Encoding and reusing linguistic information expressed by
Linguistic Properties

Caroline Hagege

Xerox Research Centre Europe (XRCE)

6 Chemin de Maupertuis
38240 Meylan - France

Caroline.Hagege@xrce.xerox.com

Abstract

This paper presents a way to express linguistic
knowledge independently of any algorithmic machi-
nery and of any particular grammatical formalism.
This 1s performed through Linguistic Properties,
that will be presented. First, the status of linguistic
knowledge in grammars is discussed, then the Lin-
guistic Properties are presented and two experiments
are mentioned. They illustrate the reusability of the
linguistic information enclosed in these Properties.

1 Grammar and reusability of
linguistic knowledge

One of the central points in linguistically-motivated
natural language processing is the notion of gram-
mar. Tt is commonly accepted that a grammar (see
(TM90)) is intended, among other things, to be both
a precise tool of natural languages’ description and
the declarative data source which must be inter-
preted by a computer.

This means that the same metalanguage (the gram-
matical formalism) is used to encode the declarative
linguistic informations and the rules that will feed a
parser.

We consider that this double function of a gram-
mar is a disadvantage from the point of view of the
reusability of linguistic knowledge. Indeed, the same
device (the grammar) contains both linguistic infor-
mation and some information adapted to a specific
goal (parsing (shallow or not), generation, etc.) and
to a specific algorithmic machinery. In order to be
reusable and suitable for different goals, we hold that
linguistic knowledge must be free from any specific
requirements, while being, nevertheless, formally ex-
pressed. Furthermore, it must be modularly organ-
ised within different levels of explicit granularity in
order to offer a taylorisable access. Linguistic Prop-
erties, which we distinguished from Processes - i.e.
effective computational procedures on strings of NL
expressions - are a possible way to fulfill these re-
quirements.

Gabriel G. Bes
GRIL Université Blaise Pascal
34 Avenue Carnot
63000 Clermont Ferrand - France
Gabriel.Bes@univ-bpclermont.fr

2 Linguistic Properties

Linguistic Properties (or simply Properties) were
originally developed in the late 90’s within the 5P
Paradigm. The 5 Ps stand for Protocole, system-
atic observations on sentences, Properties, linguistic
declarative knowledge, Projections, generalizations
on Properties of some natural language, Principles,
cross-linguistic constraints on Projections or Princi-
ples and Processes that are efffective computational
procedures. We present in this section the kernel of
Properties *.

The following example introduces intuitively Prop-
erties and their potential of modularity.

Given the following French expression in (i), it is
possible to distinguish, in 1ts metalanguage, different
layers or aspects, illustrated by (i-a) to (i-c).

1 les trois fleurs
i-a { les-[art, def], trois-[card], fleurs-[n] }
i-b (les-[art, def]; trois-[card]s fleurs-[n]3)nn

i-c < (les-[art, def]; trois-[card]s fleurs-[n]s)nn,
{<1, 3>, <2, 3>,<3,3>}>

(1) is a string of expressions; (i-a) is a set, each mem-
ber of which is an expression of (i) associated to a
category (or cat, see below), e.g. [art, def]; (i-b) is a
parenthetised list obtained applying order relations
to (i-a), and indexing it with the identifier Nn (for
Nominal nuclear phrase); (i-c) is obtained associat-
ing (i-b) to a set of pairs < p,¢ >, where p and ¢
are positions in (i-b); the pair links the element in
position p to the element in position ¢Z.

We will say that (i-b) is a basic model reduced to
its model string, namely (i-b), that (i-a) is a pack

1For a complete and more formalised versign7 see (BHO1).
The 5P Paradigm was presented as such in (B99) and (BHO1)
though antecedents, cited in (BHO1), go back to a 89 report
to the ESPRIT 393 ACORD european Project, where the
notion of descriptive metalanguage, today’s Properties, were
explicitely introduced. For published work, see (BHC99),
(HB98). For a different but related approach, see (BB99)
and (Bla00) which remain ”grammar oriented”.

2 Another layer, expressing a semantic representation, can
be added, but it is not discussed in this paper.

associated to (i-b), that pairs < p, ¢ > are Arrowing
pairs, that (i-¢) is an arrowed model incorporating
the model string (i-b).

We distinguish three basic kinds of Properties : Ex-
istence Properties, Linearity Properties, Arrowing
Properties. Packs as in (i-a) are specified by Exis-
tence Properties; order relations, by Linearity prop-
erties; Arrowing pairs, by Arrowing Properties.
Each identifier - e.g. Nn - has its associated set
of Properties, e.g. Properties-Nn, M-Nn being the
set of all and only the models m-Nn satisfying
Properties-Nn. Properties are expressed on symbols
which are cat’s or identifiers. From hereafter we use
Sm as a metavariable on identifiers, and Sy as a
metavariable on cat’s and Sm’s.

A cat is a set of label /value pairs, or, in reduced no-
tation, a set of values (as in previuos examples). A
maximum categorie (mc) is a cat to which no other
value can be added. The assumed Lexicon is a set
of lexical entries, each one being an expression asso-
ciated to one or more mc’s ; cat’ subsumes cat?, if
cat? C cat/.

The whole system can be viewed as a modular ax-
iomatic system in which models are the objects sat-
isfying different kinds of Properties®. A basic model,
as in (i-b), with its associated pack, as in (i-a), satis-
fies Existence and Linearity Properties; an arrowed
model, as in (i-c) satisfies also Arrowing Properties.
Furthermore, giving a set of Properties, a model can
satisfy some, but not all of them. Properties can be
expressed independently the ones from the others,
and in any order. The set of features from which
cat’s are build can be more or less extended, and,
consequently, the granularity of cat’s, and of Prop-
erties expresed on them, more or less refined.

The model substitution rule relates the identifiers
Sm', ... , Sm”, each one with its associated M-
Sm’. In a m-Sm’ with a Sm*, it substitutes some
m-Sm* for Sm*. E.g., assuming (neg; adjs)ap gnas
a French m-ADJn (underliyng, e.g. the string pas
belles), the model substitution rule obtains (2) from

the following (1).

1. < (arty ADJIns n3)yn, {<1, 3>, <2, 3>, <3,
3>1>

2. < (arty negy adjsz na)nn, {<1, 4>, <2, 3>, <3,
4>, <4, 4>} >

In an optimal situation, Properties associated to the

3The system benefits from the concept of factorizing rela-
tions of standard production rules of now traditional gram-
mars. See in particular the LP statements of GPSG disso-
ciated from dominance ID rule, and dependency grammar
((Tes69)), early HPSG in (PA87).The system tries to push
this basic idea to its limits, disolving thus the concept of pro-
duction rules. An analog of what the system of Properties is
expected to express compared to production rules, can be seen
in regular expressions as compared to production grammars
of type 3 in the Chomsky’s hierarchy.

Sm’s of some NL, together with a Lexicon and the
model substitution rule, specifie the whole set of
models required to describe the strings of expressions
of the NL. We concentrate in the following in the in-
tuitive presentation of Properties specifying models
obtained without the model substitution rule. Given
the different kinds of Properties, we will intuitively
characterise the conditions that must be fulfilled by
a model in order to satisfy each one them *.
Subsumption is the basic relation linking models and
Properties. We already defined above subsumption
between cat’s. As a shorthand, we say here that
Sm' subsumes Sm’ if Sm’ = Sm/. Furthermore,
given sets S* and S7 of Sy symbols, we say that S’
subsumes S7 if there is a bijective function between
S? and S7 such that each Sy™ in S subsumes its
corrresponding Sy” in S7.

2.1 Existence Properties

Existence Properties associated to some M-Sm spec-
ifie the set of packs from which any m-Sm is ob-
tained. We distinguish five kinds: Vocabulary prop-
erty, Unicity property, Nucleus Property, Exigency
Property, Exclusion Property.

The Vocabulary Property, spelled by

Vsm = {Syl, ceey Syn }

says that each symbol in the pack associated to a
m — Sm' is subsumed by some symbol in Vs,,, and
each symbol in Vg, subsumes some symbol in the
pack of some m—Sm’. E.g. (singleton categories are
spelled with their value) French Vi, = {det, poss,
card, noun...} is the vocabulary for Nn (nominal
nuclear) French phrases (roughly, nominal chunks),
assuming mc’s: [det, art, def...], [det, art, ind..],
[det, dem...], which are associated in the Lexicon to,
respectively, the expressions {les, la, le..}, {un, une,
des...}, {ce, ces, celte...}.

The Unicity Property, spelled by

UnSm = {Syla s Syn}

says that there are no two symbols in the pack asso-
ciated to a m — Sm subsumed by one and the same
symbolin Ungy,. E.g. French Uny, = {det, card...}
express that there are no two articles, or two demon-
stratives or an article and a demonstrative in a Nn
phrase.

The Nucleus Property, spelled by

Nusm = {Sy', ..., Sy"}

says that in each m — Sm there is one and only one
position with a nucleus symbol - spelled °Sy - sub-
sumed by some symbolin Nug,,. E.g. French Nug,,
= {card, quant, noun...} express that Nn phrases
can have as a Nucleus either a cardinal (e.g. @ a vu
(°trois)nn, or a quantifier (e.g. i a vu (°tous)ny,),
or a noun (e.g. o a vu (les ° fleurs)ny).

The Exigency Property, spelled by

S0 —>Sm {Sl, e Sn}

4For a more formal and complete presentation, see BH-01.

says (remember that S’s spell sets of Sy) that if in
the pack of a m — Sm there is included a set of
symbols S* subsumed by S° there must be also some
S” included in the pack such that S” is subsumed by
Sizl E.g. French {/n, ¢/} —=nn {{det}, {card}...},
where [n, ¢] stands for common nouns, express that
common nouns require a determiner or a cardinal.
The Exclusion Property, spelled by

SY sm {Sh, ..., 57}

says that if in the pack of a m —Sm there is included
a set of symbols S¥ subsumed by S°, then there is
not included a set S™ such that S” is subsumed by
Sizl | E.g. French {[quant, plJ} ¢ nn {{[art, ind]}}
express that the quantifier tous cannot coexist with
an indefinite article in a Nn phrase.

2.2 Linearity Properties

Linearity Properties express order relations. A Lin-
earity Property is spelled by Sy <s,, Sy*...Sy". Tt
says that if in a m — Sm there is a symbol subsumed
by Sy® and a symbol subsumed by Sy'2!, the for-
mer precedes the latter.

E.g. : in French m-Nn’s, a quantifier tout(e,-s) pre-
cedes all other cat’s, which is expressed by quant
~<Nn N, det, poss, card...

2.3 Arrowing Properties

The basic role of Arrowing Properties is to specify
the graph - i.e. the set of Arrowing pairs - that is
the backbone from which the semantic representa-
tion is build. An arrowing pair (Ar) is a pair jp, ¢4,
where p and ¢ are positions in the model string, and
which can be understood as ”the Sy in position p ar-
rows to the Sy in position ¢”. An Ar is thus an arc
between two Sy’s. Ar’s are expressed by arrowing
formulae, which, in their simplest formulation, are
spelled Sy* — g, Sy . It is also possible to spell dis-
jonctive arrowing, expressing that some Sy arrows
to either Sy’ or to Sy'. By a general convention, a
nucleus °Sy arrows to himself. General conditions
limit the expressive power of Arrowing formulae, as-
suring, among others, that the resulting graph must
be connected, and, with the exception of the reflex-
ive arrowing of °Sy, acyclic.

E.g., among French Arrowing formulae, there is
quant —pnp, °Sy , where °Sy is a variable on
the Nucleus and which express that the quanti-
fier tous arrows to any Nucleurs in a Nn phrase:
<(tousy °troisy)nn, {<1, 2>, <2, 2>}>, <(tous
lesy ®garonss)nn, {<1, 3>, <2, 3>, <3, 3>}.

3 Exploring properties

Two experiments have been carried out in the ex-
ploration of Existence and Linearity properties. In
the first experiment, Linguistic Properties were used
to derive the linguistic data structures used by a
chunker and a NP extractor for Portuguese (see
(BHC99)). 1In the second experiment, Linguistic

1 2 3]

| Lo]

: SMORPH (Tokenization and morphological analysis)

: MPS (Recomposition of tokens and partial disambiguation)
: AF (Chunking)

: NP extraction

W

Figure 1: The processing chain for NP extraction

Properties were used to structure lexical entries in
an HPSG-style grammar (see (HB98) and (Hag00)).
In both cases, the basic idea is the same: associate
to each category declared for a given model the com-
binatorial information attached to this category in a
certain grammatical context.

We describe here these two experiments in more de-
tails

3.1 First experiment
3.1.1

A fine grained description of the Portuguese NP has
been accomplished with Linguistic Properties and
we wanted to use this linguistic description in or-
der to extract NPs from Portuguese running texts.
In a first step, the input text is tokenized and mor-
phologically analyzed (SMORPH (AM98)). Then,
the tokenized and morphologically analyzed text is
pre-processed, eliminating partially some ambiguity
and grouping or ungrouping some tokens previously
delimited (MPS). Then the text is chunked and fi-
nally, NPs (defined as regular expressions of chunks)
are extracted. Figure 1 summarizes the processing
chain for NP extraction.

Context

Our chunker (called AF) consists in a very simple
algorithm (see (BHC99)) which uses linguistic struc-
tures (called leaves) associated to each token of the
text and tries to concatenate these structures from
left to right until the end of the text. Each concate-
nation introduces constraints for the next concate-
nation and, during parsing, part of the ambiguity is
solved as a side effect when concatenation fails.

To 1illustrate intuitively how our chunker works, as-
sume we want to analyze the following string with
the following leaves.

As dancas
(The dances)

Leaf 1 This leaf is associated to As
e The lemma associated to Asis o
e The category is a definite article

e The model where this category appears is nom-
inal chunk

e This category never starts a model of nominal

chunk

e This category never ends a model of nominal

chunk

e The set of categories that can follows this cate-
gory 1n this model contains noun

Token dangas is ambiguous plural-noun and verb
(dances and dance) and have the following two as-
sociated leaves.

Leaf 2

e The lemma associated to dancas is danca
e The category is noun

e The model where this category appears is nom-
inal chunk

e This category can start a model of nominal

chunk

e This category always ends a model of nominal

chunk

e The set of categories that can follows this cate-
gory in this model is empty

and
Leaf 3

e The lemma associated to dancas is dangar
e The category is verb

e The model where this category appears is verbal

chunk
e This category can start a model of verbal chunk
e This category can end a model of verbal chunk

e The set of categories that can follow this cate-
gory 1n this model contains clitic pronouns.

After the concatenation of the leaf 1 associated to
As, the only possibility i1s to concatenate leaf 2 be-
cause the model string on the right of As cannot be
closed (leaf 1 never ends a nominal chunk) and leaf
3 is not a possible successor of leaf 1.

The process of chunking is reduced to perform all the
possible concatenations of leaves from left to right,
each concatenation being restricted by the previous
concatenation.

Our chunker was used to process Portuguese text
and was evaluated on the task of NP extraction with
the results of 88% precision and 81,5% recall on the
NP detection® (No exact match was required but
the NP head detected in the reference corpus is ex-
tracted)

5See (Hag00) for more details.

3.1.2 Leaves and Leaf Patterns

A leaf is thus a structure of the following form (We
represent it as a Prolog predicate).

leaf(WF, L, Cat, ModId, BStat, EStat, Foll).
Where:

o WF(Word Form) is the token found in the text
to analyze

e I (Lemma) is the corresponding lemma
e Cat(egory) is the corresponding category
e Modld (Model Identifier) identifies the model in

which this category can appear

e BStat (Begin Status) is the integer 0, 1 or 2
meaning respectively that this category never,
always of sometimes starts the model identified

by Modelldentifier

e EStat (End Status)is the integer 0, 1 or 2 mean-
ing respectively that this category never, al-
ways or sometimes ends the model indentified

by Modelldentifier

e Foll (Followings)is the set of categories that can
follow the category Cat in the model identified
by ModId (The empty set when EndStatus is 1)

We call a Leaf Pattern a leaf structure in which the
first argument (the word form) is not instantiated.
Our problem here is to deduce, from the Properties,
all the Leaves Patterns that are necessary to analyze
one text.

3.1.3 Relations between categories
appearing in a given model string

Given the vocabulary V of some model identifier

Sm, it 1s possible, using Existence Properties and

and Linearity Properties to define the following re-

lations in V x VS,

a and b being elements of V.

precedel: aprecedel bifin any m—Sm containing
a and b, a always precedes b

order: a order b if there is at least a m — Sm in
which 1t is possible to say that a precedes b or that
b precedes a.

exige: aexige bif for each m—Sm where a appears,
b also appears.

exclu: aexclu b if there i1s no m — Sm with ¢ and

b.

It is also possible to define two subsets of V', So and
S1. So consists of the elements of V that are always
alone in a model string and is defined the following
way:

8In the following section, we make two simplifications: the
notion of sumbsumption between categories in not taken into
account and we do not consider models within models, but
the general idea keeps the same

So={a€eV |VbeV exclu(a,b)}
S1 is the complementary of So in V'

For each category a of V, it is also possible to define
the set LP, as the set of all categories that possibly
follow a in at least one model string.

Having these relations and these sets, one can de-
fine the subsets of V that always, sometimes and
never start a model string and the subsets of V' that
always, sometimes and never end a model string,
which is precisely what is needed to define the leaves
together with LP,.

We called these subsets AS (Always start), SS
(Sometimes start), NS (Never start), AF (Always
end), SE (Sometimes end) and NFE (Never end)
With these definitions and considering the set of
Properties that define the models identified by m-
Sm we can then construct a set of leaf patterns the
following way:

e The first argument is a variable (that will be
then instantiate with a linguistic form present
in the text)

e The second argument of the leaf predicate is
instantiated to an element of V'

e The third argument of the leaf predicate 1s in-
stantiated to m-Sm.

e The fourth argument of the leaf predicate is in-
stantiated to 1, 2, 0 according to the fact that
this element is member of AS, SS or NS.

e The fifth argument of the leaf predicate is in-
stantiated to 1, 2 or 0 according to the fact that
this element is member of AE, SE of NE.

e The sixth argument corresponds to the set
LP.at being cat the category that is present in
the second argument.

3.2 Second experiment

In this second experiment, we want to use the Prop-
erties defined for the nominal chunk in order to
construct lexical entries that can enable to ana-
lyze nominal chunks in an HPSG-style (see (CS94)
and (SW99)) .The HPSG grammar was then imple-
mented in ALE (Attribute Logic Engine, developped
by B. Carpenter and G. Penn). Only the syntactic
part of the lexical entries is taken into account.

We decided that for our grammar a nominal chunk
has to be a saturated sign with a nominal head. The
analysis fails if:

e No analysis is produced

e A linguistic sign is obtained but it is not satu-
rated

3.2.1 What we have to consider

We have to take into account the structuration of lin-
guistic signs that HPSG formalism stipulates. That
is:

In the type hierarchy A linguistic sign has in
the path SYNSEM: SYN: LOC: CAT: HEAD (from
now on the whole path is designed by HEAD) a value
of type head that has the following subtypes.

head

subst

noun
verb
adj

func

det

mark

In the structuration of lexical signs If the
value of HEAD is noun then there is a value for
the path SYNSEM:SYN:LOC:CAT:VAL:SPR (from
now on just VAL:SPR) which is of type list of lin-
guistic signs

If the value of HEAD is det then the value of the path
SYNSEM:SYN:LOC:CAT:HEAD:SPEC (from now
on just SPEC) is of type non-empty list of linguistic
signs.

Finally, if the value of HEAD is adj then the value
of VAL:SPR is the empty list and the value of SPEC
is the empty list

3.2.2 What we can infer from Linguistic
Properties

Definition of the set of categories that never
can be alone in a nominal chunk model Con-
sidering the set of Properties modelling nominal
chunks, we can define the subset S2 of the vocab-
ulary V consisting in the set of categories that never
can be alone in a model.

S2={aeV |3V exige(a,b)}

Rule 1 All the categories that are members of the
above defined sets AE U SE must have the value
noun for HEAD. Nouns and nominalized adjectives
that can be the head of a nominal chunks are con-
cerned by this rule.

Rule 2 All the categories that are member of the
set So (defined above) must be associated to a lexical
entry with the value empty list for VAL:SPR. Plural
nouns and pronouns that can be used alone in a
nominal chunk are concerned by this rule. Note that
Rule 2 applies to all the categories for which Rule 1
applies too as So is included in AF.

Rule 3 All the categories that are members of
(ASUSS) N S2 and that are not considered tradi-
tionnaly as adjectives have the value det for HEAD
and have for SPEC a value of type sign that is sub-
sumed by SYNSEM:SYN:LOC:CAT:HEAD:noun.

Determiners are concerned with this rule

Rule 4 This rule handles with possible combina-
tion of determiners (or determiners and quantifiers)
and gives one possibility to combine them together.
It stipulates that if a category treated in Rule 3
can preceed another category treated in Rule 37 (we
know that through the relation order defined above),
then it is necessary to provide either a complex de-
terminer structure, or to add to the VAL:SPR value
of all the categories treated in Rule 1 the whole list
of determiners.

Rule 5 Any category of S2 that has not be con-
sidered by Rule 3 are taken as adjective and have
the value adj for HEAD.

3.3 Extensions

It is well known that there are different kinds and
different sources of ambiguity. We point here two
of them and how they can be treated within our
framework.

A linguistic expression can be associated in the Lex-
icon to more than one mc : it is, e.g., the case for
Leafs 2 and 3 of the first experiment in Section 3.1.
The ambiguity is there resolved thanks to Leave 1.
Suppose that, as in French, there is a string of ex-
pressions in a related pattern - as le juge - where
both expressions are ambiguous (le being an arti-
cle and a clitic, juge a noun or a verb). In this
situation,the ambiguity is maintained, the system
specyfing both m-Nn and m-Vn for the le juge (re-
spectively, a nominal and a verbal chunk). This am-
biguity will be resolved in a context - e.g. to the
right of a preposition Leaf - in which the expression
can follow if it is specified as m-Nn but not if 1t is
as m-Vn.

As an important side-effect of the first experiment
(Section 3.1), it is remarked in HOO (these) that ap-
plying the processing chain (see Figure 1) to previ-
ously and independently disambiguated expressions
improves very little the final results. We think that
observations as this one indicate that the incremen-
tal tactic of bottom-up parsing and that the require-
ment of a disambituation layer before parsing is not
the only possible way.

In the experiments presented in this paper we work
on model strings build with cat’s, not with Sm sym-
bols (identifiers). Two basic types of identifiers
are recognize :the one related to nuclear phrases or
chunks, which are spelled Xn, X being a variable
on N, V, ADJ...and the ones related to not nuclear

7In Portuguese, combination of determiners and quanti-
fiers.

phrase, spelled with the bare X and its possible in-
stantiations. In general, a X’n in the model string of
some X”n are not ambiguously related. But attache-
ment of X*nto the right of a pattern X'n...X"n
can be ambiguous.

Properties here presented apply exactly the same on
models strings with or without Sm’s. So the pre-
viously characterised ambiguity can be expresed by
disjonctive arrowing in arrowing formula (see Sec-
tion 2.3).

4 Conclusion

In current work on syntax (heuristics for robust pars-
ing (see (AMCRO1), (TJ97)) or unification-based
grammatical formalisms), it is quite difficult to ac-
cess pure linguistic information since the same syn-
tax is used both for the linguistic description and
the rules for the parsers. We believe that the ex-
pression of linguistic information by means of Lin-
guistic Properties is a possible step in the direction
of the centralization of linguistic knowledge with the
following benefits:

e Syntacticians would spend less time rewriting
rules carrying the same information for different
formalisms or for different parsers.

e The construction of a grammatical reference,
expressed in a formalized and non-ambiguous
way.

The notion of a grammar as a source of linguistic
knowledge is thus revisited in favor of a notion of
linguistic knowledge base® from which syntactic in-
formation could be extracted for one or another spe-
cific grammar or application. The two experiments
that we described above seem to be a step in this
direction.

References

S. Ait-Mokhtar. L’analyse présyntazique en une seul
étape. PhD thesis, Université Blaise Pascal, 1998.
S. Ait-Mokhtar, J-P Chanod, and C. Roux. A multi-
input dual-entry dependency parser. In Proceedings
of IWPT 2001, Beijing, 2001.

G. Bés. La phrase verbale noyau en frangais.
Recherches sur le frangais parlé, 15, 1999.

G Bés and P. Blache. Propriétés et analyse d’un
langage. In Actes de TALN 99, July Cargese, 1999.
G Bés and C. Hagege. Properties in 5Hp. Techni-
cal report, Groupe de Recherche dans les Industries
de la Langue (GRIL), URL: Igril.univ-bpclermont.fr,
2001.

8The idea of a linguistic knowledge base was originally
mentioned by G. G. Bés in a project proposal (Cale) submit-
ted in 1991.

G Bés, C. Hagege, and L. Coheur. Des propriétés
linguistiques a 1’analyse d’une langue. In Proceed-
ings of the VEXTAL Conference, November Venice,
1999.

P. Blache. Constraints, linguistic theories and
natural language processing. In Dimitris N.
Christodoulakis, editor, Natural Language Process-
ing - NLP 2000, pages 221-232. Springer-Verlag,
2000.

Pollard C. and 1. Sag. Head-Driven Phrase Struc-
ture Grammar. CSLI Lecture Notes. Center for the
Study of Language and Information, 1994.

C. Hagege. Analyse syntarique automatique du por-
tugais. PhD thesis, Université Blaise Pascal, 2000.
C. Hagege and G. Bés. Da observacao de pro-
priedades linguisticas a sua formalizacao numa
gramatica do processamento da lingua. In Actas do
IIl Encontro para o Processamento Computacional
da Lingua Portuguesa (PROPOR’98), Porto Alegre,
1998.

C. Pollard and Sag I. A. Information-Based Syntax
and Semantics, Volume I:Fundamentals. CSLI Lec-
ture Notes N. 13. Center for the Study of Language
and Information, 1987.

I. Sag and T. Wasow. Syntactic Theory: A formal
Introduction. Center for the Study of Language and
Information, Stanford University, 1999.

L. Tesniére. Fléments de syntare structurale.
Klincksiek, 1969.

P. Tapanainen and T. Jarvinen. A non-rojective de-
pendency parser. In Proceedings of the 5th Con-
ference on Applied Natural Languages, Washington
D.C., 1997.

T. Torris and P. Miller. Formalismes syntariques
pour le traitement automatique du langage naturel.
Hermes, 1990.

	Table of Content
	Workshops
	Authors

