Moleco: Molecolar Contrastive Learning with Chemical Language Models for Molecular Property Prediction

Jun-Hyung Park*, Hyuntae Park*, Yeachan Kim, Woosang Lim, SangKeun Lee

Data Intelligence Lab, Korea University
POSCO Holdings

pht0639@korea.ac.kr

2024.10.27

Chemical Language Models (CLMs)

- CLMs are often trained with string-based descriptors, such as SMILES
- ChemBERTa, MoLFormer-XL, SELFormer, MolTRES, ...

Chemical Language Models (CLMs)

- CLMs are often trained with string-based descriptors, such as SMILES
- However, SMILES implicitly contains limited structural information

Molecular Structure and Property

• Molecules with similar structures are likely to exhibit similar properties

Figure 3: Visualization of the top pairs in the QM9 dataset.

Research Question

How to enhance the understanding of CLMs on the structural information?

- Molecular Contrastive Learning with Chemical Language Models
- Combines fingerprint-based structural similarity with contrastive learning

- Molecular Contrastive Learning with Chemical Language Models
- Combines fingerprint-based structural similarity with contrastive learning

- Molecular Contrastive Learning with Chemical Language Models
- Combines fingerprint-based structural similarity with contrastive learning

- Molecular Contrastive Learning with Chemical Language Models
- Combines fingerprint-based structural similarity with contrastive learning

- Extract fingerprints (ECFP4)
- Define similar molecules
- Distinguish between structurally similar and dissimilar molecules

Experiments (MoleculeNet Classification)

• Contrasting structural similar molecules can improve performance

Methods	BBBP↑	Tox21↑	ToxCast ↑	ClinTox ↑	MUV ↑	HIV↑	BACE ↑	SIDER ↑	Avg. ↑
3D Conformation									
GeomGCL (Liu et al., 2022)	-	85.0		91.9	-	-	-	64.8	-
GEM (Fang et al., 2022)	72.4	78.1	-	90.1	-	80.6	85.6	67.2	-
3D InfoMax (Stärk et al., 2022)	68.3	76.1	64.8	79.9	74.4	75.9	79.7	60.6	72.5
GraphMVP (Liu et al., 2022)	69.4	76.2	64.5	86.5	76.2	76.2	79.8	60.5	73.7
MoleculeSDE (Liu et al., 2023a)	71.8	76.8	65.0	87.0	80.9	78.8	79.5	60.8	75.1
Uni-Mol (Zhou et al., 2023)	71.5	78.9	69.1	84.1	72.6	78.6	83.2	57.7	74.5
MoleBlend (Yu et al., 2024)	73.0	77.8	66.1	87.6	77.2	79.0	83.7	64.9	76.2
Mol-AE (Yang et al., 2024)	72.0	80.0	<u>69.6</u>	87.8	<u>81.6</u>	80.6	84.1	67.0	77.8
UniCorn (Feng et al., 2024)	74.2	79.3	69.4	92.1	82.6	79.8	85.8	64.0	78.4
2D Graph									
DimeNet (Klicpera et al., 2020)	-	78.0	-	76.0	-	-	-	61.5	-
AttrMask (Hu et al., 2020)	65.0	74.8	62.9	87.7	73.4	76.8	79.7	61.2	72.7
GROVER (Rong et al., 2020)	70.0	74.3	65.4	81.2	67.3	62.5	82.6	64.8	71.0
BGRL (Thakoor et al., 2022)	72.7	75.8	65.1	77.6	76.7	77.1	74.7	60.4	72.5
MolCLR (Wang et al., 2022c)	66.6	73.0	62.9	86.1	72.5	76.2	71.5	57.5	70.8
GraphMAE (Hou et al., 2022)	72.0	75.5	64.1	82.3	76.3	77.2	83.1	60.3	73.9
Mole-BERT (Liu et al., 2023c)	71.9	76.8	64.3	78.9	78.6	78.2	80.8	62.8	74.0
SimSGT (Xia et al., 2023)	72.2	76.8	65.9	85.7	81.5	78.0	84.3	61.7	75.8
MolCA + 2D (Liu et al., 2023b)	70.0	77.2	64.5	89.5	-	-	79.8	63.0	-
1D SMILES/SELFIES									
ChemBERTa-2 (Ahmad et al., 2022)	70.1	48.1	49.8	51.9	43.8	74.7	80.9	49.0	58.5
MoLFormer-XL (Ross et al., 2022)	93.7	84.7	65.6	94.8	80.6	82.2	88.2	66.9	<u>82.1</u>
SELFormer (Yüksel et al., 2023)	90.2	65.3	-	-	-	68.1	83.2	74. 5	_
MolCA (Liu et al., 2023b)	70.8	76.0	56.2	89.0	-	-	79.3	61.2	-
Moleco (ours)	<u>92.9</u>	83.4	72.8	95.0	81.3	82.9	89.1	<u>68.8</u>	83.3

Table 1: Evaluation results on molecular property classification tasks (ROC-AUC; higher is better). The best and second-best results are in **bold** and underlined.

Experiments (MoleculeNet Regression)

Contrasting structural similar molecules can improve performance

Methods	ESOL ↓	FreeSolv \	Lipophilicity \	Avg. ↓	
3D Conformation					
3D InfoMax (Stärk et al., 2022)	0.894	2.337	0.695	1.309	
GraphMVP (Liu et al., 2022)	1.029	-	0.681	-	
Uni-Mol (Zhou et al., 2023)	0.844	1.879	0.610	1.111	
MoleBlend (Yu et al., 2024)	0.831	1.910	0.638	1.113	
Mol-AE (Yang et al., 2024)	0.830	1.448	0.607	0.962	
UniCorn (Feng et al., 2024)	0.817	1.555	0.591	0.988	
2D Graph					
AttrMask (Hu et al., 2020)	1.112	-	0.730	-	
GROVER (Rong et al., 2020)	0.831	1.544	0.560	0.978	
MolCLR (Wang et al., 2022c)	1.110	2.200	0.650	1.320	
SimSGT (Liu et al., 2023c)	0.917	-	0.695	-	
1D SMILES/SELFIES					
ChemBERTa-2 (Ahmad et al., 2022)	0.949	1.854	0.728	1.177	
MoLFormer-XL (Ross et al., 2022)	0.274	0.315	<u>0.540</u>	0.376	
SELFormer (Yüksel et al., 2023)	0.682	2.797	0.735	1.405	
Moleco (ours)	0.264	0.296	0.518	0.359	

Table 2: Evaluation results on molecular property regression tasks (RMSE; lower is better). The best and second-best results are in **bold** and underlined.

Experiments (QM9)

 Moleco can provide accurate prediction of quantum properties without ground-truth geometry information

Methods	$\mu\downarrow$	$\alpha \downarrow$	$\varepsilon_{homo}\downarrow$	$\varepsilon_{lumo}\downarrow$	$\Delta arepsilon \downarrow$	$\langle R^2 \rangle \downarrow$	$ZPVE\downarrow$	$U_0\downarrow$	$U_{298}\downarrow$	$H_{298}\downarrow$	$G_{298}\downarrow$	$C_v \downarrow$	Avg.↓
	(D)	(a_0^3)	(eV)	(eV)	(eV)	(a_0^2)	(eV)	(eV)	(eV)	(eV)	(eV)	$(\frac{\text{cal}}{\text{mol} \cdot \text{K}})$	
3D Conformation (GT)													
3D InfoMax (Stärk et al., 2022)	0.028	0.057	0.259	0.216	0.421	0.141	0.002	0.013	0.014	0.014	0.014	0.030	0.101
GraphMVP (Liu et al., 2022)	0.030	0.056	0.258	0.216	0.420	0.136	0.002	0.013	0.013	0.013	0.013	0.029	0.100
MoleculeSDE (Liu et al., 2023a)	0.026	0.054	0.257	0.214	0.418	0.151	0.002	0.012	0.013	0.012	0.013	0.028	0.100
MoleBlend (Yu et al., 2024)	0.037	0.060	0.215	0.192	0.348	0.417	0.002	0.012	0.012	0.012	0.012	0.031	0.113
UniCorn (Feng et al., 2024)	0.009	0.036	0.130	0.120	0.249	0.326	0.001	0.004	0.004	0.004	0.005	0.019	0.076
3D Conformation (RDKit)													
SchNet (Schütt et al., 2017)	0.447	0.276	0.082	0.079	0.115	21.58	0.005	0.072	0.072	0.072	0.069	0.111	1.915
3D InfoMax (Stärk et al., 2022)	0.351	0.313	0.073	0.071	0.102	19.16	0.013	0.133	0.134	0.187	0.211	0.165	1.743
MoleculeSDE (Liu et al., 2023a)	0.423	$\underline{0.255}$	0.080	0.076	0.109	20.43	0.004	0.054	0.055	0.055	0.052	0.098	1.808
2D Graph													
1-GNN (Morris et al., 2019)	0.493	0.780	0.087	0.097	0.133	34.10	0.034	63.13	56.60	60.68	52.79	0.270	22.43
1-2-3-GNN (Morris et al., 2019)	0.476	0.270	0.092	0.096	0.131	22.90	0.005	1.162	3.020	1.140	1.276	0.094	2.012
1D SMILES/SELFIES													
MoLFormer-XL (Ross et al., 2022)	0.362	0.333	0.079	0.073	0.103	<u>17.06</u>	0.008	0.192	0.245	0.206	0.244	0.145	<u>1.588</u>
Moleco (ours)	0.331	0.254	0.063	0.069	0.093	14.92	0.007	0.092	0.086	0.092	0.084	0.126	1.351

Table 3: Evaluation results on quantum mechanical property regression tasks (MAE; lower is better). The best and second-best results are in **bold** and <u>underlined</u>. "3D Conformation (RDKit)" denotes the performance of 3D models using the geometry information derived by the RDKit library.

Conclusion

• We propose Moleco, a novel contrastive learning framework that enhances CLM's understanding of molecular structures

Conclusion

 We propose Moleco, a novel contrastive learning framework that enhances CLM's understanding of molecular structures

 We develop a novel scheme to identify and leverage structurally similar molecules based on fingerprint-based structural similarity

Conclusion

 We propose Moleco, a novel contrastive learning framework that enhances CLM's understanding of molecular structures

• We develop a novel scheme to identify and leverage structurally similar molecules based on fingerprint-based structural similarity

 We verify that Moleco establishes new state-of-the-art results across a wide range of molecular property prediction tasks.

Thanks !!!