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Abstract 

Natural language processing tasks often rely 

on part-of-speech (POS) tagging as a prepro-

cessing step. However it is not clear how the 

absence of any part-of-speech tagger should 

hamper the development of other natural lan-

guage processing tools. In this paper we in-

vestigate the contribution of fully unsuper-

vised part-of-speech induction to a common 

natural language processing task. We focus 

on the supervised English shallow parsing 

task and compare systems relying either on 

POS induction, on POS tagging, or on lexical 

features only as a baseline. Our experiments 

on the English CoNLL'2000 dataset show a 

significant benefit from POS induction over 

the baseline, with performances close to those 

obtained with a traditional POS tagger. Re-

sults demonstrate a great potential of POS in-

duction for shallow parsing which could be 

applied to resource-scarce languages. 

1 Introduction 

Shallow parsing is a specific type of phrase 

chunking which is often used for different Natu-

ral Language Processing (NLP) tasks like text 

mining or question answering. The goal of the 

task is to divide a text into syntactically related 

non-overlapping groups of words (Tjong Kim 

Sang and Buchholz, 2000). These include noun, 

verb, or adjective phrases. It usually requires a 

part-of-speech (POS) tagger and a training cor-

pus annotated with shallow parsing tags. 

Unfortunately, one is often constrained by the 

lack of resources, tools or language experts, for 

instance when dealing with resource-scarce lan-

guages. In particular, the elaboration of a POS 

tagger is a delicate issue. Without any linguistic 

expert, the only possible approaches are statistic-

al. Training POS taggers requires the manual 

constitution of either a large annotated corpus or 

a large morphosyntactic lexicon. These resources 

are very costly, both in time and in terms of lin-

guistic knowledge required from the annotator. 

By contrast, we notice that the concept of shal-

low parsing is relatively easily understandable by 

native speakers, even if they are not linguists. 

Relative to POS tagging, its annotation does not 

require a prohibitive amount of time and effort
1
. 

This is especially the case when the full shallow 

parsing task is reduced to a certain chunk type, as 

noun phrases for instance. Hence we think the 

most difficult requirement for the task is the POS 

tagging preprocessing step.  

This observation drew our attention to the fol-

lowing question: is the POS tagging step neces-

sary to shallow parsing? In this paper we intend 

to show how shallow parsing may benefit from 

fully unsupervised POS induction methods, as an 

alternative to accurate POS tagging. Section 2 

introduces related work. Despite the popularity 

of shallow parsing and POS induction, we found 

only one paper related to POS induction for shal-

low parsing. Section 3 describes the models, 

tools and corpora we used: an existing POS in-

duction tool (Clark, 2003), an implementation of 

Conditional Random Fields (CRF++) and the 

CoNLL’2000 dataset. Experiments and results 

are presented in Section 4. POS induction greatly 

improves the baseline, with performances close 

to supervised POS tagging. 

2 Related Work 

Shallow parsing has become a common task in 

NLP. The originality of our method is to rely on 

part-of-speech induction rather than accurate 

POS tagging.  

                                                 
1  The standard English shallow parsing corpus contains 

around 50 distinct POS tags and only 10 chunk types. 

33



 

 

2.1 Shallow Parsing 

Traditional approaches rely on preprocessing by 

an accurate POS tagger. Most work on shallow 

parsing is based on the English CoNLL’2000 

shared task, which provided reference datasets 

for training and testing. The CoNLL dataset ac-

tually contains POS tags assigned by the Brill 

(1995) tagger. A number of approaches have 

been evaluated on these datasets, for general 

shallow parsing as well as for the simpler noun 

phrase chunking task: support vector machines 

(SVM) with polynomial kernels (Kudo and Mat-

sumoto, 2001; Goldberg and Elhadad, 2009) and 

linear kernels (Lee and Wu, 2007), conditional 

random fields (Sha and Pereira, 2003), maximum 

likelihood trigram models (Shen and Sarkar, 

2005), probabilistic finite-state automata (Araujo 

and Serrano, 2008), transformation-based learn-

ing or memory-based learning (Tjong Kim Sang, 

2000). So far, SVM have achieved the best state-

of-the-art performances.  

To our knowledge, little work has considered 

other languages. Chunking corpora have been 

derived from the Arabic Treebank (Diab et al., 

2004) and the UPENN Chinese Treebank-4 

(Chen et al., 2006). Goldberg et al. (2006) 

showed that the traditional definition of base 

noun phrases as non-recursive noun phrases does 

not apply in Hebrew, and proposed an alternate 

definition. Nguyen et al. (2009) discuss on how 

to build annotated data for Vietnamese text 

chunking and how to apply discriminative se-

quence learning to Vietnamese text chunking. 

The lack of tools and annotated corpora in non-

English languages is clearly an issue. 

Following this observation and contrary to the 

approaches cited above, we make the assumption 

that no POS tagger is available. To compare our 

work with previous approaches and to allow ex-

tensive experiments, we evaluated our method on 

English using the standard CoNLL’2000 dataset. 

The lack of similar annotated corpora in other 

languages unfortunately constrained the scope of 

this article to English. 

2.2 Part-of-Speech Induction 

Unlike van den Bosch and Buchholz (2002) who 

studied shallow parsing on the basis of lexical 

features only, we choose to incorporate features 

related to the traditional notion of part of speech. 

In this work we apply part-of-speech induction 

techniques to acquire additional features. This 

task differs from semi-supervised part-of-speech 

tagging, where the tagger is trained on an un-

tagged corpus but uses a morphosyntactic lex-

icon giving possible tags for each word (e.g. 

(Merialdo, 1994)). Part-of-speech induction is 

the task of clustering words into word classes (or 

pseudo-POS) in a completely unsupervised set-

ting. No prior knowledge such as a morphosyn-

tactic lexicon is required. The only resource 

needed is a relatively large training text corpus. 

Christodoulopoulos et al. (2010) and (Bi-

emann, 2010) compiled helpful surveys of the 

domain. Christodoulopoulos et al. (2010) eva-

luated seven POS induction systems spanning 

nearly 20 years of work: class-based n-grams 

(Brown et al., 1992), class-based n-grams with 

morphology (Clark, 2003), Chinese Whispers 

graph clustering (Biemann, 2006), Bayesian 

HMM with Gibbs sampling (Goldwater and Grif-

fiths, 2007), Bayesian HMM with variational 

Bayes (Johnson, 2007), sparsity posterior-

regularization HMM (Graça et al., 2009), and 

feature-based HMM (Berg-Kirkpatrick et al., 

2010). The performance measures were mainly 

based on mapping accuracies (with respect to a 

gold standard) and entropy coefficients.  

Biemann et al. (2007) and Biemann (2010) 

succinctly tested their Chinese Whispers algo-

rithm on the shallow parsing task with the Eng-

lish CoNLL’2000 dataset. They showed a signif-

icant improvement of the use of unsupervised 

pseudo part-of-speech tags over the baseline that 

discarded any POS information. However, their 

experiments covered several tasks and were not 

focused on shallow parsing. By contrast, in this 

article we use an alternate POS induction algo-

rithm and propose a more in-depth evaluation of 

shallow parsing with POS induction. 

3 Resources, Models and Tools 

This section describes the tools and resources 

used in this work. Figure 1 depicts the global 

organization of our modules. 

 
Figure 1. Overview of the system 
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On the left side of the figure, an unsupervised 

pseudo-POS tagger is learnt using POS induction 

techniques. This step requires a raw text corpus 

as input and produces a list of (word, cluster 

identifier) pairs which constitute the pseudo-POS 

lexicon. On the center, a POS tagger is optionally 

applied to the training and test corpora annotated 

with shallow parsing tags. Eventually, a super-

vised training of shallow parsing is conducted on 

the training set and evaluated on the test set (on 

the right). 

The following sections describe the tools and 

corpora we used for the POS induction step and 

for the shallow parsing step. This information is 

summarized in Table 1. 

3.1 Unsupervised POS Induction 

Model and Tool 

Based on Christodoulopoulos et al. (2010), we 

opted for Clark (2003)’s tool
2
. It was the best 

performing system in almost every language, and 

one of the fastest methods. It incorporates mor-

phological information into a distributional clus-

tering algorithm. To our knowledge, it has not 

yet been evaluated on the shallow parsing task.  

The clustering algorithm is based on a cluster 

bigram model (Ney et al., 1994). Assume we 

have of corpus of size   , composed of words 

     . We note   
 
 the sequence of all words 

between    and   . We define a clustering function 

   that deterministically assigns a unique cluster 

identifier to each word form. The bigram model 

is a specific type of first-order hidden Markov 

model where each observation type (word form) 

is allowed to a single latent class. The model de-

fines the probability of word    given history 

  
    and clustering    as: 

       
                                     

In our case, the deterministic nature of the 

clustering makes the likelihood of the model 

easy to express in terms of word and cluster oc-

currence counts in the corpus given the cluster-

ing. The likelihood is maximized using an ex-

change algorithm similar to the k-means algo-

rithm. It converges locally until a stopping crite-

rion is reached. It consists in iteratively increas-

ing the likelihood of an initial clustering by mov-

ing words one after the other to better clusters. 

The morphological component biases the clus-

tering so as to cluster together morphologically 

                                                 
2 Available on Alexander Clark’s Web page: 

http://www.cs.rhul.ac.uk/home/alexc/pos2.tar.gz 

similar words. Clark (2003) models the mor-

phology of words belonging to a same cluster 

using letter Hidden Markov Models and uses it to 

define a prior for this cluster in the basic cluster 

bigram model. The final output consists of a 

large table giving a unique cluster identifier to 

each word token, followed by the conditional 

probability of the word given the cluster. The 

pseudo POS tagging itself hence comes down to 

a simple deterministic look-up into the table. 

Unlike Biemann (2010), the number of pseu-

do-POS clusters should be provided as a parame-

ter of the algorithm. In our experiments, we 

learnt several pseudo-POS taggers with a number 

of clusters varying from 10 to 200 (see Sec-

tion 4.3). Another parameter for Clark’s tool is 

the token cutoff frequency. This threshold as-

signs all words occurring less than the specified 

number of times to a particular cluster. This clus-

ter is the one that will be used for tagging un-

known words. 

 

Corpus 

The tool takes a tokenized corpus as input. The 

corpus chosen for our experiments is newstrain-

08, an English monolingual language model 

training dataset which was provided for the 

WMT’09 translation task
3
. Its size is approx-

imately 2.5 Gb and 500 million tokens. We set 

the token cutoff frequency to 50
4
. 

Such enormous corpora might not be available 

for some languages. However we believe that the 

approach remains valid on smaller corpora. We 

therefore experimented on a subset of the new-

strain-08 corpus restricted to the first million to-

kens only. To avoid losing too much informa-

tion, the cutoff frequency was then set to 1: only 

hapaxes were discarded. 

Step Tool Corpus Corpus Size 

POS 

induction 

 
(Clark, 2003) 

 

newstrain-08 full 500M tokens 

newstrain-08 short 1M tokens 

Shallow 

Parsing 
CRF++ 

CoNLL’2000 train 
211,727 tokens 

8936 sentences 

CoNLL’2000 test 
47,377 tokens 

2012 sentences 

 

Table 1. Tools and corpora used for 

POS induction and shallow parsing 

                                                 
3 The corpus is available at: 

 http://statmt.org/wmt09/training-monolingual.tar  
4  Other parameter values are “-s 5” (number of HMM 

states) and “-i 20” (stopping criterion: maximum number of 

iterations) 
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3.2 CRFs for Shallow Parsing 

Model and Tool 

We follow Sha and Pereira (2003), who achieved 

near state-of-the-art results on the English shal-

low parsing task using Conditional Random 

Fields (CRFs) (Lafferty et al., 2003). CRFs allow 

us to incorporate a large number of features in a 

flexible way. We used the CRF++ implementa-

tion
5
, distributed under the GNU Lesser General 

Public License and new BSD License. 

Our feature set is defined as follows. On a 5-

token window centered on the current token to be 

classified, we included all lowercased form token 

unigrams and bigrams, as well as (pseudo) POS 

tag unigrams, bigrams and trigrams. We also in-

corporated phrase chunk label bigrams. These 

features are commonly used for shallow parsing. 

Finally, we added on the same 5-token window a 

feature indicating whether the forms begin with a 

capital, as well as features accounting for the 

form ending (3 characters) on a window of 3 to-

kens. The purpose of these features is to facilitate 

the classification of unknown words by incorpo-

rating morphological information into the model. 

In some experiments (see Section 4.4), we 

tried several feature frequency cutoff values, va-

rying from 1 occurrence in the training set to at 

least 100. The default is set to 1. 

 

Corpus 

The standard reference corpus for English shal-

low parsing is the CoNLL’2000 shared task data-

set. The CoNLL dataset
6
 was automatically de-

rived from a subset of the Wall Street Journal 

(WSJ) portion of the Penn Treebank. It consists 

of partitions of the WSJ: sections 15-18 as train-

ing data (8936 sentences) and section 20 as test 

data (2012 sentences). It contains phrase bounda-

ries in the IOB representation, as well as part-of-

speech tags assigned by the Brill tagger
7
. The 

corpus contains 48 Brill tags. 

A sentence extracted from the CoNLL training 

corpus is shown in Table 2. Here, chunk phrases 

are separated with horizontal dashed lines. Each 

chunk type has 2 types of chunk labels: prefix B 

indicates the beginning of the chunk phrase, and 

prefix I stands for inside the chunk phrase. Label 

O represents tokens that do not belong to any 

phrase. 

                                                 
5 Available at http://crfpp.sourceforge.net/  
6 See http://www.clips.ua.ac.be/conll2000/chunking/  
7 The original manually annotated tags from WSJ were dis-

carded in order to make the CoNLL task more realistic. 

Token Brill Tag Chunk Label 

A.P. NNP B-NP 

Green NNP I-NP 

currently RB B-ADVP 

has VBZ B-VP 

2,664,098 CD B-NP 

shares NNS I-NP 

outstanding JJ B-ADJP 

. . O 

 

Table 2. Example sentence from the 

CoNLL'2000 training corpus 

In some experiments, we discarded all Brill 

tags. In our POS-induction-based experiments, 

we replaced them with pseudo-POS tags.  

4 Experiments and Results 

Our experiments have 4 goals: (i) estimate the 

gain of POS induction over a system that does 

not rely on any part-of-speech information; (ii) 

estimate performance variation depending on the 

size of the shallow parsing training corpus; (iii) 

study the influence of the number of pseudo-POS 

clusters; (iv) observe the system behavior with 

CRF feature pruning. Our results were evaluated 

using the Perl script provided by CoNLL
8
. 

4.1 The CoNLL Shallow Parsing Task 

We first evaluated our system in the traditional 

setting. Our objective is to estimate the potential 

of POS induction for shallow parsing in the case 

where no POS tagger is available. 

We conducted three runs using the same CRF 

feature template (Section 3.2), depending on 

whether the POS tags are the original Brill tags 

from the corpus (Brill), our pseudo-POS tags 

(P50), or no tag at all as a baseline (NoPOS). For 

this experiment, we used the CoNLL datasets for 

training and testing. The pseudo-POS tagger was 

learnt on the full newstrain-08 corpus. We set the 

number of pseudo-POS tags to 50, which is 

comparable to the number of Brill tags. 

Detailed results are presented in Table 3. It 

shows precision, recall and F-measure for each 

chunk category. Precision   is the percentage of 

correct phrases over the total number of phrases 

annotated by the system. Recall   is the percen-

tage of correct phrases over the total number of 

true phrases in the reference. The F-measure 

   is defined as the harmonic mean of precision 

and recall
9
. 

                                                 
8 http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt 
9    

          

      
 with     
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Baseline: NoPOS Unsupervised: P50 Supervised: Brill 

Chunk types        found        found        found 

ADJP 80.00 59.36 68.15 325 79.05 68.04 73.13 377 81.27 76.26 78.68 411 

ADVP 84.21 75.75 79.76 779 82.94 80.25 81.57 838 84.24 80.83 82.50 831 

CONJP 38.46 55.56 45.45 13 55.56 55.56 55.56 9 50.00 55.56 52.63 10 

INTJ 100 100 100 2 100 50.00 66.67 1 100 50.00 66.67 1 

LST 0 0 0 0 0 0 0 0 0 0 0 0 

NP 91.38 91.01 91.19 12372 94.09 93.87 93.98 12393 94.44 94.13 94.29 12381 

PP 96.71 97.15 96.93 4833 96.47 98.17 97.31 4896 96.84 98.03 97.43 4870 

PRT 76.79 81.13 78.9 112 77.68 82.08 79.82 112 78.85 77.36 78.10 104 

SBAR 85.82 83.74 84.77 522 89.49 85.98 87.70 514 88.10 85.79 86.93 521 

VP 91.64 90.58 91.10 4604 93.33 93.09 93.21 4646 93.78 94.18 93.98 4678 

All 91.91 90.79 91.34 23562 93.61 93.35 93.48 23786 93.99 93.82 93.90 23807 

Accuracy 
   

94.61 
   

95.84 
   

96.12 

 

Table 3. Detailed chunking results for the English shallow parsing task

Column found in Table 3 gives the total num-

ber of phrases annotated by the system (correct 

or incorrect). Accuracy is the percentage of cor-

rect guesses at the token level. 

First, we recall that the state-of-the art system 

of Lee and Wu (2007) reached a 94.22% F-

measure using Brill part-of-speech tags. Compa-

rably, our system performs reasonably well when 

using the same tags (Brill: F-measure 93.90%), 

considering that it was not subject to any refine-

ments. Without any POS information, the system 

already achieves a high F-measure (91.34%). 

We observe a 2% overall gain of P50 (F-

measure 93.48%) over NoPOS, and a drop from 

Brill inferior to 0.5%. P50 beats Brill on a few 

categories, although not substantially: conjunc-

tions, particles, and subordinating conjunctions. 

Its performances are very close to Brill on the 4 

most frequent chunk types: adverb phrases, noun 

phrases, prepositional phrases, and verb phrases. 

These results incidentally suggest a great poten-

tial of the approach for noun phrase chunking, 

for which state-of-the-art systems reach about 

96.8% F-measure (Araujo and Serrano, 2008). 

The category of adjective phrases is the most 

difficult. Although significantly improving the 

recall of NoPOS, the F-measure for P50 lies ex-

actly between NoPOS and Brill.  

 

Looking into the test corpus 

We examined the output test corpus to explain 

the differences between the unsupervised ap-

proach (P50) and the supervised approach (Brill). 

The accuracies tell us that on 47,377 tokens, Brill 

correctly tagged 130 tokens more than P50. 

Looking specifically at the 2,808 tokens that 

were unknown to the pseudo-POS tagger, Brill 

correctly tagged 16 tokens more than P50. Un-

known words thus only account for 12% of the 

130-token advantage. 

The major sources of disagreement on chunks 

are shown in Table 4. These account for more 

than half the 130-token difference. It shows for 

instance that in cases where Brill chose B-NP 

and P50 chose I-NP, Brill was correct for 15 to-

kens more than P50. We observe that P50 tends 

to annotate too long noun and verb phrases (P50: 

incorrect I-NP and I-VP). It also shows more 

difficulties finding the beginning of verb and 

adjective phrases (Brill: B-VP and B-ADJP). 

Finally, we examined the Brill parts of speech 

of misclassified chunks on which Brill and P50 

disagreed (see Table 5). P50 mostly fails on ad-

jectives and adverbs. Yet it better classifies IN 

tokens (preposition, subordinating conjunction). 

Brill P50 Brill correct P50 correct Diff 

B-NP I-NP 79 64 15 

B-VP B-PP 21 9 12 

B-ADJP B-ADVP 17 6 11 

B-ADJP B-VP 11 0 11 

B-ADVP I-NP 11 2 9 

B-VP B-NP 26 17 9 

B-VP I-VP 20 11 9 

Table 4. Disagreement between Brill and P50 

on a few chunks 

Brill POS Brill correct P50 correct Diff 

JJ 87 49 38 

RB 74 46 28 

TO 34 21 13 

VBG 37 26 11 

VB 22 13 9 

CC 56 49 7 

IN 39 53 -14 

Table 5. Disagreement between Brill and P50 

on a few parts of speech 
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4.2 Training Corpus Size 

Corpora such as the CoNLL’2000 dataset are 

expensive to produce and not yet available for 

many languages. Therefore we were interested in 

the evolution of performances with the size of 

the training corpus. We repeated the experiments 

from previous section on corpus sizes ranging 

from 1% (approximately 90 sentences) to 100% 

(approximately 9000 sentences). All systems 

were tested on the CoNLL test set. Each experi-

ment was run on 20 different splits of the train-

ing corpus (except for the full corpus). 

In addition, we wanted to take into account the 

difficulty of compiling large monolingual corpo-

ra in some languages. We therefore also tested 

the method using a much smaller corpus for POS 

induction training. It contains a subset of 1 mil-

lion words from the newstrain-08 corpus, as op-

posed to 500 million for the full corpus (see Sec-

tion 3.1). In this experiment we also set the num-

ber of pseudo-POS clusters to 50. 

Figure 2 shows the F-measures for varying 

sizes of the training corpus on the abscissa on a 

logarithmic scale. The four curves correspond to 

the following taggers: Brill, pseudo POS tagger 

trained on the full newstrain-08 corpus (P50), 

pseudo POS tagger trained on the smaller new-

strain corpus (P50m), and no tagger (NoPOS). 

Each point denotes the mean of the 20 runs. To 

give an insight of the variation in F-measure 

across all runs, we added box plots on the P50 

curve. Each box is centered on the median of the 

runs. Half the points lie between its lower and 

upper sides. The whiskers extend to the most 

extreme data point which is no more than 1.5 

times the height of the box away from the box.  

We observe a significant improvement of our 

POS-induction-based systems over the baseline 

(NoPOS), especially for smaller training corpora. 

For a 1% sample of the CoNLL corpus, the F-

measures are approximately 65% only for the 

baseline (NoPOS), 78% for the unsupervised 

systems (P50 and P50m) and 83.5% in the su-

pervised setting (Brill). 

A 90% F-measure is achieved starting from 

10% of the training corpus by Brill, and starting 

from 20% by P50. More generally, the unsuper-

vised system needs a little more than twice as 

much annotated data as the supervised system to 

achieve a similar F-measure. 

With less than 200 sentences (2% sample), the 

unsupervised system almost achieves 83% F-

measure, which is only achieved by the baseline 

starting from 900 sentences (10% sample). 

 
Figure 2. F-measure depending on the training 

corpus sample size and on the POS tagger 

Finally, we notice that P50 and P50m get very 

close results, despite the fact that their pseudo 

POS taggers have been trained on 500M tokens 

and 1M tokens respectively. This result validates 

the approach for the case where only relatively 

small raw text corpora are available for training 

the pseudo POS tagger. This finding could be 

highly valuable for resource-scarce languages. 

4.3 Number of pseudo-POS clusters 

Some POS induction algorithms have the advan-

tage over supervised POS tagging to easily adapt 

the number of word classes to the task. 

Biemann (2010) conjectures for the same 

chunking task that results could be significantly 

improved with a smaller cluster number. To veri-

fy this hypothesis, we trained several pseudo-

POS taggers with a cluster number between 10 

and 200. Similarly to the experiments reported in 

the previous section, we evaluate the systems on 

varying sizes of the CoNLL training corpus
10

.  

Results are presented in Figure 3. From 10 to 

50 clusters, performances increase with the num-

ber of clusters for all sizes of the training corpus. 

By contrast, P100 and P200 only improve over 

P50 for corpus sizes superior to 10%, which 

represents about 900 sentences. This can be attri-

buted to the sparseness of pseudo POS tags in 

small training sets. We conclude that for small 

training corpus sizes, the number of pseudo-POS 

tags should be chosen carefully. On the whole, 

the F-measures vary in a 5.3% interval for a 1% 

sample, and in a 1.1% interval for the full corpus. 

                                                 
10 Again, 20 runs for each size of the training corpus 
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Figure 3. F-measure depending on the 

CoNLL’2000 training corpus sample size 

for a varying number of pseudo-POS clusters 

The F-measures obtained using the full train-

ing dataset are: 93.6 (P200), 93.34 (P100), 93.48 

(P50), 92.97 (P30), 92.72 (P20), and 92.53 (P10). 

They were 91.34 for the baseline and 93.9 for 

Brill (see Table 3): even 10 pseudo-POS clusters 

are sufficient to beat the baseline, and this is va-

lid for all sizes of the training corpus.  

4.4 CRF Feature Selection 

In the last experiment we tested CRF feature 

pruning. The idea is to select the features appear-

ing at least   times in the training corpus. This 

was motivated by Goldberg and Elhadad (2009), 

who explored the importance of lexical features 

in shallow parsing and other sequence labeling 

tasks. The performance of their anchored SVM 

system only decreased from 93.69% to 93.12% 

with heavy pruning (     ), while the base-

line dropped from 93.73% to 91.83%. In addi-

tion, they showed comparable performances be-

tween heavily pruned models and full models 

when tested on out-of-domain data. 

As in Goldberg and Elhadad (2009), we set the 

feature frequency threshold to values ranging 

from 1 to 100. Each experiment was run only 

once using the whole CoNLL training corpus. 

Figure 4 shows that the supervised part-of-

speech tagging system is the most robust to fea-

ture pruning. It loses less than 1% for      . 

In comparison, the baseline NoPOS loses 4.3%. 

This indicates a strong dependency to the domain 

of the training corpus.  

 

 
Figure 4. F-measure for various 

CRF feature pruning thresholds 

The unsupervised systems resist quite well to 

feature pruning for      , losing 1.1% and 

1.6% F-measure for 200 and 50 clusters. P50 

models have around 350,000 features for    
  and 5,100 features only for      , while the 

baseline keeps from 270,000 to 2,200 features. 

As in Goldberg and Elhadad (2009), it will be 

interesting to test the pruned models on out-of-

domain corpora, and see how POS induction-

based systems behave in comparison to systems 

relying on accurate part-of-speech information. 

5 Conclusion and Future Work 

In this paper, we study the contribution of part-

of-speech induction to shallow parsing. The gen-

eral context of our work is the automatic treat-

ment of minority languages for which few lin-

guistic resources are available, though we expe-

rimented on English only. Our constraint is the 

lack of any POS tagger. The experiments were 

carried out on the standard English CoNLL’2000 

dataset, which allowed extensive experiments 

and explicit comparison to related work. We 

used Clark (2003)’s tool for the POS induction 

step and CRF++ for the shallow parsing train and 

test steps. Results show a significant advantage 

of POS-induction-based systems over a baseline 

which uses lexical features only. 

In the future, we intend to apply these tech-

niques to both shallow parsing and noun phrase 

chunking for minority languages. This will re-

quire the constitution of annotated corpora for 

training and testing. This paper shows that, for 

English, a corpus of 1 M words for POS induc-

tion, as well as a few hundred annotated sen-

tences are enough to obtain interesting perfor-

mances. If this could be proved on other lan-
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guages, it could be a very interesting point to 

manage NLP for resource-scarce languages. 
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