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Abstract

We address the issue of judging the significance of
rare events asit typically arisesin statistical natural-
language processing. We first define a general ap-
proach to the problem, and we empirically com-
pare results obtained using log-likelihood-ratios and
Fisher's exact test, applied to measuring strength of
bilingual word associations.

1 Introduction

Since it was first introduced to the NLP commu-
nity by Dunning (1993), the G? log-likelihood-ratio
statistic! has been widely used in statistical NLP
as ameasure of strength of association, particularly
lexical associations. Nevertheless, its use remains
controversial on the grounds that it may be unreli-
able when applied to rare events. For instance Ped-
ersen, et a. (1996) present data showing that signifi-
cance values for rare bigrams estimated with G? can
differ substantially from the true values as computed
by Fisher's exact test. Although Dunning argues
that G? is superior to the chi-square statistic X2
for dealing with rare events, Agresti (1990, p. 246)
cites studies showing “ X? isvalid with smaller sam-
ple sizes and more sparse tables than G2,” and either
X2 or G? can be unreliable when expected frequen-
cies of less than 5 are involved, depending on cir-
cumstances.

The problem of rare events invariably arises
whenever we deal with individual words because
of the Zipfian phenomenon that, typicaly, no mat-
ter how large a corpus one has, most of the distinct
wordsin it will occur only asmall number of times.
For example, in 500,000 English sentences sampled
from the Canadian Hansards data supplied for the
bilingual word alignment workshop held at HLT-
NAACL 2003 (Mihalcea and Pedersen, 2003), there
are 52,921 distinct word types, of which 60.5% oc-

1Dunning did not use the name G2, but this appears to be
its preferred name among statisticians (e.g., Agresti, 1990).

2Following Agresti, we use X2 to denote the test statistic
and x? to denote the distribution it approximates.

cur five or fewer times, and 32.8% occur only once.

The G? statistic has been most often used in NLP
as a measure of the strength of association between
words, but when we consider pairs of words, the
sparse data problem becomes even worse. If we
look at the 500,000 French sentences correspond-
ing to the English sentences described above, we
find 19,460,068 English-French word pairs that oc-
cur in aligned sentences more often than would be
expected by chance, given their monolingual fre-
quencies. Of these, 87.9% occur together five or
fewer times, and 62.4% occur together only once.
Moreover, if welook at the expected number of oc-
currences of these word pairs (which is the criteria
used for determining the applicability of the X? or
G? significance tests), we find that 93.2% would be
expected by chance to have fewer than five occur-
rences. Pedersen et al. (1996) report similar propor-
tions for monolingual bigramsinthe ACL/DCI Wall
Street Journal corpus. Any statistical measure that
isunreliable for expected frequencies of lessthan 5
would be totally unusable with such data.

2 How to Estimate Significance for Rare
Events

A wide variety of statistics have been used to mea
sure strength of word association. In one paper
aone (Inkpen and Hirst, 2002), pointwise mutual
information, the Dice coefficient, X2, G2, and
Fisher's exact test statistic were all computed and
combined to aid in learning collocations. Despite
the fact that many of these statistics arise from
significance testing, the usual practice in applying
them in NLP is to choose a threshold heuristically
for the value of the statistic being used and discard
al the pairs below the threshold. Indeed, Inkpen
and Hirst say (p. 70) “there is no principled way of
choosing these thresholds.”

This may seem an odd statement about the mea-
sures that arise directly from significance testing,
but it isclear that if standard statistical tests are used
naively, the results make no sense in these applica
tions. One might suppose that thisis merely the re-



sult of the statistics in question not being applicable
to the rare events that predominate in NLP, but it is
easy to show thisis not so.

2.1 When is Something Seen Only Once
Signficant?

Consider the case of two words that each occur only
once in a corpus, but happen to co-occur. Con-
ventiona wisdom strongly advises suspicion of any
event that occurs only once, yet it is easy to see that
applying standard statistical methods to this case
will tend to suggest that it is highly significant, with-
out using any questionable approximations at all.

The question that significance tests for associa-
tion, such as X2, G2, and Fisher's exact test, are
designed to answer is, given the sample size and
the marginal frequencies of the two items in ques-
tion, what isthe probability (or p-value) of seeing by
chance as many or more joint occurrences as were
observed? In the case of ajoint occurrence of two
words that each occur only once, thisistrivial to cal-
culate. For instance, suppose an English word and a
French word each occur only once in our corpus of
500,000 aligned sentence pairs of Hansard data, but
they happen to occur together. What is the proba-
bility that this joint occurrence happened by chance
alone? We can suppose that the English word oc-
curs in an arbitrary sentence pair. The probability
that the French word, purely by chance, would oc-
cur in the same sentence pair is clearly 1in 500,000
or 0.000002. Since it is impossible to have more
than one joint occurrence of two words that each
have only asingle occurrence, 0.000002 is the exact
p-value for the question we have asked.

Clearly, however, one cannot assume that the as-
sociation of these two words is 0.999998 certain on
this basis alone. The problem is that there are so
many possible singleton-singleton pairs, it is very
likely that some of them will occur jointly, purely
by chance. This, too, is easy to calculate. In our
500,000 sentence pairs there are 17,379 English
singletons and 22,512 French singletons; so there
are 391,236,048 possible singleton-singleton pairs.
For each pair, the probability of having ajoint oc-
currence by chance is 0.000002, so the expected
number of chance joint occurrences of singleton-
singleton pairs is 391, 236, 048 x 0.000002, or ap-
proximately 782.5.

The question of whether a singleton-singleton
pair is signficant or not then turns on how many
singleton-singleton pairs we observe. If we see only
about 800, then they are not signficant, because that
isjust about the number we would expect to see by
chance. In our corpus, however, we see far more

than that: 19,312. Thus our best estimate of the
proportion of the singleton-singleton pairs that are
due to chance is 782.5/19312 = 0.0405, which we
can think of asthe " expected noise” in the singleton-
singleton pairs. Looked at another way, we can es-
timate that at least 95.9% of the observed singleton-
singleton pairs are not due to chance, which we can
think of as “expected precision” 3 So, we conclude
that, for this data, seeing two singletons together is
significant at the 0.05 level, but thisis more than five
orders of magnitude less significant than naive use
of standard p-values would suggest.

2.2 Generalizing the Method

In the previous section, we used the p-value for
the observed joint frequency given the margina fre-
quencies and sample size as a our base statistical
measure. We used this in an indirect way, however,
that we could apply to any other measure of asso-
ciation. For example, for ajoint occurrence of two
singletons in 500,000 samples, G? is approximately
28.24. Therefore, if we wanted to use G? as our
measure of association, we could compare the num-
ber of word pairs expected by chance to have a G?
score greater than or equal to 28.24 with the number
of word pairs observed to have a G? score greater
than or equal to 28.24, and compute expected noise
and precision just as we did with p-values. In prin-
ciple, we can do the same for any measure of as-
sociation. The worst that can happen is that if the
measure of association is not a good one (i.e., if
it assigns values randomly), the expected precision
will not be very good no matter how high we set the
threshold.

This means that we can, if we wish, use two dif-
ferent statistics to estimate expected noise and pre-
cision, one as a measure of association and one
to estimate the number of word pairs expected by
chance to have a given level or higher of the asso-
ciation measure. In our experiments, we will use a
likelihood-ratio-based score as the measure of asso-
ciation, and contrast the results obtained using ei-
ther a likelihood-ratio-based test or Fisher's exact
test to estimate expectations.

Computing the expected number of pairs with a
given association score or higher, for alarge collec-

3Using the binomial distribution we can calculate that there
isa0.99 probability that there are no more than 848 singleton-
singleton pairs by chance, and hence that there is a 0.99 prob-
ability that at least 95.6% of the observed singleton-singleton
pairs are not due to chance. Sincethis differshardly at al from
the expected precision, and there is ho a priori reason to think
overestimating precision is any worse than underestimating it,
we will use expected values of noise and precision as our pri-
mary metricsin the rest of the paper.



for each observed C'(z) {
for each observed C'(y) {
possible_pairs =
|values of x with frequency C(z)| x
|values of y with frequency C'(y)| ;
Colz,y) = nt(C(2)C(y)/N) + 1;
1=1;
loop: for each C'(z,y) such that
Co(z,y) < C(x,y) < min(C(x),
score = assoc(C/(, ), C(x), C(y), N
if (score > threshold[i]) {
prob = p-valug(C'(z,y), C(x), C(y), N) ;
expected_pairs = prob x possible pairs;
while (score > threshold[i]) {
expected_count[i| += expected_pairs;
if (¢ < number of thresholds) {
i++;
}
else{
exit loop;

()){

Figure 1: Algorithm for Expected Counts.

tion of word pairs having a wide range of marginal
frequencies, turns out to be somewhat tricky. We
must first compute the p-value for an association
score and then multiply the p-vaue by the appro-
priate number of word pairs. But if the association
score itself does not correlate exactly with p-value,
the relationship between association score and p-
value will vary with each combination of marginal
frequencies* Furthermore, even for a single com-
bination of marginal frequencies, thereisin genera
no way to go directly from an association score to
the corresponding p-value. Finaly, until we have
computed all the expected frequencies and observed
frequencies of interest, we don't know which as-
sociation score is going to correspond to a desired
level of expected precision.

These complications can be accomodated as fol-
lows. First compute the distinct marginal frequen-
cies of the words that occur in the corpus (sepa-

“We assume that for fixed marginals and sample size, and
joint frequencies higher than the expected joint frequency, the
association score will increase monotonically with the joint fre-
quency. It is hard to see how any function without this prop-
erty could be considered a measure of association (unless it
decreases monotonically as joint frequency increases).

rately for English and French), and how many dis-
tinct words there are for each margina frequency.
Next, choose a set of association score thresholds
that we would like to know the expected precisions
for.

Accumulate the expected pair counts for each
threshold by iterating through al possible combi-
nations of observed marginals. For each combina-
tion, compute the association score for each possi-
ble joint count (given the marginals and the sam-
ple size), starting from the smallest one greater than
the expected joint count C'(z)C(y)/N (where C(x)
and C(y) are the marginals and N is the sample
size). Whenever the first association score greater
than or equal to one of the thresholds is encountered,
compute the associated p-value, multiply it by the
number of possible word pairs corresponding to the
combination of marginals (to obtain the expected
number of word pairs with the given marginals hav-
ing that association score or higher), and add the
result to the accumluators for al the thresholds that
have just been passed. Stop incrementing the pos-
sible joint frequency when either the smaller of the
two marginals is reached or the highest association
threshold is passed. (See Figure 1 for the details.)

At this point, we have computed the number of
word pairs that would be expected by chance alone
to have an association score equal to or greater than
each of our thresholds. Next we compute the num-
ber of word pairs observed to have an association
score equal to or greater than each of the thresh-
olds. The expected noise for each threshold is just
the ratio of the expected number of word pairs for
the threshold to the observed number of word pairs
for the threshold, and the expected precision is1 mi-
nus the expected noise.

What hidden assumptions have we made that
could call these estimates into question? First, there
might not be enough data for the estimates of ex-
pected and observed frequencies to be reliable. This
should seldom be a problem in statistical NLP. For
our 500,000 sentence pair corpus, the cumulative
number of observed word pairs is in the tens of
thousands for for any association score for which
the estimated noise level approaches or exceeds 1%,
which yields confidence bounds that should be more
than adequate for most purposes (see footnote 3).

A more subtle issue is that our method may over-
estimate the expected pair counts, resulting in ex-
cessively conservative estimates of precision. Our
estimate of the number of pairs seen by chancefor a
particular value of the association measure is based
on considering all possible pairs as honassociated,
which is a valid approximation only if the number
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Figure 2: Alternative Formulas for G2.

of pairs having a significant positive or negative as-
sociation isvery small compared to the total number
of possible pairs.

For the corpus used in this paper, this seems un-
likely to be a problem. The corpus contains 52,921
distinct English words and 66,406 distinct French
words, for a total of 3,514,271,926 possible word
pairs. Of these only 19,460,068 have more than the
expected number of joint occurrences. Since most
word pairs have no joint occurrences and far less
than 1 expected occurrence, it is difficult to get a
handle on how many of these unseen pairs might be
negatively associated. Since we are measuring asso-
ciation on the sentence level, however, it seems rea-
sonable to expect fewer word pairs to have a signifi-
cant negative association than a positive association,
so 40,000,000 seems likely to be a upper bound on
how many word pairs are significantly nonindepen-
dent. This, however, is only about 1% of the total
number of possible word pairs, so adjusting for the
pairs that might be significantly related would not
make an appreciable difference in our estimates of
expected noise. In applications where the signifi-
cantly nonindependent pairs do make up a substan-
tial proportion of the total possible pairs, an adjust-
ment should be made to avoid overly conservative
estimates of precision.

3 Understanding G?

Dunning (1993) gives the formula for the statistic
we are caling G? in a form that is very compact,
but not necessarily the most illuminating:

2[log L(p1, k1,n1) + log L(p2, k2, n2) —
IOgL(p, klynl) - IOgL(p, k27n2)]a

where

The interpretation of the statistic becomes clearer
if were-express it in terms of frequencies and prob-
abilities as they naturally arise in association prob-
lems, as shown in a number of alternative formu-
lations in Figure 2. In these formulas, = and y
represent two words for which we wish to esti-
mate the strength of association. C'(y) and C(—y)
are the observed frequencies of y occurring or not
occurring in the corpus;, C(z,y),...,C(-xz,—y)
are the joint frequencies of the different possible
combinations of x and y occuring and not occur-
ing; and p(y), p(—y), p(y|), ..., p(-y|-z) are the
maximum likelihood estimates of the corresponding
marginal and conditional probabilities.

Formula 1 expresses G2 as twice the logarithm
of aratio of two estimates of the probability of a
sequence of observations of whether y occurs; one
estimate being conditioned on whether x occurs,
and the other not. The estimate in the numerator
is conditioned on whether = occurs, so the numera-
tor is a product of four factors, one for each possi-
ble combination of x occuring and y occuring. The
overall probability of the sequence is the product
of each conditional probahility of the occurrence or
nonoccurrence of y conditioned on the occurrence
or nonoccurrence of z, to the power of the number
of times the corresponding combination occurs in
the sequence of observations. The denominator is
an estimate of the probability of the same sequence,
based only on the marginal probability of y. Hence
the denominator is simply the product of the prob-
abilty of y occuring, to the power of the number of
times y occurs, and the probabilty of y not occur-



ing, to the power of the number of times y failsto
occur.®

Therest of Figure 2 consists of a sequence of mi-
nor algebraic transformations that yield other equiv-
adent formulas. In Formula 2, we simply factor
the denominator into four factors corresponding to
the same combinations of occurrence and nonoc-
currence of z and y as in the numerator. Then,
by introducing 7 and y? as variables ranging over
the events of x and y occurring or not occurring,
we can re-express the ratio as a doubly nested
product as shown in Formula 3. By distributing
the log operation over al the products and expo-
nentiations, we come to Formula 4. Noting that
C(x?,y?) = N - p(x?,y?) (where N is the sam-
plesize), and p(y?|z?)/p(y?) timesp(x?)/p(x?) is
p(x?,y?)/p(x?)p(y?), wearrive at Formula5. This
can beimmediately recognized as 2N timesthe for-
mula for the (average) mutual information of two
random variables® using the maximum likelihood
estimates for the probabilities involved.

The near equivalence of G? and mutual informa-
tion is important for at least two reasons. Firdt, it
gives us motivation for using G? as a measure of
word association that is independent of whether it
usable for determining significance. Mutua infor-
mation can be viewed as a measure of the informa-
tion gained about whether one word will occur by
knowing whether the other word occurs. A priori,
thisis at least as plausible a measure of strength of
association as is the degree to which we should be
surprised by the joint frequency of the two words.
Thus even if G? turns out to be bad for estimating
significance, it does not follow that it is therefore a
bad measure of strength of association.

The second benefit of understanding the relation
between G2 and mutual information is that it an-

The interpretation of G2 in terms of a likelihood ratio for
a particular sequence of observations omits the binomial co-
efficients that complicate the usual derivation in terms of all
possible sequences having the observed joint and marginal fre-
quencies. Since all such sequences have the same probability
for any given probability distributions, and the same number
of possible sequences are involved in both the numerator and
denominator, the binomial coefficients cancel out, yielding the
same likelihood ratio as for a single sequence.

5After discovering this derivation, we learned that it
is, in fact, an old result (Attneave, 1959), but it seems
to be amost unknown in statisticd NLP. The only ref-
erence to it we have been able to find in the statisti-
cal NLP “literature” is a comment in Pederson’s publically
distributed Perl module for computing mutual information
(http://search.cpan.org/src/TPEDERSE/Text-NSP-0.69/ Mea-
sures/tmi.pm). It can also be seen as a specia case of a more
general result presented by Cover and Thomas (1991, p. 307,
12.187-12.192), but otherwise we have not found it in any con-
temporary textbook.

swers the question of how to compare G? scores as
measures of strength of association, when they are
obtained from corpora of different sizes. Formula s
makes it clear that G2 scores will increase linearly
with the size of the corpus, assuming the relevant
marginal and conditional probabilities remain the
same. The mutual information score is independent
of corpus size under the same conditions, and thus
offers a plausible measure to be used across corpora
of varying sizes.

4 Computing Fisher’s Exact Test

In Section 2 we developed a general method of es-
timating significance for virtually any measure of
association, given a way to estimate the expected
number of pairs of items having a specified degree
of association or better, conditioned on the marginal
frequencies of the items composing the pair and
the sample size. We noted that for some plausible
measures of association, the association metric it-
self can be used to estimate the p-values needed to
compute the expected counts. G? is one such mea-
sure, but it is questionable whether it is usable for
computing p-values on the kind of data typical of
NLP applications. We will attempt to answer this
question empirically, at least with respect to hilin-
gual word association, by comparing p-values and
expected noise estimates derived from G? to those
derived from a gold standard, Fisher's exact test.

In this test, the hypergeometric probability distri-
bution is used to compute what the exact probability
of aparticular joint frequency would beif there were
Nno association between the eventsin question, given
the marginal frequencies and the sample size. The
only assumption made is that all trials are indepen-
dent. The formula for this probability in our setting
is:

Cz)! C(—x)! C(y)! C(—y)!
N!'C(z,y)! C(—zx,y)! C(z,—y)! C(—z,~y)!

The p-value for a given joint frequency is ob-
tained by summing the hypergeometric probability
for that joint frequency and every more extreme
joint frequency consistent with the margina fre-
quencies. In our case “more extreme” means larger,
since we are only interested in positive degrees of
association.” Because it involves computing fac-
torials of potentially large numbers and summing
over many possible joint frequencies, this test has
traditionally been considered feasible only for rela-
tively small sample sizes. However, a number op-

"The null hypothesis that we wish to disprove is that a
pair of words is either negatively associated or not associated;
hence, aone-sided test is appropriate.



timizations enable efficient estimation of p-values
by Fisher's exact test for sample sizes up to at least
10™ on current ordinary desktop computers, where
the limiting factor is the precision of 64-bit floating
point arithmetic rather than computation time.

Some keys to efficient computation of Fisher's
exact test are:

e The logarithms of factorials of large numbers
can be efficiently computed by highly accurate
numerical approximations of the gamma func-
tion (Press et a., 1992, Chapter 6.1), based on
the identity n! = T'(n + 1).

e The following well-known recurrence relation
for the hypergeometric distribution:

_ Ck—l(_'$a y) Ck—l (l’, _'y)
Cr(z,y) Cr(—z, —y)

makesit easy to calculate probabilities for ase-
guence of consecutive joint frequencies, once
thefirst oneis obtained. (The subscript & indi-
cates parameters associated with the kth joint
frequency in the sequence.)

P P4

e Thehighest possible joint frequency will bethe
smaller of the two margina frequencies, so if
one of the marginas is small, few terms need
to be summed.

o |f we iterate from less extreme joint frequen-
cies to more extreme joint frequencies, each
probability in the summation will be smaller
than the one before. If both the marginas
are large, the summation will often converge
to a constant value, given limited arithmetic
precision, long before the smaller margina is
reached, at which point we can stop the sum-
mation.

By taking advantage of these observations, plus a
few other optimizations specific to our application,
we are able to estimate the necessary expected joint
frequencies for our 500,000 sentence pair corpusin
66.7 minutes using Fisher’'s exact test, compared to
57.4 minutes using an approximate estimate based
on likelihood ratios, a time penalty of only 16% for
using the exact method.

5 Estimating P-Valueswith
L og-Likelihood-Ratios

The usual way of estimating p-vaues from log-
likelihood-ratios is to rely on the fact that the p-
values for G? asymtotically approach the well-
understood x? distribution, as the sample size in-
creases. This is subject to the various caveats and

conditions that we discussed in Section 1, however.
Since we have the ability to compute all of the ex-
act p-values for our corpus, we do not need to rely
on the x? approximation to test whether we can use
log-likelihood-ratios to estimate p-values. We can
empirically measure whether there is any consis-
tent relationship between log-likelihood-ratios and
p-values, and if so, use it empiricaly to estimate p-
values from log-likelihood-ratios without resorting
to the y? approximation. For al we know at this
point, it may be possible to empirically predict p-
values from G? under conditions where the corre-
spondence with x2 breaks down.

This means we can drop the heretofore mysteri-
ous factor of 2 that has appeared in al the formulas
for G2, since this factor seems to have been intro-
duced just to be able to read p-values directly from
standard tables for the 2 distribution. To make it
clear what we are doing, from this point on we will
use a statistic we will call LL R which we define to
be G?/2.

To look for arelationship between LLR and p-
values as computed by Fisher's exact test, we first
computed both statistics for a various combinations
of joint frequency, marginal frequencies, and sam-
ple sizes. Exploratory data analysis suggested a
near-linear relationship between LLR scores and
the negative of the natural logarithm of the p-values.
To make sure the apparent relationship held for a
real dataset, we computed the L. R scores and neg-
ative log p-values for all 19,460,068 English-French
word pairs in our corpus with more joint occur-
rences than expected by chance, and carried out a
least-squares linear regression, treating L.L R score
asthe independent variable and negative log p-value
as the dependent variable, to see how well we can
predict p-values from LLR scores. The results are
asfollows:

slope: 1.00025
intercept: 1.15226
Pearson’s 7-2: 0.999986
standard deviation:  0.552225

With an r2? value that rounds off to five nines,
LLR score proves to be a very good predictor of
the negative log p-values over the range of values
considered. Moreover, with a slope of very close to
1, the L LR score and negative log p-values are not
merely correlated, they are virtually the same except
for the small delta represented by the intercept. In
other words,

p-value ~ ¢~ (LLR+1.15)

would seem to be not too bad an approximation.



The standard deviation of 0.55, however, is at
least dightly worrying. Asarange of differencesin
the logarithms of the predicted and actual p-values,
it corresponds to arange of ratios between the pre-
dicted and actual p-values from about 0.57 to 1.7.

6 Estimating Noisein Bilingual Word
Association

For our final experiment, we estimated the noise in
the bilingual word associations in our data by the
method of Section 2, using both Fisher's exact test
and L LR scores via our regression eguation to es-
timate expected pair counts. In both cases, we use
LLR scores as the measure of association. \We com-
puted the cumulative expected noise for every inte-
gral value of the L R score from 1 through 20.

To try to determine the best results we could get
by using L LR scores to estimate expected noise in
the region where we would be likely to set a cut-
off threshold, we recomputed the |east-squares fit of
L LR and negative log p-value, using only datawith
LLR scores between 5 and 158 We obtained the
following values for the parameters of the regres-
sion eguation from the re-estimation:

1.04179
0.793324

slope:
intercept:

Note that the re-estimated value of the intercept
makes it closer to the theoretical value, which is
—log(0.5) ~ 0.69, since independence corresponds
toan L LR score of 0 and ap-value of 0.5.

The results of these experiments are summarized
in Table 1. The first column shows the potential
LLR association score cut-offs, the second col-
umn is the expected noise for each cut-off esti-
mated by Fisher's exact test, the third column gives
the noise estimates derived from p-values estimated
from L LR scores, and the fourth column shows the
ratio between the two noise estimates. If we look
at the noise estimates based on our gold standard,
Fisher's exact test, we see that the noise level is be-
low 1% above an L L R score of 11, and risesrapidly
below that. This confirms previous annecdotal ex-
perience that an I.L R score above 10 seemsto be a
reliable indicator of asignificant association.

The comparison between the two noise estimates
indicates that the LLR score underestimates the
amount of noise except at very high noise levels.
It is worst when the LL R score cut-off equals 14,

8This constitutes training on the test data for the sake of ob-
taining an upper bound on what could be achieved using LLR
scores. Should we conclude that LL R scores look promising
for this use, one would want to re-run the test training the re-
gression parameters on held-out data.

Fisher LLR

Cut-Off | Noise Est | Noise Est | Ratio
1] 0.624 0.792 1.27
2 | 0.516 0.653 1.27
3| 0.423 0.384 0.91
4 | 0.337 0.274 0.81
5| 0.256 0.183 0.71
6 | 0.181 0.114 0.63
7 | 0.119 0.0650 0.55
8 | 0.0713 0.0338 0.47
9 | 0.0394 0.0159 0.40
10 | 0.0205 0.00695 0.34
11 | 0.00946 0.00260 0.27
12 | 0.00432 0.000961 0.22
13 | 0.00136 0.000221 0.16
14 | 0.00137 0.000166 0.12
15 | 3.52e-005 | 2.00e-005 | 0.57
16 | 1.56e-005 | 8.02e-006 | 0.51
17 | 6.82e-006 | 3.19e-006 | 0.47
18 | 2.94e-006 | 1.24e-006 | 0.42
19 | 1.24e-006 | 4.65e-007 | 0.38
20 | 5.16e-007 | 1.72e-007 | 0.33

Table 1: Word Association Noise Estimates.

which happens to be just below the LLR score
(14.122) for singleton-singleton pairs. Since, for
a given sample size, singleton-singleton pairs have
the lowest possible expected joint count, this is
probably the effect of known problems with estimat-
ing p-values from likelihood ratios when expected
counts are very small.

7 Conclusions

When we use Fisher's exact test to estimate p-
values, our new method for estimating noise for col-
lections of rare events seems to give results that
are quite consistent with our previous annecdotal
experience in using LLR scores as a measure of
word association. Using likelihood ratios to esti-
mate p-values introduces a substantial amount of er-
ror, but not the orders-of-magnitude error that Dun-
ning (1993) demonstrated for estimates that rely on
the assumption of a normal distribution. However,
since we have also shown that Fisher’s exact test can
be applied to this type of problem without a magjor
computational penalty, there seems to be no reason
to compromise in this regard.
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