
ADAPTIVE PROBABILISTIC GENERALIZED LR PARSING

Jerry Wright* , Ave Wrigley* and Richard Sharman+

• Centre for Communications Research
Queen ' s - Building , Univers ity Walk , Bristol BS8 lTR , U . K .

+ I . B . M . Uni ted- Kingdom Scientific Centre
Athelstan House , St Clement Street , Winchester S023 9DR , U . K .

ABSTRACT

Various issues in the
implem�ntation of generalized LR
parsing with probability' are
discussed . A method for preve_nting
the generation of infinite · numbers
of states is described and the space
requirements of the pars ing tables
are · assessed for a substantial
natural - language grammar . Because
of a high degree of ambiguity in the
grammar , there are many multiple
entries and the tables are rather
large . A new method for grammar
adaptation is introduced which may
help to reduce this problem . A
probabilistic version of the Tomita
parse forest i& also described .

1 . INTRODUCTION

The generalized LR pars ing
algorithm of Tomita (1986) allows
most context - free grammars to be
parsed with high efficiency . For
appl ications in speech recognition
(and perhaps elsewhere) there is a
need for a systematic treatment of
uncertainty in language · modelling ,
pattern recognition and pars ing .
Probabilis tic grammars are
increas ing in importance as language
models (Sharman , 1989 , Lari and
Young , 1990) , pattern recognition is
guided by predictions of forthcoming
words (one application of the recent
algorithm of Jelinek (1990)) , and
the extension of the Tomita
algorithm to probabilistic grammars
(Wright et al , 1989 , 1990) is one
approach to the pars ing problem .
The successful application of the
Viterbi beam- search algorithm to

1 00

connected speech recognition (Lee ,
1989) , together with the poss ibility
of building grammar ... level mqdelling
into this . framework (Lee and
Rabiner , 19S 9) is further evidence
of this trend . Th_e p\lrpose. of this
paper is to cons ider some issues , , in
the implementation of probabil istic
generalized LR pars ing .

The obj ectives of our current
work on language modelling and
pars ing for · s·peech · recognition can
be summarised as follows :

(1) real - time pars ing without
excessive space requirement,s ,

(2) minimum restrictions on
the grammar (ambiguity , null rules ,
left - recurs ion all · permitted , no
need to use a normal form) ,

(3) probabilistic predictions
to be made available to the patte·rn
matcher , with word or phoneme
likel ihoods received in return ,

(4) interpretations , ranked by
overall probability , to be made
available to the user ,

(5) adaptation o f the language
model and parser , with mihimwn delay
and interaction with the user .

The choice of parser generator is
relevant to obj ectives (1) and (3) .
All vers ions satisfy obj ective (2)
but are initially susceptible td
generating an infinite number of
states for certain probabilistic
grammars , and in the case of the
canonical parser generator this can
happen in two ways . A solution to
this problem is described in section
2 . The need for probabilistic
predictions of forthcoming words or
phonemes (obj ective (3)) is best met
by the canonical parser generator ,

because for all other versions the
prior probability dis tribution can
only be found by following up all
pos s ible reduce actions in a state ,
in advance of the next input (Wright
et al , 1989 , 1990) . This · consumes
both time and space , but the s ize of
the pars ing tables produced by the
canonical parser generator generally
pre.eludes . their use . The , space
requirements for the various · · parser·
generato,rs :are assessed in section .
3 . . , - ,The grammar used· fo.r · this
purpose. ,was develop�d by 1 . -B . M . fro·m · -
an Associated Press corpus o.f.. ·text
(Sharman , _1989) .

Obj ective (4) is met . by the parse
forest representation which is a
pro_bab_�listic vers ion_ of . - that
empioyed · by Tomit·a . . . (19.� 6) __ ,
incorporating sub -node . • �haring· · �nd
local · ambiguity packi�g . · This . is
des�rib�d in- section 4 : ·

The final issue ·(�b,.j ec_tive : (5)
and section 5) i s crucial to the
applicab:i.li ty of the whole .9:ppr�_ac� •,
We regard a grammar as ; a
prob�bilistic structured_ hier -
arc.hical_ model of language .. a� used �
not _a - - prescriptive bas is - for
correctness .of that use . . A
rela_tiyely compact pars ing table
presumes a relatively compact
grammar , which is therefore going to
be inadequate to cope with the range
of usage to which it is likely to be
exposed . It is essential that the
software be made adaptive , and our
experimental vers ion operates
through the LR. parser to synthes ise
new grammar rules , assess their
plaus ibility , and make incremental
changes to the LR. pars ing tables in
order to add or delete rules in the
grammar .

1 01

2. PARSING TABLE

SPACE REQUIREMENTS

2 . 1 INFINITE SERIES OF STATES :
. FROM THE ITEM PROBABILITIES

When appl ied fo a probabilistic
grammar , the various versions of LR
parser generator first produce a
series of item sets in which a
pro:t,ability derive� fr9m the grammar
is attached . to each item , and . then
generate . the ac tion and goto · tables
in wh;ich each entry again has an
attach�d probab.ility , representit;1g_ a
frequency for . that act_ion
conditional_ upon the state (Wright
et al ., l989 , . 1 99.0) . S ometimes these.
probapiliti..es can cause ; a p�oblem in .
state generation . For example ,
cons fder the following probabilistic
grammar :

s ➔ A , P1 I B , P2
A ➔ c A , ql a , q2
B · ➔ C B , r1 b , r2 ·

where p1 , p2 and so on (with
P1 + p2 = 1) represent the
probabilities of the respective
rules . After receiving ·, the terminal
symbol c , the state with the
(closed) item set shown in Table 1
is entered , with the firs t coluinn of.
probabilities for each item . After
rece iving the terminal symbol c
again , a state with the same item
set is entered but with the second
column of probabilities for each
item , and ' these ·are different from
the firs t unless q1 = r1 . For the
probabilistic parser these states
must therefore be distinguished , and
in fact this process continues to
generate an (in principle) infinite
sequence of states . Although it may
sometimes be sufficient merely to
truncate this series at some point ,
the number of additional states
generated when all the " goto " steps
have been exhausted can be very
large .

Table 1 : Item se1 with probabilities .
II- ➔ I d

B --3> , 0_f
·� � , c,,

I tem First pro�ability Second probability
I

A ➔ C • A P1 q1 / (P1 q�+P2 ;--;)]
2 2 2

P1 q1 I (p1 q1 +p2 r1) B ➔ C • B P2 r1 / (p1 q1 +P2 r1)
2 2 2

P2 r1 / (p1 q1 +P2 r1)

A ➔ • C A
2

P1 q1 / (P1 q1 +p2 r1)
3 2 2

P1 q1 I (P1 q1 +p2 r1)

A ➔ • a P1 q1 q2 / (p1 q1 +P2 r1)
2 2 2

P1 q1 <12 / (P1 q1 +p2 r1) · B ➔ • c B . 2
P2 r1 / (P1 q1 +p2 r1)

3 2 2 · ·
P2 r1 I (P1 q1 +p2 r1) B ➔ • b P2 r1 r2 / (p1 q1 +P2 r1)

2 2 2
P2 r1 r2 / (p1 q1 +p2 r1)

Table 2 : Separated item sets .

A ➔ c • A

A ➔ • c A

A ➔ • a

1

We can avoid . this problem by
in��oducing a multiple - shift entry
for the terminal symbol c , in the
state from which the one j ust
discussed is entered . Multiple
entries in the ac tion table are
normally confined to cases of
shift - reduce and reduce - reduce
conflicts , . but the purpose here is
to force the stack to divide , with a
probability , P1 q1 / (p1 q1 +P2 r1)
attached to one branch and
P2 r1 / (p1 q1 +P2 r1) to the other .
These then lead to separate states
with item sets as shown in Table 2 .

The prior probabilities of a , b
and c are obtained by combining the
two branches and take the same
values as before . Further
occurrences of the terminal symbol c
s imply cause the same state to be
re - entered in each branch , and
eventual ly an a or b eliminates one
branch . If c is replaced by a
nonterminal symbol C , the same
procedure applies except that a

1 02

B ➔ C • B B ➔ • c B
B ➔ • b

1

multiple goto entry is required , and ·
this in .turn means that a
probability has to be attached to
each go to entry (this was not
required in the original version of
the probabilistic LR parser) .

Suppose in general that a grammar ·
has non terminal and terminal
vocabularies N and T respectively .
Conditions for the occurrence of an
infinite series of states can be
summarised as follows : there occurs
a state in the closure of which
there arise either

(a) two distinct self-
recurs ive nonterminal symbols (A , B
say) for which a nonempty string
a e (N u T)

+
exists such that •

A � a A f3 and B � a B -y

where /J , -y e (N u T)

or (b) two (or more) mutually
recurs ive nonterminal symbols for
which a nonempty string a e (N u T)

+

exists such that

• •
A � a B /3 and B � a A -y •

where {3 , -y e (N u T) and in
addition either

(i) �
of one symbol
poss ible :

left -most
from the

derivation
other is

• •
A � B 6 where 6 e (N u T)

or (i i) a
nonterminal (C ,
coincide with A or
such that

say ,
B)

self- recurs ive
which . - may

also arises

•
where 6 e (N u T)

for the same a .

These conditions ensure that the
a - successor of this s tate also
contains items with A and B after
the dot but with probabilities
different from those for the earlier
s tate , and moreover that this
continues to generate an infinite
series (different item probabilities
do not always imply this) . One way
to prevent this series is to
associate with each item in the
lists (which form the states) an
array of states for each nonterminal
symbol , recording the state (s) in
which that · symbol occurred as. the
left -hand s ide of an item from which
the current item is descended .
These arrays can be created during
the course of the LR " closure"
function . Pairs of nonterminals
satisfying the conditions above are
then easily detected within the
" goto " function , so that an
appropriate multiple shift or goto
entry can be automatically created
for the las t symbol of a . Only the
items leading to the looping
behaviour need to be separated by
this means , and the number of
additional states generated is
smal l . Cases of three -way (or
higher) mutual recurs ion with a
common a are very rare .

1 03

2 . 2 INFINITE SERIES OF STATES :
FROM THE LOOKAHEAD DISTRIBUTION

For the probabilistic LALR parser
generator the lookaheads cons ist of
a set of terminal symbols , as in the
case of non- probabilistic grammars .
However , for the canonical parser
generator there is a ful l
probabil_ity distribution of
lookaheads and this creates a second
potential source of looping
behaviour . I t is poss ible for item
sets · to have the same item.
probabilities but different
lookahead distributions . Suppose
that a s tate contains an item with a
right - recurs ive nonterminal symbol
(C , say) after the dot , with nothing
following . If the state also
contains another item with C after
the dot followed by a non-null
string , thus-• .

C � a C and C � a C /3
+

where a , /3 e (N u T) , then the new
lookahead probability distribution
computed for C wil l be a mixture of
the old one and a distribution
derived from fJ in the second • item .
The state automaton possesses a loop
because of the right - recurs ion , and
the lookahead dis tribution is
different each time around so that
again an (in principle) infinite
series is generated . The second
item can arise within the same state
if C is also left- recurs ive (the
s implest example of this is the
grammar S ➔ S S , p1 I a , P2) , and
this problem also arises for an item
of the second kind on its own , if fJ
is nonempty but nullable .

It is pos s ible to break the
by introducing multiple shift
goto) actions as before , but
procedure is complicated by
presence of nul l rules and/or
recurs ion . These can allow
distribution to change even
there is j us t a s ingle item in
kernel . In the absence of
behaviour the state from which

loop
(or
the
the

left ­
the

when
the

this
the

one j ust discussed is entered can be

treated with a multiple entry in
order to prevent the lookaheads from
mixing , the conditions which give
rise to this problem being checked
within the '" goto " function . The
prior probability c -alculations at
run- time are :correct .

This pro,cedure has not ·been fully
implemented at the prPsent time , but
it seems that this kind of looping
behaviour , is more common than that
discussed in the previ'ous section .
The additional states cre�ted by the
mul •tiple shifts exace.rbates the
already maj or disadvantage · of the
canonical parser with regard to
space re·quirements .

2 . 3 MERGING OF CANONICAL STATES

Cons ider the fol lowing grammar :

S ➔ A b A C

A ➔ e f S l g

(the rule -probabilities do not
ma:tter) . - The full canonical parser
generator produces eighteen states ,
of which eight are eliminated by
shift - reduce optimisation (Aho et
al , 1985) . Of the remaining states ,
a further eight cons ist of two sets
of four , the sets · distinguished only
by the lookaheads . These states
propagate the dot through the longer
rules , but in fact the lookaheads
are not used because in each case
the series terminates in a shift ­
reduce entry . When this action
occurs the parser moves to a state
wherein the possible next symbols
are revealed . These s tates can
therefore be merged without
compromis ing the predictive
advantage of the canonical parser .
This reduces the number of states to
s ix , the same as for the LALR parser
generator .

All this applies to
probabilistic vers ion where
lookaheads are propagated
distribution . A fairly
procedure allows each state

the
the

as a
s imple
to be

1 04

endowed with a flag to indicate
whether or not any of the lookahead
data are important . If not , merger
can b,e based purely on the rule and
dot positions for the items , and
their probabilities . The numbers of
states saved va.ries very much with
the gr amm-ar : ·dre above -example
repres·ents an extreme case , and
equally there are grammars f'o·r which
no saving occurs .

3-. COMPARISON · OF PARSER
GENERATORS

To compare the parser ,generators
a test grammar developed by L B . M .
from ari Associated Press corpus was
used (Sharman , 1989) . This grammar
cons ists of 677 rules , ranked with a
rule - count which was easily
converted into a probability . It
was convenient to use _ reduced
vers ions of the gr'ammar based on - a
rule - count threshold � S imply
truncating - the grammar is not
sufficient , however , for . two
reasons . Firs t , the resultfng
grammar can be disconnected in that ·
there exist rules whose left -hand
s ides cannot occur in any s tring
derived from S . Second , the gra!filllar
can be incomplete in that
nonterminal symbols can arise within
strings derived from S but for which
there are no corresponding rules
because all have counts below the
threshold . The solution to these
two problems is bas ically the same :
recurs ively to add to the truncated
grammar a small number of additional
rules , with counts below the
threshold , until the resulting
grammar is connected and complete .

Applying this procedure for
various rule - count thresholds
creates a hierarchy of grammars and
allows the relationship between the
s ize of the grammar and the pars ing
tables to be explored . Table 3
contains a summary of the results .
The number of states and total

Table 3 : Pars ing table space requirements .

Non-pr-�p IALR . Probabilistic LALR Canonical
•. - .

Rules S ize States Entries %>1 States Entries %>1 - - States· · Entries %>1

15 37 . . 15 '. 58 0 15

2 7 ' 6 3 2 3 128 2 2 3

42 · 104 - · 3 6 239 2 38

77 191 7 1 845 6 . 7 1

115 291 120 1931 13 146

194 · 510 214 7522 2 _2 359

677 2075 , 1011 : · 126322 46 3 600

� . .
number of entries . in t9e .pars in.g
tables are compared for > non­
probabilistic and probabilistic LALR
parser . generators-, . the la:tter
in�orporating the multiple - shift .
procedure discusse'd :fo section 2 . 1 .'
Shift - reduc� optimisation · was
applied in all _case$. ,The " s ize" of
each grammar is the· total length . . of
right -hand s ides of all rules . plus
the number of nonterminal sym�ols .
The number of table entries is the
total of all non- error action and.
goto entries including _ multiple
entries . Also displayed is the
percentage (%>1) of non- error cells
in the tables (action and goto)
which contain multiple entries .

Only limited results are
available for the canonical parser
generator because the lookahead loop
suppres s ion procedure (section 2 . 2)
has not yet been implemented .
Despite the use of the canonical
merging procedure (section 2 . 3) the
s ize of the pars ing tables . is
clearly growing rapidly and this
version of parser generator is only
a practical propos ition for rather
small grammars .

What stands out most
LALR results is not that
number of entries grows

from the
the total
with the

1 05

58

128

239

845

2297

12051

>250000

0

2

2

6

7

19

' '

17 6 8 . ,

27 151

• 110 · 780

(lookahead
. ,

looping: . · ' ·

behaviour)

0

0

1

. .

s ize of the grammar but that it does
so exponentially .. _ ; · · The space
requirements of LR parsers for
unambiguous computer languages · tend
to grow in a linear way with s ize
(Purdom , 1974) . It is also notable
(and no coincidence) that · the
proportion of multiple entries also
grows with the s ize of the grammar .
Although , further stages of
optimisation may enable space to be··
saved , attention must be focussed on
the grammar itself .

The parser generation algorithm
of Pager (1977) is s imilar to the
LALR algorithm except that states
are merged only when doing so
results in no · additional multiple
entries . All such entries · are
therefore the result of non­
determinism in the grammar (with the
exception of loop -breaking multiple
shifts as discussed in section 2) .
This algorithm has been implemented
for probabilistic grammars , but - for
the - test series the results are
identical to those for the LALR
generator . It follows that the
growing proportion of multiple
entries is the product not of state
merger but of rich non- determinism
in the grammar .

The last . two rows in the table

correspond to the addition to .the
grammar of two large groups of
rules , used twice a11d once.
respectively in the corpus . These
infrequent rules appear to introdµce
a .high _ degree · �f ambiguity , which .
also shows up during the state ­
genera�ion procedure . Each ·state is
first gene�ated as a "kernel: " of
items , and the presence of more than
one item within a kernel implies
that. there is a local ambiguity
which is being carried forward in
order that the state automaton is
determ.inistic . For the non­
probabilistic LALR parser generator
with the full grammar of 677 rules ,
the average kernel contained 6 . 1
items and the largest contained no
fewer than 68 !

According to Gazdar and Pullum
(1985) , it .. has never been argued
that English is inherently
ambiguous , rather that a
descriptively adequate grammar
should be ambiguous in order to
account for semantic intuitions .
However , the I . B . M . grammar may
suffer from excess ive ambiguity and
the parser would benefit
cons iderably if some way could be
found to reduce it .

Finally , the phys ical storage
requirements are eas ily stated :
each table entry requires four
bytes , two to spec ify the action and
two for the probability in
logarithmic form , converted to a
short integer .

4. PROBABILISTIC PARSE FOREST

In keeping with the . first and
fourth obj ectives set out in the
Introduction a probabilistic version
of the parse forest representation
of Tomita (1986) has been developed .
In the presence of ambiguity , and
even more so with uncertainty in the
data , the number of interpretations
may increase exponentially with the

1 06

length of the input string . The
impact of this is minimised by sub ­
node sharing and local - ambiguity
packing . Where two or mote parses
contain parts of their
interpretation of a sentence which
are identical they can share - the
relevant nodes . And , two . o.r more
parses may differ becaus··e .of
ambiguity which is localised : · if
part of the . sentence is derivable
from a nonterminal symbol in more
than one way then. the relev.ant nodes
may be packed together .- By thus
compacting the .parse foresf . the
space requirement becomes O (n) · f6r
most grammars (Kipps , 1989) .

Employing this representation for­
probabilistic grammars requires that
a value be attached to . each node
which enables the eventual
calculation of the parse probability
for the whole sentence given the
data . In addition it is necessary
that the m (say) most probable
interpretations be , obtained without.
an exhaustive search of the
compacted parse fores t .

A value P (� , (D } 1 • • • J I A) is
attached to each node in a parse
tree , where � denotes a particular
derivation of the string w1 • • • wJ
from the symbol A , and (D } 1 • • • J
represents the corresponding
acous tical data . This probability
is the product of the probabilities
of all rules used in the particular
derivation of w1 • • • wJ from A and the
likel ihoods of those words given the
data , and is eas ily found for a
particular node from the
probabilities attached to each
subnode and the rule probability
when the reduce action occurs . This
calculation is not affected by the
context of w1 • • • wJ , arid therefore
shared nodes need have only one
value . For locally ambiguous packed
nodes the probabilities of each
alternative are recorded , in order
that the correct ordering of
alternatives can be created at
further packed nodes higher in the

parse forest .

The probab il ity attached to the
S - nqde at the apex of any parse tree
is P (6 , { D } 1 . . . M I S) where M is the
length of input . If all
alternatives are retained in the
pars_e ·forest then the parse
probabilities given all the data can
be obtained by normalisation . If .
all that is required is to identify
the s ingle most probable parse then
all local ambiguity can be resolved
by maximis ing at packed nodes (in
the manner of the Viterbi algorithm)
and retaining only the most . probable
derivation , because this ambiguity
is invis ible to higher - level
struct�res in the forest .

The general problem -0f
identifying the m most probable
parses is more complex . The current
m most probable are stored at each
shared node together with a compact
way of indicating which combination
of subnodes corresponds to each
derivation . Upon reduction by a
rule whose right -hand side is of
length k, the new m most probable
derivations must be found and sorted
from the (in the worst case) m

k

poss ibilities . If two reductions
are poss ible , . to the same
nonterminal symool and spanning the
same data , and if the right -hand
s ides are of length k1 and k2 , then
the wors t- case number of
pos s ibilities is mk 1 + mk 2 and so
on . With appropriate book-keeping
there are efficient ways to find and
sort the m most probable of these ,
and record the subnodes . In
practice this requires an array of
s ize 4m stored for each node in the
parse fores t .

This approach has several
advantages as compared with the
original Bayes ian algorithm for
uncertain input data (Wright e t al ,
1989 , 1990) . The results are
essentially equivalent , and most of
the exponentially- growing number of
possible interpretations are

1 07

truncated away on grounds of
probability , s o the algorithm
requires polynomial time and space .
Furthermore , in this version the
probabilities in the pars ing tables
are used only for prediction . (to
guide the pattern�matcher) arid not
for calculating the parse
probabilities . These predictions do
not have to be very precise so space
can be saved by storing each ­
probability in logarithmic form as a
short integer . All this applies to
isolated-word recognition ; for
connected speech the situation could
be different .

5. ADAPT ABILITY

The speed and effectivenes s of
the probabil istic LR parser would be
seriously compromised if a large
grammar (of , say , thousands -of rules
with a high degree of ambiguity)
were adopted , and yet it would seem
that if · a grammar -based language ·
model is to be employed for large ­
vocabulary speech recognition th�n
the need for a large grammar will be
unavoidable . The full version of ·
the I . B . M . grammar referred to in
section 3 extends to many thousands
of rules but the greater part of
these consist of oddball - rules that
are used only once or twice in the
corpus . Collectively the oddballs
are important because - they allow the
corpus to be modelled , but
individually · each one is rather
ins ignificant . It may be the case
that generalisations (perhaps going
beyond a context - free grammar) would
eliminate a lot of these rules , but
there is also a case for the parser
to be made adaptive .

One approach to adaptation would
be to assume a probabilistic grammar
in Chomsky normal form and then use
the ins ide - outs ide algorithm (Lari
and Young , 1 990) . This approach has
a lot to recommend it , but here we
cons ider an alternative approach

based on a rule - adaptive enhancement
of the LR parser . The principle is
that at any time the pars ing tables
are based on a relatively small core
grammar of important rules , but with
an error - recovery procedure and a
backup grammar . Error - recovery
allows new rules to be created as
required , and rules can be
trans ferred between backup and core
grammars in response to usage .

The probabilistic LR parser has
been enhanced with such a procedure .
The m1n1mum adaptation which can
allow an ungrammatical sentence to
be accepted is a local change to a
s ingle existing rule : in this sense
it is assumed that the sentence is
" close" to the language . The
conditions for rule - adaptation can
be summarised as follows :

Input string :

W1 Wi WJ Wn

Existing rule : A ➔ a1 fi a2

Adapted rule :

such that •
S � 'Y1 A "(2 •
"f1 a1 � W1 · · · · W1 •
6 � W1 + 1 · · · · WJ •
a2 'Y2 � WJ + 1 • • • . Wn

and where o1 , o2 cons ist of
with any unused nullable
suppressed .

The adaptation therefore cons ists
in the deletion , insertion or
replacement of a substring within
the right -hand s ide of a rule , and
the suppress ion of unused nullables
s imply ensures that all remaining
symbols actually contribute to the
parse of the sentence . This
procedure usually generates a number
of rule - candidates . Assuming that
one of these is chosen as correct
(although it may not be possible to
automate this entirely) , it is then
added to the backup grammar as a

1 08

potential core rule . With
sufficient evidence of usage a rule
may be promoted from backup to core
grammar , and l ikewise a rule may be
demoted .

A vers ion is being developed in
which the LR pars ing tables are
updated incrementally as rules are
transferred between backup and core
grammars . This should occur on­
line , with the intention that the
core grammar be kept reasonably
compact (and the parser
correspondingly fast) while adapting
to the user . This is still very far
from a complete solution to the
problem of context - free gramm_ar
adaptation , but a system operating
along these l ines would satisfy (at
least to some degree) all the
obj ectives as set
Introduction .

out in the

ACKNOWLEDGMENT

This work was funded by the I . B . M .
United Kingdom Scientific Centre .

A V Aho , R
(1985) ,
Techniques
Wesley .

REFERENCES

Sethi and J D Ullman
Compi lers : Principles ,

and Tools , Addison-

Gerald Gazdar and Geoffrey K. Pullum
(1985) , " Computationally relevant
properties of natural languages and
their grammars " , New Generation
Computing , 3 , 273 - 306 .

Fred Jelinek (1990) , " Computation of
the probability of initial substring
generation by stochastic context
free grammars " , I . B . M . Research ,
Yorktown Heights , New York .

J R Kipps (1989) ,
Tomita ' s algorithm
context- free pars ing" ,

"Analys is of
for general

Proceedings

of the International Workshop on
Parsing Technologies , Carnegie ­
Mellon Univers ity , 19 3 - 202 .

K Lari and S J Young (1990) , "The
estimation of stochastic context ­
free grammars using the inside ­
outside algorithm" , Computer Speech
and Language , 4 , 3 5 - 56 .

Chin-Hui Lee and Lawrence R . Rab iner
(1989) , "A frame - synchronous network
search algorithm for connected word
recognition" , IEEE Trans . on
Acous tics , Speech and Signal
Processing , 37 , · 1649 - 1658 .

Kai - Fu Lee (1989) , Au toma tic Speech
Recogni tion , Kluwer Academic
Publishers .

D Pager (19 77) , "A practical general
method for constructing LR(k)
parsers " , Ac ta Informatica , 7 ,
249 - 268 .

P Purdom (1974) , "The s ize of
LALR(l) parsers " , BIT , 14 , 326 - 337 .

Richard Sharman
"Observational evidence
statistical model of
I . B . M . United Kingdom
Centre Report 205 .

(1989) ,
for a

language " ,
Scientific

Masaru Tomita (1986) , Efficient
Parsing for Natural Language , Kluwer
Academic Publishers .

Jerry Wright and Ave Wrigley (1989) ,
" Prob_abilistic LR pars ing for speech
recognition" , Proceedings of the
International Workshop on Parsing
Technologies , Carnegie-Mellon
Univers ity , 105 - 114 .

Jerry Wright (1990) , " LR
probabilistic gramm.ars
uncertainty for speech
Computer Speech and

pars ing of
with input

recognition" ,
Language , 4 ,

2 9 7 - 3 2 3 .

1 09

