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Abstract

In this article we address the task of auto-
matic text structuring into linear and non-
overlapping thematic episodes at a coarse
level of granularity. In particular, we
deal with topic segmentation on multi-party
meeting recording transcripts, which pose
specific challenges for topic segmentation
models. We present a comparative study
of two probabilistic mixture models. Based
on lexical features, we use these models in
parallel in order to generate a low dimen-
sional input representation for topic segmen-
tation. Our experiments demonstrate that in
this manner important information is cap-
tured from the data through less features.

1 Introduction

Some of the earliest research related to the prob-
lem of text segmentation into thematic episodes used
the word distribution as an intrinsic feature of texts
(Morris and Hirst, 1991). The studies of (Reynar,
1994; Hearst, 1997; Choi, 2000) continued in this
vein. While having quite different emphasis at dif-
ferent levels of detail (basically from the point of
view of the employed term weighting and/or the
adopted inter-block similarity measure), these stud-
ies analyzed the word distribution inside the texts
through the instrumentality of merely one feature,
i.e. the one-dimensional inter-block similarity.

More recent work use techniques from graph the-
ory (Malioutov and Barzilay, 2006) and machine
learning (Galley et al., 2003; Georgescul et al.,

2006; Purver et al., 2006) in order to find patterns
in vocabulary use.

We investigate new approaches for topic segmen-
tation on corpora containing multi-party dialogues,
which currently represents a relatively less explored
domain. Compared to other types of audio content
(e.g. broadcast news recordings), meeting record-
ings are less structured, often exhibiting a high de-
gree of participants spontaneity and there may be
overlap in finishing one topic while introducing an-
other. Moreover while ending the discussion on a
certain topic, there can be numerous new attempts
to introduce a new topic before it becomes the fo-
cus of the dialogue. Therefore, the task of automatic
topic segmentation of meeting recordings is more
difficult and requires a more refined analysis. (Gal-
ley et al., 2003; Georgescul et al., 2007) dealt with
the problem of topic segmentation of multiparty di-
alogues by combining various features based on cue
phrases, syntactic and prosodic information. In this
article, our investigation is based on using merely
lexical features.

We study mixture models in order to group the
words co-occurring in texts into a small number
of semantic concepts in an automatic unsupervised
way. The intuition behind these models is that a
text document has an underlying structure of “la-
tent” topics, which is hidden. In order to reveal
these latent topics, the basic assumption made is that
words related to a semantic concept tend to occur in
the proximity of each other. The notion of proxim-
ity between semantically related words can vary for
various tasks. For instance, bigrams can be consid-
ered to capture correlation between words at a very
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short distance. At the other extreme, in the domain
of document classification, it is often assumed that
the whole document is concerned with one specific
topic and in this sense all words in a document are
considered to be semantically related. We consider
for our application that words occurring in the same
thematic episode are semantically related.

In the following, the major issues we will discuss
include the formulations of two probabilistic mix-
ture approaches, their methodology, aspects of their
implementation and the results obtained when ap-
plied in the topic segmentation context. Section 2
presents our approach on using probabilistic mix-
ture models for topic segmentation and shows com-
parisons between these techniques. In Section 3 we
discuss our empirical evaluation of these models for
topic segmentation. Finally, some conclusions are
drawn in Section 4.

2 Probabilistic Mixture Models

The probabilistic latent models described in the fol-
lowing exploit hierarchical Bayesian frameworks.
Based on prior distributions of word rate variability
acquired from a training corpus, we will compute a
density function to further analyze the text content in
order to perform topic segmentation at a coarse level
of granularity. In this model, we will be working
with ‘blocks’ of text which consist of a fixed num-
ber of consecutive utterances.

In the following two subsections, we use the fol-
lowing notation:

• We consider a text corpusB = {b1, b2, ..., bM}
containingM blocks of text with words from
a vocabularyW = {w1, w2, ..., wN}. M is
a constant scalar representing the number of
blocks of text.N is a constant scalar represent-
ing the number of terms in vocabularyW.

• We pre-process the data by eliminating con-
tent free words such as articles, prepositions
and auxiliary verbs. Then, we proceed by lem-
matizing the remaining words and by adopt-
ing a bag-of-words representation. Next,
we summarize the data in a matrixF =
(f(bi, wi,j))(i,j)∈M×N , where f(bi, wi,j) de-
notes thelog.entropy weighted frequency of
wordwi,j in block bi.

• Each occurrence of a word in a block of
text is considered as representing an ob-
servation(wm,n, bm), i.e. a realization from
an underlying sequence of random variables
(Wm,n, Bm)1≤m≤M

1≤n≤N . wm,n denotes the term
indicator for then-th word in them-th block
of text.

• Each pair(wm,n, bm) is associated with a dis-
crete hidden random variableZm,n over some
finite setZ ={z1, z2, ..., zK}. K is a constant
scalar representing the number of mixture com-
ponents to generate.

• We denote byP (zm,n = zk) or simply by
P (zk) the probability that thek-th topic has
been sampled for then-th word in them-th
block of text.

2.1 Aspect Model for Dyadic Data (AMDD)

In this section we describe how we apply latent mod-
eling for dyadic data (Hofmann, 2001) to text repre-
sentation for topic segmentation.

2.1.1 Model Setting
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Figure 1: Graphical model representation of the as-
pect model.

We express the joint or conditional probability
of words and blocks of text, by assuming that the
choice of a word during the generation of a block
of text is independent of the block itself, given some
(unobserved) hidden variable, also calledlatentvari-
able oraspect.

The graphical representation of the AMDD data
generation process is illustrated in Figure 1 by using
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the plate notation. That is, the ovals (i.e. the nodes
of the graph) represent probabilistic variables. The
double ovals around the variableswm,n andbm de-
note observed variables.zm,n is the mixture indi-
cator, the hidden variable, that chooses the topic for
then-th word in them-th block of text. Arrows in-
dicate conditional dependencies between variables.
For instance, thewm,n variable in the word space
and thebm variable in the block space have no di-
rect dependencies, i.e. it is assumed that the choice
of words in the generation of a block of text is in-
dependent of the block given a hidden variable. The
boxes represent “plates”, i.e. replicates of sampling
steps with the variable in the lower left corner re-
ferring to the number of samples. For instance, the
“word plate” in Figure 1 illustratesN independently
and identically distributed repeated trials of the ran-
dom variablewm,n.

According to the topology of the asymmetric
AMDD Bayesian network from Figure 1, we can
specify the joint distribution of a wordwm,n, a latent
topic zk and a block of textbm: P (wm,n, zk, bm) =
P (bm) · P (zk|bm) · P (wm,n|zk). The joint distribu-
tion of a block of textbm and a wordwm,n is thus:

P (bm, wm,n) =
K∑

k=1

P (wm,n, zk, bm) = P (bm)

·
∑K

k=1 P (zk|bm)︸ ︷︷ ︸
mixing proportions

· P (wm,n|zk)︸ ︷︷ ︸
mixture components

(1)

Equation 1 describes a special case of a finite mix-
ture model, i.e. it uses a convex combination of a set
of component distributions to model the observed
data. That is, each word in a block of text is seen
as a sample from a mixture model, where mixture
components are multinomialsP (wm,n|zk) and the
mixing proportions areP (zk|bm).

2.1.2 Inferring and Employing the AMDD
Model

TheExpectation-Maximization (EM)algorithm is
the most popular method to estimate the parameters
for mixture models to fit a training corpus. The
EM algorithm for AMDD is based on iteratively
maximizing the log-likelihood function:LPLSA =∑M

m=1

∑N
n=1f(bm, wm,n) · logP (wm,n, bm). How-

ever, the EM algorithm for AMDD is prone to over-
fitting since the number of parameters to be esti-

mated grows linearly with the number of blocks of
text. In order to avoid this problem, we employed
the tempered version of the EM algorithm that has
been proposed by Hofmann (2001).

We use the density estimation method in AMDD
to reduce the dimension of the blocks-by-words
space. Thus, instead of using the words as ba-
sic units for each block of text representation, we
employ a “topic” basis, assuming that a few top-
ics will capture more information than the entire
huge amount of words in the vocabulary. Thus,
the m-th block of text is represented by the vector
(P (z1|bm), P (z2|bm), ..., P (zk|bm)). Then, we use
these posterior probabilities as a threshold to iden-
tify the boundaries of thematic episodes via sup-
port vector classification (Georgescul et al., 2006).
That is, we consider the topic segmentation task as a
binary-classification problem, where each utterance
should be classified as marking the presence or the
absence of a topic shift in the dialogue.

2.2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (Blei et al., 2003) can
be seen as an extension of AMDD by defining a
probabilistic mixture model that includes Dirichlet-
distributed priors over the masses of the multinomi-
alsP (w|z) andP (z|b).

2.2.1 Model Setting

In order to describe the formal setting of LDA in
our context, we use the following notation in addi-
tion to those given at the beginning of Section 2:

• ~θm is a parameter notation forP (z|b = bm),
the topic mixture proportion for them-th block
of text;

• ~α is a hyperparameter (a vector of dimension
K) on the mixing proportions~θm;

• Θ =
{

~θm

}M

m=1
is a matrix (of dimension

M × K), composed by placing the vectors
~θ1, ~θ2, ..., ~θM as column components;

• ~ϕk is a parameter notation forP (w|zk), the
mixture component for topick;

• ~β is a hyperparameter (a vector of dimension
N ) on the mixture components~ϕk ;
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• Φ = {~ϕk}K
k=1 is a matrix of dimension

K × N composed by placing the vectors
~ϕ1, ~ϕ2, ..., ~ϕK as column components;

• Nm denotes the length of them-th block of text
and is modeled with a Poisson distribution with
constant parameterξ;
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Figure2: Graphical model representation of latent
Dirichlet allocation.

LDA generates a stream of observable words
wm,n partitioned into blocks of text~bm as shown
by the graphical model in Figure 2. The Bayesian
network can be interpreted as follows: the variables
Φ, θ andz are the three sets of latent variables that
we would like to infer. The plate surrounding~ϕk il-
lustrates the repeated sampling of word distributions
for each topiczk until K topics have been generated.
The plate surrounding~θm illustrates the sampling of
a distribution over topics for each blockb for a to-
tal of M blocks of text. The inner plate overzm,n

andwm,n illustrates the repeated sampling of topics
and words untilNm words have been generated for
a block~bm.

Each block of text is first generated by drawing
a topic proportion~θm, i.e. by picking a distribution
over topics from a Dirichlet distribution. For each
wordwm,n from a block of text~bm, a topic indicator
k is sampled forzm,n according to the block-specific
mixture proportion~θm. That is, ~θm determines

P (zm,n). The topic probabilities~ϕk are also sam-
pled from a Dirichlet distribution. The words in each
block of text are then generated by using the corre-
sponding topic-specific term distribution~ϕzm,n .

Given the graphical representation of LDA illus-
trated in Figure 2, we can write the joint distribution
of a wordwm,n and a topiczk as:
P (wm,n, zk|~θm,Φ) = P (zk|~θm) · P (wm,n|~ϕk).
Summing overk, we obtain the marginal distribu-
tion:
P (wm,n|~θm,Φ) =

∑K
k=1

 P (zk|~θm)︸ ︷︷ ︸
mixture proportion

· P (wm,n|~ϕk)︸ ︷︷ ︸
mixture component

.

Hence, similarly to AMDD (see Equation 1), the
LDA model assumes that a wordwm,n is generated
from a random mixture over topics. Topic proba-
bilities are conditioned on the block of text a word
belongs to. Moreover LDA leaves flexibility to
assign a different topic to every observed word and
a different proportion of topics for every block of
text.

The joint distribution of a block of text~bm

and the latent variables of the model~zm, ~θm,
Φ, given the hyperparameters~α, ~β is further

specified by: P (~bm, ~zm, ~θm,Φ|~α, ~β) =

topic plate︷ ︸︸ ︷
P (Φ|~β) ·

P (~θm|~α) ·
Nm∏
n=1

word plate︷ ︸︸ ︷
P (zm,n|~θm) · P (wm,n|~ϕzm,n)︸ ︷︷ ︸

block plate

.

Therefore, the likelihood of a block~bm is derived
as the marginal distribution obtained by summing
over thezm,n and integrating out the distributions
~θm andΦ.

2.2.2 Inferring and Employing the LDA Model

Since the integral involved in computing the like-
lihood of a block~bm is computationally intractable,
several methods for approximating this posterior
have been proposed, including variational expecta-
tion maximization (Blei et al., 2003) and Markov
chain Monte Carlo methods (Griffiths and Steyvers,
2004).

We follow an approach based on Gibbs sampling
as proposed in (Griffiths and Steyvers, 2004). As
the convergence criteria for the Markov chain, we
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check how well the parameters cluster semantically
related blocks of text in a training corpus and then
we use these values as estimates for comparable set-
tings.

The LDA model provides a soft clustering of the
blocks of text, by associating them to topics. We
exploit this clustering information, by using the dis-
tribution of topics over blocks of text to further
measure the inter-blocks similarity. As in Section
2.1.2, the last step of our system consists in em-
ploying binary support vector classification to iden-
tify the boundaries of thematic episodes in the text.
That is, we consider as input features for support
vector learning the component values of the vector
(θm,z1 , θm,z2 , ..., θm,zk

).

3 Experiments

In order to evaluate the performance of AMDD and
LDA for our task of topic segmentation, in our ex-
periments we used the transcripts of ICSI-MR cor-
pus (Janin et al., 2004), which consists of75 meet-
ing recordings. A subset of25 meetings, which are
transcribed by humans and annotated with thematic
boundaries (Galley et al., 2003), has been kept for
testing purposes and support vector machine train-
ing. The transcripts of the remaining50 meetings
have been used for the unsupervised inference of
our latent models. The fitting phase of the mix-
ture models rely on the same data set that have been
pre-processed by tokenization, elimination of stop-
words and lemmatization.

Once the models’ parameters are learned, the in-
put data representation is projected into the lower
dimension latent semantic space. The evaluation
phase consists in checking the performance of each
model for predicting thematic boundaries. That is,
we check the performance of the models for predict-
ing thematic boundaries on the same test set. The
size of a block of text during the testing phase has
been set to one, i.e. each utterance has been consid-
ered as a block of text.

Figure 3 compares the performance obtained for
variousk values, i.e. various dimensions of the latent
semantic space, or equivalently different numbers of
latent topics. We have chosenk={50, ...400} using
incremental steps of50.

The performance of each latent model is mea-
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Figure 3: Results of applying the mixture models for
topic segmentation.

sured by the accuracyAcc = 1 − Pk, wherePk

denotes the error measure proposed by (Beeferman
et al., 1999). Note that thePk error allows for a
slight variation in where the hypothesized thematic
boundaries are placed. That is, wrong hypothesized
thematic boundaries occurring in the proximity of
a reference boundary (i.e. in a fixed-size interval of
text) are tolerated. As proposed by (Beeferman et
al., 1999), we set up the size of this interval to half
of the average number of words per segment in the
gold standard segmentation.

As we observe from Figure 3, LDA and AMDD
achieved rather comparable thematic segmenta-
tion accuracy. While LDA steadily outperformed
AMDD, the results do not show a notable advan-
tage of LDA over AMDD. In contrast, AMDD has
better performances for less dimensionality reduc-
tion. That is, the LDA performance curve goes down
when the number of latent topics exceeds over300.

LDA LCSeg SVMs
Pk errorrate 21% 32% 22%

Table 1: Comparative performance results.

In Table 1, we provide the best results obtained
on ICSI data via LDA modeling. We also reproduce
the results reported on in the literature by (Galley
et al., 2003) and (Georgescul et al., 2006), when
the evaluation of their systems was also done on
ICSI data. TheLCSegsystem proposed by (Gal-
ley et al., 2003) is based on exploiting merely lex-
ical features. Improved performance results have
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been obtained by (Galley et al., 2003) when extra
non-lexical features have been adopted in a decision
tree classifier. The system proposed by (Georges-
cul et al., 2006) is based on support vector machines
(SVMs) and is labeled in the table asSVMs. We
observe from the table that our approach based on
combining LDA modeling with SVM classification
outperformsLCSegand performs comparably to the
system of Georgescul et al. (2006). Thus, our exper-
iments show that the LDA word density estimation
approach does capture important information from
the data through 90% less features than a bag-of-
words representation.

4 Conclusions

With the goal of performing linear topic segmen-
tation by exploiting word distributions in the input
text, the focus of this article was on both comparing
theoretical aspects and experimental results of two
probabilistic mixture models. The algorithms are
applied to a meeting transcription data set and are
found to provide an appropriate method for reduc-
ing the size of the data representation, by perform-
ing comparably to previous state-of-the-art methods
for topic segmentation.
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