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Abstract

This paper presents ab approach which ex-
ploits general-purpose aigorithms and re-
sources for domain-specific semantic class
disambiguation, thus facilitating the gen-
eralization of semantic patterns from
word-based to class-based representations.
Through the mapping of the domain-
specific semantic hierarchy onto Word-
Net and the application of general-purpose
word sense disambiguation and semantic
distance metrics, the approach proposes a
portable, wide-coverage method for disam-
biguating semantic clagses. Unlike exist-
ing methods, the approach does not require
annotated corpora. When tested on the
MUC-4 terrorism domaim, the approach
is shown to outperform the most frequent
heuristic substantially and achieve compa-
rable accuracy with buman judges. Tts
performance also compares favourably with
two supervised learning algorithms.

1 Introduction

The semantic classification of words refers to the
abstraction of ambiguous (surface) words to un-
ambiguous concepts. These concepts may be ex-
plicitly expressed in a pre-defined taxomomy of
classes, or implicitly derived through the clustering

of semantically-related words. Semantic classifica-

tion has proved useful in a range of application ar-
eas, such as information extraction (Soderland et al.,
1995), acquisition of domain kmowledge (Mikheev
and Finch, 1995) and improvement of parsing accu-
racy through the specification of selectional restric-
tions (Grishman and Sterling, 1994; Grishman and
Stexling, 1992).

In this paper, we address the problem of semantic
class disambiguation, with 2 view towards zpplying
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it to information extraction. The disambiguation of
the semantic class of words in a particular context
facilitates the generalization of semantic extraction
patterns used in information extraction from word-
based to class-based forms. This abstraction is effec-
tively tapped by CRYSTAL (Sodertand et al , 1995),
one of the first few approaches to the automatic in-
duction of extraction patterns.

Many exsting information extraction systems
(MUC.6, 1996) rely on tedious knowledge engineer-
ing approaches to hard-code semantic classes of
words in & Semantic lexicon, thus hampering the
portability of their systems to different domains.
A notable exception is the approach taken by the
University of Massachusetts. Yts knowledge acquisi-
tion framework, Kenmore, uses a case-based learn-
ing mechanism to learn domain knowledge automat-
jcally (Cardie, 1993). Kenmore, being a supervised
algorithm, relies on an annotated corpus of domain-
specific classes. Grishman et al. (1992) too ventured
towards automatic semantic acquisition for informa-
tion extraction. However, they expressed reserva-
tions regarding the use of WordNet to angment their
semantic hierarchy automatically, citing exxamples of
unintended senses of words resulting in erroneous se-
mantic classification.

To circumvent the annotation bottleneck faced by
Kenmore, our approach eploits general algorithms
and resources for the disambiguation of domain-
specific semantic classes. Unlike Grishman et al.’s
approach, our application of general word sense dis-
ambiguation algorithms and semantic distance met-
rics allows for an effective use of the fine sense gran-
ularity of WordNet. Experiments carried out on the
MUC-4 (1992) terrorism domain saw our approach
outperforming supervised algorithms and matching
human judgements.



Figure 1 : Semantic Class Disambiguation.

2 Our Approach

As opposed to proponents of “domain-specific in-
formation for domain-specific applications”, our ap-
proach ventures towards the application of general-
purpose algorithms and resources to our domain-
specific semantic class disambiguation problem.

Our information source is the extensive seman-
tic hierarchy WordNet {Miller, 1990) which was de-
signed to capture the semantics of geperal nuances
and uses of the English language. Our approach rec-
onciles the domain-specific hierarchy with this vast
network and exploits WordNet to uncover semantic
classes, without the need of an annotated corpus.

Firstly, the domain-specific hierarchy i¢ mapped
onto the semantic network of WordNet, by manu-
ally assigning corresponding WordNet node(s) to the
classes in the domain.specific hierarchy. To disam-
biguate a word, the sentence context of the word
is first streamed through a general word sense dis-
ambiguation module which assigns the appropriate
sense of the word. The word sense disambiguation
module hence effectively pinpoints a particular node
in WordNet that corresponds to the current sense
of the word. Thereafter, this chosen concept node
is piped through a semantic distance module which
determines the semantic distances between this con-
cept node and all the semantic class nodes in the
domain-specific hierarchy. If the distance between
the concept node and a semantic ¢lass node is be-
low some threshold, the semantic dass node becomes
a candidate class node. The nearest candidate class
node is then chosen as the semantic class of the word.
H no such candidates exist, the word does not belong
to any of the semantic classes in the hierarchy, and
is usually labelled as the “entity” class. The flow of
our approach is fllustrated in Figure 1.

A walkthrousgh of the approach with a simple ex-
ample will better illustrate it. Consider a domain-
specific hierarchy with just 3 classes :- VEHICLE,
AIJRCRAFT and CAR, as shown in Figure 2(2).

Mapping this domain-specific hierarchy to Word-
Net simply involves finding the specific sense(s) of
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Figure 2 : (a) A simple domain-specific hier-
archy (b) The classes of the domain-specific
hierarchy as mapped onto WordNet, together
with the word to be disambiguated, “plane”.

the classes. In this case, all three classes correspond
to their first sense in WordNet.

Then, given a2 sentence, say, “The plane will be
taking off in 5 minutes time.”, to disambiguate the
semantic class of the word “plane”, the sentence is
fed to the word sense disambiguation module, The
module will determine the sense of this word. In
this example, the correct sense of “plane” is sense 1,
i.e. the sense of an aeroplane. Having identified the
particular concept node in WordNet that “plane”
corresponds to, the distances between this concept
node and the three semantic class nodes are then cal-
culated by the semantic distance module. Based on
WordNet, the module will conclude that the concept
node “plane:1” is nearer to the semantic class node
“aircraft:1” and should hence be classified as AIR-
CRAFT. Figure 2(b) shows the relative positions of
the concept node “plane:1” and the three semantic
class nodes in WordNet.

2.1 'Word Sense Disambiguation

Word sense disambiguation is an active research area
in natural language processing, with a great number
of novel methods proposed. Methods can typically
be delineated along two dimensions, corpus-based
vs. dictionary-based approaches.

Corpus-based word sense disambiguation algo-
rithms such as (Ng and Lee, 1996; Bruce and Wiebe,
1994; Yarowsky, 1994} relied on supervised learn-
ing from amnotated corpora- The main drawback

_ of these approaches is their requirement of a sizable

sense-tagged corpus. Attempts to alleviate this tag-
ging bottleneck include bootstrapping (Teo at al.,
1996; Hearst, 1991) and unsupervised algorithms
{Yarowsky, 1995).

Dictionary-based approaches rely on linguistic
knowledge sources such as machine-readable dictio-
naries (Luk, 1995; Veronis and Ide, 1990) and Word-
Net {Agirre and Rigau, 1996; Resnik, 1995) and ex-
ploit these for word sense disambiguation.



Thus far, two notable sense-tagged corpora, the
semantic concordance of WordNet 1.5 (Miller et al.
, 1994) and the DSO corpus of 192,800 sense-tagged
occurrences of 191 words used by (Ng and Lee, 1996)
are still insufficient in scale for supervised algorithms
to perform well on a wide range of texts.

Unsupervised algorithms such as (Yarowsky,
1995) have reported good accuracy that rivals that
of supervised algorithms. However, the algorithm
was only tested on coarse-level senses and not on
the refined sense distinctions of WordNet, which is
the reguired sense granularity of our approach.

‘We hence turn to dictionary-based approaches, fo-
cusing on WordNet-bagsed algorithms since they fit
in snugly with our WordNet-based semantic class
disambignation task.

Information Content

Resnik {1995) proposed a word sense disambigua-
tion algorithm which determines the senses of words
in noun groupings. The sense of a word is disam-
biguated by choosing the sense which is most highly
supported by the other nouns of the noun group.
The extent of support depends on the information
content of the subsumers of the nouns in WordNet,
whereby information content is defined as negative
log Likelihood —Iogp(c), and p(c) is the probability
of encountering an instance of concept c.

As mentioned in his paper, although his approach
was only reported on the disambiguation of words in
related noun groupings, it can potentially be applied
to word sense disambiguation of nouns in running
text.

In our implementation of his approach, we applied
the method to general word sense disarbiguation.
We used the surrounding nouns of a word in free
running text as the “noun grouping” and followed
his algorithm without modifications?.

Conceptual Density

Agirre and Rigau’s (1996) approach has a similar
motivation as Resnik’s. Both approaches hinge on
the belief that surrounding nouns® provide strong
clues 23 to the sense of a word.

The main difference lies in how they determine the
extent of suppoert offered by the surrounding nouns.
Agirre and Rigau uses the conceptual density of the
ancestars of the nouns in WordNet as their metric.

Onr implementation follows the psendo-code pre-

IThe pseudo-code of his algorithm is detailed in
(Rsnik 1995).
2Surrounding nouns in the original Resnik’s approach
refers to the other nouns in the noun grouping.
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sented in (Agirre and Rigsu, 1996)%. For words
which the algorithm fafled to disambiguate (when
no senses or more than one sense is returned), we
relied on the most frequent heuristic.

2.2 Semantic Distance

The task of the semantic distance module is to re-
flect accurately the motion of “closeness” between
the chosen concept node of the word and the seman-
tic class nodes. It thus requires a metric which can
effectively represent the semantic distance between
two nodes in a taxonomy such as WordNet.

Conceptual Distance

Rada et. al (1989) proposed such a metric termed
as conceptual distance. Conceptual distance be-
tween two nodes is defined as the minimum num-
ber of edges separating the two nodes. Take the
example in Figure 2(b), the conceptual distance be-
tween “plane:1” and “aircraft:1” is 1, that between
“plane:1” and “vehicle:1” is 2, and that between
“plane:1" and “car:1" is 4%.

Eink Probability

The link probability metric is our variant of the
conceptual distance metric. Instead of considering
2ll edges as equi-distance, the probability of the link
{or edge) is used to bias its distance. This metric is
motivated by Resnik’s use of the probability of in-
stance occwrrences of concepts, p(c) {Resnik, 1995).
Link probability is defined as the difference between
the probability of instance occurrences of the parent
and child of the link. Formally,

LinkPria,b) = p(a}—p(d),

3We clarified with the authors certain parts of the
algorithm which we find unclear. These are the points
worth noting :-

(1) eompute_conceptual density of Step 2 only computes
the conceptual density of concepts which are not marked
invalid;

{2) exitloop of Step 3 occurs when all senses subsumed by
concept were already previously disambiguated or when
one or more senses of the word to bedimmbiguatedare
sebsumed by concept;

{3) mark-disombigusted.senses of Step 4 marks senses
subsumed by concept as disambiguated, marks concept
and its children as invalid, and discards other senses of
the words with sense(s) disarnbiguated by conceph

{(4) disambiguated senses of words which form the con-
text are not brought forward to the next window.

%In WordNet, there are 25 unique beginners of the
taxonomy, instead of a common root. Hence, in our im-
plementation, we assign a large conceptual distance of
999 to the virtual edges between two unique beginners.
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The intuition behind this metric is that the dis-
tance between the parent and the child should be
“closer” if the probability of the parent is close to
that of the child, since that implies that whenever
an instance of the parent occurs in the corpus, it is
usually an instance of the child.

Descendant Coverage

In the same spirit, the descendant coverage met-
ric attempts to tweak the constant edge distance
assumption of the conceptual distance metric. In-
stead of relying on corpus statistics, static informa-
tion from WordNet is exploited. Descendant cov-
erage of a link is defined as the difference in the
percentage of descendants subsumed by the parent
and that subsumed by the child -

DescCovia,b) = dl{a)—d(d),
Number of descendantsof ¢
here di =
i e) Total number of deacendants in WordNee'
& = gparenicfiheiink,
b =  childof the link-

The same intuition underlies this metric; that the
distance between the parent and the child should be
“nearer” if the percentage of descendants subsumed
by the parent is close to that of the child, since it
indicates that most descendants of the parent are
also descendants of the child.

Taxonomic Link (IS-A)

All the metrics detailed above were desizned to
capture semantic similarity or closeness. The seman-
tic class disambiguation problem, however, is essen-
tially to identify membership of the chosen concept
node in the semantic class nodes.

A simple implementation of the semantic distance
module can thus be just a traversal of the taxonomic
links (IS-A) of WordNet. If the chosen concept node
i5 a descendant of a semantic class node, it should
be classified as that semantic class.

3 Ewvaluation

The domain we worked on is the MUC—4 (1992) ter-
rorism domain. Nouns are extracted from the first 18
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passages {dev-mmuc4-0001 to dev-mouc4-0018) of the
corpus of news wire articles to form our test corpus.
The nouns extracted are the head nouns within poun
phrases which are recognised by WordNet, including
proper nounsg such as “United States”. These 1023
rpouns are hand-tagged with their sense and seman-
tic class in the particular context to form the answer
keys for subsequent experiments.

3.1 Mapping domain-specific hierarchy
anto WordNet

The domain-specific hierarchy used in ocur work is
that crafted by researchers from the University of
Massachusetts for their information extraction sys-
tem, which was one of the participants at MUC-4
(Riloff, 1994).

Mapping from the domain-specific hierarchy to
WordNet typically requires only the assignment of
senses to the classes. For instance, the semantic
class “human” is mapped onto its sense 1 node in
WordNet, the “human:1” concept node. Classes can
also be mapped onto more than one concept node in
WordNet. The semantic class “attack”, for example,
is mapped onto both senses 1 and 5.

There are cases where the exact wording of a se-
mantic class in the domain-specific bierarchy is not
present in WordNet. Take for instance the seman-
tic class “government.official” in the domain-specific
hierarchy. Since the collocation is not in Word-
Net, we mapped it to the concept node “govern-
ment.agent:1” which we felt is closest in meaning.

The set of mapped semantic classes in WordNet
is shown in Figure 3°.

3.2 'Word Sense Disambiguation

‘We ran our two implementations of word sense dis-
ambiguation algorithms, the information content al-
gorithm and the conceptual density method, on our
domain-specific test set. For the information content
algorithim, a window size of 10, i.e. 5 nouns to the
left and right, was found to yield the best results;
whilst for the conceptual density algorithm, the op-
timum window size was found to be 30. For both
algorithms, only the nouns of the same passage are
incorporated into the context window. If the noun
to be disambiguated is the first noun of the passage,
the window will include the subsequent N nouns of
the same passage.

The probability statistics required for Resnil’s
information eontent algorithm were coliectéd over

5As this hierarchy is adopted, and not created by us,
occasionally, we can only furnish guesses as to the exact
meaning of the semantic classes.
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Figure 3 : MUC-4 semantic class hierarchy as mapped onto WordNet.

777,857 noun cccurrences of the entire Brown cor-
pus and Wall Street Journal corpus.

The results are shown in Table 1. The most fre-
quent baseline is obtained by following the strategy
of always picking sense 1 of WordNet, since Word-
Net orders its senses such that sense 1 is the most
likely sense.

As both algorithms performed below the most fre-
quent baseline, it prompted us to evaluate the in-
dicativeness of surrounding mouns for word sense
disambiguation. We hence provided 2 human judges
with a randomly selected sample of 80 examples from
the 734 polysemic nouns of our test corpus of 1023
examples. The human judges are provided with the
10 nouns surrounding the word to be disambiguated.
Based only on these clues, they have to select a sin-
gle sense of the word in the particular sentence con-
text. Their responses are then tallied with the sepse-
tagged test corpus.

Table 2 shows the accuracies attained by the hu-
man judges. Both judges are able to perform sub-
stantially better than the most frequent heuristic
baseline, despite the seemingly impoverished knowl-
edge source. Feedback from the judges reveal possi-
ble leverage for future improvements. Firstly, judges
reflect that frequently, just one indicative surround-
ing noun is enough to provide clear evidence for
sense disambiguation. The other nouns will just be
glossed over and do not contribute to the decision.
Also, indicative nouns may not just hold is-a rela-
tionships, which are the only relationships exploited
by both algorithms. Rather, they are simply related
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in some manner to the noun to be disambiguated.
For instance, a surrounding context including the
word “church” will indicate a strong support for the
“pastor” sense of “minister” as opposed to its other
senses. These reflections of the human judges seem
to point towards the need for an effective method
for selecting only particular nouns in the surround-
ing context as evidence. Use of other relationships
besides is-a may also help in disambizuation, as is
already expounded by (Sussna, 1993).

3.3 Semantic Distance Metrics

To evaluate the semantic distance metrics, we feed
the semantic distance module with the correct senses
of the entire test corpus and observe the resultant
semantic class disambiguation accuracy.

The conceptual distance, link probability and de-
scendant coverage metrics all require traversal of
links from one node to another. However, all of the
metrics are commutative, i.e. distance from concept
a2 to b is the same as that from b t0 2. In sernan-
tic class disambiguation, a distinction is necessary
since the taxonomic links indicate membership re-
lationships which are not commutative (“aircraft:1”
is a “vehicle:1” but “vehicle:1” need not be an “air-
craft:1*). 'We hence associate different weights to
the upwards and downwards traversal of links, with
the 25 unique beginners of WordNet being the top-
most nodes. Upward traversal of links towards the
unique beginners are weighted consistently at 0.3
whilst downward traversal of imks towards the leaves



#Examples | #Disambiguated | #Correct | Accuracy
Information content {polysemic) __T34 734 202 39.78 %
Conceptual density (polysemic) 734 275 68 24.73 %
Conceptual density +
Most frequent heuristic (polysemic) T34 744 385 5245 %
Most frequent heuristic (polysemic) 734 734 464 5822 %

[ Information contenf (overalll | 1028 | 1029 581 56.79 %
Conceptual density (overall) 1023 564 357 63.30 % |
Conceptual density +
Most frequent henristic (overall) 1023 1023 674 65.88 %
Most frequent heunstic (overall) 1023 1023 753 “73.61 Yo |

Table 1: Word sense disambiguation results.

F#Examples | #Correct | Accuracy
Human A §0 ki 71.25
Human B 80 59 7313 %
Most frequent heuristic £0 45 26.

Table 2: Word sense disambiguation using surrounding nouns.

are weighted at 1.75.

Also, different thresholds are used for different lev-
els of the domain-specific hierarchy. Since higher
level classes, such as the level 0 “human™ class,
encompasses a2 wider range of words, it is evident
that the thresholds for higher level classes-canmot
be stricter than that of lower level classes. For fair
comparison of each metric, the best thresholds are
arrived through exhaustive searching of a reasonable
space’. The results are detailed in Table 3.

Accuracy on specific semantic classes refers to an
exact match of the program’s response with the cor-
pus answer. The general semantic class disambigua-
tion accuracy, on the other hand, considers a re-
sponge correct as long as the response class is in the
sub-hierarchy which originated from the same level
0 class as the answer. For example, if the program’s
respopse is class “politician”, whilst the answer is
class “lawyer”, since both classes originated from the
same level 0 class “human”, this response is consid-
ered correct when calculating the general semantic
class accuracy. The specific semantic class disam-
biguation accuracy is hence the stricter measure.

It may seem puzzling that semantic class disaro-
bigustion does not achieve 100% accuracy even when
supplied with the correct senses, i.e. even when the
word sense disambiguation module is able to attain
100% accuracy, the overall semantic class disam-
biguation accuracy still lags behind the ideal. Since

SThese weights are found to be optimum for all three
metrics.

"Integral thresholds are searched for the
distance metric, whilst the thresholds of the other met-
rics are searched in steps of 0.01.
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the taxonomic linls in WordNet are designed to cap-
ture. membership of words in classes, it may seem
odd that the correct identification of the word sense
coupled with the I5-A taxonomic links still do not
guarantee correct semantic class disambiguation.

The reason for this paradox is perceptive differ-
ences; that between the desigmers of the MUC-4
domain-specific hiexarchy we adopted and the Word-
Net hierarchy, and that between the annotator of the
answer corpus and the WordNet designers.

Take for example the monosemic word “kidnap-
ping”. Its correct semantic class is “attack:5%”.
However, it is not a descendant of “attack:5” in
WordNet. The hypernyms of “kidnapping® are [cap-
ture — felony — crime — evil-doing — wrong-doing
— activity — act] and that of “attack:5” are [battery
— crime - evil-doing — wrong-doing = activity —
act]. Both perceptions of “lddnapping” are correct.
“kidnapping” can be viewed as a form of “attack:5”
and similarly, it can be viewed as a form of “cap-
ture”,

An effective semantic distance metric is hence
needed here. The semantic distance module should
infer the close distance between the two concept
nodes “kidnapping” and “attack:5" and thus cor-

rectly classify “kidnapping”.
3.4 Semantic Class Disambiguation

After evaluation of the separate phases, we com-
bined the best algorithms of the two phases and
evaluated the performance of our sernantic class dis-
ambiguation approach. Hence, the most frequent

Buattack:5" refers to an assault on someone whilst
“attack:1* refers to the beginning of an offensive.



'Sﬁ - olds”
pecthc General {lasses

Conceptual Distance 81.52 Yo 87.10 % {3.2,2,1)

Link Probabihity 50.16 % 85.24 Yo (0.1,0.01,0.01,0.01
Descendant Coverage T7.81 Y 83.57 % 10.02,0.01,0.01,0.01)
Taxonoemic 79.67 % %5.14 %% Not apphcable

Table 3: Effect of different semantic distance metrics on semantic class disambignation.

(Assuming perfect word sense disambiguation)

*Format :- (ti0, $11, tr2, f13), Where &;; is the threshold that is applied to the ith level of the hierarchy.

sense heuristic is used for the word sense disambigua-
tion module and the conceptual distance metric is
adopted for the semantic distance module..

It should be emphasized, however, that our ap-
proach to semantic class disambiguation need not be
coupled with any specific word sense disambiguation
algorithm. The most frequent WordNet sense is cho-
sen simply because current word sense disambigua-
tion algorithms still cannot beat the most frequent
baseline consistently for all words. QOur approach,
in effect, allows domain-specific semantic class dis-
ambiguation to latch onto the improvements in the
active research area of word sense disambiguation.

As a baseline, we again sought the most frequent
heuristic, which is the occurrence probability of the
most frequent semantic class “entity”.’

‘We compared our approach with supervised meth-
ods to contrast their reliance on annotated corpora
with our reliance on WordNet. One of the fore-
most semantic class disambiguation system which
employs machine learning is the Kenmore framework
(Cardie, 1993). However, as we are unable to report
comparative tests with Kenmore!?, we adapted two
other supervised algorithms, both successfully ap-
plied to general word sense disambiguation, to the
task of semantic class disambiguation.

The first is the LEXAS algorithm which uses an
exemplar-based learning framework similar to the
case-based reasoning foundation of Kenmore (Ng,
1897; Ng and Lee, 1996). LexaS was shown to
achieve high acturacy as compared to other word
sense disambiguation algorithms.

We also applied Teo et al’s Bayesian word sense
disambiguation algorithm to the task (Teo et al.,
1996). The approach compares favourably with
other methods in word sense disambiguation when
tested on a common data set of the word “interest™.

9This baseline is also used to evaluate the perfor-
mance of Kenmore (Cardie, 1993).

1845 work on ome of the important input sources, the
conceptual parser, is underway, performance results of
Kenmore on semantic class disambiguation cannot yet
be reported.
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The features used for both supervised algorithms
are the local collocations of the surrounding 4
words!!. Local collocation was shown to be the most
indicative knowledge source for LEXAS and these
7 features are the common features used in both
LExAS and Teo et al’s Bayesian algerithm. Both
algorithms are used for learning the specific seman-
tic class of words.

For both algorithms, the 1023-sentence test set is
randomly partitioned into a 90% training set and
a 10% testing set, in proportion with the overall
class distribution. The algorithms are trained on
the training set and then used to disambiguate the
distinet testing set. This was averaged over 10 nums.
As with Kenmore, the training set contains features
of all the words in the training sentences, and the
algorithms are to pick one semantic class for each
word in the testing set. A word in the testing set
need not have occurred in the training set. This
is unlike word sense disambiguation, whereby the
training set contains features of one word, and the
algorithm picks one sense for each occurence of this
word in the testing set.

To obtain a gauge of human performance on this
task, we sourced two independent human judge-
ments. Two human judges are presented with a set
of 8¢ sentences randomiy selected from the 1023-
example test corpus, each with a noun to be disam-
biguated. Based on their understanding of the sen-
tence, each noun is assigned a specific semantic class
of the domain-specific hierarchy. Their responses are
then compared against the tagged answers of the test
COrpus.

The semantic class disambiguation results are
compiled and tabulated in Table 4. The definitions
of general and specific serantic class disambiguation
accuracy are detailed in Section 3.3.

As is evident, our approach outperforms the most
frequent heuristic substantially. Also, the perfor-

1 Given a word w in the following sentence segment :-
{2 I: W r1 72, the 7 features used ave io.d1, hrq, M1-72, I3,
l1, 1 and r2, whereby the first 3 features are concatena-
tions of the words.



Disambiguation Accgracy
Speum#‘u;; General Classes
Our Approach (1023 examples) 78.90 % 80.16 %
Most frequent heuristic (1023 examples) 4692 % 46.92 %
[ Supervised (LEXAS) __________J _ 57.30% | _ 57.30 %
[ Supervised (Bayes) 57.18 % 58.88 %
Approach (80 examples) 71.15 % 75.00 %
Human C (80 examples) 77.90 % 82.50 %
Human D (80 examples) 70.00 % 75.00 %
Most frequent heuristic (B0 examples) 51.25 % 51.20 %

Table 4: Semantic class disambiguation resalts.

mance of both supervised algorithms lag behind that
of our approach. Comparable performance with the
two human judges is also achieved.

It should be noted, though, that the amount of
training data available to the supervised algorithms
may not be sufficient. Ng and Lee (1996) found that
training sets of 1000-1500 examples per word are
necessary for sense disambiguation of one highly am-
biguous word. The amount of training data needed
for a supervised learnjng algorithm to achieve good
performance on semantic class disambiguation may
be larger than what we have used. Cardie (1993),
for instance, used a larger 2056-instance case base in
the evaluation of Kenmore.

4 Conclusion

‘We have presented a portable, wide-coverage ap-
proach to domain-specific semantic class disam-
biguation which performs comparably with human
judges. Our approach harnesses WordNet effectively
to outperform supervised methods which rely on an-
notated corpora. Unlike existing methods which re-
quire hand-crafting of lexicon or manual annotation,
the only human effort involved in our approach is
the mapping of the domain-specific semantic classes
onto WordNet. Through the use of general word
sense disambiguation algorithms and semantic dis-
tance metrics, our approach correlates the perfor-
mance of sernantic class disambiguation with the im-
provements in these actively researched fields.
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