
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 617–622,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Turning on the Turbo: Fast Third-Order Non-Projective Turbo Parsers

André F. T. Martins∗† Miguel B. Almeida∗† Noah A. Smith#

∗Priberam Labs, Alameda D. Afonso Henriques, 41, 2o, 1000-123 Lisboa, Portugal
†Instituto de Telecomunicações, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
#School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{atm,mba}@priberam.pt, nasmith@cs.cmu.edu

Abstract

We present fast, accurate, direct non-
projective dependency parsers with third-
order features. Our approach uses AD3,
an accelerated dual decomposition algo-
rithm which we extend to handle special-
ized head automata and sequential head
bigram models. Experiments in fourteen
languages yield parsing speeds competi-
tive to projective parsers, with state-of-
the-art accuracies for the largest datasets
(English, Czech, and German).

1 Introduction

Dependency parsing has become a prominent ap-
proach to syntax in the last few years, with in-
creasingly fast and accurate models being devised
(Kübler et al., 2009; Huang and Sagae, 2010;
Zhang and Nivre, 2011; Rush and Petrov, 2012).

In projective parsing, the arcs in the dependency
tree are constrained to be nested, and the problem
of finding the best tree can be addressed with dy-
namic programming. This results in cubic-time
decoders for arc-factored and sibling second-order
models (Eisner, 1996; McDonald and Pereira,
2006), and quartic-time for grandparent models
(Carreras, 2007) and third-order models (Koo and
Collins, 2010). Recently, Rush and Petrov (2012)
trained third-order parsers with vine pruning cas-
cades, achieving runtimes only a small factor
slower than first-order systems. Third-order fea-
tures have also been included in transition systems
(Zhang and Nivre, 2011) and graph-based parsers
with cube-pruning (Zhang and McDonald, 2012).

Unfortunately, non-projective dependency
parsers (appropriate for languages with a more
flexible word order, such as Czech, Dutch, and
German) lag behind these recent advances. The
main obstacle is that non-projective parsing is
NP-hard beyond arc-factored models (McDonald

and Satta, 2007). Approximate parsers have there-
fore been introduced, based on belief propagation
(Smith and Eisner, 2008), dual decomposition
(Koo et al., 2010), or multi-commodity flows
(Martins et al., 2009, 2011). These are all in-
stances of turbo parsers, as shown by Martins et
al. (2010): the underlying approximations come
from the fact that they run global inference in
factor graphs ignoring loop effects. While this
line of research has led to accuracy gains, none of
these parsers use third-order contexts, and their
speeds are well behind those of projective parsers.

This paper bridges the gap above by presenting
the following contributions:

• We apply the third-order feature models of Koo
and Collins (2010) to non-projective parsing.

• This extension is non-trivial since exact dy-
namic programming is not applicable. Instead,
we adapt AD3, the dual decomposition algo-
rithm proposed by Martins et al. (2011), to han-
dle third-order features, by introducing special-
ized head automata.

• We make our parser substantially faster than the
many-components approach of Martins et al.
(2011). While AD3 requires solving quadratic
subproblems as an intermediate step, recent re-
sults (Martins et al., 2012) show that they can be
addressed with the same oracles used in the sub-
gradient method (Koo et al., 2010). This enables
AD3 to exploit combinatorial subproblems like
the the head automata above.

Along with this paper, we provide a free distribu-
tion of our parsers, including training code.1

2 Dependency Parsing with AD3

Dual decomposition is a class of optimization
techniques that tackle the dual of combinatorial

1Released as TurboParser 2.1, and publicly available at
http://www.ark.cs.cmu.edu/TurboParser.

617

Figure 1: Parts considered in this paper. First-
order models factor over arcs (Eisner, 1996; Mc-
Donald et al., 2005), and second-order models in-
clude also consecutive siblings and grandparents
(Carreras, 2007). Our parsers add also arbitrary
siblings (not necessarily consecutive) and head bi-
grams, as in Martins et al. (2011), in addition
to third-order features for grand- and tri-siblings
(Koo and Collins, 2010).

problems in a modular and extensible manner (Ko-
modakis et al., 2007; Rush et al., 2010). In this
paper, we employ alternating directions dual de-
composition (AD3; Martins et al., 2011). Like
the subgradient algorithm of Rush et al. (2010),
AD3 splits the original problem into local sub-
problems, and seeks an agreement on the over-
lapping variables. The difference is that the AD3

subproblems have an additional quadratic term to
accelerate consensus. Recent analysis (Martins et
al., 2012) has shown that: (i) AD3 converges at
a faster rate,2 and (ii) the quadratic subproblems
can be solved using the same combinatorial ma-
chinery that is used in the subgradient algorithm.
This opens the door for larger subproblems (such
as the combination of trees and head automata in
Koo et al., 2010) instead of a many-components
approach (Martins et al., 2011), while still enjoy-
ing faster convergence.

2.1 Our Setup

Given a sentence with L words, to which we
prepend a root symbol $, let A := {〈h,m〉 | h ∈
{0, . . . , L}, m ∈ {1, . . . , L}, h 6= m} be the
set of possible dependency arcs. We parame-
terize a dependency tree via an indicator vector
u := 〈ua〉a∈A, where ua is 1 if the arc a is in the
tree, and 0 otherwise, and we denote by Y ⊆ R|A|
the set of such vectors that are indicators of well-

2Concretely, AD3 needs O(1/ε) iterations to converge to
a ε-accurate solution, while subgradient needs O(1/ε2).

formed trees. Let {As}Ss=1 be a cover of A, where
each As ⊆ A. We assume that the score of a parse
tree u ∈ Y decomposes as f(u) :=

∑S
s=1 fs(zs),

where each zs := 〈zs,a〉a∈As is a “partial view” of
u, and each local score function fs comes from a
feature-based linear model.

Past work in dependency parsing considered ei-
ther (i) a few “large” components, such as trees
and head automata (Smith and Eisner, 2008; Koo
et al., 2010), or (ii) many “small” components,
coming from a multi-commodity flow formulation
(Martins et al., 2009, 2011). Let Ys ⊆ R|As| de-
note the set of feasible realizations of zs, i.e., those
that are partial views of an actual parse tree. A tu-
ple of views 〈z1, . . . ,zS〉 ∈

∏S
s=1 Ys is said to be

globally consistent if zs,a = zs′,a holds for every
a, s and s′ such that a ∈ As∩As′ . We assume each
parse u ∈ Y corresponds uniquely to a globally
consistent tuple of views, and vice-versa. Follow-
ing Martins et al. (2011), the problem of obtaining
the best-scored tree can be written as follows:

maximize
∑S

s=1 fs(zs)

w.r.t. u ∈ R|A|, zs ∈ Ys, ∀s
s.t. zs,a = ua, ∀s, ∀a ∈ As, (1)

where the equality constraint ensures that the par-
tial views “glue” together to form a coherent parse
tree.3

2.2 Dual Decomposition and AD3

Dual decomposition methods dualize out the
equality constraint in Eq. 1 by introducing La-
grange multipliers λs,a. In doing so, they solve a
relaxation where the combinatorial sets Ys are re-
placed by their convex hulls Zs := conv(Ys).4 All
that is necessary is the following assumption:
Assumption 1 (Local-Max Oracle). Every s ∈
{1, . . . , S} has an oracle that solves efficiently any
instance of the following subproblem:

maximize fs(zs) +
∑

a∈As
λs,azs,a

w.r.t. zs ∈ Ys. (2)

Typically, Assumption 1 is met whenever the max-
imization of fs over Ys is tractable, since the ob-
jective in Eq. 2 just adds a linear function to fs.

3Note that any tuple 〈z1, . . . , zS〉 ∈
∏S

s=1 Ys satisfying
the equality constraints will be globally consistent; this fact,
due the assumptions above, will imply u ∈ Y.

4Let ∆|Ys| := {α ∈ R|Ys| |α ≥ 0,
∑

ys∈Ys
αys

= 1}
be the probability simplex. The convex hull of Ys is the set
conv(Ys) := {∑ys∈Ys

αys
ys | α ∈ ∆|Ys|}. Its members

represent marginal probabilities over the arcs in As.

618

The AD3 algorithm (Martins et al., 2011) alter-
nates among the following iterative updates:

• z-updates, which decouple over s = 1, . . . , S,
and solve a penalized version of Eq. 2:

z(t+1)
s := argmax

zs∈Zs

fs(zs) +
∑

a∈As
λ
(t)
s,azs,a

−ρ
2

∑
a∈As

(zs,a − u(t)a)2. (3)

Above, ρ is a constant and the quadratic term
penalizes deviations from the current global so-
lution (stored in u(t)).5 We will see (Prop. 2)
that this problem can be solved iteratively using
only the Local-Max Oracle (Eq. 2).

• u-updates, a simple averaging operation:

u(t+1)
a := 1

|{s : a∈As}|
∑

s : a∈As
z
(t+1)
s,a . (4)

• λ-updates, where the Lagrange multipliers are
adjusted to penalize disagreements:

λ(t+1)
s,a := λ(t)s,a − ρ(z(t+1)

s,a − u(t+1)
a). (5)

In sum, the only difference between AD3 and
the subgradient method is in the z-updates, which
in AD3 require solving a quadratic problem.
While closed-form solutions have been developed
for some specialized components (Martins et al.,
2011), this problem is in general more difficult
than the one arising in the subgradient algorithm.
However, the following result, proved in Martins
et al. (2012), allows to expand the scope of AD3

to any problem which satisfies Assumption 1.
Proposition 2. The problem in Eq. 3 admits a
solution z∗s which is spanned by a sparse basis
W ⊆ Ys with cardinality at most |W| ≤ O(|As|).
In other words, there is a distribution α with sup-
port in W such that z∗s =

∑
ys∈W αys

ys.
6

Prop. 2 has motivated an active set algorithm
(Martins et al., 2012) that maintains an estimate
of W by iteratively adding and removing elements
computed through the oracle in Eq. 2.7 Typically,
very few iterations are necessary and great speed-
ups are achieved by warm-starting W with the ac-
tive set computed in the previous AD3 iteration.
This has a huge impact in practice and is crucial to
obtain the fast runtimes in §4 (see Fig. 2).

5In our experiments (§4), we set ρ = 0.05.
6Note that |Ys| = O(2|As|) in general. What Prop. 2

tells us is that the solution of Eq. 3 can be represented as a
distribution over Ys with a very sparse support.

7The algorithm is a specialization of Nocedal and Wright
(1999), §16.4, which effectively exploits the sparse represen-
tation of z∗s . For details, see Martins et al. (2012).

0 10 20 30 40 50
sentence length (words)

0.00

0.10

0.20

a
v
e
ra
g
e
ru
n
ti
m
e
(s
e
c.
)

AD3

Subgrad.

Figure 2: Comparison between AD3 and subgra-
dient. We show averaged runtimes in PTB §22 as
a function of the sentence length. For subgradi-
ent, we chose for each sentence the most favorable
stepsize in {0.001, 0.01, 0.1, 1}.

3 Solving the Subproblems

We next describe the actual components used in
our third-order parsers.

Tree component. We use an arc-factored score
function (McDonald et al., 2005): f TREE(z) =∑L

m=1 σARC(π(m),m), where π(m) is the parent
of the mth word according to the parse tree z,
and σARC(h,m) is the score of an individual arc.
The parse tree that maximizes this function can be
found in time O(L3) via the Chu-Liu-Edmonds’
algorithm (Chu and Liu, 1965; Edmonds, 1967).8

Grand-sibling head automata. Let Ain
h and

Aout
h denote respectively the sets of incoming and

outgoing candidate arcs for the hth word, where
the latter subdivides into arcs pointing to the right,
Aout
h,→, and to the left, Aout

h,←. Define the sets
AGSIB
h,→ = Ain

h ∪Aout
h,→ andAGSIB

h,← = Ain
h ∪Aout

h,←. We
describe right-side grand-sibling head automata;
their left-side counterparts are analogous. For
each head word h in the parse tree z, define
g := π(h), and let 〈m0,m1, . . . ,mp+1〉 be the se-
quence of right modifiers of h, with m0 = START

and mp+1 = END. Then, we have the following
grand-sibling component:

fGSIB
h,→ (z|AGSIB

h,→
) =

∑p+1
k=1

(
σSIB(h,mk−1,mk)

σGP(g, h,mk) + σGSIB(g, h,mk−1,mk)
)
,

where we use the shorthand z|B to denote the
subvector of z indexed by the arcs in B ⊆ A.
Note that this score function absorbs grandparent
and consecutive sibling scores, in addition to the
grand-sibling scores.9 For each h, fGSIB

h,→ can be

8In fact, there is an asymptotically fasterO(L2) algorithm
(Tarjan, 1977). Moreover, if the set of possible arcs is reduced
to a subset B ⊆ A (via pruning), then the fastest known al-
gorithm (Gabow et al., 1986) runs in O(|B|+L logL) time.

9Koo et al. (2010) used an identical automaton for their
second-order model, but leaving out the grand-sibling scores.

619

No pruning |Ain
m| ≤ K same, + |Aout

h | ≤ J
TREE O(L2) O(KL+ L logL) O(KL+ L logL)
GSIB O(L4) O(K2L2) O(JK2L)
TSIB O(L4) O(KL3) O(J2KL)
SEQ O(L3) O(K2L) O(K2L)

ASIB O(L3) O(KL2) O(JKL)

Table 1: Theoretical runtimes of each subproblem
without pruning, limiting the number of candidate
heads, and limiting (in addition) the number of
modifiers. Note the O(L logL) total runtime per
AD3 iteration in the latter case.

maximized in time O(L3) with dynamic program-
ming, yielding O(L4) total runtime.

Tri-sibling head automata. In addition, we de-
fine left and right-side tri-sibling head automata
that remember the previous two modifiers of a
head word. This corresponds to the following
component function (for the right-side case):

f TSIB
h,→ (z|Aout

h,→
) =

∑p+1
k=2 σTSIB(h,mk−2,mk−1,mk).

Again, each of these functions can be maximized
in time O(L3), yielding O(L4) runtime.

Sequential head bigram model. Head bigrams
can be captured with a simple sequence model:

f SEQ(z) =
∑L

m=2 σHB(m,π(m), π(m− 1)).

Each score σHB(m,h, h
′) is obtained via features

that look at the heads of consecutive words (as in
Martins et al. (2011)). This function can be maxi-
mized in time O(L3) with the Viterbi algorithm.

Arbitrary siblings. We handle arbitrary siblings
as in Martins et al. (2011), definingO(L3) compo-
nent functions of the form fASIB

h,m,s(z〈h,m〉, z〈h,s〉) =
σASIB(h,m, s). In this case, the quadratic problem
in Eq. 3 can be solved directly in constant time.

Tab. 1 details the time complexities of each sub-
problem. Without pruning, each iteration of AD3

has O(L4) runtime. With a simple strategy that
limits the number of candidate heads per word to
a constant K, this drops to cubic time.10 Further
speed-ups are possible with more pruning: by lim-
iting the number of possible modifiers to a con-
stant J , the runtime would reduce to O(L logL).

10In our experiments, we employed this strategy withK =
10, by pruning with a first-order probabilistic model. Fol-
lowing Koo and Collins (2010), for each word m, we also
pruned away incoming arcs 〈h,m〉 with posterior probability
less than 0.0001 times the probability of the most likely head.

UAS Tok/sec
PTB-YM §22, 1st ord 91.38 4,063
PTB-YM §22, 2nd ord 93.15 1,338
PTB-YM §22, 2nd ord, +ASIB, +HB 93.28 1,018
PTB-YM §22, 3rd ord 93.29 709
PTB-YM §22, 3rd ord, gold tags 94.01 722
This work (PTB-YM §23, 3rd ord) 93.07 735
Koo et al. (2010) 92.46 112†

Huang and Sagae (2010) 92.1– 587†

Zhang and Nivre (2011) 92.9– 680†

Martins et al. (2011) 92.53 66†

Zhang and McDonald (2012) 93.06 220
This work (PTB-S §23, 3rd ord) 92.82 604
Rush and Petrov (2012) 92.7– 4,460

Table 2: Results for the projective English dataset.
We report unlabeled attachment scores (UAS) ig-
noring punctuation, and parsing speeds in tokens
per second. Our speeds include the time necessary
for pruning, evaluating features, and decoding, as
measured on a Intel Core i7 processor @3.4 GHz.
The others are speeds reported in the cited papers;
those marked with † were converted from times per
sentence.

4 Experiments

We first evaluated our non-projective parser in a
projective English dataset, to see how its speed and
accuracy compares with recent projective parsers,
which can take advantage of dynamic program-
ming. To this end, we converted the Penn Tree-
bank to dependencies through (i) the head rules
of Yamada and Matsumoto (2003) (PTB-YM) and
(ii) basic dependencies from the Stanford parser
2.0.5 (PTB-S).11 We trained by running 10 epochs
of cost-augmented MIRA (Crammer et al., 2006).
To ensure valid parse trees at test time, we rounded
fractional solutions as in Martins et al. (2009)—
yet, solutions were integral ≈ 95% of the time.

Tab. 2 shows the results in the dev-set (top
block) and in the test-set (two bottom blocks). In
the dev-set, we see consistent gains when more ex-
pressive features are added, the best accuracies be-
ing achieved with the full third-order model; this
comes at the cost of a 6-fold drop in runtime com-
pared with a first-order model. By looking at the
two bottom blocks, we observe that our parser
has slightly better accuracies than recent projec-
tive parsers, with comparable speed levels (with
the exception of the highly optimized vine cascade
approach of Rush and Petrov, 2012).

11We train on sections §02–21, use §22 as validation data,
and test on §23. We trained a simple 2nd-order tagger with
10-fold jackknifing to obtain automatic part-of-speech tags
for §22–23, with accuracies 97.2% and 96.9%, respectively.

620

First Ord. Sec. Ord. Third Ord. Best published UAS RP12 ZM12
UAS Tok/sec UAS Tok/sec UAS Tok/sec UAS Tok/sec UAS Tok/sec UAS

Arabic 77.23 2,481 78.50 388 79.64 197 81.12 - Ma11 - - -
Bulgarian 91.76 5,678 92.82 2,049 93.10 1,273 93.50 - Ma11 91.9 3,980 93.08
Chinese 88.49 18,094 90.14 4,284 89.98 2,592 91.89 - Ma10 90.9 7,800 -
Czech 87.66 1,840 90.00 751 90.32 501 89.46 - Ma11 - - -
Danish 89.42 4,110 91.20 1,053 91.48 650 91.86 - Ma11 - -
Dutch 83.61 3,884 86.37 1,294 86.19 599 85.81 121 Ko10 - - -
German 90.52 5,331 91.85 1,788 92.41 965 91.89 - Ma11 90.8 2,880 91.35
English 91.21 3,127 93.03 1,317 93.22 785 92.68 - Ma11 - - -
Japanese 92.78 23,895 93.14 5,660 93.52 2,996 93.72 - Ma11 92.3 8,600 93.24
Portuguese 91.14 4,273 92.71 1,316 92.69 740 93.03 79 Ko10 91.5 2,900 91.69
Slovene 82.81 4,315 85.21 722 86.01 366 86.95 - Ma11 - - -
Spanish 83.61 4,347 84.97 623 85.59 318 87.48 - ZM12 - - 87.48
Swedish 89.36 5,622 90.98 1,387 91.14 684 91.44 - ZM12 90.1 5,320 91.44
Turkish 75.98 6,418 76.50 1,721 76.90 793 77.55 258 Ko10 - - -

Table 3: Results for the CoNLL-2006 datasets and the non-projective English dataset of CoNLL-2008.
“Best Published UAS” includes the most accurate parsers among Nivre et al. (2006), McDonald et al.
(2006), Martins et al. (2010, 2011), Koo et al. (2010), Rush and Petrov (2012), Zhang and McDonald
(2012). The last two are shown separately in the rightmost columns.

In our second experiment (Tab. 3), we used 14
datasets, most of which are non-projective, from
the CoNLL 2006 and 2008 shared tasks (Buch-
holz and Marsi, 2006; Surdeanu et al., 2008).
Our third-order model achieved the best reported
scores for English, Czech, German, and Dutch—
which includes the three largest datasets and the
ones with the most non-projective dependencies—
and is on par with the state of the art for the
remaining languages. To our knowledge, the
speeds are the highest reported among higher-
order non-projective parsers, and only about 3–
4 times slower than the vine parser of Rush and
Petrov (2012), which has lower accuracies.

5 Conclusions

We presented new third-order non-projective
parsers which are both fast and accurate. We de-
coded with AD3, an accelerated dual decomposi-
tion algorithm which we adapted to handle large
components, including specialized head automata
for the third-order features, and a sequence model
for head bigrams. Results are above the state of
the art for large datasets and non-projective lan-
guages. In the hope that other researchers may find
our implementation useful or are willing to con-
tribute with further improvements, we made our
parsers publicly available as open source software.

Acknowledgments

We thank all reviewers for their insightful com-
ments and Lingpeng Kong for help in converting
the Penn Treebank to Stanford dependencies. This

work was partially supported by the EU/FEDER
programme, QREN/POR Lisboa (Portugal), under
the Intelligo project (contract 2012/24803), by a
FCT grant PTDC/EEI-SII/2312/2012, and by NSF
grant IIS-1054319.

References
S. Buchholz and E. Marsi. 2006. CoNLL-X shared

task on multilingual dependency parsing. In Inter-
national Conference on Natural Language Learn-
ing.

X. Carreras. 2007. Experiments with a higher-order
projective dependency parser. In International Con-
ference on Natural Language Learning.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms. Journal of Machine Learning Research,
7:551–585.

J. Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards,
71B:233–240.

J. M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proc.
of International Conference on Computational Lin-
guistics, pages 340–345.

H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan.
1986. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs.
Combinatorica, 6(2):109–122.

621

L. Huang and K. Sagae. 2010. Dynamic programming
for linear-time incremental parsing. In Proc. of An-
nual Meeting of the Association for Computational
Linguistics, pages 1077–1086.

N. Komodakis, N. Paragios, and G. Tziritas. 2007.
MRF optimization via dual decomposition:
Message-passing revisited. In Proc. of International
Conference on Computer Vision.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. In Proc. of Annual Meeting of the
Association for Computational Linguistics, pages 1–
11.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and
D. Sontag. 2010. Dual decomposition for parsing
with non-projective head automata. In Proc. of Em-
pirical Methods for Natural Language Processing.

S. Kübler, R. McDonald, and J. Nivre. 2009. Depen-
dency parsing. Morgan & Claypool Publishers.

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In Proc. of Annual Meeting
of the Association for Computational Linguistics.

A. F. T. Martins, N. A. Smith, E. P. Xing, M. A. T.
Figueiredo, and P. M. Q. Aguiar. 2010. Turbo
parsers: Dependency parsing by approximate vari-
ational inference. In Proc. of Empirical Methods for
Natural Language Processing.

A. F. T. Martins, N. A. Smith, P. M. Q. Aguiar, and
M. A. T. Figueiredo. 2011. Dual decomposition
with many overlapping components. In Proc. of Em-
pirical Methods for Natural Language Processing.

A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar,
N. A. Smith, and E. P. Xing. 2012. Alternat-
ing directions dual decomposition. Arxiv preprint
arXiv:1212.6550.

R. T. McDonald and F. C. N. Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc. of Annual Meeting of the European
Chapter of the Association for Computational Lin-
guistics.

R. McDonald and G. Satta. 2007. On the complex-
ity of non-projective data-driven dependency pars-
ing. In Proc. of International Conference on Parsing
Technologies.

R. T. McDonald, F. Pereira, K. Ribarov, and J. Ha-
jic. 2005. Non-projective dependency parsing us-
ing spanning tree algorithms. In Proc. of Empirical
Methods for Natural Language Processing.

R. McDonald, K. Lerman, and F. Pereira. 2006. Mul-
tilingual dependency analysis with a two-stage dis-
criminative parser. In Proc. of International Confer-
ence on Natural Language Learning.

J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov.
2006. Labeled pseudo-projective dependency pars-
ing with support vector machines. In Procs. of In-
ternational Conference on Natural Language Learn-
ing.

J. Nocedal and S. J. Wright. 1999. Numerical opti-
mization. Springer-Verlag.

Alexander M Rush and Slav Petrov. 2012. Vine prun-
ing for efficient multi-pass dependency parsing. In
Proc. of Conference of the North American Chapter
of the Association for Computational Linguistics.

A. Rush, D. Sontag, M. Collins, and T. Jaakkola. 2010.
On dual decomposition and linear programming re-
laxations for natural language processing. In Proc.
of Empirical Methods for Natural Language Pro-
cessing.

D. Smith and J. Eisner. 2008. Dependency parsing by
belief propagation. In Proc. of Empirical Methods
for Natural Language Processing.

M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez,
and J. Nivre. 2008. The CoNLL-2008 shared task
on joint parsing of syntactic and semantic dependen-
cies. Proc. of International Conference on Natural
Language Learning.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7(1):25–36.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
Proc. of International Conference on Parsing Tech-
nologies.

H. Zhang and R. McDonald. 2012. Generalized
higher-order dependency parsing with cube pruning.
In Proc. of Empirical Methods in Natural Language
Processing.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features. In Proc.
of the Annual Meeting of the Association for Com-
putational Linguistics.

622

