TensorOpera Router: A Multi-Model Router for Efficient LLM Inference

Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Alay Dilipbhai Shah, Han Jin, Yuhang Yao, Jipeng Zhang, Tong Zhang, Salman Avestimehr, Chaoyang He

Motivation

- Different tasks require different expertise.
- Various and diverse LLMs have emerged.
- No LLM fits all purposes.

LLMs Landscape

Problem Statement

Given the increasing number and diversity of large language models available, there is a need for efficient and intelligent routing systems that:

- Dynamically route queries/tasks to the most suitable LLM expert.
- Optimize resource utilization and costs by balancing workload across models.
- Single API interface for multiple models.
- Seamless selection of expert models while abstracting complexity.

Router model training and testing data preparation.

Router's training and testing data need to be representative of the domain queries the Ο router is expected to handle during deployment.

Router model selection.

Challenges

Router model needs to be lightweight to be easily deployable both on the edge and Ο cloud, and quickly parse and assign queries to the most suitable expert.

End-to-end routing service deployment.

Automating the training and testing data generation, routing model selection and Ο deployment in real-world setting is an extremely challenging engineering effort.

TensorOpera Router Approach

Phase 1: Router Data Preparation

Mistral-7B (general)

Qwen-7B (general)

MathDeepSeek-7B (math)

For every instruction prompt we collect:

- Negative Log Likelihood
- BERT embeddings similarity score (BERTSim)
- Inference Time (in seconds)
- Total Input Tokens
- Total Output Tokens

Phase 2: Router Training

Fine-Tune / Train router's classifier on the embeddings.

Original Data: (Instruction, BERTSim1, ..., BERTSimN)

Scaled Data w/ Softmax Labels:

(Instruction, softmax1(BERTSims, ..., BERTSimN), ..., softmaxN(BERTSim1, ..., BERTSimN))

MLP-Router

 convert all training queries into their vector representation by fitting a Bag-of-Words model, use cross-entropy loss on the scaled BERTSim scores.

• BERT-Router

 add a classifier head on base BERT and fine-tune BERT by training on the BERT embeddings of all training queries, using cross-entropy loss on the scaled BERTSim scores.

Phase 3: Deployment

Deploy trained router model.

Router predicts expert to execute query.

Router replies expert's response to user.

Router Endpoint Query

curl -XPOST http://0.0.0.0:2345/predict -H 'Accept: application/json' -H 'Content-Type: application/json' -d '{ "messages": [{ "role": "user", "content": "Test" }] }'

Router Endpoint Reply

{"id":"d4961180721145b1916c7c18e935db6f","object":"chat.completion","created":4318860,"
choices":[{"index":0,"message":{"role":"assistant","content":"It looks like you're
testing me! Is there something specific you'd like to know or discuss? I'm here to
help!"},"finish_reason":"stop"}],"usage":{"prompt_tokens":29,"total_tokens":56,"complet
ion tokens":27},"expert":"llama3-8b-cloud"}

Evaluation Criteria & Baseline Methods

Criteria

- Inference Price Cost (\$\$/1M tokens)
- Throughput (#tokens/sec)
- BERT Similarity (cosine similarity on BERT embeddings)
- Negative Log-Likelihood (NLL)

Routing Baselines

- Zero-Router
 - o average performance of all available experts without any routing logic
- Optimal-Router
 - for any given query the optimal set of values is the minimum cost, maximum throughput, maximum BERTSim, minimum NLL recorded by any expert model or routing method.
- Random-Router
 - pick a random expert from all available experts.
- 1NN-Router
 - for every test query find its closest training query (w.r.t. embedding space) and assign the expert that exhibited the best performance for the training query.

Router Performance per Dataset & Query Cardinality per Expert

BERT Router exhibits the best performance

Query Count per Expert & Routing Method						
Biollama-8B -	90	396	438	111	67	
Biomistral-7B -	108	383	221	304	36	
Codellama-7B -	63	387	447	33	21	
Fox-1.6B -	1063	381	233	749	1581	
Mathdeepseek-7B -	663	392	327	271	337	
Mistralai-7B -	265	385	591	579	106	
Qwen-7B -	430	379	413	623	522	
	Optimal	PandomRouter	INN-ROUTES	MPROUTES	BERT-Router	
Routing Method BERT Router assigns similar number of						

Model Expert

queries per expert as Optimal

Trilemma Evaluation (Cost, Throughput, Performance)

Future Directions Hybrid Al Edge-to-Cloud Collaboration

