ) is updated by

measuring the discounted future reward Gt from

real sample trajectories, A2C utilizes the lower vari-

ance advantage function A(st, at) = Q(st, at) −
V (st) in place of Gt. The advantage A(st, at) of

taking action at at state st is defined as the value

Q(st, at) of taking at minus the average value

V (st) of all possible actions in state st.

In the agent, a critic updates the state-value func-

tion V (s), whereas an actor updates the policy pa-

rameter θ for πθ(a|s), in the direction suggested

by the critic. Following common practice, we

share parameters between actor and critic networks.

Specifically, all parameters other than MLPaction

and MLPquery (both defined in Eqn. 1) are shared

between actor and critic.

4.3.2 Deep Q-Networks (DQN)

In Q-Learning (Watkins and Dayan, 1992; Mnih

et al., 2015), given an interactive environment, an

agent takes an action at in state st by consulting

a state-action value estimator Q(s, a); this value

estimator estimates the action’s expected long-term

reward. Q-Learning helps the agent to learn an

optimal value estimator. An agent starts from per-

forming randomly and gradually updates its value

estimator by interacting with the environment and

propagating reward information. In our case, the

estimated Q-value at game step t is simply the sum

of Q-values of the action token and QUERY token

as introduced in Eqn. 1:

Qt = Qt,action +Qt,query. (5)

In this work, we adopt the Rainbow algorithm

(Hessel et al., 2017), which is a deep Q-network

boosted by several extensions such as a prioritized

replay buffer (Schaul et al., 2016). Rainbow ex-

hibits state-of-the-art performance on several RL

benchmark tasks (e.g., Atari games).

4.3.3 Negative Log-likelihood (NLL)

During information gathering phase, we use an-

other replay buffer to store question answering tran-

sitions (observation string when interaction stops,

question string, ground-truth answer) whenever the

terminal observation string contains the ground-

truth answer. We randomly sample mini-batches

of such transitions to train the question answerer to

minimize the negative log-likelihood loss.

5 Experimental Results

In this study, we focus on four main aspects:

1. difficulty levels (easy | hard mode);

2. strategies for generating QUERY (from ques-

tion | question and observation | vocabulary);

3. sizes of the memory queue (1 | 3 | 5);

4. RL algorithms for the information gathering

phase (A2C | DQN)

Regarding the four aspects, we report the base-

line agent’s training performance followed by its

generalization performance on test data. We use

DQN and A2C to refer to our baseline agent trained

with DQN and A2C, respectively.

We set the maximum number of episodes (data

points) to be 1 million, this is approximately 10

epochs in supervised learning tasks given the size

of datasets. The agent may further improve af-

ter 1 million episodes, however we believe some

meaningful and interesting trends can already be

observed from the results. Besides, we hope to

keep the wall clock time of the task reasonable4 to

encourage the community to work on this direction.

5.1 Mastering Training Games

It remains difficult for RL agents to master mul-

tiple games at the same time. In our case, each

document-question pair can be considered a unique

“game,” and there are hundreds of thousands of

4Basic experiment setting (e.g., QUERY from question,
single slot memory) take about a day on a single NVIDIA
P100 GPU.

2331

Figure 2: Training F1 scores in easy mode with different QUERY types and memory sizes. Solid line: DQN,

dashed line: A2C; number of memory slots: 1, 3, 5.

Figure 3: Training F1 scores in hard mode with different QUERY types and memory sizes. Solid line: DQN,

dashed line: A2C; number of memory slots: 1, 3, 5.

them. Therefore, as it is common practice in the

RL literature, we study an agent’s training curves.

Figure 2 and Figure 3 show the agent’s training

performance (in terms of F1 score) in easy and hard

mode, respectively. Due to the space limitations,

we select several representative settings to discuss

in this section. We provide the agent’s training and

validation curves for all experiments, and its suffi-

cient information rewards (as defined in § 4.2.2) in

Appendix A.

It is clear that our agent performs better on easy

mode consistently across both datasets and all train-

ing strategies. This may due to the fact that the

previous and next commands provide the agent

an inefficient but guaranteed way to stumble on

the sought-after sentence no matter the game. The

Ctrl+F command matches human behavior more

closely, but it is arguably more challenging (and

interesting) for an RL agent to learn this behav-

ior. RL agents may require extra effort and time to

reach a desired state since they rely heavily on ran-

dom exploration, and the Ctrl+F command leads

to much larger action space to explore compared to

commands such as next.

Related to action space size, we observe that the

agent performs best when pointing to the QUERY to-

kens from the question, whereas it performs worst

when generating QUERY tokens from the entire vo-

cabulary. This is particularly clear in hard mode,

where agents are forced to use the Ctrl+F com-

mand. As shown in Table 2, both datasets have

a vocabulary size of more than 100k, whereas

the average length of questions is around 10 to-

kens. This indicates the action space for generating

QUERY from entire vocabulary is much larger. This

again suggests that for moving toward a more real-

istic problem setting where action spaces are huge,

methods with better sample efficiency are needed.

Experiments show that a larger memory queue

almost always helps. Intuitively, with a memory

mechanism (either explicit as in this work, or im-

plicit as with a recurrent network aggregating rep-

2332

Dataset iSQuAD iNewsQA

Easy Mode

QUERY Agent Mem=1 =3 =5 Mem=1 =3 =5

Question A2C 0.245 (0.493) 0.357 (0.480) 0.386 (0.478) 0.210 (0.554) 0.316 (0.532) 0.333 (0.490)
DQN 0.575 (0.770) 0.637 (0.738) 0.666 (0.716) 0.330 (0.708) 0.326 (0.619) 0.360 (0.620)

Question+Memory A2C 0.221 (0.479) 0.484 (0.590) 0.409 (0.492) 0.199 (0.595) 0.233 (0.448) 0.253 (0.459)
DQN 0.579 (0.784) 0.651 (0.734) 0.656 (0.706) 0.336 (0.715) 0.334 (0.626) 0.347 (0.596)

Vocabulary A2C 0.223 (0.486) 0.314 (0.448) 0.309 (0.391) 0.192 (0.551) 0.224 (0.440) 0.224 (0.403)
DQN 0.583 (0.774) 0.624 (0.738) 0.661 (0.731) 0.326 (0.715) 0.323 (0.590) 0.316 (0.593)

Hard Mode

Question A2C 0.147 (0.404) 0.162 (0.446) 0.158 (0.435) 0.166 (0.529) 0.160 (0.508) 0.164 (0.520)
DQN 0.524 (0.766) 0.524 (0.740) 0.551 (0.739) 0.352 (0.716) 0.367 (0.632) 0.353 (0.613)

Question+Memory A2C 0.160 (0.441) 0.150 (0.413) 0.156 (0.429) 0.163 (0.520) 0.160 (0.508) 0.164 (0.520)
DQN 0.357 (0.749) 0.362 (0.729) 0.364 (0.733) 0.260 (0.692) 0.264 (0.645) 0.269 (0.620)

Vocabulary A2C 0.161 (0.444) 0.163 (0.448) 0.160 (0.441) 0.160 (0.510) 0.167 (0.532) 0.162 (0.516)
DQN 0.264 (0.728) 0.261 (0.719) 0.218 (0.713) 0.326 (0.694) 0.214 (0.680) 0.214 (0.680)

Table 3: Test F1 scores in black and F1info scores (i.e., an agent’s F1 score iff sufficient information is in its

observation when it terminates information gathering phase) in blue.

resentations over game steps), an agent renders

the environment closer to fully observed by ex-

ploring and storing observations. Presumably, a

larger memory could further improve an agent’s

performance; considering the average number of

sentences in each iSQuAD game is 5, a memory

with more than 5 slots defeats the purpose of our

study of partially observable text environments.

We observe that DQN generally performs better

on iSQuAD whereas A2C sometimes works better

on the harder iNewsQA task. However, we observe

huge gap between them on generalization perfor-

mance, which we discuss in a later subsection.

Not surprisingly, our agent performs better in

general on iSQuAD than on iNewsQA. As shown

in Table 2, the average number of sentences per

document in iNewsQA is about 6 times more than

in iSQuAD. This is analogous to partially observ-

able games with larger maps in the RL literature.

We believe a better exploration (in our case, jump-

ing) strategy that can decide where to explore next

conditioned on what has already been seen may

help agents to master such harder games.

5.2 Generalizing to Test Set

To study an agent’s ability to generalize, we select

the best performing checkpoint in each experimen-

tal setting on the validation set and report their test

performance, as shown in Table 3. In addition, to

support our claim that the more challenging part

of iMRC tasks is information gathering rather than

answering questions given sufficient information,

we report the agents’ F1 scores when they have

reached the piece of text that contains the answer,

which we denote as F1info.

From Table 3 (and validation curves provided

in Appendix A) we observe trends that match with

training curves. Due to the different sizes of action

space, the baseline agents consistently performs

better on the easy mode. For the same reason, the

agent learns more efficiently when the QUERY to-

ken is extracted from the question. The best F1

score on hard mode is comparable to and even

slightly higher than in easy mode on iNewsQA,

which suggests our baseline agent learns some rela-

tively general trajectories in solving training games

that generalize to unseen games.

It is also clear that during evaluation, a memory

that stores experienced observations helps, since

the agent almost always performs better with a

memory size of 3 or 5 (when memory size is 1,

each new observation overwrites the memory).

While performing comparably with DQN during

training, the agent trained with A2C generalizes

noticeably worse. We suspect this is caused by the

fundamental difference between the ways DQN and

A2C explore during training. Specifically, DQN

relies on either ǫ-greedy or Noisy Net (Fortunato

et al., 2017), both of which explicitly force an agent

to experience different actions during training. In

A2C, exploration is performed implicitly by sam-

pling from a probability distribution over the action

space; although entropy regularization is applied,

good exploration is still not guaranteed (if there are

peaks in the probability distribution). This again

suggests the importance of a good exploration strat-

egy in the iMRC tasks, as in all RL tasks.

Finally, we observe F1info scores are consistently

2333

higher than the overall F1 scores, and they have less

variance across different settings. This supports

our hypothesis that information gathering plays

an important role in solving iMRC tasks, whereas

question answering given necessary information is

relatively straightforward.

6 Discussion and Future Work

In this work, we propose and explore the direc-

tion of converting MRC datasets into interactive,

partially observable environments. We believe

information-seeking behavior is desirable for neu-

ral MRC systems when knowledge sources are par-

tially observable and/or too large to encode in their

entirety, where knowledge is by design easily ac-

cessible to humans through interaction. Our idea

for reformulating existing MRC datasets as par-

tially observable and interactive environments is

straightforward and general. It is complementary to

existing MRC dataset and models, meaning almost

all MRC datasets can be used to study interactive,

information-seeking behavior through similar mod-

ifications. We hypothesize that such behavior can,

in turn, help in solving real-world MRC problems

involving search. As a concrete example, in real

world environments such as the Internet, different

pieces of knowledge are interconnected by hyper-

links. We could equip the agent with an action to

“click” a hyperlink, which returns another webpage

as new observations, thus allowing it to navigate

through a large number of web information to an-

swer difficult questions.

iMRC is difficult and cannot yet be solved, how-

ever it clearly matches a human’s information-

seeking behavior compared to most static and fully-

observable laboratory MRC benchmarks. It lies at

the intersection of NLP and RL, which is arguably

less studied in existing literature. For our baseline,

we adopted off-the-shelf, top-performing MRC and

RL methods, and applied a memory mechanism

which serves as an inductive bias. Despite be-

ing necessary, our preliminary experiments do not

seem sufficient. We encourage work on this task

to determine what inductive biases, architectural

components, or pretraining recipes are necessary or

sufficient for MRC based on information-seeking.

Our proposed setup presently uses only a single

word as QUERY in the Ctrl+F command in an ab-

stractive manner. However, a host of other options

could be considered in future work. For example,

a multi-word QUERY with fuzzy matching is more

realistic. It would also be interesting for an agent

to generate a vector representation of the QUERY

in some latent space and modify it during the dy-

namic reasoning process. This could further be

used to retrieve different contents by comparing

with pre-computed document representations (e.g.,

in an open-domain QA dataset), with such behav-

ior tantamount to learning to do IR. This extends

traditional query reformulation for open-domain

QA by allowing to drastically change the queries

without strictly keeping the semantic meaning of

the original queries.

Acknowledgments

The authors thank Mehdi Fatemi, Peter Potash,

Matthew Hausknecht, and Philip Bachman for in-

sightful ideas and discussions. We also thank the

anonymous ACL reviewers for their helpful feed-

back and suggestions.

References

Philip Bachman, Alessandro Sordoni, and Adam
Trischler. 2016. Towards information-seeking
agents. arXiv preprint arXiv:1612.02605.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
209–220.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bi-
lal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Rémi Munos, Demis Hassabis, Olivier
Pietquin, Charles Blundell, and Shane Legg.
2017. Noisy networks for exploration. CoRR,
abs/1706.10295.

Mor Geva and Jonathan Berant. 2018. Learning to
search in long documents using document structure.
arXiv preprint arXiv:1806.03529.

Moonsu Han, Minki Kang, Hyunwoo Jung, and
Sung Ju Hwang. 2019. Episodic memory reader:
Learning what to remember for question an-
swering from streaming data. arXiv preprint
arXiv:1903.06164.

Christian Hansen, Casper Hansen, Stephen Alstrup,
Jakob Grue Simonsen, and Christina Lioma. 2019.
Neural speed reading with structural-jump-lstm.
arXiv preprint arXiv:1904.00761.

Matteo Hessel, Joseph Modayil, Hado van Hasselt,
Tom Schaul, Georg Ostrovski, Will Dabney, Daniel
Horgan, Bilal Piot, Mohammad Gheshlaghi Azar,

http://arxiv.org/abs/1706.10295

2334

and David Silver. 2017. Rainbow: Combining im-
provements in deep reinforcement learning. CoRR,
abs/1710.02298.

Leslie Pack Kaelbling, Michael L Littman, and An-
thony R Cassandra. 1998. Planning and acting in
partially observable stochastic domains. Artificial
intelligence, 101(1-2):99–134.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu.
2016. Asynchronous methods for deep reinforce-
ment learning. CoRR, abs/1602.01783.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Na-
ture, 518(7540):529–533.

Karthik Narasimhan, Adam Yala, and Regina Barzilay.
2016. Improving information extraction by acquir-
ing external evidence with reinforcement learning.
CoRR, abs/1603.07954.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016. MS MARCO: A human generated
machine reading comprehension dataset. CoRR,
abs/1611.09268.

Rodrigo Nogueira and Kyunghyun Cho. 2016. Web-
nav: A new large-scale task for natural lan-
guage based sequential decision making. CoRR,
abs/1602.02261.

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-
oriented query reformulation with reinforcement
learning. CoRR, abs/1704.04572.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D. Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. In 2019 Conference on Empirical Methods
in Natural Language Processing and 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2018. Coqa: A conversational question answering
challenge. CoRR, abs/1808.07042.

Tom Schaul, John Quan, Ioannis Antonoglou, and
David Silver. 2016. Prioritized experience replay.
In International Conference on Learning Represen-
tations, Puerto Rico.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017. Neural speed reading via skim-rnn.
arXiv preprint arXiv:1711.02085.

Lei Sha, Feng Qian, and Zhifang Sui. 2017. Will re-
peated reading benefit natural language understand-
ing? In National CCF Conference on Natural Lan-
guage Processing and Chinese Computing, pages
366–379. Springer.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2017. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1047–1055. ACM.

Saku Sugawara, Kentaro Inui, Satoshi Sekine, and
Akiko Aizawa. 2018. What makes reading compre-
hension questions easier? CoRR, abs/1808.09384.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016. Newsqa: A machine compre-
hension dataset. CoRR, abs/1611.09830.

Christopher J. C. H. Watkins and Peter Dayan. 1992.
Q-learning. Machine Learning, 8(3):279–292.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. CoRR, abs/1809.09600.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V.
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. CoRR, abs/1804.09541.

Adams Wei Yu, Hongrae Lee, and Quoc V Le.
2017. Learning to skim text. arXiv preprint
arXiv:1704.06877.

Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan
Lin, Christopher Pal, Yoshua Bengio, and Adam
Trischler. 2019. Interactive language learning by
question answering.

http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1603.07954
http://arxiv.org/abs/1603.07954
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1602.02261
http://arxiv.org/abs/1602.02261
http://arxiv.org/abs/1602.02261
http://arxiv.org/abs/1704.04572
http://arxiv.org/abs/1704.04572
http://arxiv.org/abs/1704.04572
https://nlp.stanford.edu/pubs/qi2019answering.pdf
https://nlp.stanford.edu/pubs/qi2019answering.pdf
https://nlp.stanford.edu/pubs/qi2019answering.pdf
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1808.07042
http://arxiv.org/abs/1808.07042
http://arxiv.org/abs/1808.09384
http://arxiv.org/abs/1808.09384
http://arxiv.org/abs/1611.09830
http://arxiv.org/abs/1611.09830
https://doi.org/10.1007/BF00992698
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541

2335

A Full Results

We show our experimental results (training and

validation curves) in Figure 4,5,6,7,8,9,10,11.

B Implementation Details

In all experiments, we use Adam (Kingma and Ba,

2014) as the step rule for optimization, with the

learning rate set to 0.00025. We clip gradient

norm at 5.0. We initialize all word embeddings

by the 300-dimensional fastText (Mikolov et al.,

2018) word vectors trained on Common Crawl

(600B tokens), they are fixed during training. We

randomly initialize character embeddings by 200-

dimensional vectors. In all transformer blocks,

block size is 96.

Dimensionality of MLPshared in Eqn. 1 is

R
96×150; dimensionality of MLPaction is R

150×4

and R
150×2 in easy mode (4 actions are available)

and hard mode (only 2 actions are available), re-

spectively; dimensionality of MLPquery is R150×V

where V denotes vocabulary size of the dataset, as

listed in Table 2.

Dimensionalities of MLP0 and MLP1 in Eqn. 2

are both R
192×150; dimensionalities of MLP2 and

MLP3 in Eqn. 3 are both R
150×1.

During A2C training, we set the value loss coef-

ficient to be 0.5, we use an entropy regularizer with

coefficient of 0.01. We use a discount γ of 0.9 and

mini-batch size of 20.

During DQN training, we use a mini-batch of

size 20 and push all transitions (observation string,

question string, generated command, reward) into

a prioritized replay buffer of size 500,000. We do

not compute losses directly using these transitions.

After every 5 game steps, we sample a mini-batch

of 64 transitions from the replay buffer, compute

loss, and update the network. we use a discount

γ of 0.9. For noisy nets, we use a σ0 of 0.5. We

update target network per 1000 episodes. For multi-

step returns, we sample n ∼ Uniform[1, 2, 3].
When our agent terminates information gather-

ing phase, we push the question answering tran-

sitions (observation string at this time, question

string, ground-truth answer) into a question an-

swering replay buffer. After every 5 game steps,

we randomly sample a mini-batch of 64 such tran-

sitions from the question answering replay buffer

and train the model using NLL loss.

For more detail please refer to our open-sourced

code.

2336

Figure 4: Training performance on iSQuAD, easy mode. Solid line: DQN, dashed line: A2C; number of memory

slots: 1, 3, 5.

Figure 5: Validation performance on iSQuAD, easy mode. Solid line: DQN, dashed line: A2C; number of memory

slots: 1, 3, 5.

Figure 6: Training performance on iSQuAD, hard mode. Solid line: DQN, dashed line: A2C; number of memory

slots: 1, 3, 5.

2337

Figure 7: Validation performance on iSQuAD, hard mode. Solid line: DQN, dashed line: A2C; number of memory

slots: 1, 3, 5.

Figure 8: Training performance on iNewsQA, easy mode. Solid line: DQN, dashed line: A2C; number of memory

slots: 1, 3, 5.

Figure 9: Validation performance on iNewsQA, easy mode. Solid line: DQN, dashed line: A2C; number of

memory slots: 1, 3, 5.

2338

Figure 10: Training performance on iNewsQA, hard mode. Solid line: DQN, dashed line: A2C; number of memory

slots: 1, 3, 5.

Figure 11: Validation performance on iNewsQA, hard mode. Solid line: DQN, dashed line: A2C; number of

memory slots: 1, 3, 5.

