ADAPTIVE PROBABILISTIC GENERALIZED LR PARSING

Jerry Wright*, Ave Wrigley* and Richard Sharman*
* Centre for Communications Research
Queen’s ‘Building, University Walk, Bristol BS8 1TR, U.K.
* I.B.M. United Kingdom Scientific Centre

Athelstan House,

ABSTRACT
Various issues in the
implementation of generalized IR
parsing with probability are
discussed. A method for preventing

the generation of infinite -~numbers
of states is described and the space
requirements of the parsing tables
are assessed for a substantial
natural-language grammar. Because
of a high degree of ambiguity in the

grammar, there are many multiple
entries and the tables are rather
large. A new method for grammar

adaptation is introduced which may
help to reduce this problem. A
probabilistic version of the Tomita
parse forest is also described.

1. INTRODUCTION

LR
(1986)

The generalized
algorithm of Tomita
most context-free
parsed with high efficiency. For
applications in speech recognition
(and perhaps elsewhere) there 1is a
need for a systematic treatment of
uncertainty in language modelling,
pattern recognition and parsing.
Probabilistic grammars are
increasing in importance as language
models (Sharman, 1989, Lari and
Young, 1990), pattern recognition is
guided by predictions of forthcoming
words (one application of the recent

parsing
allows
grammars to be

algorithm of Jelinek (1990)), and
the extension of the Tomita
algorithm to probabilistic grammars
(Wright et al, 1989, 1990) 1is one
approach to the parsing problem.
The successful application of the
Viterbi beam-search algorithm to

100

St Clement Street, Winchester S023 9DR, U.K.

connected speech recognition (Lee,
1989), together with the possibility
of building grammar-level modelling
into this framework (Lee and
Rabiner, 1989) is further evidence
of this trend. The purpose of this
paper is to consider some issues : in
the implementation of probabilistic
generalized LR parsing.

The objectives of our current
work on language modelling and
parsing for speech recognition can
be summarised as follows:

(1) real-time parsing without
excessive space requirements,

(2) minimum restrictions on
the grammar (ambiguity, null rules,
left-recursion all permitted, no
need to use a normal form),

(3) probabilistic predictions
to be made available to the pattern
matcher, with word or phoneme
likelihoods received in return,

(4) 1interpretations, ranked by
overall probability, to be made
available to the user,

(5) adaptation of the language
model and parser, with minimum delay
and interaction with the user.

The choice of parser generator is

relevant to objectives (1) and (3).
All versions satisfy objective (2)
but are 1initially susceptible to
generating an infinite number of
states for certain probabilistic
grammars, and in the case of the
canonical parser generator this can

happen in two ways. A solution to
this problem is described in section
2. The need for probabilistic
predictions of forthcoming words or
phonemes (objective (3)) is best met
by the canonical parser generator,

because for all other versions the
prior probability distribution can
only be found by following up all
possible reduce actions in a state,
in advance of the next input (Wright
et al, 1989, 1990). This consumes
both time and space, but the size of
the parsing tables produced by the
canonical parser generator generally

precludes - their wuse. The space
requirements for the various parser
generators are assessed in section
3. ~The grammar used for this

purpose was developed by I.B.M. from
an Associated Press corpus
(Sharman, .1989).

Objective (4) is met by the parse
forest representation which is a
probabilistic version of that
employed = by Tomita (1986)}
incorporating sub-node sharing and
local ambiguity packing. This is
described in section 4.

The final 1issue (ijective '(5)
and section 5) 1is crucial to the
applicability of the whole approach.

We regard a grammar as a
probabilistic structured hier-
archical model of language as used,
not a prescriptive Dbasis for
correctness of that wuse. A
relatively compact parsing table
presumes a relatively compact

grammar, which is therefore going to
be inadequate to cope with the range
of usage to which it is likely to be
exposed. It is essential that the
software be made adaptive, and our
experimental version operates
through the LR parser to synthesise
new grammar rules, assess their
plausibility, and make incremental
changes to the LR parsing tables in
order to add or delete rules in the
grammar.

of ‘text

101

2. PARSING TABLE
SPACE REQUIREMENTS

2.1 INFINITE SERIES OF STATES:
FROM THE ITEM PROBABILITIES

When applied to a probabiiistic

grammar, the various versions of IR
parser generator first produce a
series of item sets in which a

probability derived from the grammar
is attached to each item, and . then
generate the action and goto tables
in which each entry again has an
attached probability, representing,a
frequency for that action
conditional upon the state (Wright
et al, 1989, 1990). Sometimes these
probabilities can cause a problem in
state generation. For example,
consider the following probabilistic
grammar:

S->4,p | B, p2
A>cA, q | a q
B->c¢cB, n | b, r;

where p,,

pp +p2=1)
probabilities

and so on (with

represent the

of the respective
rules. After receiving the terminal
symbol ¢, the state with the
(closed) item sét shown in Table 1
is entered, with the first column of
probabilities for each item. After
receiving the terminal symbol ¢
again, a state with the same item
set is entered but with the second
column of probabilities for each
item, and these are different from
the first unless q = ;. For the
probabilistic parser these states
must therefore be distinguished, and
in fact this process continues to
generate an (in principle) infinite
sequence of states. Although it may
sometimes be sufficient merely to

) 2]

truncate this series at some point,
the number of additional states
generated when all the "goto" steps
have been exhausted can be very

large.

- . 3
Table 1: Item set with probabilities. é . ﬁ
b .
Item First probability Second probability
_ 2 2 2
A>c - P1Q1/(P1Q1+P2r1)) P191/(P191+pP2r1)
' 2 2 2
B>c-*B p2r1/(p191+p2r1) p2r1/(pP191+p2ry1)
2 3 2 2
A> -+ c P1q1/(p1q1+p2ry) P191/(P1q1+P2r1)
2 2 2
A> -+ a P19192/(P191+p2r1) P19192/(p1q1+p2r1)
-2 3 2 2. -
B>-c8B p2ri/(P1q1+p2ry) p2r1/(p191+p2r1)
2 2 2
B>-+b p2rir2/(p1q1+p2r1) p2rirz2/(p1q1+p2r1)
Table 2: Separated item sets.
A>c * A 1 B->c B 1
A-> *cA qr B> e+ cB ry
A-> * a gz B->-+b rs

We can avoid this problém by

introducing a multiple shift entry
for the terminal symbol ¢, in the
state from which the one just
discussed is entered. Multiple
entries in the action table are
normally confined to cases of
shift-reduce and reduce-reduce
conflicts, but the purpose here 1is

to force the stack to divide, with a

probability P191/(P1q1+p2r1)
attached to one branch and
par1/(p1q1+pary) to the other.
These then lead to separate states

with item sets as shown in Table 2.

The prior probabilities of a, b
and c are obtained by combining the
two branches and take the same
values as before. Further
occurrences of the terminal symbol c
simply cause the same state to be
re-entered in each Dbranch, and
eventually an a or b eliminates one

branch. If ¢ 1is replaced by a
nonterminal symbol C, the same
procedure applies except that a

102

multiple goto entry is required, and:

this in turn means that a
probability has to be attached to
each goto entry (this was not
required in the original version of

the probabilistic LR parser).

Suppose in general that a grammar
has nonterminal and terminal
vocabularies N and T respectively.
Conditions for the occurrence of an
infinite series of states can be
summarised as follows: there occurs
a state in the closure of which
there arise either

(a) two distinct self-
recursive nonterminal symbols (A4, B
say) for wbich a nonempty string
a € (NUT) exists such that

*
A>a AP
where B8,y € (N v T)‘,

or (b) two (or more) mutually
recursive nonterminal symbols for
which a nonempty string a € (N v T)
exists such that

and B ; a B vy

* *
A>aBf and B 3> a A vy

*
where B8,y € (N v T) , and in

addition either

(i) a

left-most derivation

of one symbol from the other 1is
possible:

A5SB6 wherese (NuT)
or (ii) a self-recursive

nonterminal (C, say, which - may
coincide with A or B) also arises

such that
C3acC8 wherefe (NUT)

for the same a.

These conditions ensure that the

a-successor of this state also
contains items with A and B after
the dot but with probabilities

different from those for the earlier
state, and moreover that this
continues to generate an infinite
series (different item probabilities
do not always imply this). One way
to prevent this series is to
associate with each item in the
lists (which form the states) an
array of states for each nonterminal
symbol, recording the state(s) in
which that symbol occurred as the
left-hand side of an item from which
the current item is descended.
These arrays can be created during
the course of the LR "closure"
function. Pairs of nonterminals
satisfying the conditions above are
then easily detected within the
"goto" function, so that an
appropriate multiple shift or goto
entry can be automatically created
for the last symbol of a. Only the
items leading to the looping
behaviour need to be separated by

this means, and the number of
additional states generated is
small. Cases of three-way (oxr
higher) mutual recursion with a

common a are very rare.

103

2.2 INFINITE SERIES OF STATES:
FROM THE LOOKAHEAD DISTRIBUTION

For the probabilistic LALR parser
generator the lookaheads consist of
a set of terminal symbols, as in the

case of non-probabilistic grammars.
However, for the canonical parser
generator there is a full
probability distribution of
lookaheads and this creates a second
potential source of looping
behaviour. It is possible for item

sets to have the same item
probabilities but different
lookahead distributions. Suppose
that a state contains an item with a
right-recursive nonterminal symbol
(C, say) after the dot, with nothing
following. If the state also
contains another item with C after

the dot followed by a non-null
string, thus
C3ac and c3acp

where a,f € (N vV T)+, then the new
lookahead probability distribution
computed for C will be a mixture of
the o0ld one and a distribution
derived from B8 in the second item.
The state automaton possesses a loop
because of the right-recursion, and
the lookahead distribution is
different each time around so that
again an (in principle) infinite
series 1is generated. The second
item can arise within the same state
if C 1is also 1left-recursive (the
simplest example of this 1is the
grammar S > S S, p; | a, p2), and
this problem also arises for an item
of the second kind on its own, if 8
is nonempty but nullable.

It is possible to break the loop
by introducing multiple shift (or
goto) actions as before, but the
procedure is complicated by the
presence of null rules and/or 1left-
recursion. These can allow the
distribution to change even when
there is just a single item in the
kernel. In the absence of this
behaviour the state from which the
one just discussed is entered can be

treated with a multiple entry in
order to prevent the lookaheads from
mixing, the conditions which give

rise to this problem being checked
within the "goto" function. The
prior probability calculations at

run-time are correct.

This procedure has not been fully
implemented at the present time, but
it seems that this kind of looping
behaviour is more common than that
discussed in the previous section.
The additional states created by the

multiple shifts exacerbates the
already major disadvantage of the
canonical parser with regard to
space requirements.
2.3 MERGING OF CANONICAL STATES
Consider the following grammar:
S>A|bAc
A>efsS| g
(the rule-probabilities do not
matter). The full canonical parser

generator produces eighteen states,
of which eight are eliminated by
shift-reduce optimisation (Aho et

al, 1985). Of the remaining states,
a further eight consist of two sets
of four, the sets distinguished only
by the lookaheads. These states
propagate the dot through the longer

rules, but in fact the lookaheads
are not used because in each case
the series terminates in a shift-
reduce entry. When this action
occurs the parser moves to a state
wherein the possible next symbols
are revealed. These states can
therefore be merged without
compromising the predictive

advantage of the canonical parser.
This reduces the number of states to
six, the same as for the LALR parser
generator.

All this
probabilistic
lookaheads are propagated
distribution. A fairly
procedure allows each state

the
the
as a
simple
to be

applies to
version where

104

endowed with a flag to indicate
whether or not any of the lookahead
data are important. If not, merger

can be based purely on the rule and
dot positions for the items, and
their probabilities. The numbers of
states saved varies very much with
the grammar: the above example
represents an extreme case, and
equally there are grammars for which
no saving occurs.

3. COMPARISON OF PARSER
GENERATORS

To compare the parser generators
a test grammar developed by I.B.M.
from an Associated Press corpus was
used (Sharman, 1989). This grammar
consists of 677 rules, ranked with a

rule-count which was easily
converted into a probability. It
was convenient to use reduced

versions of the grammar based on a

rule-count threshold. Simply
truncating the grammar is not
sufficient, however, for two
reasons. First, the resulting

grammar can be disconnected in that

there exist rules whose 1left-hand
sides cannot occur 1in any string
derived from S. Second, the grammar
can Dbe incomplete in that

nonterminal symbols can arise within
strings derived from S but for which
there are mno corresponding rules
because all have counts below the
threshold. The solution to these
two problems is basically the same:
recursively to add to the truncated
grammar a small number of additional
rules, with counts below the
threshold, until the resulting
grammar is connected and complete.

Applying this procedure for
various rule-count thresholds
creates a hierarchy of grammars and

allows the relationship between the
size of the grammar and the parsing
tables to be explored. Table 3
contains a summary of the results.
The number of states and total

Table 3:

Parsing table space requirements.

Non-prob LALR Probabilistic LALR Canonical
Rules Size | States Entries %>1 | States Entries $>1 | States Entries %>l
15 . 37 15 58 0 15 58 0 17 68
27 63 23 128 2 23 128 2 27 151
42 104 -38 239 2 38 239 2 110 780
77 191 71 845 6 71 845 6 (Lookahead
115 291 120 1931 13 146 2297 7 e
v looping
194 - 510 214 7522 22 359 12051 19 .
behaviour)
677 2075 1011 © 126322 46 3600 >250000 ‘
number of entries in the parsing size of the grammar but that it does
tables = are compared for = non- so exponentially. The space
probabilistic and probabilistic LALR requirements of LR parsers for
parser generators, the latter unambiguous computer languages tend
incorporating the multiple-shift to grow in a linear way with size
procedure discussed in section 2.1. (Purdom, 1974). It is also mnotable
Shift-reduce optimisation was (and no coincidence) that the
applied in all cases. The "size" of proportion of multiple entries also
each grammar is the total length of grows with the size of the grammar.
right-hand sides of all rules plus Although | further stages of
the number of nonterminal symbols. optimisation may enable space to be
The number of table entries 1is the saved, attention must be focussed on

total of all non-error action and

goto entries including multiple
entries. Also displayed is the
percentage (%>1) of non-error cells
in the tables (action and goto)
which contain multiple entries.

results are
canonical parser

Only limited
available for the

generator because the lookahead loop
suppression procedure (section 2.2)
has not yet Dbeen implemented.
Despite the wuse of the canonical
merging procedure (section 2.3) the
size of the parsing tables is
clearly growing rapidly and this
version of parser generator is only
a practical proposition for rather
small grammars.

What stands out most from the
LALR results is not that the total
number of entries grows with the

105

the grammar itself.

The parser generation algorithm
of Pager (1977) is similar to the
LALR algorithm except that states
are merged only when doing so
results in no additional multiple
entries. All such entries are
therefore the result of non-
determinism in the grammar (with the
exception of loop-breaking multiple
shifts as discussed in section 2).
This algorithm has been implemented
for probabilistic grammars, but for

the test series the results are
identical to those for the LALR
generator. It follows that the
growing proportion of multiple
entries is the product not of state

merger but of rich non-determinism

in the grammar.
table

The last two rows 1in the

correspond to the addition to the
grammar of two large groups of
rules, used twice and - once
respectively in the corpus. These
infrequent rules appear to introduce
a high degree of ambiguity, which
also shows up during the state-
generation procedure. Each state is
first generated as a "kernel" of
items, and the presence of more than
one item within a kernel implies
that there is a local ambiguity
which is being carried forward in
order that the state automaton is
deterministic. For the non-
probabilistic LALR parser
with the full grammar of 677
the average kernel

items and the largest
fewer than 68!

rules,
contained 6.1
contained no

Gazdar and Pullum
never been argued
is inherently
rather that a
adequate grammar
ambiguous in order to
account for semantic intuitions.
However, the I.B.M. grammar may
suffer from excessive ambiguity and
the parser would benefit
considerably if some way could be
found to reduce it.

According to
(1985), it has
that English
ambiguous,
descriptively
should be

Finally, the physical
requirements are easily stated:
each table entry requires four
bytes, two to specify the action and
two for the probability in
logarithmic form, converted to a

short integer.

storage

4. PROBABILISTIC PARSE FOREST

In keeping with the first and
fourth objectives set out in the
Introduction a probabilistic version
of the parse forest representation
of Tomita (1986) has been developed.
In the presence of ambiguity, and
even more so with uncertainty in the
data, the number of interpretations
may increase exponentially with the

generator

106

length of the input string. The
impact of this is minimised by sub-
node sharing and local ambiguity
packing. Where two or more parses
contain parts of their
interpretation of a sentence which
are identical they can share the
relevant nodes. And, two or more
parses may differ ©because of
ambiguity which 1is 1localised: if
part of the sentence is derivable
from a nonterminal symbol in more
than one way then the relevant nodes
may be packed together. By thus
compacting the parse forest = the
space requirement becomes O(n) - for
most grammars (Kipps, 1989).

Employing this representation for
probabilistic grammars requires that
a value be attached to each node
which enables the eventual
calculation of the parse probability

for the whole sentence given the
data. In addition it 1is mnecessary
that the m (say) most probable

interpretations be obtained without

an exhaustive search of the
compacted parse forest.
A value P(A, (D}y...5 | A) is

attached to each node in a parse

tree, where A denotes a particular
derivation of the string w;...w;
from the symbol A, and (D};, _ ;
represents the corresponding
acoustical data. This probability
is the product of the probabilities

of all rules used in the particular
derivation of w;...w; from A and the
likelihoods of those words given the
data, and is easily found for a
particular node from the
probabilities attached to each
subnode and the rule probability
when the reduce action occurs. This
calculation is not affected by the
context of w;...w;, and therefore
shared nodes need have only one
value. For locally ambiguous packed
nodes the probabilities of each
alternative are recorded, in order
that the correct ordering of
alternatives can be created at
further packed nodes higher in the

parse forest.

The probability attached to the
S-node at the apex of any parse tree
is P(A, {(D)1...u | S) where M is the
length of input. If all
alternatives are retained in the
parse forest then the parse
probabilities given all the data can
be obtained by normalisation. If
all that is required is to identify
the single most probable parse then
all local ambiguity can be resolved
by maximising at packed nodes (in
the manner of the Viterbi algorithm)
and retaining only the most probable
derivation, because this ambiguity
is invisible to higher-level
structures in the forest.

The general problem of
identifying the m most probable
parses is more complex. The current
m most probable are stored at each
shared node together with a compact
way of indicating which combination
of subnodes corresponds to each
derivation. Upon reduction by a
rule whose right-hand side 1is of
length k, the new m most probable
derivations must be found and sorted

from the (in the worst case) m
possibilities. If two reductions
are possible, to the same

nonterminal symbol and spanning the

same data, and if the right-hand
sides are of length k; and k,, then
the worst-case number of

possibilities ism1! + m2, and so
on. With appropriate book-keeping
there are efficient ways to find and
sort the m most probable of these,
and record the subnodes. In
practice this requires an array of
size 4m stored for each node in the
parse forest.

This approach has several
advantages as compared with the
original Bayesian algorithm for
uncertain input data (Wright et al,
1989, 1990). The results are
essentially equivalent, and most of
the exponentially-growing number of
possible interpretations are

107

truncated away on grounds of
probability, so the algorithm
requires polynomial time and space.
Furthermore, in this version the
probabilities in the parsing tables
are used only for prediction (to
guide the pattern-matcher) and not
for calculating the parse
probabilities. These predictions do
not have to be very precise so space
can be saved by storing each
probability in logarithmic form as a
short integer. All this applies to
isolated-word recognition; for
connected speech the situation could
be different.

5. ADAPTABILITY

The speed and effectiveness of
the probabilistic LR parser would be
seriously compromised if a 1large
grammar (of, say, thousands of rules
with a high degree of ambiguity)
were adopted, and yet it would seem
that if a grammar-based language
model is to be employed for large-
vocabulary speech recognition then
the need for a large grammar will be
unavoidable. The full version of
the I.B.M. grammar referred to 1in
section 3 extends to many thousands
of rules but the greater part of
these consist of oddball-rules that
are used only once or twice in the
corpus. Collectively the oddballs
are important because they allow the

corpus to Dbe modelled, but
individually each one is rather
insignificant. It may be the case
that generalisations (perhaps going

beyond a context-free grammar) would
eliminate a lot of these rules, but
there is also a case for the parser
to be made adaptive.

One approach to adaptation would
be to assume a probabilistic grammar
in Chomsky normal form and then use
the inside-outside algorithm (Lari
and Young, 1990). This approach has
a lot to recommend it, but here we
consider an alternative approach

based on a rule-adaptive enhancement
of the LR parser. The principle is
that at any time the parsing tables
are based on a relatively small core
grammar of important rules, but with
an error-recovery procedure and a

backup grammar. Error-recovery
allows new rules to be created as
required, and rules can be

transferred between backup and core
grammars in response to usage.

The probabilistic LR parser has
been enhanced with such a procedure.

The minimum adaptation which can
allow an ungrammatical sentence to
be accepted is a local change to a
single existing rule: in this sense
it is assumed that the sentence is
"close" to the language. The
conditions for rule-adaptation can
be summarised as follows:
Input string:
Wi..o Wy oo Wy W
Existing rule: A -> a; B8 a3
Adapted rule: A>a 6 52
such that
*
S=2m A
— *
Y1 @1 P Wp....Wy
*»
) =>W1+1....WJ
- *
az 92 =>Wj+1....Wn
and where a;, a, consist of a;, ap
with any unused nullable symbols

suppressed.

The adaptation therefore consists
in the deletion, insertion or
replacement of a substring within
the right-hand side of a rule, and
the suppression of unused nullables

simply ensures that all remaining
symbols actually contribute to the
parse of the sentence. This

procedure usually generates a number
of rule-candidates. Assuming that
one of these is chosen as correct

(although it may not be possible to
automate this entirely), it is then
added to the backup grammar as a

108

potential core rule. With
sufficient evidence of usage a rule
may be promoted from backup to core
grammar, and likewise a rule may be
demoted.

A version is being developed in
which the LR parsing tables are
updated incrementally as rules are

transferred between backup and core

grammars. This should occur on-
line, with the intention that the
core grammar be kept reasonably
compact (and the parser

correspondingly fast) while adapting
to the user. This is still very far

from a complete solution to the
problem of context-free grammar
adaptation, but a system operating
along these lines would satisfy (at
least to some degree) all the
objectives as set out in the
Introduction.
ACKNOWLEDGMENT

This work was funded by the I.B.M.

United Kingdom Scientific Centre.

REFERENCES

AV Aho, R Sethi and J D Ullman
(1985), Compilers: Principles,
Techniques and Tools, Addison-
Wesley.

Gerald Gazdar and Geoffrey K. Pullum
(1985), "Computationally relevant
properties of natural languages and
their grammars", New Generation

Computing, 3, 273-306.

Fred Jelinek (1990), "Computation of
the probability of initial substring
generation by stochastic context
free grammars", I.B.M. Research,
Yorktown Heights, New York.

J R Kipps (1989),
Tomita's algorithm
context-free parsing",

"Analysis of
for general
Proceedings

of the International Workshop on
Parsing Technologies, Carnegie-
Mellon University, 193-202.

K Lari and S J Young (1990), "The
estimation of stochastic context-
free grammars using the inside-
outside algorithm", Computer Speech
and Language, 4, 35-56.

Chin-Hui Lee and Lawrence R. Rabiner
(1989), "A frame-synchronous network
search algorithm for connected word
recognition", IEEE Trans. on
Acoustics, Speech and Signal
Processing, 37, 1649-1658.

Kai-Fu Lee (1989), Automatic Speech
Recognition, Kluwer Academic

Publishers.

D Pager (1977), "A practical general

method for constructing LR(k)
parsers", Acta Informatica, 7,
249-268.

P Purdom (1974), "The size of
LALR(l) parsers", BIT, 14, 326-337.

Richard Sharman (1989),
"Observational evidence for a
statistical model of language",
I.B.M. United Kingdom Scientific
Centre Report 205.

Masaru Tomita (1986), Efficient
Parsing for Natural Language, Kluwer
Academic Publishers.

Jerry Wright and Ave Wrigley (1989),
"Probabilistic LR parsing for speech

recognition", Proceedings of the
International Workshop on Parsing
Technologies, Carnegie-Mellon

University, 105-114.

Jerry Wright (1990), "LR parsing of
probabilistic grammars with input
uncertainty for speech recognition”,
Computer Speech and Language, 4,
297-323.

109

