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Preface: General Chair

On behalf of the International Committee on Computational Linguistics, I am thrilled to welcome you
all to the 27th International Conference on Computational Linguistics (COLING 2018) here in Santa
Fe, New-Mexico. Many of you are too young to remember the last COLING that took place in North
America: it was actually the Montreal 1998 joint COLING-ACL conference. And indeed, most of you
are too young to remember the last COLING in the U.S.A. which (would you believe?) was held as far
back as 1984, also as a joint COLING-ACL conference. Moreover, the only other COLING that took
place in the U.S.A. was the very first one, chaired by David G. Hays back in 1965. It gave rise to the
oldest publication you can currently read in the ACL anthology. Whatever the reasons for the rarity
COLING in the USA, we are very proud to bring you the present one and our team has worked very hard
to make it a memorable event.

Over the last 18 months, a tremendous amount of work has been carried out by the COLING 2018
organizing committee. Please join me in thanking Sergei Nirenburg (Local Organizer), Emily Bender
and Leon Derczynski (Program Chairs), Tim Baldwin, Yoav Goldberg and Jin Jiang (Workshop Chairs),
Donia Scott, Pascale Fung and Marilyn Walker (Tutorial Chairs), Dongyan Zhao (Demonstration Chair),
Xiaodan Zhu and Zhiyuan Liu (Publications Chairs), Yuji Matsumoto and Hiroshi Noji (Publicity
Chairs), Qian Chen and Christine Tang (Webmasters) and last but not least, Leo Wanner, Soo-Min Pantel,
Satoshi Sekine and Le Sun (Sponsorship Chairs).

I hope that you will enjoy the special atmosphere and the spectacular scenery offered by Santa Fe, the
convenience of our meeting site as well as the social events and excursions carefully arranged by our
Local Organizing Committee.

Most importantly, I hope that you will love the content of our conference. I trust that the COLING
difference will be unmistakable. While paying due tribute to the hottest methods and trends of the times,
we will also offer you a more diversified intellectual menu. Our Program Chairs deserve highly special
thanks for their truly remarkable work in setting up a program that comprises some 331 papers which,
in addition to the ubiquitous type of scientific contribution these days (“NLP engineering experiment”),
accommodates a variety of other worthwhile kinds of contributions, each with appropriate evaluation
criteria. This emphasis on diversity is also visible in their choice of our four outstanding invited
speakers: Fabiola Henri, James Pustejovsky, Min-Yen Kan and Hannah Rohde. Throughout their
program development work, Emily and Leon have made sure to engage our community on all aspects of
their decision-making through a lively blog. And as if this wasn’t enough, they also found the energy to
setup a highly successful mentoring program for authors. Our scientific program also includes 35 system
demonstrations, seven enticing tutorials, and twelve different workshops.

I would like to thanks our generous COLING 2018 sponsors:

Amazon Alexa, Baidu, Disney Research, the Linguist List, Lenovo, Brandeis University, the University
of Washington and the University of Colorado. And last but not least, I offer my sincere thanks to all
those who have submitted papers and demos to COLING 2018 as well as to all those who have served as
area chairs, reviewers or helped our organizing committee in any other way.

I wish you all a pleasant and fruitful conference.

Pierre Isabelle (National Research Council, Canada)
COLING 2018 General Chair
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Preface: Program Chairs

COLING is the oldest Computational Linguistics conference, from its first instance fifty-three years ago
in 1965, held in New York. This year marks its third visit to the USA, after the second in 1984 at Stanford.
COLING remains the strongest conference in the field that is beyond the ACL, instead organised by the
ICCL. The ICCL and COLING hold ideals of being a conference for all, originally to bring together both
NATO and Soviet scientists without an overseeing US-based organization. These are values that we have
constantly held in mind with our construction of COLING 2018, in Santa Fe, and we are honored to have
had so much support in doing so.

As we began the process of constructing the program for COLING 2018, we started by identifying our
goals. These were set on our PC blog in a post in August 2017. They are: (1) to create a program of
high quality papers which represent diverse approaches to and applications of computational linguistics,
written and presented by researchers from throughout our international community; (2) to facilitate
thoughtful reviewing which is both informative to ACs (and to us as PC co-chairs), and helpful to authors;
and (3) to ensure that the results published at COLING 2018 are as reproducible as possible.

To give a bit more detail on the first goal, by diverse approaches/applications, we mean that we aimed to
attract (in the tradition of COLING):

e papers which develop linguistic insight as well as papers which deepen our understanding of how
machine learning can be applied to NLP—and papers that do both!

e research on a broad variety of languages and genres

e many different types of research contributions (application papers, resource papers, methodology
papers, position papers, reproduction papers. . .)

We had the challenge and the privilege of taking on this role at a time when our field is growing
tremendously quickly. We seized the opportunity to advance the way our conferences work by trying
new things and improving the experience from all sides. To this end, while ever-mindful of author,
reviewer and chair workload, we took specific actions.

Paper types

We reasoned that one cause of a lack of diversity of type of papers is that the typical review form in
our field is primarily designed for the dominant type (which we dubbed ‘NLP engineering experiment
paper’), and that this makes it harder for other paper types to receive positive reviews. We decided
to address this by identifying a small range of paper types and creating specialized review forms for
each one. We developed an initial set, then solicited community feedback via a PC blog post (of 17
August 2017), then refined the types based on that input. A second function of the paper types was to
explicitly elicit submissions of non-standard format. The paper types defined are (in order of number of
submissions we received in each type): NLP engineering experiment paper, computer assisted linguistic
analysis paper, resource paper, reproduction paper, position paper, and survey paper. Though the NLP
engineering experiment paper type remains dominant, we are pleased at how the process has led to the
diverse range of papers appearing in this volume. Submission and acceptance numbers for each type are
given in Table 1.
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Type Submitted Withdrawn Accepted Acceptance rate

NLPEE 657 85 217 37.94%
CALA 163 28 45 33.33%
Resource 106 7 32 32.32%
Reproduction 35 0 17 48.57%
Position 31 6 8 32.00%
Survey 25 3 12 54.55%
Overall 1017 129 331 37.27%

Table 1: Submission and acceptance, by paper type

Mentoring

One of our strategies for achieving goal (1) given above was to create a writing mentoring program,
which took place before the reviewing stage. This optional program focused on helping those who
perhaps aren’t used to publishing in the field of computational linguistics, are early in their careers, and
so on. We see mentoring as a tool that makes a conference accessible for a broader range of high-
quality ideas. In other words, this isn’t about pushing borderline papers into acceptance but rather
alleviating presentational problems with papers that, in their underlying research quality, easily make
the high required standard.

The response from mentors was very enthusiastic—over 100 people volunteered! We see this as a good
indication of the long-term viability of mentoring programs. There were fewer papers submitted for
mentoring than available mentors, but still a strong number: 56. We asked authors seeking mentoring
to submit an abstract 4 weeks ahead of the deadline and a draft for feedback 3 weeks ahead. We asked
mentors to bid on abstracts once they were received and to provide feedback on papers within one week
(leaving 2 weeks for mentees to revise their submissions based on that feedback). We also provided a
structured mentoring form. Of the 56 papers receiving mentoring, 47 were ultimately submitted to the
conference, 3 subsequently withdrawn, and 14 accepted. We see value in the mentoring of all of these
papers, both those that ultimate ended up in this volume and those that did not. The authors received
valuable feedback from their mentors which can inform their future work, both on the mentored papers
specifically and more generally.

Real double-blind

We know that non-blind peer review favors work by well-recognised authors or from well-recognised
institutions (Tomkins et al. 2017, Laband and Piette 2014, Peters and Ceci 1982). This has two
unfavorable impacts: first, substandard work may be presented as more worthy of reader and audience
time than it is; secondly, when presentation slots are limited, substandard work will displace excellent
work from beyond well-recognised institutions or authors. We took steps at every point of COLING
2018’s review process to reduce or remove this bias.

Firstly, unlike the majority of conferences in the field, we hid author identities from area chairs, who
are those making the primary recommendation about paper acceptance. We also hid reviewer identities
from each other, thinking that reviewers may be inadvertently swayed by comments from a well-known
reviewer, or afraid to contradict e.g. a potential future employer.! We also took pains to hide author
identities from ourselves as PC co-chairs in making our final decisions. In addition, we hid authors

"We did set things up so that reviewer identities were revealed to co-reviewers at the end of the process, and announced this
to reviewers. The goal here was to promote civility in reviews.



from the best paper committee; this involved withholding the “Accepted Papers” list until the best paper
awards had been nominated and fixed. Finally, we followed ACL policy on preprints, blocking from
consideration non-blind papers that had been published within the month before the deadline. We made
one mistake in this process, where we asked authors to contact their ACs about belated author responses;
this leaked author identity in a handful of cases (fewer than ten submissions).

To avoid the second unfavorable impact, we were lucky enough to have a venue of size such that we did
not need to limit the number of accepted papers. Poster and oral presentation are of identical standard
and receive the same treatment in the proceedings, which helped with this space limit. Having sufficient
room meant that the acceptance of a substandard paper based on its author’s name or institution did not
lead to another, better paper being displaced. Additionally, we did not impose a maximum acceptance
rate. Fixed acceptance rates under non-blind review lead to good borderline papers being lost in favor of
weaker papers from well-recognized origins. Fixed acceptance rates also risk that some excellent work
will be missed (Church 2005).

Reviewing quality

It is important to maintain consistency, good standards, and to be responsive. To achieve this, we had at
least two people involved at every step in the program selection process. The PC chairs were co-chairs;
each area had two chairs, who were both in the same coarse-grained geographic region for all but one
area; all papers were reviewed by many people; and then to ensure this continued, there were Special
Circumstances ACs who filled in AC gaps, and the General Chair would stand in when a PC co-chair
couldn’t.

We know that reviewing in computer science can be a little harsher than in general (Meyer 2011).
Reviewers are not as kind to authors, or to each other. Malicious or unconstructive reviews hurt
quality. So, we asked ACs to specifically look out for this kind of behavior and to ask reviewers to edit
their reviews for tone where necessary, and we discounted malicious reviews when making acceptance
decisions. Reviews tend to be of better tone and more constructive when signed by the author, so we gave
the option for reviewers to add their names to their reviews. This couldn’t be compulsory: this might
risk reviewers disagreeing by name with e.g. their later bosses, which is too much to ask of the generally
young CL reviewing pool.

Review quality also suffers when area chairs’ jobs are too difficult. This can be addressed by reducing
area chair load. To enable flexible load management, we provided information as early as possible,
helped ACs move unrelated papers out of their areas, gave rapid responses during the critical period
(being nine hours apart enabled an almost 24h availability), and critically, kept area size limited.
This meant that there was, for example, no one area for machine translation—this would have been
unmanageable and have had unacceptably low reviewing quality. Instead, papers with facets that placed
them in very large areas were placed based on their other features. For example, papers on MT in low-
resourced languages might be put together; those on MT for dialogue would also be grouped, but in a
separate area. This way, load was managed and the risk of unreliable (and so unfair) review reduced.

Broader recognition

In keeping with building a diverse program that brings together excellent work in all aspects of our field,
we wanted to make sure that our awards also recognized the many kinds of excellence to be found in
work on computational linguistics. To this end, we enumerated 10 awards, of which 9 were ultimately
given. We received 44 nominations for best papers over these categories, and conferred best paper awards
in the categories as follows:
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e Best error analysis: ‘SGM: Sequence Generation Model for Multi-label Classification’, by
Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu and Houfeng Wang.

e Best evaluation: ‘SGM: Sequence Generation Model for Multi-label Classification’, by Pengcheng
Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu and Houfeng Wang.

e Best linguistic analysis: ‘Distinguishing affixoid formations from compounds’, by Josef
Ruppenhofer, Michael Wiegand, Rebecca Wilm and Katja Markert

e Best NLP engineering experiment: ‘Authorless Topic Models: Biasing Models Away from Known
Structure’, by Laure Thompson and David Mimno

e Best position paper: ‘Arguments and Adjuncts in Universal Dependencies’, by Adam
Przepiérkowski and Agnieszka Patejuk

e Best reproduction paper: ‘Neural Network Models for Paraphrase Identification, Semantic Textual
Similarity, Natural Language Inference, and Question Answering’, by Wuwei Lan and Wei Xu

e Best resource paper: ‘AnlamVer: Semantic Model Evaluation Dataset for Turkish—Word
Similarity and Relatedness’, by Gokhan Ercan and Olcay Taner Yildiz

e Best survey paper: ‘A Survey on Open Information Extraction’, by Christina Niklaus, Matthias
Cetto, André Freitas and Siegfried Handschuh

e Most reproducible: ‘Design Challenges and Misconceptions in Neural Sequence Labeling’, by Jie
Yang, Shuailong Liang and Yue Zhang

The lack of an award in the “Best challenge” category (for a paper that sets a new challenge) may reflect
one of two things. On the one hand, reviewers and ACs may not have been on the look-out for this kind
of excellence. On the other, there may not have been any papers with this particular strength at COLING
2018.

We also used the best paper awards to further our goal of promoting reproducibility. Specifically, we
required that, in order to be eligible for one of the above awards, any code/resources associated with the
research reported be publicly available by camera ready time. This encouraged all authors (not just those
of nominated papers) to be sure their code/resources were available.

A team effort

In total, we relied upon and COLING was excellently supported by 76 area chairs, 1029 reviewers, and
11 best paper committee members, all of whom we thank profusely for an excellent iteration of the
International Conference on Computational Linguistics.

Emily M. Bender (University of Washington)
Leon Derczynski (IT University of Copenhagen)
COLING 2018 Program Committee Co-chairs
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Ravi Shekhar, Tim Baumgértner, Aashish Venkatesh, Elia Bruni, Raffaella Bernardi
and Raquel Fernandez

Sequence-to-Sequence Data Augmentation for Dialogue Language Understanding
Yutai Hou, Yijia Liu, Wanxiang Che and Ting Liu

Dialogue-act-driven Conversation Model : An Experimental Study
Harshit Kumar, Arvind Agarwal and Sachindra Joshi

Structured Dialogue Policy with Graph Neural Networks
Lu Chen, Bowen Tan, Sishan Long and Kai Yu

Session 1-3-posters: Translation, Variation

JTAV: Jointly Learning Social Media Content Representation by Fusing Textual,
Acoustic, and Visual Features

Hongru Liang, Haozheng Wang, Jun Wang, Shaodi You, Zhe Sun, Jin-Mao Wei and
Zhenglu Yang

MEMD: A Diversity-Promoting Learning Framework for Short-Text Conversation
Meng Zou, Xihan Li, Haokun Liu and Zhihong Deng

Refining Source Representations with Relation Networks for Neural Machine
Translation

Wen Zhang, Jiawei Hu, Yang Feng and Qun Liu

A Survey of Domain Adaptation for Neural Machine Translation
Chenhui Chu and Rui Wang
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Tuesday 21st August (continued)

An Evaluation of Neural Machine Translation Models on Historical Spelling
Normalization
Gongbo Tang, Fabienne Cap, Eva Pettersson and Joakim Nivre

Fine-Grained Arabic Dialect Identification
Mohammad Salameh and Houda Bouamor

Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles
of Emotions
Evgeny Kim and Roman Klinger

Local String Transduction as Sequence Labeling
Joana Ribeiro, Shashi Narayan, Shay B. Cohen and Xavier Carreras

Deep Neural Networks at the Service of Multilingual Parallel Sentence Extraction
Ahmad Aghaebrahimian

Diachronic word embeddings and semantic shifts: a survey
Andrey Kutuzov, Lilja @vrelid, Terrence Szymanski and Erik Velldal

Interaction-Aware Topic Model for Microblog Conversations through Network
Embedding and User Attention
Ruifang He, Xuefei Zhang, Di Jin, Longbiao Wang, Jianwu Dang and Xiangang Li

Cross-media User Profiling with Joint Textual and Social User Embedding
Jingjing Wang, Shoushan Li, Mingqi Jiang, Hanqian Wu and Guodong Zhou

Incorporating Syntactic Uncertainty in Neural Machine Translation with a Forest-
to-Sequence Model
Poorya Zaremoodi and Gholamreza Haffari

Ensure the Correctness of the Summary: Incorporate Entailment Knowledge into
Abstractive Sentence Summarization
Haoran Li, Junnan Zhu, Jiajun Zhang and Chengqing Zong

Extracting Parallel Sentences with Bidirectional Recurrent Neural Networks to
Improve Machine Translation

Francis Grégoire and Philippe Langlais

Fast and Accurate Reordering with ITG Transition RNN
Hao Zhang, Axel Ng and Richard Sproat

xlix



Tuesday 21st August (continued)

Neural Machine Translation with Decoding History Enhanced Attention
Mingxuan Wang, Jun Xie, Zhixing Tan, Jinsong Su, Deyi Xiong and Chao Bian

Transfer Learning for a Letter-Ngrams to Word Decoder in the Context of Historical
Handwriting Recognition with Scarce Resources

Adeline Granet, Emmanuel Morin, Harold Mouchere, Solen Quiniou and Christian
Viard-Gaudin

SMHD: a Large-Scale Resource for Exploring Online Language Usage for Multiple
Mental Health Conditions

Arman Cohan, Bart Desmet, Andrew Yates, Luca Soldaini, Sean MacAvaney and
Nazli Goharian

Crowdsourcing a Large Corpus of Clickbait on Twitter
Martin Potthast, Tim Gollub, Kristof Komlossy, Sebastian Schuster, Matti
Wiegmann, Erika Patricia Garces Fernandez, Matthias Hagen and Benno Stein

Cross-lingual Knowledge Projection Using Machine Translation and Target-side
Knowledge Base Completion
Naoki Otani, Hirokazu Kiyomaru, Daisuke Kawahara and Sadao Kurohashi

Assessing Quality Estimation Models for Sentence-Level Prediction
Hoang Cuong and Jia Xu

User-Level Race and Ethnicity Predictors from Twitter Text
Daniel Preotiuc-Pietro and Lyle Ungar

Multi-Source Multi-Class Fake News Detection
Hamid Karimi, Proteek Roy, Sari Saba-Sadiya and Jiliang Tang

Killing Four Birds with Two Stones: Multi-Task Learning for Non-Literal Language
Detection
Erik-Lan Do Dinh, Steffen Eger and Iryna Gurevych

Twitter corpus of Resource-Scarce Languages for Sentiment Analysis and
Multilingual Emoji Prediction



Wednesday 22nd August

09:00-10:00

10:00-10:30

10:30-11:50

10:30-11:50

Invited talk: Fabiola Henri

Refreshment break

Session 2-1-a: Language change, Historical linguistics

Towards identifying the optimal datasize for lexically-based Bayesian inference of
linguistic phylogenies

Taraka Rama and Sdgren Wichmann

The Road to Success: Assessing the Fate of Linguistic Innovations in Online
Communities

Marco Del Tredici and Raquel Fernandez

Ab Initio: Automatic Latin Proto-word Reconstruction
Alina Maria Ciobanu and Liviu P. Dinu

A Computational Model for the Linguistic Notion of Morphological Paradigm
Miikka Silfverberg, Ling Liu and Mans Hulden
Session 2-1-b: Embedding creation

Relation Induction in Word Embeddings Revisited
Zied Bouraoui, Shoaib Jameel and Steven Schockaert

Contextual String Embeddings for Sequence Labeling
Alan Akbik, Duncan Blythe and Roland Vollgraf

Learning Word Meta-Embeddings by Autoencoding
Danushka Bollegala and Cong Bao

GenSense: A Generalized Sense Retrofitting Model
Yang-Yin Lee, Ting-Yu Yen, Hen-Hsen Huang, Yow-Ting Shiue and Hsin-Hsi Chen

li



Wednesday 22nd August (continued)

10:30-11:50 Session 2-1-c: ML methods

Variational Attention for Sequence-to-Sequence Models
Hareesh Bahuleyan, Lili Mou, Olga Vechtomova and Pascal Poupart

A New Concept of Deep Reinforcement Learning based Augmented General Tagging
System
Yu Wang, Abhishek Patel and Hongxia Jin
Learning from Measurements in Crowdsourcing Models: Inferring Ground Truth
from Diverse Annotation Types
Paul Felt, Eric Ringger, Jordan Boyd-Graber and Kevin Seppi
Reproducing and Regularizing the SCRN Model
Olzhas Kabdolov, Zhenisbek Assylbekov and Rustem Takhanov
12:00 Lunch and excursion
Thursday 23rd August

09:00-10:00 Invited talk: Hannah Rohde

10:00-10:30 Refreshment break

lii



Thursday 23rd August (continued)

10:30-12:10

10:30-12:10

Session 3-1-a: Generation

Structure-Infused Copy Mechanisms for Abstractive Summarization
Kaiqiang Song, Lin Zhao and Fei Liu

Measuring the Diversity of Automatic Image Descriptions
Emiel van Miltenburg, Desmond Elliott and Piek Vossen

Extractive Headline Generation Based on Learning to Rank for Community
Question Answering
Tatsuru Higurashi, Hayato Kobayashi, Takeshi Masuyama and Kazuma Murao

A Multi-Attention based Neural Network with External Knowledge for Story Ending
Predicting Task
Qian Li, Ziwei Li, Jin-Mao Wei, Yanhui Gu, Adam Jatowt and Zhenglu Yang

A Reinforcement Learning Framework for Natural Question Generation using Bi-
discriminators
Zhihao Fan, Zhongyu Wei, Siyuan Wang, Yang Liu and Xuanjing Huang

Session 3-1-b: Embedding creation

Embedding Words as Distributions with a Bayesian Skip-gram Model
Arthur BraZinskas, Serhii Havrylov and Ivan Titov

Assessing Composition in Sentence Vector Representations
Allyson Ettinger, Ahmed Elgohary, Colin Phillips and Philip Resnik

Subword-augmented Embedding for Cloze Reading Comprehension
Zhuosheng Zhang, Yafang Huang and Hai Zhao

Enhancing Sentence Embedding with Generalized Pooling
Qian Chen, Zhen-Hua Ling and Xiaodan Zhu

Treat us like the sequences we are: Prepositional Paraphrasing of Noun Compounds

using LSTM
Girishkumar Ponkiya, Kevin Patel, Pushpak Bhattacharyya and Girish Palshikar

liii



Thursday 23rd August (continued)

10:30-12:10

10:30-12:10

Session 3-1-c: Humor, rumor, sarcasm and spam

CASCADE: Contextual Sarcasm Detection in Online Discussion Forums
Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla, Erik Cambria, Roger
Zimmermann and Rada Mihalcea

Recognizing Humour using Word Associations and Humour Anchor Extraction
Andrew Cattle and Xiaojuan Ma

A Retrospective Analysis of the Fake News Challenge Stance-Detection Task
Andreas Hanselowski, Avinesh PVS, Benjamin Schiller, Felix Caspelherr,
Debanjan Chaudhuri, Christian M. Meyer and Iryna Gurevych

Exploiting Syntactic Structures for Humor Recognition
Lizhen Liu, Donghai Zhang and Wei Song

An Attribute Enhanced Domain Adaptive Model for Cold-Start Spam Review
Detection
Zhenni You, Tieyun Qian and Bing Liu

Session 3-1-posters: Entities, QA and classification

Robust Lexical Features for Improved Neural Network Named-Entity Recognition
Abbas Ghaddar and Phillippe Langlais

A Pseudo Label based Dataless Naive Bayes Algorithm for Text Classification with
Seed Words
Ximing Li and Bo Yang

Visual Question Answering Dataset for Bilingual Image Understanding: A Study of
Cross-Lingual Transfer Using Attention Maps
Nobuyuki Shimizu, Na Rong and Takashi Miyazaki

Style Detection for Free Verse Poetry from Text and Speech
Timo Baumann, Hussein Hussein and Burkhard Meyer-Sickendiek

A Neural Question Answering Model Based on Semi-Structured Tables

Hao Wang, Xiaodong Zhang, Shuming Ma, Xu Sun, Houfeng Wang and Mengxiang
Wang

liv



Thursday 23rd August (continued)

LCOMC:A Large-scale Chinese Question Matching Corpus
Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng, Jing Chen, Dongfang Li and
Buzhou Tang

Genre Identification and the Compositional Effect of Genre in Literature
Joseph Worsham and Jugal Kalita

Transfer Learning for Entity Recognition of Novel Classes
Juan Diego Rodriguez, Adam Caldwell and Alexander Liu

Location Name Extraction from Targeted Text Streams using Gazetteer-based
Statistical Language Models
Hussein Al-Olimat, Krishnaprasad Thirunarayan, Valerie Shalin and Amit Sheth

The APVA-TURBO Approach To Question Answering in Knowledge Base
Yue Wang, Richong Zhang, Cheng Xu and Yongyi Mao

An Interpretable Reasoning Network for Multi-Relation Question Answering
Mantong Zhou, Minlie Huang and Xiaoyan Zhu

Task-oriented Word Embedding for Text Classification
Qian Liu, Heyan Huang, Yang Gao, Xiaochi Wei, Yuxin Tian and Luyang Liu

Adaptive Learning of Local Semantic and Global Structure Representations for Text
Classification

Jianyu Zhao, Zhigiang Zhan, Qichuan Yang, Yang Zhang, Changjian Hu,
Zhensheng Li, Liuxin Zhang and Zhigiang He

Lyrics Segmentation: Textual Macrostructure Detection using Convolutions
Michael Fell, Yaroslav Nechaev, Elena Cabrio and Fabien Gandon

Learning What to Share: Leaky Multi-Task Network for Text Classification
Ligiang Xiao, Honglun Zhang, Wenqing Chen, Yongkun Wang and Yaohui Jin

Towards an argumentative content search engine using weak supervision
Ran Levy, Ben Bogin, Shai Gretz, Ranit Aharonov and Noam Slonim

Improving Named Entity Recognition by Jointly Learning to Disambiguate

Morphological Tags
Onur Gungor, Suzan Uskudarli and Tunga Gungor

Iv



Thursday 23rd August (continued)

Farewell Freebase: Migrating the SimpleQuestions Dataset to DBpedia
Michael Azmy, Peng Shi, Jimmy Lin and Ihab Ilyas

An Analysis of Annotated Corpora for Emotion Classification in Text
Laura Ana Maria Bostan and Roman Klinger

Investigating the Working of Text Classifiers
Devendra Sachan, Manzil Zaheer and Ruslan Salakhutdinov

A Review on Deep Learning Techniques Applied to Answer Selection
Tuan Manh Lai, Trung Bui and Sheng Li

A Survey on Recent Advances in Named Entity Recognition from Deep Learning

models
Vikas Yadav and Steven Bethard

Distantly Supervised NER with Partial Annotation Learning and Reinforcement
Learning
Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He and Min Zhang

Joint Neural Entity Disambiguation with Output Space Search
Hamed Shahbazi, Xiaoli Fern, Reza Ghaeini, Chao Ma, Rasha Mohammad Obeidat
and Prasad Tadepalli

Learning to Progressively Recognize New Named Entities with Sequence to
Sequence Models
Lingzhen Chen and Alessandro Moschitti

Responding E-commerce Product Questions via Exploiting QA Collections and

Reviews
Qian Yu, Wai Lam and Zihao Wang

Ivi



Thursday 23rd August (continued)

12:10-13:40

13:40-15:20

13:40-15:20

Lunch

Session 3-2-a: Sentiment

Aff2Vec: Affect—Enriched Distributional Word Representations
Sopan Khosla, Niyati Chhaya and Kushal Chawla

Aspect-based summarization of pros and cons in unstructured product reviews
Florian Kunneman, Sander Wubben, Antal van den Bosch and Emiel Krahmer

Learning Sentiment Composition from Sentiment Lexicons
Orith Toledo-Ronen, Roy Bar-Haim, Alon Halfon, Charles Jochim, Amir Menczel,
Ranit Aharonov and Noam Slonim

Representations and  Architectures in Neural Sentiment Analysis for
Morphologically Rich Languages: A Case Study from Modern Hebrew

Adam Amram, Anat Ben-David and Reut Tsarfaty

Scoring and Classifying Implicit Positive Interpretations: A Challenge of Class
Imbalance

Chantal van Son, Roser Morante, Lora Aroyo and Piek Vossen

Session 3-2-b: IE

Exploratory Neural Relation Classification for Domain Knowledge Acquisition
Yan Fan, Chengyu Wang and Xiaofeng He

Who is Killed by Police: Introducing Supervised Attention for Hierarchical LSTMs
Minh Nguyen and Thien Nguyen

Open Information Extraction from Conjunctive Sentences
Swarnadeep Saha and Mausam -

Graphene: Semantically-Linked Propositions in Open Information Extraction
Matthias Cetto, Christina Niklaus, André Freitas and Siegfried Handschuh

Ivii



Thursday 23rd August (continued)

13:40-15:20

13:40-15:20

An Exploration of Three Lightly-supervised Representation Learning Approaches

for Named Entity Classification

Ajay Nagesh and Mihai Surdeanu

Session 3-2-c: Multimodal processing, ASR, NLI

Multimodal Grounding for Language Processing
Lisa Beinborn, Teresa Botschen and Iryna Gurevych

Stress Test Evaluation for Natural Language Inference
Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose and
Graham Neubig

Grounded Textual Entailment
Hoa Vu, Claudio Greco, Aliia Erofeeva, Somayeh Jafaritazehjan, Guido Linders,

Marc Tanti, Alberto Testoni, Raffaella Bernardi and Albert Gatt

Recurrent One-Hop Predictions for Reasoning over Knowledge Graphs
Wenpeng Yin, Yadollah Yaghoobzadeh and Hinrich Schiitze

Hybrid Attention based Multimodal Network for Spoken Language Classification
Yue Gu, Kangning Yang, Shiyu Fu, Shuhong Chen, Xinyu Li and Ivan Marsic
Session 3-2-posters: Distributional information

Exploring the Influence of Spelling Errors on Lexical Variation Measures
Ryo Nagata, Taisei Sato and Hiroya Takamura

Stance Detection with Hierarchical Attention Network
Qingying Sun, Zhongqing Wang, Qiaoming Zhu and Guodong Zhou

Correcting Chinese Word Usage Errors for Learning Chinese as a Second Language
Yow-Ting Shiue, Hen-Hsen Huang and Hsin-Hsi Chen

Retrofitting Distributional Embeddings to Knowledge Graphs with Functional

Relations
Ben Lengerich, Andrew Maas and Christopher Potts

Iviii



Thursday 23rd August (continued)

Context-Sensitive Generation of Open-Domain Conversational Responses
Weinan Zhang, Yiming Cui, Yifa Wang, Qingfu Zhu, Lingzhi Li, Lianqgiang Zhou
and Ting Liu

A LSTM Approach with Sub-Word Embeddings for Mongolian Phrase Break
Prediction
Rui Liu, Feilong Bao, Guanglai Gao, Hui Zhang and Yonghe Wang

Synonymy in Bilingual Context: The CzEngClass Lexicon
Zdenka Uresova, Eva Fucikova, Eva Hajicova and Jan Hajic

Convolutional Neural Network for Universal Sentence Embeddings
Xiaoqi Jiao, Fang Wang and Dan Feng

Rich Character-Level Information for Korean Morphological Analysis and Part-of-
Speech Tagging
Andrew Matteson, Chanhee Lee, Youngbum Kim and Heuiseok Lim

Why does PairDiff work? - A Mathematical Analysis of Bilinear Relational
Compositional Operators for Analogy Detection
Huda Hakami, Kohei Hayashi and Danushka Bollegala

Real-time Change Point Detection using On-line Topic Models
Yunli Wang and Cyril Goutte

Automatically Creating a Lexicon of Verbal Polarity Shifters: Mono- and Cross-
lingual Methods for German
Marc Schulder, Michael Wiegand and Josef Ruppenhofer

Part-of-Speech Tagging on an Endangered Language: a Parallel Griko-Italian
Resource

Antonios Anastasopoulos, Marika Lekakou, Josep Quer, Eleni Zimianiti, Justin
DeBenedetto and David Chiang

One vs. Many QA Matching with both Word-level and Sentence-level Attention
Network

Lu Wang, Shoushan Li, Changlong Sun, Luo Si, Xiaozhong Liu, Min Zhang and
Guodong Zhou

Learning to Generate Word Representations using Subword Information
Yeachan Kim, Kang-Min Kim, Ji-Min Lee and SangKeun Lee

Urdu Word Segmentation using Conditional Random Fields (CRFs)
Haris Bin Zia, Agha Ali Raza and Awais Athar

lix



Thursday 23rd August (continued)

ReSyf: a French lexicon with ranked synonyms
Mokhtar Boumedyen BILLAMI, Thomas Francois and Nuria Gala

If you’ve seen some, you've seen them all: Identifying variants of multiword
expressions
Caroline Pasquer, Agata Savary, Carlos Ramisch and Jean-Yves Antoine

Learning Multilingual Topics from Incomparable Corpora
Shudong Hao and Michael J. Paul

Using Word Embeddings for Unsupervised Acronym Disambiguation
Jean Charbonnier and Christian Wartena

Indigenous language technologies in Canada: Assessment, challenges, and
successes

Patrick Littell, Anna Kazantseva, Roland Kuhn, Aidan Pine, Antti Arppe,
Christopher Cox and Marie-Odile Junker

Pluralizing Nouns across Agglutinating Bantu Languages
Joan Byamugisha, C. Maria Keet and Brian DeRenzi

Automatically Extracting Qualia Relations for the Rich Event Ontology
Ghazaleh Kazeminejad, Claire Bonial, Susan Windisch Brown and Martha Palmer

SeVeN: Augmenting Word Embeddings with Unsupervised Relation Vectors
Luis Espinosa Anke and Steven Schockaert

Evaluation of Unsupervised Compositional Representations
Hanan Aldarmaki and Mona Diab

Using Formulaic Expressions in Writing Assistance Systems
Kenichi Iwatsuki and Akiko Aizawa

What’s in Your Embedding, And How It Predicts Task Performance
Anna Rogers, Shashwath Hosur Ananthakrishna and Anna Rumshisky

Word Sense Disambiguation Based on Word Similarity Calculation Using Word

Vector Representation from a Knowledge-based Graph
Dongsuk O, Sunjae Kwon, Kyungsun Kim and Youngjoong Ko

Ix



Thursday 23rd August (continued)

15:20-15:50

15:50-17:30

Learning Semantic Sentence Embeddings using Sequential Pair-wise Discriminator
Badri Narayana Patro, Vinod Kumar Kurmi, Sandeep Kumar and Vinay Namboodiri

A Reassessment of Reference-Based Grammatical Error Correction Metrics
Shamil Chollampatt and Hwee Tou Ng

Information Aggregation via Dynamic Routing for Sequence Encoding
Jingjing Gong, Xipeng Qiu, Shaojing Wang and Xuanjing Huang

A Full End-to-End Semantic Role Labeler, Syntactic-agnostic Over Syntactic-

aware?
Jiaxun Cai, Shexia He, Zuchao Li and Hai Zhao

Refreshment break

Session 3-3-a: Applications

Authorship Attribution By Consensus Among Multiple Features
Jagadeesh Patchala and Raj Bhatnagar

Modeling with Recurrent Neural Networks for Open Vocabulary Slots
Jun-Seong Kim, Junghoe Kim, SeungUn Park, Kwangyong Lee and Yoonju Lee

Challenges and Opportunities of Applying Natural Language Processing in
Business Process Management
Han Van der Aa, Josep Carmona, Henrik Leopold, Jan Mendling and Lluis Padr6

Novelty Goes Deep. A Deep Neural Solution To Document Level Novelty Detection
Tirthankar Ghosal, Vignesh Edithal, Asif Ekbal, Pushpak Bhattacharyya, George

Tsatsaronis and Srinivasa Satya Sameer Kumar Chivukula

What represents "style" in authorship attribution?
Kalaivani Sundararajan and Damon Woodard

Ixi



Thursday 23rd August (continued)

15:50-17:30

15:50-17:30

Session 3-3-b: Distributional semantics

Learning Target-Specific Representations of Financial News Documents For
Cumulative Abnormal Return Prediction
Junwen Duan, Yue Zhang, Xiao Ding, Ching-Yun Chang and Ting Liu

Model-Free Context-Aware Word Composition
Bo An, Xianpei Han and Le Sun

Learning Features from Co-occurrences: A Theoretical Analysis
Yanpeng Li

Towards a unified framework for bilingual terminology extraction of single-word
and multi-word terms
Jingshu Liu, Emmanuel Morin and Pefia Saldarriaga

Neural Activation Semantic Models: Computational lexical semantic models of
localized neural activations
Nikos Athanasiou, Elias Iosif and Alexandros Potamianos

Session 3-3-c: Emotion

Folksonomication: Predicting Tags for Movies from Plot Synopses using Emotion
Flow Encoded Neural Network
Sudipta Kar, Suraj Maharjan and Thamar Solorio

Emotion Representation Mapping for Automatic Lexicon Construction (Mostly)
Performs on Human Level
Sven Buechel and Udo Hahn

Emotion Detection and Classification in a Multigenre Corpus with Joint Multi-Task
Deep Learning
Shabnam Tafreshi and Mona Diab

How emotional are you? Neural Architectures for Emotion Intensity Prediction in
Microblogs
Devang Kulshreshtha, Pranav Goel and Anil Kumar Singh

Expressively vulgar: The socio-dynamics of vulgarity and its effects on sentiment

analysis in social media
Isabel Cachola, Eric Holgate, Daniel Preotiuc-Pietro and Junyi Jessy Li

Ixii



Thursday 23rd August (continued)

15:50-17:30 Session 3-3-posters: ML, parsing, MT

Clausal Modifiers in the Grammar Matrix
Kristen Howell and Olga Zamaraeva

Sliced Recurrent Neural Networks
Zeping Yu and Gongshen Liu

Multi-Task Learning for Sequence Tagging: An Empirical Study
Soravit Changpinyo, Hexiang Hu and Fei Sha

Using J-K-fold Cross Validation To Reduce Variance When Tuning NLP Models
Henry Moss, David Leslie and Paul Rayson

Incremental Natural Language Processing: Challenges, Strategies, and Evaluation
Arne Kohn

Gold Standard Annotations for Preposition and Verb Sense with Semantic Role
Labels in Adult-Child Interactions

Lori Moon, Christos Christodoulopoulos, Fisher Cynthia, Sandra Franco and Dan
Roth

Multi-layer Representation Fusion for Neural Machine Translation
Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yingiao Li and Jingbo Zhu

Toward Better Loanword Identification in Uyghur Using Cross-lingual Word
Embeddings
Chenggang Mi, Yating Yang, Lei Wang, Xi Zhou and Tonghai Jiang

Adaptive Weighting for Neural Machine Translation
Yachao Li, Junhui Li and Min Zhang

Generic refinement of expressive grammar formalisms with an application to
discontinuous constituent parsing
Kilian Gebhardt

Double Path Networks for Sequence to Sequence Learning
Kaitao Song, Xu Tan, Di He, Jianfeng Lu, Tao Qin and Tie-Yan Liu

Ixiii



Thursday 23rd August (continued)

An Empirical Investigation of Error Types in Vietnamese Parsing
Quy Nguyen, Yusuke Miyao, Hiroshi Noji and Nhung Nguyen

Learning with Noise-Contrastive Estimation: Easing training by learning to scale
Matthieu Labeau and Alexandre Allauzen

Parallel Corpora for bi-lingual English-Ethiopian Languages Statistical Machine
Translation

Solomon Teferra Abate, Michael Melese, Martha Yifiru Tachbelie, Million
Meshesha, Solomon Atinafu, Wondwossen Mulugeta, Yaregal Assibie, Hafte
Abera, Binyam Ephrem, Tewodros Abebe, Wondimagegnhue Tsegaye, Amanuel
Lemma, Tsegaye Andargie and Seifedin Shifaw

Multilingual Neural Machine Translation with Task-Specific Attention
Graeme Blackwood, Miguel Ballesteros and Todd Ward

Combining Information-Weighted Sequence Alignment and Sound Correspondence
Models for Improved Cognate Detection
Johannes Dellert

Tailoring Neural Architectures for Translating from Morphologically Rich
Languages
Peyman Passban, Andy Way and Qun Liu

deepQuest: A Framework for Neural-based Quality Estimation
Julia Ive, Frédéric Blain and Lucia Specia

Butterfly Effects in Frame Semantic Parsing: impact of data processing on model
ranking
Alexandre Kabbach, Corentin Ribeyre and Aurélie Herbelot

Sensitivity to Input Order: Evaluation of an Incremental and Memory-Limited
Bayesian Cross-Situational Word Learning Model

Sepideh Sadeghi and Matthias Scheutz

Sentence Weighting for Neural Machine Translation Domain Adaptation
Shiqi Zhang and Deyi Xiong

Quantifying training challenges of dependency parsers
Lauriane Aufrant, Guillaume Wisniewski and Frangois Yvon

Seq2seq Dependency Parsing
Zuchao Li, Jiaxun Cai, Shexia He and Hai Zhao

Ixiv



Thursday 23rd August (continued)

Revisiting the Hierarchical Multiscale LSTM
Akos Kédér, Marc-Alexandre Coté, Grzegorz Chrupata and Afra Alishahi

Character-Level Feature Extraction with Densely Connected Networks
Chanhee Lee, Young-Bum Kim, Dongyub Lee and Heuiseok Lim

Neural Machine Translation Incorporating Named Entity
Arata Ugawa, Akihiro Tamura, Takashi Ninomiya, Hiroya Takamura and Manabu
Okumura
Semantic Parsing for Technical Support Questions
Abhirut Gupta, Anupama Ray, Gargi Dasgupta, Gautam Singh, Pooja Aggarwal and
Prateeti Mohapatra
Deconvolution-Based Global Decoding for Neural Machine Translation
Junyang Lin, Xu Sun, Xuancheng Ren, Shuming Ma, Jinsong Su and Qi Su
Friday 24th August
09:00-10:00 Invited talk: Min-Yen Kan

10:00-10:30 Refreshment break

10:30-12:30  Session 4-1-a: Question answering

Pattern-revising Enhanced Simple Question Answering over Knowledge Bases
Yanchao Hao, Hao Liu, Shizhu He, Kang Liu and Jun Zhao

Integrating Question Classification and Deep Learning for improved Answer
Selection
Harish Tayyar Madabushi, Mark Lee and John Barnden

Knowledge as A Bridge: Improving Cross-domain Answer Selection with External
Knowledge
Yang Deng, Ying Shen, Min Yang, Yaliang Li, Nan Du, Wei Fan and Kai Lei

Modeling Semantics with Gated Graph Neural Networks for Knowledge Base

Question Answering
Daniil Sorokin and Iryna Gurevych

Ixv



Friday 24th August (continued)

10:30-12:30

Rethinking the Agreement in Human Evaluation Tasks
Jacopo Amidei, Paul Piwek and Alistair Willis

Dependent Gated Reading for Cloze-Style Question Answering
Reza Ghaeini, Xiaoli Fern, Hamed Shahbazi and Prasad Tadepalli
Session 4-1-b: Rumor

Automated Fact Checking: Task Formulations, Methods and Future Directions
James Thorne and Andreas Vlachos

Can Rumour Stance Alone Predict Veracity?
Sebastian Dungs, Ahmet Aker, Norbert Fuhr and Kalina Bontcheva

Attending Sentences to detect Satirical Fake News
Sohan De Sarkar, Fan Yang and Arjun Mukherjee

Predicting Stances from Social Media Posts using Factorization Machines
Akira Sasaki, Kazuaki Hanawa, Naoaki Okazaki and Kentaro Inui

Automatic Detection of Fake News
Veroénica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre and Rada Mihalcea

All-in-one: Multi-task Learning for Rumour Verification
Elena Kochkina, Maria Liakata and Arkaitz Zubiaga

Ixvi



Friday 24th August (continued)

10:30-12:30

10:30-12:30

Session 4-1-c: Second language, Biomedical

Open Information Extraction on Scientific Text: An Evaluation
Paul Groth, Mike Lauruhn, Antony Scerri and Ron Daniel, Jr.

Simple Algorithms For Sentiment Analysis On Sentiment Rich, Data Poor Domains.
Prathusha K Sarma and William Sethares

Word-Level Loss Extensions for Neural Temporal Relation Classification
Artuur Leeuwenberg and Marie-Francine Moens

Personalized Text Retrieval for Learners of Chinese as a Foreign Language
Chak Yan Yeung and John Lee

Punctuation as Native Language Interference
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Abstract

Animacy is a necessary property for a referent to be an agent, and thus animacy detection is
useful for a variety of natural language processing tasks, including word sense disambiguation,
co-reference resolution, semantic role labeling, and others. Prior work treated animacy as a
word-level property, and has developed statistical classifiers to classify words as either animate or
inanimate. We discuss why this approach to the problem is ill-posed, and present a new approach
based on classifying the animacy of co-reference chains. We show that simple voting approaches
to inferring the animacy of a chain from its constituent words perform relatively poorly, and then
present a hybrid system merging supervised machine learning (ML) and a small number of hand-
built rules to compute the animacy of referring expressions and co-reference chains. This method
achieves state of the art performance. The supervised ML component leverages features such as
word embeddings over referring expressions, parts of speech, and grammatical and semantic
roles. The rules take into consideration parts of speech and the hypernymy structure encoded in
WordNet. The system achieves an F of 0.88 for classifying the animacy of referring expressions,
which is comparable to state of the art results for classifying the animacy of words, and achieves
an Fi of 0.75 for classifying the animacy of coreference chains themselves. We release our
training and test dataset, which includes 142 texts (all narratives) comprising 156,154 words,
34,698 referring expressions, and 10,941 co-reference chains. We test the method on a subset of
the OntoNotes dataset, showing using manual sampling that animacy classification is 90%=+2%
accurate for coreference chains, and 92%4-1% for referring expressions. The data also contains
46 folktales, which present an interesting challenge because they often involve characters who
are members of traditionally inanimate classes (e.g., stoves that walk, trees that talk). We show
that our system is able to detect the animacy of these unusual referents with an F7 of 0.95.

1 Introduction

Animacy is the characteristic of being able to independently carry out actions (e.g., movement, commu-
nication, etc.). For example, a person or a bird is animate because they move or communicate under their
own power. On the other hand, a chair or a book is inanimate because they do not perform any kind of
independent action.

Animacy is a useful semantic property for different NLP systems, including word sense disambigua-
tion (WSD), semantic role labeling (SRL), coreference resolution, among many others. Animacy can be
used to distinguish different senses and thus help a WSD systems assign senses to different words. As
an example, animacy has been applied in grouping senses from WordNet (Palmer et al., 2004; Palmer et
al., 2007). Animacy can also be used directly in a WSD system to decide thematic assignment, which is
useful for assigning senses: for example, Carlson and Tanenhaus (1988) used the presence of an animate
subject in a sentence to determine if a the verb is transitive, which is a useful for thematic role assign-
ment. Another task where animacy can play an important role is semantic role labeling (SRL). Agentive

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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There wasi|the apple tree! "Apple tree, |apple tree, little mother, hide|me|!"|the girl|begged. "If you eat|my wild apple}"'She ate

quickly. The apple tree|covered|her witl‘[branches] and[leaves]l and|the geese|flew by.

Figure 1: Example text containing animate and inanimate coreference chains. Colored boxes represent
referring expressions, while links between them signify coreference. Animate chains are green, while
inanimate chains are red. The text is drawn from Story #113 The Magic Swan Geese (Guterman, 1975,
p- 350) and has been slightly modified for clarity. The figure is adapted from (Jahan et al., 2017).

or semantic subject roles must often be filled by animate entities, whereas goal, theme, patient, instru-
ment and location roles are often filled by inanimate entities (Kittila et al., 2011). In some works (Connor
et al., 2013; Kittild, 2006, for example), animacy is used as a feature that helps to identify agents, and
Ferreira (1994) showed how knowing the animacy of roles allows one to better identify the passive voice.
In many coreference resolution systems (Raghunathan et al., 2010; lida et al., 2003; Cardie and Wagstaf,
1999, for example) animacy is used as an semantic feature to determine co-referents of an expression.

In addition to these broad uses of animacy, our own research group is particularly interested in de-
tecting animacy with a view toward identifying characters in stories. Most definitions of narrative ac-
knowledge the central role of character, for example: “a representation of a possible world .. .at whose
centre there are one or several protagonists of an anthropomorphic nature . .. who (mostly) perform goal-
directed actions ...” (emphasis ours) (Fludernik, 2009, p. 6). If we are to achieve the long-term goal of
automatic story understanding, it is critical that we be able to automatically identify a story’s characters,
distinguishing them from non-character entities. All characters are necessarily animate—although not
all animate things are necessarily characters—and so detecting animacy will immediately narrow the set
of possibilities for character detection.

Prior work treated animacy as a word-level phenomenon, marking animacy as an independent feature
on individual words (Ordsan and Evans, 2007; Bowman and Chopra, 2012; Karsdorp et al., 2015). But
word-level animacy is not always sufficient to identify an animate or an inanimate object. For example,
horse is normally animate, but a dead horse is obviously inanimate. On the other hand, tree is an
inanimate word but a talking tree is definitely an animate thing. So, assigning animacy at the word level
confuses the issue and makes it more difficult classify these type of complex cases.

Furthermore, referents are expressed in texts as coreference chains comprised of referring expressions,
and so conceiving of animacy as a word-level phenomenon requires an additional method for computing
chain animacy from word animacy. One way to do this is to combine word-level animacy markings—
say, using majority vote—into referring expressions animacy and then coreference chains. As it turns
out, this does not work all that well and we used this method as our baseline. Alternatively, we can
attempt to compute animacy directly on the referring expressions and then use majority vote of referring-
expression-level animacy to compute animacy of coreference chains, the approach we pursue here.

Although detecting animacy might seem to be straightforward, it presents a number of subtleties. For
example, some theorists have proposed closed lists of linguistic expressions that should be automatically
considered animate entities, such as titles, animals, or personal pronouns (Quirk et al., 1985; Yamamoto,
1999). However, texts, especially stories about unreal worlds, can arbitrarily introduce characters that
would not be animate in real life, for example, walking stoves or talking trees. Figure 1 shows an
example sentence from a Russian fairytale which contains three animate chains, one of which is a tree
that talks: trees would not be normally be considered animate according to canonical lists of animate
entities. Therefore some context sensitivity in detection is needed.

In our work, we compute animacy directly on referring expressions, and transfer those markings up to
the coreference chain level, to get a direct classification of the animacy of the whole chain. We present
a hybrid system combining statistical machine learning (ML) and hand-built rules for classifying the
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# Texts # Tokens # Referring # Coref.

Text Types Expressions Chains
Russian Folktales 46 109,120 20,391 4,950
Islamist Extremist Texts 32 26,557 8,041 3,684
Islamic Hadiths 64 20,477 6,266 2,307

Table 1: Counts of various text types in the corpus.

animacy of referring expression, and also present a voting model to identify the animacy of coreference
chains based on the animacy of the chain’s constituent referring expressions. The paper proceeds as fol-
lows. First we discuss our data sources and annotation procedures (§2). Next we discuss the experimental
setup including the ML features, rules, and classification models (§3), and then describe our results (§4).
We analyze the error patterns of the system and mention potential future work (§5), and also discuss
work that is related to this study (§6). We finish with a discussion of the contributions of the paper (§7).

2 Data

We started this project seeking to use existing data annotated for animacy, as there have been a number
of studies on animacy detection already (as we discuss in §6). However, no prior data in English was
readily available to use; the best performing prior work on word-level animacy was done on a corpus
of 74 stories comprising 74,504 words in Dutch (Karsdorp et al., 2015). Ordsan and Evans (2007) did
their work in English but their data was not available. Therefore we sought other data (specifically
stories, because of our interest in story understanding), and our annotated data was a corpus comprising
a variety of Russian folktales, Islamist Extremist stories, and Islamic Hadiths that are freely available
and assembled for other work, and had been annotated for referring expressions and coreference chains
(Finlayson, 2017; Finlayson et al., 2014). The composition of the corpus is shown in Table 1.

The corpus contains 46 Russian folktales, originally collected in Russian in the late 1800’s but trans-
lated into English in the mid-twentieth century (Finlayson, 2017). The other portion (the N2 corpus) con-
tains 96 stories of relevance to Islamist Extremists (Finlayson et al., 2014). All but 31 of the texts in the
corpus already contained gold-standard annotations for token and sentence boundaries, parts of speech,
referring expressions, and coreference chains (as well as other layers of annotation. We processed these
31 un-annotated texts using the Stanford CoreNLP suite (Manning et al., 2014), automatically generating
tokens, sentences, parts of speech, referring expressions, and coreference chains.

We annotated the whole corpus for animacy of coreference chains, and the first fifteen stories for
animacy at the word level. We propagated the animacy annotations from the chains to their constituent
referring expressions to generate animacy annotations at that level. Because we had to automatically
compute referring expression and coreference chains on 31 of the texts, and the CoreNLP coreference
resolution is somewhat noisy, we hand-corrected the chains. We did this hand-correction using the Story
Workbench annotation tool (Finlayson, 2008; Finlayson, 2011) that allows for the manipulation and
correction of referring expression and coreference chains.

The annotation of the animacy of coreference chains and referring expressions for the first fifteen sto-
ries was performed by the first two co-authors. Disagreements were discussed and corrected to generate a
gold-standard annotation. Agreement for the coreference-level was 0.99 F; and 0.99 Cohen’s kappa co-
efficient (x), which represents near-perfect overall agreement (Landis and Koch, 1977). The annotation
of the rest of the stories was performed by only the first author.

We also annotated first fifteen Russian tales for word-level animacy so that we could test via reim-
plementation the existing best performing word animacy model (Karsdorp et al., 2015). This annotation
was done under the following guidelines. First, all nouns that would refer to animate entities in real life,
such humans or animals, as discussed in (Quirk et al., 1985, pp. 314 & 345) were marked animate. We
marked gendered pronouns as animate, e.g., he, she, his, hers, etc. We also marked adjectives suggest-
ing animacy as animate, e.g., alive, vital, kindlier, etc., whereas adjectives implying inanimacy, such as
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Total Animate Inanimate Unique Unique

entity  entity entity Animate Inanimate
Token (15 stories) 23,291 3,896 19,395 291 2,221
Referring Expression (142 stories) 34,698 22,052 12,646 1,104 2,249

Coreference-chain (142 stories) 10,941 3,832 7,109 - -

Table 2: Total number of animate and inanimate tokens, referring expressions, and coreference chains,
with breakdowns of number of unique items in each class.

Referring Expression Class Explanation
Muslims, the dragon, Abu Bakr Animate  Normally animate entities
walking stove, talking tree Animate  Normally inanimate but are animate in context

“those who do not know what it is” Inanimate Discourse acts, when marked as referents
the mosque, this world, every house Inanimate Normally inanimate objects

dead horse Inanimate Normally animate but are inanimate in context
her eyes, his hands , horse tail Inanimate Inanimate parts of animate entities

Word

princess, dragon, Abdullah Animate  Nouns denoting animate entities

he, she, his, her Animate  Personal pronouns referring to animate objects
kind [prophet], stronger [dragon] Animate  Adjectives that suggest animacy

Morning, Evening, [talking] stove Animate  Usually inanimate but are animate in context
Kiev, world, mosque Inanimate Nouns denoting inanimate entities

it, that, this Inanimate Personal pronouns referring to inanimate objects

Table 3: Examples of annotation of coreference- and word-level animacy. At the word level, only an
adjectives suggesting animacy or nouns referring to an animate object are marked animate. Everything
else (including verbs, adverbs, determiners, and so forth) are marked inanimate.

dead in the noun phrase dead horse, were marked inanimate. Second, we marked as animate any words
directly referring to entities that acted animately in a story, regardless of the default inanimacy of the
words. For example, we marked stove animate in the case of a walking stove, or free animate in the case
of a talking tree. This also covered proper names that might normally be marked as inanimate because
of their ostensible class, such as those underlined in the next example:

All of them were born in one night—the eldest in the evening, the second at midnight, and
the youngest in the early dawn, and therefore they were called Evening, Midnight, and Dawn.
(Guterman, 1975, Tale #140, p. 458)

The word-level annotation was done by the first two co-authors. Disagreements were discussed and
corrected to generate a gold-standard annotation. We annotated every word in the corpus for animacy
directly (marking each word as either animate or not). Agreement was 0.97 F} and 0.97 Cohen’s kappa
coefficient (), which represents near-perfect overall agreement (Landis and Koch, 1977).

A summary of the counts of animate and inanimate words, referring expressions, and coreference
chains is given in Table 2. Examples of animate and inanimate words are given in Table 3. The data is
included in the supplementary materials archive for the paper, which is publicly available'.

3 Approach

Our hybrid system comprises two parts: a rule-based classifier that can mark the animacy of roughly 50%
of the referring expressions, followed by a statistical classifier trained on the annotated data that can be

"https://dspace.mit.edu/handle/1721.1/116172
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applied to the remaining referring expressions. Once all referring expressions are marked for animacy,
the animacy of a coreference chain is inferred from the animacy of its constituent referring expression.

3.1 Rules

We implemented five rules that considered semantic subjects parsed from the semantic role labeler as-
sociated with the Story Workbench annotation tool (Finlayson, 2008; Finlayson, 2011), the named en-
tities computed using the classic API of Stanford dependency parse (Manning et al., 2014, v3.7.0), and
knowledge from WordNet (Fellbaum, 1998). These rules were inspired by existing rule-based animacy
systems. We also considered the last word of a referring expression in most of the rules because it helps
to mark quotes as inanimate, as well as to detect the regular animate and inanimate referring expression.

1. If the last word of a referring expression is a gendered personal, reflexive, or possessive pronoun
(i.e., excluding it, its, itself, etc.), we marked it animate.

2. If the last word of a referring expression is the semantic subject to a verb, we marked it animate.

3. If areferring expression contains a proper noun we marked it animate. We excluded anything tagged
as location, organization, or money, as determined by the Stanford CoreNLP NER system.

4. If the last word of a referring expression is a descendant of living_being in WordNet, we marked it
animate.

5. If the last word of a referring expression is a descendant of entity WordNet, we marked it inanimate.

3.2 Features

We explored seven different binary and vector features to train the statistical classification model, some
of which are drawn from prior work.

1. Word Embeddings (WE): We computed pre-trained word embeddings in 300 dimensions for all
the words in the stories using the skip-gram architecture algorithm (Mikolov et al., 2013). We used the
DeepLearning4]J library (Deeplearning4j Development Team, 2017), and configured the built-in skip-
gram model with a minimum word frequency of 3, layer width (dimensions) of 300, a window size of 5,
and trained for 10 iterations. We explored a few different combinations of these parameters, but found
that these settings produced the best results. This is a vector feature drawn from (Karsdorp et al., 2015),
and is primarily relevant to classifying word-level animacy. We ran this model on each word of our data
and used the output vector as a feature.

2. Word Embeddings on Referring Expressions (WER): We calculated pre-trained word embed-
dings in 450 dimensions for just the words within the referring expressions, again using the skip-gram
approach as above, except with a minimum word frequency of 1. Again, this is a vector feature. 450
dimensions worked better for this feature (rather than 300), which we discovered after doing a small
amount of parameter exploration. We ran this model on each referring expression of our data used the
output vector as a feature.

3. Composite Word Embedding (CWE): We computed a composite pre-trained word embedding
for the neighborhood of each word, adding together the word embedding vectors for three words before
and three words after the target word (excluding the target). This is also a vector feature, and is again
partially drawn from (Karsdorp et al., 2015). The idea of this feature is that it estimates the similarities
of the context among all animate words (or all inanimate words) as well as the dissimilarities of animate
from inanimate, and vice versa.

4. Parts of Speech (POS): By analogy with the other embeddings, we computed an embedding over
part of speech tags in 300 dimensions, with the same settings as in feature #1 (WE). This feature models
the tendency of nouns, pronouns, and adjectives to refer to animate entities.

5. Noun (N): We checked whether a given referring expression contained a noun and encoded this as
a boolean feature because we observed that in the first 15 stories 43% of nouns are animate. Thus this
feature explicitly captures the tendency of nouns to refer to animate entities. We used dependency parses
generated by the classic API of Stanford dependency parser (Manning et al., 2014, v3.7.0).
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6. Grammatical Subject (GS): Animate references tend to appear as the grammatical subjects of
verbs (Ovrelid, 2005). We used dependency parses generated by the classic API of Stanford dependency
parser (Manning et al., 2014, v3.7.0) to check if the last word of a given referring expression was used
as a grammatical subject relative to any verb in the sentence, and encoded this as a boolean feature.

7. Semantic Subject (SS): We also computed whether or not a referring expression appeared as a
semantic subject to a verb. We used the semantic role labeler associated with the Story Workbench
annotation tool (Finlayson, 2008; Finlayson, 2011) to compute semantic roles for all the verbs in the
stories. We then checked whether the last word of a given referring expression contained an ARGO for a
verb (an exact match was not required), and encoded this as a boolean feature.

3.3 Classification Models

We implemented our classification models using SVM (Chang and Lin, 2011), with a Radial Basis
Function Kernel. The features used to train the different models are shown in Table 4. We trained each
model using cross validation, and report macroaverages across the performance on test folds.

We have three models for animacy: referring expressions, coreference chains, and words. For our
referring expression animacy model, we implemented two approaches. The first is a ML-only approach,
in which we explored different combinations of features: word embedding over referring expressions
(WER), noun (N), grammatical subject (GS), and semantic subject (SS). We configured the SVM with
v=1,C = 0.5 and p = 1. We measured the performance of the classifier using 10-fold cross validation.
The second approach is the hybrid system where we we first applied the rules, then applied the ML
classifier for referring expressions not covered by the rules. In our prior work we only implemented the
first approach (Jahan et al., 2017) on a small data set.

For the coreference chain animacy model, we implemented a majority voting approach for combining
the results of the referring expression animacy model to obtain a coreference animacy prediction. In the
case of ties, the chain was marked inanimate.

To compare with prior work, we also implemented a word animacy model, adapting an existing system
with the best performance (Karsdorp et al., 2015). That model used features based on word N-grams,
parts of speech, and word embeddings. Similarly, we implemented our classifier using word embeddings
over words (WE), combined word embeddings (CWE), and parts of speech (POS). The SVM was config-
ured with v = 5, C' = 5000 and p = 1, and we measured the performance with 20-fold cross validation.
This model performed very close to the prior state of the art with our small data set of 15 stories.

4 Results & Discussion

We calculated two baselines for referring expression animacy. The first baseline is to choose the majority
class (animate). The second baseline combines word-level animacy predictions generated by our word
animacy model via a majority vote; we measured the upper bound for this over the 15 texts for which we
have gold-standard word animacy annotations.

We evaluated our models by measuring accuracy, precision, recall, F7, and Cohen’s kappa (k) com-
pared to the gold-standard annotations. Table 4 shows the results for both classes. Our word animacy
model achieved an F; of 0.98, whereas the prior state of the art achieved £} of 0.99 for marking inani-
macy. On the other hand, for marking animacy our model achieved F of 0.90 where the state of the art
achieved F; of 0.93. For referring expression animacy we varied the features to determine the optimal
set. We obtained the best result (F} of 0.84) using different combinations of three features: noun (N),
grammatical subject (GS) and semantic subject (SS). Our hybrid model for referring expression animacy
performed better (£} of 0.88) than the statistical model (F; of 0.84). The rule-based model achieved 0.88
F when we applied the rules first, and marked any remaining referring expressions as majority class.
Our rule based model performed similarly to the hybrid model, but the hybrid model is more consistent.

For the coreference animacy model, we implemented the majority vote approach to detect animacy
of coreference chain using the best output of referring expression model. Majority vote resulted in an
overall F of 0.75, which substantially outperforms the result from our prior work of 0.61 F;. Around
3% of coreference chains resulted in a tied vote, and these were marked as inanimate (the majority class).
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Inanimate Animate
Model | Feature Set Ace. | K Prec. Rec. F,q K Prec. Rec. F;
Word (Karsdorp et al., 2015) | - - 098 099 0.99 | - 094 091 093
WE, CWE, POS 9%% | 087 098 098 098|087 091 0.88 0.90
Baseline MFC 61% |00 0.0 00 00 |00 061 1.0 0.76
Baseline Maj. Vot. 75% | 053 059 099 074|053 099 0.62 0.76
Hybrid on Stanford 80% | 0.61 089 0.73 0.79 | 061 074 090 0.81
Ref. WER, N, GS, SS 76% | 047 0.80 051 062|047 076 092 0.83
Expr. | N, GS 78% | 051 083 054 065051 077 093 0.84
N, SS 79% | 053 0.80 0.60 068|053 078 091 0.84
N, GS, SS 79% | 053 081 059 068|053 078 091 0.84
Prior best result 8% | 0.70 0.83 0.77 0.80|0.68 087 091 0.90
Rule Based model 82% | 060 089 0.60 0.72|060 081 096 0.88
Hybrid model 83% | 062 0.84 0.67 074062 083 093 0.88
Random Sampling 92%* | 0.85 0.87 093 091|085 096 092 0.94
Prior best result 79% | 048 093 080 086|048 050 0.76 0.61
Coref. | Maj. vote on Stanford | 79% | 0.54 091 0.78 0.84 | 0.54 0.60 0.82 0.69
Maj. vote (current) 82% | 0.61 0.87 0.84 086|061 073 077 0.75
Random Sampling 90%' | 0.80 0.86 0.98 092 |0.80 097 0.81 0.88

Table 4: Result of different Animacy Models (Bolded according to when our F; measure is higher).
MEC stands for “Most Frequent Class”, and the other abbreviations stand for features as indicated in the
text. *Estimated +2% with 95% confidence. 'Estimated 4-1% with 95% confidence.

We also evaluated our model using direct sampling (Saunders et al., 2009). We ran our hybrid model
over 200 news articles from the OntoNotes (Hovy et al., 2006) data set containing 46,088 referring
expressions and 7,836 coreference chains. We randomly sampled 558 coreference chains and checked
their animacy markings by hand, resulting in a estimated accuracy of 90% +£2% at a 95% confidence
level, as well as estimated precision, recall, and F listed in Table 4. Those coreference chains contained
3,543 referring expressions, which allowed us to estimate the accuracy of the referring expression model
at 92% +1% at a 95% confidence level.

The data contains 46 folktales, which have 142 mentions of 12 characters who are members of tra-
ditionally inanimate classes (e.g., stoves that walk, trees that talk). We manually identified those 12
characters and evaluated our model’s performance on them. Our system is able to detect the animacy
of these unusual referents with an I of 0.95. Conversely, there was only one mention of a normally
animate class that was inanimate in context (‘“dead horse”), and this was correctly marked by the system.

S Error Analysis & Future Work

A detailed error analysis of the results revealed at least two major problems for the hybrid model that we
will focus on in future work: short chains, quotes, and exceptions to the rules.

Determining the animacy of short coreference chains was challenging for our system: approximately
11% of short chains are incorrectly marked. As the length of a chain tends toward a single referring
expression, the coreference classifier should converge to the referring expression classifier performance.
However, for chains between two and four referring expressions long, the majority voting approach
seems to fall short. We suspect this is because many referring expressions are themselves quite short,
and can contain false alarms: e.g., our system classifies “his hands” as animate because of the animate
word “his” in the expression. We believe another approach to solving this problem is to generate new
rules in our hybrid model so that it can handle these type of special cases.

Second, many quotes are full of animate words, e.g., “the fate of the tsar’s daughter to go to the
dragon” is a phrase that is itself a referring expression in one story, and should be inanimate according
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to our animacy annotation rule. However, the classifier marks the quote as animate because it finds three
animate words: tsar, daughter, and dragon. In our data, approximately 2.5% of quotes that are referring
expressions are incorrectly marked, and handling this likely will require rule-based processing.

Finally, a common error type was exceptions to the rules. In the hybrid system we combined together
a large number of similar referring expressions under one rule so that we can handle them under a similar
animacy class. But there are always exceptions for every rule: for example, we define “it” as inanimate
but of course sometimes “it” can refer to an animate object. For the most part these individual instances
will be out-voted by animate referring expressions in long chains, so it is a relatively small problem. One
approach to solving this would to implement the idea of Ordsan and Evans (2001; 2007) to use supervised
machine learning to mark unseen WordNet senses by their animacy rather using specific rules.

6 Related Work

We divide the related work into two sections: first animacy detection in English, followed by animacy
detection in other languages. The work reported here is in English (thus the related work of the first
section), but the material covered in non-English second section makes clear both that our approach had
not attempt before in any language, and also that no language-specific features have been used in any
prior work. There have been both rule-based and machine learning methods to classify the animacy of
words, but to the best of our knowledge, no one has combined both techniques, and no one has tackled
animacy classification at the referring expression or coreference level.

6.1 Animacy Detection in English

Evans and Ordsan (2000) performed animacy classification to improve anaphora resolution using a rule-
based method to identify animate WordNet hypernym branches. In later work they used supervised
machine learning to mark unseen WordNet senses for their animacy (Ordsan and Evans, 2001; Ordsan
and Evans, 2007). The rule-based method uses the unique beginners in WordNet for classification of
sense animacy using a statistical chi-squared method, while the machine learning method uses k-nearest
neighbors in a multi-step procedure, along with careful feature engineering, to determine noun ani-
macy. They achieved an F} of 0.94 for animacy, and also performed an extrinsic evaluation using the
MARS anaphora resolution system and a word sense disambiguation algorithm. Similarly, Moore et al.
(2013) combined a majority vote model using rule-based methods, features from WordNet, and a SVM
to achieve an accuracy of 89% for majority voting and 95% for SVM (no F7j score was reported).
Bowman and Chopra (2012) used a maximum entropy classifier to predict multiple classes for noun
phrases as human, vehicle, time, animal, etc., with an overall accuracy of 85%. A binary animacy
classification could be derived from each of these classes, with a performance of 94% accuracy.
Additionally, there are others that have used pure rule-based and pattern matching methods. Ji and
Lin (2009) generate n-grams and performed pattern matching using the Google n-gram corpus to label
gender and animacy properties for words for to assist in person mention detection. With these gender and
animacy markings, they applied a confidence estimation which is compared against the test document
using fuzzy matching. The highest F they achieved for animacy was 0.67, with an F; of 0.46 for gender.
Declerck et al. (2012) used an ontology-based method to detect characters in folktales. Their ontology
consists of family relations as well as elements of folktales such as supernatural entities. After looking at
the heads of noun phrases and comparing them with labels in the ontology, they added the noun phrase
to the ontology as a potential character if a match was found. Then, they applied inference rules to
the candidate characters in order to find two strings in the text that refer to the same character. They
discarded strings that are related to a potential character only once and are not involved in an action.
They obtained an accuracy of 79%;, a precision of 0.88, a recall 0.73, and an F} of 0.80.
Wiseman et al. (2015) used a mention-ranking approach for coreference resolution, using animacy as
a feature, derived from the Stanford Coreference System (Lee et al., 2013). The Stanford Coreference
System set animacy attributes using a static list for pronouns, named entity labels, and a dictionary.
Finally, a marginally related rule-based system was implemented by Goh et al. (2012) using verbs and
WordNet in order to determine the protagonists in fairy tales (where protagonists must of necessity be
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animate). They used the Stanford parser’s phrase structure trees to obtain the subjects and objects of the
verbs and used the dependency structure to obtain the head noun of compound phrases. Additionally,
they used WordNet’s derivationally_related relation to find verb associated with a particular nominal
action. They achieved a precision of 0.69, a recall of 0.75, and an F7 of 0.67.

6.2 Animacy Detection in Other Languages

Ngklestad (2009) implemented animacy detection for Norwegian nouns, using this along with Named
Entity Recognition to improve the performance of anaphora resolution. They explored various pattern
matching methods, using web data to extract lists of animate nouns as well as to check the animacy of
a particular noun. For example, if a noun co-referred frequently with han (he) or hun (she), then it was
characterized as animate. This method achieved an accuracy of 93%. The main problem here, from our
point of view, is that using data from the web makes the problem too general: you only measure the
typicality of animacy, not the animacy of an item in context. In the case of folktales, we have unusual
animate entities (e.g., talking stoves) that will on the whole be seen by the web as inanimate.

Bloem and Bouma (2013) developed an automatic animacy classifier for Dutch nouns by dividing
them into Human, Nonhuman and Inanimate classes. They use the k-nearest neighbor algorithm with
distributional lexical features—e.g., how frequently the noun occurs as a subject of the verb “to think”
in a corpus—to decide whether the noun was predominantly animate. Prediction of the Human category
achieved 87% accuracy, and the large inanimate class was predicted correctly 98% of the time. But,
again, this work focuses on individual noun phrases, not coreference chains, and is concerned with the
default animacy of the expression, not its animacy in context.

Another implementation of word-level animacy for Dutch was performed by Karsdorp et al. (2015)
on folktale texts. Because this work was the highest performing word-level system, many of our features
were inspired by their approach. They used lexical features (word forms and lemmas), syntactic features
(dependency parses to check which word is a subject or an object), part of speech tags, and semantic
features (word embedding using a skip-gram model to vectorize each word). They implemented a Max-
imum Entropy Classifier to classify words according to their animacy and obtained a good result of 0.93
F for the animate class, by just using the words, parts of speech, and embedding features.

Baker and Brew (2010) performed animacy classification on a multilingual dataset containing English
and Japanese. They used Bayesian logistic regression with morphological features, WordNet semantic
categories, and frequency counts of verb-argument relations. They obtained 95% classification accuracy.
In sum, all the prior work has been for word-level animacy (usually nouns, sometimes noun phrases). In
contrast, we focus on characterizing the animacy of referring expressions and coreference chains.

7 Contributions

This paper makes four major contributions. First, we have redefined the problem of animacy classifica-
tion as one of marking animacy on coreference chains, in contrast to all prior work that seeks to mark
the animacy at the world level. Second, we have presented a hybrid system merging an SVM classifier
and hand-built rules to predict the animacy of referring expressions directly, achieving performance of
0.90 F1, which is comparable to the state of the art for word-level animacy detection. Third, we used a
majority voting approach to obtain the animacy of coreference chains. The overall performance of this
approach is substantially improved in comparison with our prior work. Our error analysis further sug-
gests several potentially profitable ways forward to improving the performance. Finally, we provide 15
texts annotated for word-level animacy and 142 texts annotated for coreference chain animacy, as well
as the code reproducing the results, in the supplementary materials archive?.
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Abstract

Recent neural network methods for zero pronoun resolution explore multiple models for generat-
ing representation vectors for zero pronouns and their candidate antecedents. Typically, contex-
tual information is utilized to encode the zero pronouns since they are simply gaps that contain
no actual content. To better utilize contexts of the zero pronouns, we here introduce the self-
attention mechanism for encoding zero pronouns. With the help of the multiple hops of attention,
our model is able to focus on some informative parts of the associated texts and therefore pro-
duces an efficient way of encoding the zero pronouns. In addition, an attention-based recurrent
neural network is proposed for encoding candidate antecedents by their contents. Experiment
results are encouraging: our proposed attention-based model gains the best performance on the
Chinese portion of the OntoNotes corpus, substantially surpasses existing Chinese zero pronoun
resolution baseline systems.

Title and Abstract in Chinese
ETHERE S E PSR IR E T Y

ERKRTZRAKTIER Y T 2R TRTEMTRIARNFREE . XEREAF, o
FAENTAZEAIAR LR E BRI REEE - O T HEFHBEETRE,
TR T —MEE T IER IALHE R M 2R R, Gl TR )RR R RS ot 5
BRI EPXEL - SSRETREY. AT IEREB ARSI ROR, #4£H LOntoNotes
5.050ES LHUS TR IFIVEER, T A RERERST -

1 Introduction

In natural languages, expressions that can be deduced contextually by people are frequently omitted in
texts. This is special the case in pro-dropped languages, such as Chinese, where a kind of anaphoric
expression is frequently eliminated. A zero pronoun is a gap in the sentence that is found when a pho-
netically null form is used to refer to a real-world entity (Chen and Ng, 2016). We here show a case of
zero pronouns from the OntoNotes-5.0 dataset.

X IR MR o B~ FRE A, X B R &R 0 RE R, ¢ & HIER
=

In this earthquck ¢; some rooms collapsed, if there exsit some room quality issues, ¢o will
need to call to account.

We use ¢ to represent the zero pronouns in this example. Among these zero anaphoras, we can assign

the mention “E{Jff/the government™ that appears in leading text, to be the antecedent of ¢, while there

are no such mentions for ¢;. Hence, ¢ is an anaphoric zero pronoun, and ¢; is the un-anaphoric case.
*Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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With the fact that zero pronouns are gaps that have no text, it is almost impracticable to representant
the zero pronouns by themselves. This issue has received increasingly attention. In recent time, deep
neural network methods for Chinese zero pronoun resolution (Chen and Ng, 2016; Yin et al., 2017a;
Yin et al., 2017b) have been proposed and are intended to encode zero pronouns into the vector-space
semantic by additional elements. Chen and Ng (2016) propose a neural network model that learns to
encode the anaphoric zero pronoun by using the leading word and governing verb, which leads to the
insufficient text issue. To better use associated text information for expressing zero pronouns, Yin et al.
(2017a) present the ZP-centered-LSTM architecture that learns to encode zero pronouns by their text
words. However, it could bring with some defects: their model regards all the words in the sentence
equally, thus fails in capturing informative parts of the sentence. As described in (Chen and Ng, 2016),
the clause information of a zero anaphora is very important in explaining these gaps, it is a natural way
of modeling zero pronoun by focusing on some important texts. For instance, in sentence “two trains
in ten weeks ago ¢ crashed in their way to the southern German countryside”, “crashed in their way”
is an important clue for the zero pronoun but “several weeks ago” is not. Under this consideration, a
systematic solution that can encode zero pronouns by focusing on informative parts of associate texts is
the better choice. Besides, another important issue for the task of zero pronoun resolution is modeling
candidates. Recent researches use context and content words to encode candidates (Yin et al., 2017a; Yin
et al., 2017b). Typically, these words are modeled in a sequential way by recurrent neural networks. We
argue that some of the words in noun phrases contains more important information than others, a need
that leads to the usage of attention mechanism.

To alleviate the above-mentioned issues, in this paper, we propose a novel attention-based neural
network model to deal with the task. Following existing neural network work for Chinese zero pronoun
resolution (Chen and Ng, 2016; Yin et al., 2017a; Yin et al., 2017b), we focus on anaphoric zero pronoun
resolution task, introducing a pair-wise model to resolve anaphoric zero pronouns. For some natural
language processing tasks (Mnih et al., 2014; Tang et al., 2016), people investigate to apply attention
mechanism on top of the convolutional neural network or recurrent neural network to introduce an extra
source of information to guide the modeling of useful information. However, since zero pronouns are
simple gaps that have no such kind of extra information, the above-mentioned attention mechanism can
rarely be directly practiced for modeling these gaps. Inspired by (Lin et al., 2017), we here investigate
the usage of a self-attentive mechanism for encoding the zero anaphoras. With the help of self-attentive
mechanism, our model is able to effectively focus on informative texts of the zero pronouns and therefore
captures essential information on encoding the zero pronouns. In addition, on purpose of modeling
informative texts of mentions (noun phrases), we propose an attention-based recurrent neural network to
build the mention encoder. With the help of representative vector of zero anaphoras, our model is able
to effectively focus on important parts of mentions and therefore brings an efficient way of expressing
candidates at the semantic level. Empirically, we show that our method has brought performance gains
in baselines, achieving great performance on the widely used OntoNotes-5.0 dataset. Our contributions
are three-fold:

e By utilizing the self-attention mechanism, our model is able to focus on informative parts of asso-
ciate texts when modeling zero pronouns, leading to an effective way of capturing useful informa-
tion for interpreting the zero pronouns;

e Our model is capable of modeling candidate antecedents by their informative words with the help
of zero pronouns, which in return brings a better way of explaining candidate antecedents;

e We show that our model substantially surpasses all baseline systems, gains state-of-the-art perfor-
mance on the benchmark dataset.

In Section 2, we will discuss related work on zero pronoun resolution. Next, we will intorduce our
attention-based neural network model in Section 3. In Section 4, empirical evaluation results are shown.
And finally, we conclude in Section 5.
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2 Related Work

In this section, we give a brief summary of early efforts for zero pronoun resolution both for Chinese and
other languages.

2.1 Zero Pronoun Resolution for Chinese

Converse (2000) is the first rule-based study that integrate Hobbs-algorithm into the resolution of zero
pronoun in the Chinese Treebank (Xue et al., 2005). After that, a variety of learning-based methods
have been investigated. Zhao and Ng (2007) use the learning-based model to locate and resolve zero
anaphoras. They investigate a serious of features and apply the decision-tree algorithm to train the
classifier. To better capture the syntactic-level information, Kong and Zhou (2010) introduce the context
sensitive tree-kernel unified framework for zero anaphor resolution. On the base of Zhao and Ng (2007),
Chen and Ng (2013) further investigate their model, introducing two extensions to the resolver, namely,
novel features and zero pronoun links. However, these work deeply rely on annotation dataset. To
alleviate this issue, Chen and Ng (2014) present the first unsupervised model that first convert zero
anaphoras into ten pre-defined pronouns and then apply a ranking-based pronoun resolution model to
select antecedent mentions. Chen and Ng (2015) build a discourse-aware model that can jointly locate
and resolve zero anaphoras.

More recently, with the advance of neural network techniques, deep-learning-based methods are in-
troduced and have been demonstrated to be effective for this task. Chen and Ng (2016) first introduce
a feed-forward neural network framework, where zero anaphoras are encoded by its previous word and
headword. However, their model overlooks context of a zero anaphora, which inevitably misses some
valuable information. Naturally, some works try to alleviate this issue by investigating information from
associate texts. Yin et al. (2017a) introduce a novel memory-based network neural network model that
learns to encode zero anaphoras by its texts and antecedent mentions. They take advantage of multi-
hops architecture, producing abstract information from external-memories as hints for explaining zero
anaphoras. Yin et al. (2017b) focus on encoding global-information for candidates, where a hierarchical
candidate encoder is introduced that learns to model the candidates. Liu et al. (2017) investigate the issue
of generating pseudo training-data for the task of zero anaphora resolution. They use a novelty two-step
training strategy that helps to overcome the diversity between the generated pseudo training-data and
the real one. Even though these above-mentioned methods can reveal the semantic of zero anaphoras
by its context, they regard all the words equally, overlooking the diversity of different words. In this
paper, we focus on exploring an effective way of modeling zero pronoun by using the associated texts.
More specifically, we integrate a novel self-attentive mechanism, which provides our model an ability to
focus on multi-aspects text, benefiting the encodings of zero anaphoras. In addition, by employing an
attention-based technique for modeling candidates, our model learns to encode more informative parts
of the mentions. All these bring advantages to the resolution of zero pronouns.

2.2 Zero Pronoun Resolution for other Languages

There has been a variety of work on zero pronoun resolution for other languages besides Chinese, such as
Korean and Japanese. These methods could be categorized as rule-based and learning-based. Ferrandez
and Peral (2000) investigate a rule-based method that can encode preferences for candidates for resolving
zero anaphoras in Spanish. In recent time, learning-based methods (Han, 2006; Iida and Poesio, 2011;
Isozaki and Hirao, 2003; lida et al., 2006; Iida et al., 2007; Sasano and Kurohashi, 2011; lida and Poesio,
2011; Iida et al., 2015; Iida et al., 2016) have been well studied. Iida et al. (2016) present a novel CNN-
based deep neural network model for intrasentential subjective zero anaphora resolution in Japanese. As
clues, they use both the surface-word and the dependency tree-structure of a sentence. Their model gains
higher precision, which is needed for real-world natural language processing (NLP) applications.

3 Methodology

We introduce an attention-based neural network model for anaphoric zero pronoun resolution. Compared
to the prior studies that have the underutilized context of zero pronouns, we investigate an attention
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mechanism that helps to effectively capture useful information from associate texts. We here present
the methodology in details, which include the preliminary, the architecture of proposed attention-based

neural network and training objective of the model.
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Figure 1: Framework of the proposed attention-based neural network for zero pronoun resolution. The
w; for zero pronoun part means the i-th word in the associated sentence, w.,,_; is the i-th word before
the zero pronoun and w4, is the i-th word behind the zero pronoun. wy,,, is the i-th word of the noun
phrase. After generating the representative vector of zero pronoun and candidate mention, we generate
its resolution score by going through two tanh layers.

3.1 Preliminary

In the first place, we select its candidate mentions from the associated texts. More specifically, we
choose the noun phrases that appear within two sentences from the zero anaphora to be the candidates.
In addition, we choose the strategy used in prior approaches (Chen and Ng, 2016; Yin et al., 2017a) for
Chinese zero pronoun resolution, reserving those mentions that are max noun phrases or modifier noun
phrases as candidates. By doing so, we can recall most (about 98%) of the antecedents with a small loss.
Then, what we desire the resolver to do is to accurately recognize antecedents for zp from its candidates
list NP = {np1,npa, ..., npn }.

Our model is basically a pair-wise model (Zhao and Ng, 2007; Chen and Ng, 2016; Yin et al., 2017b).
For each candidate mention of zp, we classify it into two classifications, namely, “corefer” that means
the candidate is the antecedent of the zero pronoun; or otherwise, “un-corefer”. We build the classifier
by applying the attention-based techniques. More specifically, an attention-based neural network model
is utilized that generates the coreference score of each zero pronoun-candidate antecedent pair.

3.2 Attention-based Neural Network Model

In this part, we introduce our attention-based neural network for anaphoric zero pronoun resolution in
detail. The architecture of our model is shown in Figure 1. For an anaphoric zero pronoun zp, we convert
the input instances into real-valued vectors by using its context words. With the help of the self-attentive
mechanism, our model learns to represent zero pronouns by focusing on different parts of contexts. In
this way, we generate the representative vector of zp as v.,. In addition, when dealing with candidate
mentions, our model learns to encode the candidate mentions by using its informative content words. We
here manipulate the v, as an external vector to attend to the informative parts of its candidate mentions.
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By doing so, our model captures the important information of each candidate according to the zp. After
that, we generate the representative vectors of candidates as {Vpp, , Unpy, ..., Unp, }- Lastly, we feed the
representative vectors of the candidate and zero pronoun to a two-layer neural network, generating the
resolution score for each zero pronoun-candidate antecedent pair. After that, we obtain the resolution
probability for each candidate. The candidate mention with the biggest probability is regarded as the
final result. Basically, our model involves three modules, namely, a zero pronoun encoder; a candidate
antecedent encoder; and a feed-forward neural network that learns to score each candidate antecedent.

3.2.1 Modeling Zero Pronoun

Inspired by Lin et al. (2017), we investigate the self-attention mechanism when modeling zero anaphoras.
In practice, we use two recurrent neural networks (RNNs) to encode the preceding and following texts
of the zero anaphora (Yin et al., 2017a). The last hidden vectors of these two RNNs are concatenated
as the vector-space semantic of the zero pronoun. On top of the employed recurrent neural network
architecture, we apply the proposed attention technique that helps the model to capture the informative
parts of associated texts.

Especially, our self-attention mechanism provides the attention-weight vectors for hidden states of the
employed RNN architectures. We then dot these attention-weight vectors with counterpart hidden states
and use the weighted summation vector as the representative vector for the zero pronoun. For a zero
pronoun, we map its associated text words as sequential embeddings.

Contextprecedding = (wla w2, ... wzpfl) (1)

Contextfollowing = (wzp+17 Wep+25 «-) wn) (2)
where w; is a d dimensional embedding for the ¢th word in the sentence. After that, we generate the
representative vector of the preceding and the following text by using two separate RNNs:

hY" = RN Nppe(wi, hY"9) 3)

hi{% = RN Nyo(wy, h{%) (4)

where RN N and RN Ny, are two employed RNNs that model the precedding and following context
of the zero pronoun independently. After that, we get the hiddent vector for each word, which has the
dimension of u. We represent all the hidden states of RN Ny, and RN Ny, as Hp.. € R"<*" and
Hy, € R™1oX" seperately:

Hyre = (B0 W57, BT ) (5)
Hyo = {h{" h3”, ... b7} ©)

We then apply the self-attention mechanism, which computes linear-combinations of the hidden vec-
tors in Hy,. and H y,. The attention mechanism takes H,.. (or H ;) as the inputs and produces a matrix
of attention-weight Ay, (Afq):

Apre = softmaa;(Wgretanh(Wf’reHﬁe)) (7)
Afor = softmax(W;Oltanh(Wlde}Fol)) 3)

where W7 is a weight matrix with a shape of d,-by-u and W5 is in shape of r-by-d,; r represents the
number of hops of attention we choose. The softmax() is performed along the second dimension of
its input. In this way, the attention matrix A could be seen as a multi-hope attention matrix. Comparing
with the single-attention matrix, such a mechanism enables our model to focus on different parts of the
contexts, bringing a more efficient way of modeling sentence-level information for the zero pronoun at
the semantic level.

We get the  weighted sums by multiplying the attention matrix A and hidden states H, regarding the
resulting matrix as the representative vector of the zero pronoun’s preceding and following texts:

Mpre — Aprerre (9)
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Mfol = Afoleol (10)

Subsequently, we obtain the representative vectors of the associated text of the zero pronoun by averaging
the row vectors in each representative matrix (namely, M. and M¢y,;). After that, these two vectors are
concatenated as the representative vector of the zero pronoun. Our experiments show that the attention-
based model leads to a considerable improvement from the non-attentive model, indicating that the self-
attention mechanism can help to better encode the zero pronoun, focusing on informative parts of the
associated texts.

3.2.2 Modeling Candidate Antecedent

We here build the candidate antecedent encoder by using an RNN architecture, whose input is comprised
by the words in the candidate antecedent. In an effort to better align the more informative parts of
phrases to the anaphoric zero pronoun, we here integrate an attention technique into our model. In
this work, we use a gating-function as our attention mechanism. Especially, given the representative
vector of the anaphoric zero pronoun v(#P) | the output vector and input embedding vector of RNN in the

candidate mention part at time ¢, hgnp ) and et, the attention mechanism computes a gate as: attention; =

att(ey, hﬁ’”’) ,v(#P)), where att is defined as:
st = tanh(W@) . [e; hl(fnp);,u(zp)] + platt)) an

exp(st)
>y exp(sy)

where W (%) and b(**") are parameters to be learned, 1 is the number of words in the mention. After that,
we regard the averaged attention-hidden vector as the vector-space semantic of the candidate antecedent,
which takes considerations of a hierarchy of historical semantic:

attention; = (12)

m
Onp = Z hgnp ) attention; (13)
i=1

3.2.3 Calculating Resolution Scores

After generating the representive vector of zero pronoun, v, and vectors of its candidates
{Onp1> Onpys -+, Unp, }» We calcualte the resolution score for each zero pronoun-candidate antecedent by
using a two-layers feed-forwd nerual network. Taking v, and its i-th candidate mention vy, as inputs,
our model calcuate the resolution score by going through two tanh layers:

sj = tanh(Wi(s) “5j-1+ b§s)) (14)

where so = [v(zp); v(np;); vl(f 6)], W) and b(*) are the parameters of this feed-forward neural network.
In addition, to better capture the syntactics, position and other relations between an anaphoric zero pro-
noun and its candidates, we encode hand crafted features (v(f e)) as inputs to our neural network model.
We utilize the features from exsiting work on zero anaphora resolution (Chen and Ng, 2013; Chen and
Ng, 2016), map them into vectors to estimate the resolution score for the zero pronoun-candidate mention

pair as:
score; = W) . g, 4 plsco) (15)

where score; denotes the probability of the i-th candidate mention (np;) being predicted to be the an-
tecedent, and s_; is the output vector of the second hidden layer. After that, we obtain the resolution
scores for all the candidates {scorey, scores, ..., scorey }. The candidate mention with the biggest score
is eventually selected to be the antecedent of the anaphoric zero pronoun.
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3.3 Training Objective

Same as Yin et al. (2017b), we train our model by minimizing the cross entropy error of coreference
classification. The training objective is defined as:

loss = — Z Z d(zp, np) log(P(zp,np)) (16)

teT npENP

where T represents all training instances, N P is the candidate-set of the anaphoric zero pronoun
zp; 0(zp,np) represents the coreference of zp and its candidate mention np: if they are coreference,
d(zp,np) = 1 or otherwise, §(zp, np) = 0.

4 Experiments

4.1 Experiment Setup
4.1.1 Evaluation Metrics

Same as early work on Chinese zero pronoun resolution (Zhao and Ng, 2007; Chen and Ng, 2016; Yin
et al., 2017a; Yin et al., 2017b), we manipulate to evaluate the quality of our model by Recall, Precision
and F-score (denoted as F). More specifically, recall and precision are defined as:

# Res Hit
HRes = . 17
Recallp # AZP in Key a7
Hit
Precisionges = # Res Hi (18)

# AZP in Predictions

where a “Res Hit” means that the anaphoric zero pronoun is successfully identified and successfully re-
solved to a candidate mention that is in the same coreference chain as in the golden answer key annotated
in the dataset.

4.1.2 Experiment Settings

Same to existing work on Chinese zero pronoun resolution (Chen and Ng, 2016; Yin et al., 2017a; Yin et
al., 2017b), we run experiments on the Chinese part of the OntoNotes-5.0 dataset! used in the Conl1-2012
task. Because zero pronoun coreferences are only annotated in the training and development set, we thus
train our model on the training dataset and evaluate the model on the development dataset. Table 1 is the
statistics of our dataset.

Documents Sentences Words Anaphoric Zero Pronouns

Training 1,391 36,487 756K 12,111
Test 172 6,083 110K 1,713

Table 1: Statistics on the training and test dataset.

We use the recent zero pronoun resolution systems for Chinese as our baselines, namely, a learning-
based model (Zhao and Ng, 2007); an unsupervised method (Chen and Ng, 2015); and others are deep-
learning-based methods (Chen and Ng, 2016; Liu et al., 2017; Yin et al., 2017a; Yin et al., 2017b). As we
are focusing on the anaphoric zero pronoun resolution, we run experiments by directly employing golden
parse tree and golden anaphoric zero pronouns that are annotated in the dataset. In addition, documents in
the datasets are from 6 sources: BN (Broadcast News), NW (Newswire), BC (Broadcast Conversation),
WB (Web Blog), TC (Telephone Conversation) and MZ (Magazine). We report the overall results on
the complete test dataset and also the result from the different source of the dataset.

"http://catalog.ldc.upenn.edu/LDC2013T19
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NW 84) MZ (162) WB (284) BN 390) BC (5100 TC (283) | Overall
Zhao and Ng (2007) 40.5 28.4 40.1 43.1 44.7 42.8 41.5
Chen and Ng (2015) 46.4 39.0 51.8 53.8 494 52.7 50.2
Chen and Ng (2016) 48.8 41.5 56.3 55.4 50.8 53.1 52.2
Yin et al. (2017b) 50.0 45.0 559 53.3 55.3 54.4 53.6
Yin et al. (2017a) 48.8 46.3 59.8 58.4 53.2 54.8 54.9
Liu et al. (2017) 59.2 51.3 60.5 53.9 55.5 52.9 55.3
Our model ‘ 64.3 52.5 62.0 58.5 57.6 53.2 57.3

Table 2: Experiment results on the test dataset, including the results on the overall dataset and different
sources of the dataset. The first six columns show the results on the different source of documents and
the last is the overall result. The strongest F-score in each row is in bold. The parenthesized number
beside a source’s name is the number of anaphoric zero pronouns in that source.

4.2 Hyperparameter

To tune the hyperparameters of our model, 20% of the training dataset are reserved as a held out de-
velopment set. Such a strategy is also utilized in the baseline systems (Chen and Ng, 2016; Yin et al.,
2017a). We randomly initialize the parameters and minimize the loss-function by Adagrad (Duchi et
al., 2011) with learning-rate 0.003. The input embedding vector dimension is 100, the dimension of
hidden layer of RNNs (namely, the u) is 256 and d, is 128. Besides, we fix the dimensions of two
hidden layer of the feed-forward neural network to 256 and 512. We add the dropout (Hinton et al.,
2012) with a probability of 50% on the output of each layer. The code for this work is released in
https://github.com/gyyin/AttentionZP.git.

4.3 Experiment Results

We report the experiment results (F-score) of our model and the baselines in Table 2. The number of
hops of attention is fixed to be 2 (r = 2), where we gain the best result. We report the overall results on
the complete test dataset and also the results for each source of documents. As we can observe that our
model gains 57.3% in overall F-score, which significantly beats the best baseline system (Liu et al., 2017)
by 2.0%. In addition, we run experiments on different sources of test corpus, as shown in the first six
columns Table 2. The parenthesized number beside a source’s name represents the number of anaphoric
zero pronouns in that source. We can observe that our model improves performance significantly in 5
of 6 sources of the dataset. More specifically, our model beats the best baseline (Liu et al., 2017) on all
documents in F-score: by 5.1% (source NW), 1.2% (source MZ), 1.5% (source WB), 4.6% (source BN),
2.1% (source BC) and 0.3% (source TC). The main reason why our model gains worse performance on
source “TC” lie in the short length of text in this source, which makes our model hard to learn to capture
useful information for expressing the zero pronouns. Besides, there are full of numerous verbose words
such as “WE/Er”, “IJ/Yo”, which brings difficulties for our model to accurately encode a zero pronoun by
focusing on its informative contexts. More efforts could be performed in order to encode the associated
text of a zero pronoun in a more efficient way, modeling word-sequences beyond the sentence boundary,
for instance.

We show in Figure 2 the learning curve of our model on the development dataset. As we can observe,
after the first epoch, the F-score on the test dataset is about 46%, and it gradually grows to 52% after
about 30 iterations when performance starts to plateau. It is well accepted that modeling useful parts
of associated text play an important role in encoding the zero pronouns. By applying the self-attentive
mechanism, our model learns to focus on important parts of the contexts, revealing multi-aspect sentence-
level information in a more efficient way than those without attention. On the other side, by assigning
different attention to the words in a candidate mention with respect to the information of the counterpart
zero pronoun, our model learns to encode candidate mentions in a more natural way. Hence, both of
them bring benefit to selecting accurate antecedents, leading to better performance.

In addition, having multi-aspect sentence-level information is expected to afford more abundant in-
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Figure 2: Learning curve of our model on the development dataset.

formation about the encoded zero pronoun, we thus evaluate how the improvement can be brought by
tuning r in the self-attentive mechanism. We vary r from 2 to 6, as is shown in Figure3. We can observe
that the best performance is reached when » = 2. The results are not confusing because we are tried
to focus on the informative part for zero pronouns, and we cut the sentence into two separate parts that
are zero pronoun-centric, when r = 2 means to attend on totally 4 parts of the sentence, thus our model
performances well in this situation.
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Figure 3: Effect of tuning r for encoding zero pronouns.

For illustrating the effect of the proposed attention mechanism for zero pronoun and candidate men-
tions, we also run an experiment without applying the attention mechanism for both zero pronouns and
candidates, which is 7 = 0 in Figure 3. As we can observe that the performance drops by removing the
attention mechanism. For the model without the attentive mechanism, the performance drops by 0.9%
in F-score compared with that of the full model. Because that the proposed self-attentive mechanism for
zero pronoun brings our model an ability to access multi-aspect sentence-level information, removing
such an architecture unsurprising influences the results significantly. With an inspiration that not all the
words are equally important for explaining the mention, the performance of removing the attention for
candidate mentions is reasonable weak. All these show the benefit of our attention-based model.

Lastly, we give a case study to illustrate the power of our self-attentive mechanism, as is shown in
Figure 4. From the figure, we can tell that the model successfully focuses on informative parts of the
texts. Though there are redundancies between different hops of attention, our model can capture useful
information for explaining the zero pronoun (denoted as “*pro*” in the picture). Our model learns to
focus on the informative words such as “¥%FiF fi/digital certificate”, which is essential for expressing
the zero pronoun.
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=FS 2 NE S o MEEl , 18 pro* HF 8 1EH BHENIERN i 12
P CHL ROMMREE+ | FRut B 4 R B KD 2R 5E , ADFRRDE.

Though is on the internet, but *pro* cannot
be regarded as stored in the disk of a PC, thus to avoid being
stolen by Hackers with Trojan, like plug-and-play.

Figure 4: Heat maps of our attention-based model. In this case, we show the detailed attention weight
taken by the attention matrix taken by the attention matrix (r = 2). Darker color means higher weight.

5 Conclusion

We proposed a novel attention-based neural network model for Chinese zero pronoun resolution. Using
recent advances in attention mechanism, we developed a self-attentive architecture for modeling zero
pronouns, which enables our model to focus on parts of the associated texts. In addition, we also inves-
tigated an attention-based candidate antecedent encoder that learns to model important parts of the noun
phrases with respect to the representative vector of zero anaphoras. Our experiments demonstrated that
our method significantly surpasses the state-of-the-art on a benchmark dataset for anaphoric zero pronoun
resolution. Future work will evaluate our model on other natural language processing problems, such as
anaphora resolution for Chinese and English. We also plan to investigate training the anaphora-specific
embedding that could better reveal the descriptive attribute for the zero anaphoras.
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Abstract

This paper analyzes arguably the most challenging yet under-explored aspect of resolution tasks
such as coreference resolution and entity linking, that is the resolution of plural mentions. Unlike
singular mentions each of which represents one entity, plural mentions stand for multiple entities.
To tackle this aspect, we take the character identification corpus from the SemEval 2018 shared
task that consists of entity annotation for singular mentions, and expand it by adding annotation
for plural mentions. We then introduce a novel coreference resolution algorithm that selectively
creates clusters to handle both singular and plural mentions, and also a deep learning-based entity
linking model that jointly handles both types of mentions through multi-task learning. Adjusted
evaluation metrics are proposed for these tasks as well to handle the uniqueness of plural mentions.
Our experiments show that the new coreference resolution and entity linking models significantly
outperform traditional models designed only for singular mentions. To the best of our knowledge,
this is the first time that plural mentions are thoroughly analyzed for these two resolution tasks.

1 Introduction

Resolution tasks such as coreference resolution and entity linking are challenging because they require a
holistic view of a document (or across multiple documents) to find correct entities. Although many models
have been proposed for these tasks (Clark and Manning, 2016; Francis-Landau et al., 2016; Wiseman
et al., 2016; Gupta et al., 2017; Lee et al., 2017), most of them are focused on singular mentions such
that they are insufficient for resolving the other type of mentions, plural, although the amount of plural
mentions is not negligible in practice.! Table 1 illustrates how mentions are annotated for coreference
resolution by the CoNLL’12 shared task (Pradhan et al., 2012) and our proposed work. In the CoNLL’ 12
annotation, the plural mention Theyg is grouped with the noun phrase [Mary; and Johns]s; however, the
other plural mention We; becomes a singleton because there is no noun phrase representing such an entity.
Since CoNLL’12 limits each plural mention to be linked to a single noun phrase, it loses connections to
individual entities that exist within the document but not grouped as a noun phrase.

Document [Mary: and Johnz]3 came to see me4 yesterday. Shes looked happy, and so did heg.
Wer had a great time together. Theys left around noon.

CoNLL’12 {Mary1, Shes }, {Johna, he}, {[Mary: and John2]s, Theys}, {mea}, {Wez}

Our Work {Mary1, Shes, Wez, Theys}, {Johna, heg, Wez, Theys}, {mes, Wez}

Table 1: Snippets of how mentions are annotated by the CoNLL’12 shared task and our work.

In our work, the plural mentions We; and Theyg are linked to multiple entities that those mentions refer to.
This allows higher-level NLP tasks such as question answering or machine translation to reason more
explicitly about those entities while adding another level of challenges to the resolution tasks. In this paper,
we first present the annotation scheme for resolving plural mentions that is used to expand the corpus
This work is licensed under a Creative Commons Attribution 4.0 International License.

License details: http://creativecommons.org/licenses/by/4.0/
'A singular mention is a noun phrase that refers to exactly one entity while a plural mention is one that refers to multiple entities.
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provided by the Character Mining project (Section 3). We then introduce a novel algorithm for coreference
resolution that selectively creates clusters for singular and plural mentions, as well as evaluation metrics to
handle plural mentions for coreference resolution (Section 4). We also present a new deep learning-based
entity linking model that jointly identifies both singular and plural mentions (Section 5). All models are
evaluated on our dataset (Section 6); the experiments reveal significant improvement from our new models
compared to the previous state-of-the-art models dedicated for singular mentions. As far as we can tell,
this is the first time that such annotation for plural mentions is provided in a large enough scale that deep
learning models can be trained on, at the same time, machine learning models are developed to achieve
promising results for the resolution of plural mentions.

2 Related Work

Chen and Choi (2016) were the first to introduce the task of character identification and provided a new
corpus based on TV show transcripts. Given a dialogue transcribed in text where all mentions are detected,
character identification aims to find the entity for each personal mention, who may or may not be active
in the dialogue. Unlike most other entity linking tasks focusing on Wikification, this task is challenging
because it is dialogue-based where the entities are general characters in the show. This corpus was later
expanded by Chen et al. (2017) who added annotation for the ambiguous entity types. In this work, we
expanded the corpus further by doubling the size of the annotation and adding new annotation for plurals.
The character identification corpus can be used for both coreference resolution and entity linking tasks.
Our approach to coreference resolution was partially motivated by the previous works, Clark and Manning
(2016) and Durrett et al. (2013), who tackled the general cases of coreference resolution including plurals;
however, since their approaches were based on the annotation provided by CoNLL’ 12, they did not handle
plural mentions to our satisfaction (Table 1). Jain et al. (2004) presented a rule-based system for resolving
plural mentions, which was limited to unambiguous plural types. Our work is distinguished because we
handle both ambiguous and unambiguous types of plural mentions, which makes it more challenging.
Chen et al. (2017) presented an entity linking model that identified the real entity of each singular mention,
which we adapted to develop a new multi-task learning model that jointly handles singulars and plurals.

3 Corpus

3.1 Annotation

The Character Mining project provides transcripts from the TV show Friends for all ten seasons in JSON.?
A subset of the first two seasons of this show was annotated for the task of character identification by Chen
et al. (2017), who made it publicly available through the International Workshop on Semantic Evaluation
(SemEval 2018).3 Given this annotation, we expanded the corpus as follows:

1. We realized that about 20% of the first two seasons were not covered by the previous annotation.
Following the annotation guidelines suggested by Chen et al. (2017), we completed the annotation
for the first two seasons and further annotated two more seasons. As a result, the first four seasons
are completely annotated for character identification in our corpus.

2. There were quite a few mismatches among the speaker and the entity labels in the previous annotation.
For instance, while mentions were annotated by the entity’s full name such as Monica_Geller,
some utterances were paired with speaker labels represented by only the first name, Monica, which
could cause confusions for machine learning models. We manually went through the entire annotation
and made sure the speaker and the entity labels were coherent across all seasons.

3. The previous annotation consisted of only singular mentions such that each mention was guaranteed
to be linked to exactly one entity. We annotated plural mentions for the first four seasons through
crowdsourcing. Unlike singular mentions that were automatically recognized by the heuristic-based

Character Mining: https://github.com/emorynlp/character-mining
3SemEval 2018 Task 4: https://competitions.codalab.org/competitions/17310

25



mention detector (Chen and Choi, 2016), plural mentions in our corpus were manually detected by
the crowd workers who were also asked to link each plural mention to a set of its referent entities.

The annotation guidelines used for singular mentions are adapted to annotate plural mentions as well such
that the only difference in annotation between these two types of mentions is the number of entities to
which the mentions refer. Formally, each mention m is annotated with a set of entities £/, where each
element in E' belongs to one of the following four groups:

1. Known entities: include all the primary and secondary characters recurring in the show.

2. GENERIC: indicates actual characters in the show whose identities are unknown across the show:
e.g., That waitress is really cute, I am going to ask her out.

3. GENERAL: indicates mentions referring to a general case rather than a specific entity:
e.g., The ideal guy you look for doesn’t exist.

4. OTHER: indicates actual characters in the show whose identities are unknown in this dialogue but
revealed in some other dialogue.

The COLLECTIVE type, used to distinguish the plural usage of the pronoun you in the previous annotation,
is discarded in our annotation because each you is now annotated with a set of entities such that the plural
usage can be deterministically distinguished by the size of its entity set.

Speaker H Utterance
Jack And I; read about these womens trying it all, and /3 thank God ‘Ours Harmonicas’ doesn’t have this problem.
Monica So, Rosse, what’s going on with you7 two? Any stories? No little anecdotes to share with moms and dady?
Ross Okay, 110 just got this from the guyi1 next to mei2. He1s was selling a whole bunch of stuff.

{11, I3, Oura, dade} — Jack {Ours, moms} — Judy, {Harmonicas} — Monica, {Rosss, your, I10, me12} — Ross,

{womens} — GENERAL, {your} — OTHER, {guy11, He13} — MAN_1
Table 2: An example of entity annotation in our corpus, where Our4 and you; are the plural mentions.

Table 2 shows examples of all types of entities for both singular and plural mentions. The mention womens
does not refer to any specific character so it is identified as GENERAL. Both the mentions guy;; and Hey3
refer to a specific person whose identity is never revealed so it is annotated with the generic type, MAN_1.
There are two plural mentions, Our4 and your, which are handled differently. All entities of Oury can be
identified from the context of this dialogue so it is annotated with the known entities Jack and Judy.
However, only one of you7 can be identified in this context so it is annotated with the known entity Ross
and also OTHER, implying that it refers to some other entity that can be identified in a separate dialogue.
This method is used to distinguish non-immediately identifiable entities from the generic case of MAN_1
whose identity is unknown across the entire show.

3.2 Analytics

Table 3 shows the statistics of our corpus. Compared to the previous annotation including 18,608 mentions,
our corpus is comprised of 47,367 annotated mentions, which is 2.5 times larger. Plural mentions together
compose about 9% of the entire dataset, which is significant enough to make a difference in resolution.
Each cluster contains about 6 mentions on average when each scene is treated as an independent dialogue.

All mentions were double-annotated by crowd workers. From this double-annotation, Cohen’s kappa
score of 56.88% was achieved for plural mentions, which was about 20% lower than the one achieved for
singular mentions (Chen and Choi, 2016). The lower inter-annotator agreement was expected due to the
high complexity of this task. A subset of the disagreed annotation was manually adjudicated by experts,
from which we found that taking the union of the entity sets annotated by two workers would effectively
give the correct set of entities for each of those disagreed plural mentions. Thus, a vast amount of plural
mentions were pseudo-adjudicated by taking their unions of double-annotation.
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Season General Mention Entity
Episode \ Scene \ Utterance | Speaker || Singular | Plural | Total Cluster | Type
1 24 326 5,968 107 [ 10313 [ 1,147 [ 11460 || 2.162 [ 270
2 24 | 293 5,747 107 || 10521 | 1156 | 11,677 || 1,934 | 285
3 25 | 348 6.495 108 || 11458 | 907 | 12365 || 1,925 | 230
4 24 | 334 6.318 100 || 10726 | 1,139 | 11,865 || 1881 | 175
Total || 97 | 1301 | 24528 | 331 [ 43018 | 4349 [ 47367 [ 7.902 | 781

Table 3: The overall statistics of our corpus. All columns show raw counts except that the speaker column
and the type column in the entity section give the set counts of all speakers and entities, respectively.

Table 4 shows the distributions of entity types. The primary characters compose about 67% of all mentions
whereas the ambiguous types together compose about 8.6%, which implies that the majority of mentions
can be linked to known entities. Notice that the total count of GENERAL increases by 554 from Seasons
1-2 to 3-4, whereas the total count of OTHER decreases by 654 for those seasons; these two ambiguous
entity types are easily confused because they do not refer to any specific entity within the dialogue.
Considering that annotation tasks for the first two seasons were mostly conducted by Chen et al. (2017)
whereas the next two seasons were conducted by us, it is possible that our crowdsourcing instructions
were more biased towards GENERAL than OTHER, which we will analyze in the future.

Known Entities Ambiguous Entities
Season . Total
Primary | Secondary | GENERIC | GENERAL | OTHER
1 9,247 3,616 214 641 463 || 14,181
2 9,591 3,704 184 598 455 || 14,532
3 9,491 3,512 200 896 136 || 14,235
4 9,807 3,181 112 897 128 14,125
Total [ 38,136 [ 14,013 | 710 | 3032 | 1182 [[ 57,073

Table 4: The distributions of entity types. Each column shows the number of mentions annotated with the
corresponding entity type. Note that the total number of mentions here is different from the one in Table 3
(57,073 vs. 47,367) because each plural mention is counted more than once in this table.

4 Coreference Resolution

The presence of plural mentions brings up several challenges for coreference resolution. First, the search
scope becomes broader. For each mention m;, a typical coreference resolution system would find another
mention mm; that is referent to m, and assigns m; to the cluster C; that m; belongs to if it exists; otherwise,
creates a new cluster and assigns both m; and m; to that cluster.* As soon as m; is assigned, the search
can stop for m;. This strategy works for singular mentions but fails with plural mentions because they
can be assigned to more than one cluster. Second, the referent relations are no longer transitive. Let
m; < mj, m; — mj, m; = m; stand for referent relations such that m; is referent to m;, m; is referent
to m;, m; is coreferent to m, respectively. Then, m; = m; and m; = my would imply m; = my,
for singular mentions, but this transitivity fails with plural mentions when m; belongs to two different
clusters C; = {m;, m;} and C}, = {m, m;,} such that m; and m, have no referent relation. Third, some
of the popular evaluation metrics for coreference resolution such as B (Bagga and Baldwin, 1998) are
not necessarily designed for plural mentions such that they need to be revisited.

Section 4.1 introduces our new coreference resolution algorithm that selectively creates clusters with
respect to different mention types. This algorithm ensures singular mentions representing different entities
get assigned to separate clusters. For example, let m,, be a plural mention and m; be a singular mention
such that m, — m,;. When the referent relation is found, the cluster Cj is created and both m,, and m; are
assigned to C;. Let m; be another singular mention such that m, — m;. Now, the algorithm must decide

“The term ‘cluster* indicates a group of mentions that refer to the same entity within a document such that each cluster represents
a distinct entity although a cluster in one document can represent the same entity as another cluster in a different document.
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whether to assign m; to C; or create another cluster C; for m;. If m; < mj, m; should be assigned to Cj;
otherwise to C';. Our algorithm allows a model to learn this decision during training so that the clusters
can be created accordingly during decoding. Section 4.3 describes how existing evaluation metrics can be
adjusted to evaluate both singular and plural mentions for coreference resolution, which is the first time
that these metrics are adapted for plural mentions linked to multiple entities.

4.1 Algorithm

For each mention m, our algorithm compares it against all of the preceding mentions m; to determine
whether or not they are referent, where ¢ and j are the ordered indices such that 0 < ¢ < j. Additionally,
two more mentions, mg and m,, are compared to m; that represent the GENERAL and the OTHER types,
respectively (Section 3.1). For each mention pair (m;, m;), the algorithm assigns one of the following
three labels for multi-classification:

1. N: m; is not referent to m;.

2. L:mj gets assigned to the cluster that m; belongs to. If m; does not yet belong to any cluster, a new
cluster Cj is created and both m,; and m; are assigned to Cj.

3. R:m; gets assigned to the cluster that m; belongs to. If m; does not yet belong to any cluster, a new
cluster Cj is created and both m; and m; are assigned to C;.

During training, labels are determined by consulting the oracle. L is labeled if m; is a singular mention. R
is labeled if m; is plural and m; is singular. N is labeled for all the other cases. Notice that this algorithm
does not allow any plural mention to be directly linked to another plural mention; in other words, it does
not create any cluster consisting of only plural mentions. Plural mentions can still be indirectly linked
through clusters created for singular mentions. The creation of clusters comprising only plural mentions
would not help identifying the known entities of those mentions, which defeats the purpose of character
identification. It is possible to link plural mentions directly by using the GENERIC type (Section 3.1),
which is not adapted to annotate entities for plural mentions in the current annotation scheme.

[m;] — {N, L, R} ‘ m; ‘ Clusters

[G,0] = N 1| 0,0,

[0,1] = N,[G] = L 2 | {2},,0,

[G6,0,2] = N,[1] = L 3 | {2}4,00,{1,3}1

[G,0,2] = N,[1,3] = L 4 | {2}4,0,,{1,3,4}1

[6,0,1..4] = N 5 1 {2}g,00,{1,3,4}

[6,0,1..5] = N 6 | {2}4,0,,{1,3,4}

[G,1..5] = N, [0,6] — L 7 | {2}e, {7}, {1,3,4}1,{6,7}s

[6,0,1..3,5..7] = N, [4] — R 8 | {2}g, {710, {1,3,4}1,{6,7}6,{4,8}s

[6,0,2,5.8] = N, [1,3,4] — L 9 | {214, {7}o, {1,3,4,9}1, {6, 7}e, {4, 8}s

[6,0,1..5,8,9] — N, [6] = L 10 | {2}, {7}o, {1,3,4,9}1, {6,7,10}6, {4, 8}s

G,0,1..10] — N 11| {2}g, {T}0, {1,3,4,9}1,{6,7, 10}, {4,8}s

G,0,1..5,8,9,11] — N, [6, 10] S| 12 | {24, {T}e,{1,3,4,9}1,{6,7,10,12}s, {4, 8}s

,0,1..10,12] — N, [11] — 13 | {2}, {70, {1,3,4,9}1,{6,7,10,12}¢, {4, 8}s, {11,13}1;
Singleton Processing ‘ ‘ {2}2,{7}7,{1,3,4,9}1,{6,7,10,12}¢, {4, 8}s,{11,13}11, {5}5

Table 5: A demonstration of our algorithm using the example in Table 2. The m; column indicates the
index of m; that the algorithm is currently processing. The first column shows the labels generated for all
mention pairs (m;, m;), where the indices of m; are indicated inside the square brackets (e.g, [0, 1] stands
for m, and m) and the labels are indicated next to the right arrows (e.g., — L). The clusters column
shows the list of entity sets created by taking the labeling information from the first column.

Table 5 depicts how this algorithm finds the referent relations for all the mentions in Table 2. Note that
the special mentions m and m, are considered singular and placed prior to any other mention here. The
algorithm labels L for (mg, m2), which makes womeny € C, representing GENERAL. For my, it labels L
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for m1 and mo, which makes Our, € C; representing JACK; although Oury is a plural mention, it gets
assigned to only one cluster at the moment since the other entity has yet been revealed. For my, it labels
L for both m,, and mg, which makes you, € C, representing OTHER and € Cp representing Ross. For
(myg, mg), it labels R because my is plural and myg is singular, which creates a new cluster Cy and assigns
both Our, and momsg to C's. Once all mention pairs are compared, the algorithm collects mentions that are
not assigned to any cluster, and makes them singletons such that Harmonicas becomes the singleton Cs.
Furthermore, every mention that belongs to either C,; or C,, gets turned into a singleton such that C3 and
Cr are created at the end. This is because mentions assigned to those ambiguous types are not referent to
one another, if they were, they would have been assigned to GENERIC instead.

4.2 Learning Model

Our learning model uses a modified version of the Agglomerative Convolutional Neural Networks (ACNN)
introduced by Chen et al. (2017). This architecture incorporates multiple sets of features and learns the
most optimized feature combination at each convolution layer. It also allows the model to dynamically
accumulate the most salient features for eventual inclusion in the mention and mention pair embeddings.
ACNN takes a mention pair (m;, m;), performs multiple convolutions to extract features from different
groups (CONV 1), combines the extracted features among groups using more convolutions (CONV3), and
generates mention embeddings rs(m;) and 74(m;). These mention embeddings are then concatenated
with discrete features ¢4(m) and combined through convolutions to generate a mention-pair embedding
rp(mj, m;). The mention-pair embedding together with pairwise features ¢, (m;, m;) are used to make a
binary classification for m; and m; being referent or not.

Mention mi & Mention m; Mention Embeddings Mention Pair Embedding
¢pa(mi)
1-gram filters g .
S SO o rp(mi, m;)
2-gram fles oo I :
= CONV;
- rs(mi)
3-gram filters — e
| z
oo
] A O] - |
‘ 1-gram filters ‘ T rs(mj) !
3 e ¢p(ml, my)
3-gram filters i pa(mz)

Figure 1: The overview of our coreference resolution model using the multi-class ACNN.

To be adapted to our coreference resolution algorithm in Section 4.1, ACNN is modified at the output layer
to include three labels, N, L, and R, such that it is optimized for multi-class instead of binary classification.
The modified ACNN, called the multi-class ACNN, generates mention embeddings, rs(m;) and 74(m;),
as well as mention pair embeddings, 7, (m;, m;), which are used to create cluster embeddings and fed as
input to our entity linking model in Section 5.1.

4.3 Evaluation Metrics

Three metrics proposed by the CoNLL’ 12 shared task (Pradhan et al., 2012), B3, CEAF;,, and BLANC,
are used to evaluate our coreference resolution models. B3 (Bagga and Baldwin, 1998) is a mention-based
metric that measures precision (P) and recall (R) as follows (D: a set of documents, N: the total number
of mentions in D, Cfn/ °: the cluster from the system (s) or the oracle (o) that the mention m belongs to):

ZZ|C ZZ|CSHCO

dED méed dED med
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In our case, each mention can be assigned to more than one cluster; thus, C, is replaced by the union of
all clusters that the mention m belongs to, which enables this metric to evaluate plural mentions.
CEAF,, (Luo, 2005) is an entity-based metric that first creates a similarity matrix M € RISIXIOl where
S and O are the sets of clusters produced by the system and the oracle, respectively. It then measures the
similarity between every pair of clusters (C*, C°) € S x O where s € [1, |S|] and o € [1, |O]] such that:

2 x |C°NC°
Ms,o = T Al o
[Co[ +|C?|

Given this similarity matrix, the Hungarian algorithm is used to find the list { that contains similarity
scores from the most similar matching pairs of clusters (C*, C°) € S x O such that |H| = min(|S], |O]).
Finally, the overall similarity between .S and O is measured as ® = bEH ¢, and precision and recall are
measured as P = ®/|s| and R = /|0, respectively. Since CEAF,, is entity-based, the metric can be used
to evaluate plural mentions without any modification. The potential pitfall is that certain clusters may
include a greater number of plural mentions than singular mentions, in which case, distinct clusters with
similar sets of plural mentions may yield a high similarity score. However, plural mentions make up less
than 10% of the dataset, so we are not concerned about these plural-majority clusters, since most if not all
clusters would be dominated by singular mentions.

BLANC (Recasens and Hovy, 2011) is a link-based metric. Let Ls and L, be the sets of links generated
by the system (s) and the oracle (o), respectively. Let G be the set of all possible links between every pair
of mentions whether or not they are referent. This metric first creates a confusion matrix B € R?*? such
that B()70 = ’LS N LO‘, B()71 = ’LO — LS‘, Bl,O = |L5 - LO’, and Bl71 = ‘(G — Ls) N (G — L0)|. It then
measures precision and recall for referent links (P, and R.) and also for non-referent links (P, and R,,):

B BJ[0,0] B BJ[0,0] B B[1,1] B B[1,1]
¢ B[0,0] + B[1,0] " ° B[0,0]+B[0,1] " B[,1]+B[0,1] ~"  B[1,1]+ B[1,0]

2x P.- R, 2x P, R,
Fl,=22fcfle pp =27 In T
¢ P.+ R, P, + R,

Finally, precision, recall, and F;-score are measured as P = Pet+Pn/2, R = retra/2, and Fy = Fle+Fla/2,
Note that we decide to replace MUC (Vilain et al., 1995), another popular metric used by the CoNLL’ 12
shared task, with BLANC because both are link-based and BLANC takes singletons into consideration,
which consume a large portion of our dataset (over 20%), whereas MUC does not so that BLANC is
more appropriate for our case. It is worth mentioning that a separate confusion matrix By is constructed
for each document d such that B = ), By where By is based on links only in d. This prevents
potential inflation of B[1, 1], which could become huge if it were to be measured across the entire dataset.
BLANC can also be used to evaluate plural mentions without any modification because each link is treated
independently regardless of its mention type in this metric.

5 Entity Linking

5.1 Multi-Task Learning

The task of character identification requires each mention to be identified by the names of actual characters
(e.g., Monica, Ross in Table 2). Figure 2 gives the overview of our entity linking model, which adapts
the underlying architecture from the entity linking model proposed by Chen et al. (2017) and generalizes
it to jointly handle singular and plural mentions. It assumes the output from ACNN in Section 4.2 such
that for each mention m;, the embedding of that mention and the set of clusters {C1, ..., Cy} that m;
belongs to are taken. For each cluster C,, ACNN gives the list of mention pair embeddings mZC]“, where
m;, mj € Cq. Similarly to the previous model, the cluster embedding and the cluster pair embedding are
created. Unlike the previous model, our model creates multiple cluster and cluster pair embeddings when
m is assigned to more than one cluster during coreference resolution so that the average vectors of those
embeddings are generated, which get concatenated with the mention embedding of m; and passed onto
the fully-connected layers for prediction.
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Figure 2: The overview of our entity linking model using multi-task learning.

The final ReLu layer is fed to two output layers optimized by softmax and sigmoid functions, respectively.
The dimension of the output layer from softmax is |E/| + 1 where FE is the set of all entities such that each
cell represents an entity and the extra cell gives an indication of m being plural. When this extra cell
is predicted, the output layer from sigmoid is used, whose dimension is |E/|, to predict multiple entities
for m. Since the sigmoid function optimizes each cell to be between 0 and 1, any entity whose score is
greater than 0.5 is taken. These two output layers are optimized jointly, treating the resolution of singular
and plural mentions as multi-task learning.

5.2 Evaluation Metrics

Two metrics are used to evaluate the entity linking models. One is the micro-average F1 score whose

precision (P) and recall (R) are measured as follows (D: a set of documents, Eﬁ{ °: the set of entities
found for m by the system (s) or the oracle (0)):

> deD 2omed | Em N E7| _ DodeD Domed | Em N ED|
R—
> deD Dmed | Bl Y deD omed | ER

The micro-average F1 tends to weigh more on frequently occurring entities so it is useful if you need to
know the raw prediction power of your model. The other is macro-average F1 score that measures the
micro-average F1 for each entity e, say FT, and takes the average, that is 1/|E| ) . FT where E is the
set of all entities. The macro-average F1 treats all entities evenly so it is useful if you need to optimize
your model to make correct predictions for as many entities as possible.

P:

6 Experiments

6.1 Configuration

Experiments are conducted on two tasks, coreference resolution and entity linking. For both tasks, models
from Chen et al. (2017) are used to establish strong baseline (CZC). Since they take only singular mentions,
a pseudo-singular dataset is created where exactly one entity is chosen for each plural mention based on
the closest matching previous speaker or if there is none, chosen randomly. Thus, the models trained on
this pseudo-singular dataset always predicts one entity per mention. These models are compared to our
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models described in Sections 4 and 5 (Ours). Additionally, CZC models are evaluated on the singular-only
dataset (S-only) where all plural mentions are filtered out, which should give an intuition of how much
impact the addition of plural mentions has on the predictions for singular mentions. All results reported
from these experiments are averages of three randomly initialized trials. The corpus in Section 3 is split
into training, development, and evaluation sets, where all models are tuned on the development set and the
best models are tested on the evaluation set. Episodes 1-19, 20-21, and the rest from each season are
used to generate the training, development, and evaluation sets, respectively.

6.2 Coreference Resolution

Table 6 shows that our coreference model is capable of learning to handle plural mentions effectively
while significantly outperforms the CZC model. The CZC model is trained on the pseudo-singular dataset
but evaluated on the full dataset by the metrics adjusted for plurals (Section 4.3) such that it is penalized
for not predicting multiple entities for plural mentions. Both the B> and BLANC metrics show a similar
trend that the CZC and our models achieve higher precision and recall, respectively, whereas our model
dominates both precision and recall for the CEAF, metric. The remarkable gap in performance between
these two models signals that our model finds referents for plural mentions well without compromising its
ability to find referents for singular mentions. The S-only model gives comparable performance as the
one reported by Chen et al. (2017), ensuring that our implementation of the CZC model is robust.

B’ CEAF,, BLANC
P | R [ R P | R | F P | R [ R
CZC | 84.5+0.6 | 60.740.2 | 70.640.3 || 49.0+0.8 | 63.7+0.3 | 55.44+0.6 || 81.2£1.0 | 73.3+£0.4 | 75.9+0.5
Ours || 83.8+1.5 | 67.04+2.7 | 74.4+1.1 | 52.1+1.2 | 68.0+0.6 | 59.0+0.5 || 80.4£0.8 | 76.5+1.2 | 78.0+0.6

S-only [| 84.3£1.2 | 71.9+14 | 77.6£1.0 || 545+1.3 | 71.8£1.0 | 62.0+£0.6 || 84.3£1.6 | 80411 | 82.1£1.3

Table 6: Coreference resolution results on the evaluation set (£: standard deviation).

6.3 Entity Linking

Tables 7 and 8 show the micro and macro average scores achieved by all models. For the micro average,
the trend is clear across all types of mentions such that the CZC and our models achieve higher precision
and recall, respectively. The precision gap for micro average is quite small, signaling that there is no
significant loss of ability in entity resolution for singular mentions in our model. For the macro average,
our model completely dominates except for the precision of plural mentions, which implies that our model
is more generalizable across different entities regardless of their frequency rates in the training set. The
recall of micro-average for plural mentions shows relatively high standard deviations for our model. We
expect that running more trials of experiments potentially mitigates this variance, which we will explore.
It is expected for the micro average scores to be higher than the macro average scores because the micro
average favors frequently appearing entities such that it is possible to achieve high micro average scores
without handling infrequent entities well, whereas that is not the case for the macro average.

Singular Plural All
P | R [ FI P | R | FI P | R [ FI
CZC || 72.8+0.5 | 72.8+0.5 | 72.8+0.5 || 60.8+2.4 | 19.7+0.8 | 29.8+12 || 71.8+0.4 | 61.4+04 | 66.2+0.4
Our || 72.7+0.3 | 729404 | 72.840.4 || 59.9+1.7 | 32.244.8 | 41.7+4.1 || 711404 | 64.2+1.3 | 67.40.8

S-only [| 73.7£0.6 | 73.7+0.6 | 73.7£0.6 ||

Table 7: Micro-average scores for entity linking on the evaluation set (%: standard deviation).

Table 9 shows the micro average F1 score for each entity. The top-15 frequently appearing characters are
considered to be known entities, whereas all the other secondary characters are considered OTHER, which
composes about 26.8%. Our model dominates all the main characters (the first six entities) and OTHER,
together of which gives about 90% of the entire annotation. Given that these results are achieved by using
automatically generated clusters from our coreference resolution models, they are encouraging.
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Singular Plural All
P | R [ FI P R F1 P R F1

CczC 72.9+5.0 | 55.5+1.0 | 59.4+2.3 || 37.9£1.0 | 10.5+£0.3 | 14.0+£0.3 || 71.1£4.6 | 46.2+1.1 | 53.2+1.9
Our 75.8+1.4 | 56.9+1.1 | 61.8+1.1 || 34.8+5.0 | 15.8+1.7 | 20.5+1.6 || 74.2+t1.4 | 48.8+1.5 | 55.5+0.8

S-only || 73.3£2.5 | 554416 | 59.6+23 ||

Table 8: Macro-average scores for entity linking on the evaluation set (£: standard deviation).

| Ro | Ra | Ch [ Mo | Jo | Ph |Em | Ri | Ca | Be | Pe | Ju |Ba| Ja|Ka| OT |GN
czc [ 692 [ 775 [ 690 [713[715[79.0 | 63.4 | 764 | 31.3 | 41.8 [ 56.4 [ 093 [ 492 [ 11.8 [ 247 || 582 | 45.1
Our || 719 | 784 | 71.5 | 722|723 | 797 | 615 | 82.0 | 29.6 | 41.8 | 54.8 | 12.8 | 45.0 | 18.2 | 47.3 | 59.2 | 45.1

S-only | 783 | 86.5 | 78.8 | 81.7 | 78.3 | 88.8 | 69.2 | 83.9 | 40.3 | 39.3 | 59.2 | 16.1 | 39.8 | 24.8 | 352 || 64.0 | 49.7
% 12.65 | 11.58 | 11.16 | 9.71 | 9.33 | 8.61 | 0.98 | 0.96 | 0.71 | 0.64 | 0.57 | 0.44 | 0.34 | 0.28 | 0.26 || 26.79 | 5.01

Table 9: Entity linking results on evaluation set per character.Ro: Ross, Ra: Rachel, Ch: Chandler,
Mo: Monica, Jo: Joey, Ph: Phoebe, Em: Emily, Ri: Richard, Ca: Carol, Be: Ben, Pe: Peter, Ju: Judy,
Ba: Barry, Ja: Jack, Ka: Kate, OT: OTHER; GN: GENERAL.

7 Conclusion

In this paper, we explore a new paradigm for handling plural mentions in two resolution tasks, coreference
resolution and entity linking, on multiparty dialogue. We address this challenge by showing the inadequacy
of traditional approaches in handling plural mentions, and present an innovative approach to overcome
the shortcomings of existing methods for these tasks at hand. For resource creation, we expand upon the
Character Identification corpus and augment it with the manual annotation of plural mentions (Section 3).
For linguistic analysis, we propose a novel transition-based algorithm and evaluation metrics to process
different types of mentions for coreference resolution (Section 4). For NLP engineering, we introduce a
neural-based entity linking model using multi-task learning that comprehensively handles plural mentions
(Section 5). The results of our models demonstrate significant improvements on these tasks, implying the
feasibility of our approach to handle plural mentions (Section 6).

To the best of our knowledge, this paper provides the first extensive framework for resolving referents
for plural mentions, which is a critical problem in any resolution task. Further work includes improving
the quality of the dataset as well as expansion of its size, and addressing the issue of extracting global and
external features for complete coreference and entity resolution for both singular and plural mentions. All
resources including the annotated corpus and source codes are publicly available through the Character
Identification project: https://github.com/emorynlp/character—identification.
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Abstract

We propose a triad-based neural network system that generates affinity scores between entity
mentions for coreference resolution. The system simultaneously accepts three mentions as input,
taking mutual dependency and logical constraints of all three mentions into account, and thus
makes more accurate predictions than the traditional pairwise approach. Depending on system
choices, the affinity scores can be further used in clustering or mention ranking. Our experiments
show that a standard hierarchical clustering using the scores produces state-of-art results with
MUC and B? metrics on the English portion of CONLL 2012 Shared Task. The model does not
rely on many handcrafted features and is easy to train and use. The triads can also be easily
extended to polyads of higher orders. To our knowledge, this is the first neural network system
to model mutual dependency of more than two members at mention level.

1 Introduction

Entity coreference resolution aims to identify mentions that refer to the same entity. A mention is a
piece of text, usually a noun, a pronoun, or a nominal phrase. Resolving coreference often requires
understanding the full context, and sometimes also world knowledge not provided in the text. Generally
speaking, three types of models have been used for coreference resolution: pairwise models, mention
ranking models, and entity-mention models. The first two are more common in literature, and the third
one is somewhat less studied.

Pairwise models a.k.a. mention pair models build a binary classifier over pairs of mentions (Soon
et al., 2001; McCallum and Wellner, 2003). If all the pairs are classified correctly, then all coreferent
mentions are identified. The mention ranking models do not rely on the full pairwise classification, but
rather compare each mention to its possible antecedents in order to determine whether the mention might
refer to an existing antecedent or starts a new coreference chain (Durrett and Klein, 2013; Wiseman et
al., 2016; Clark and Manning, 2016). The entity-mention models try constructing representations of
discourse entities, and associating different mentions with the entity representations (Luo et al., 2004).

However, none of these model types consider more than two mentions together at the low level. By low
level here, we mean the processing of input mention features, as opposed to processing of constructed
representations. Pairwise models and mention ranking models make low-level decisions on mention
pairs only. Some further processing may be applied to reconcile global scope conflicts, but this process
no longer relies directly on mention features.

This paper proposes a neural network model which works on triads of mentions directly. Each time, the
system takes three mentions as input, and decisions on their coreference relations are made while taking
into account all mutual dependencies. Inferences drawn from three mentions, if correctly modeled,
should be more reliable than those from two mentions, simply because entities in a text tend to have
multiple mutual dependencies. Firstly, coreference relation is transitive, and transitivity can be revealed
only by 3 or more participants. Secondly, mutual dependencies are not just at the level of transitivity,

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

35

Proceedings of the 27th International Conference on Computational Linguistics, pages 35-43
Santa Fe, New Mexico, USA, August 20-26, 2018.



but can occur among lexical items, syntactic structures, or discourse information. Modeling dependency
at these lower levels can therefore be helpful for coreference resolution. We believe it is also a closer
approximation of humans’ cognitive process. When we read text, we often look in two or more places
(including not only mentions, but also their context) to decide what a pronoun might refers to. Therefore
it is reasonable to account for it at an early stage of system design.

We show that the decisions made by the triad model are more accurate than those made by the dyad
model. Such decisions can be further used in mention ranking, or simply followed up by clustering or
graph partitioning as in the canonical mention pair models. The triad system can be easily extended to
higher order polyads, if necessary. In this paper, we only consider triads, and dyads (pairs) are used for
comparison. We use the English portion of CoNLL 2012 Shared Task dataset for training and evaluation.
Our experiments show that a standard hierarchical clustering algorithm using the triad model output
achieves state-of-art performance under several evaluation measures.!

2 Related Work

Before the neural network models became popular in coreference resolution tasks, graphical models
had often been used to capture dependencies. McCallum and Wellner (2003) described a system which
draws pairwise inferences but also accounts for transitivity constraints. Essentially, their model can be
summarized as in equation

1
P(ylx) = - exp S oSl xgyig) + Y M fe(Yig ik, Yir) (1)
z i, i,k

The first term describes the potential function of a mention pair x;, x; as well as their label y;;. For
instance, y;; = 1if x; and x; belong to the same entity. The second term adds constraints on the labels to
assure logical consistency. A particular assignment of values to z;, x; does not only affect the potential
function involving these two nodes, but also other potential functions involving one of them. This makes
the variables (mentions, in this case) dependent on each other. Exact algorithms to solve such problems
are NP-hard, and some approximation techniques are often applied.

Our proposed model can be viewed as constructing potential functions over three variables x;, z; and
z. However, we do not look to optimize the product of all the potential functions. Instead, we train
a neural network model to assign labels to all edges within a triad locally. Note that the label y;; for a
given mention pair x;, x; may have different optimal values when different z;’s are used to construct
a triad. The final assignment is determined by computing the average of y;;’s. Moreover, our input
features are mainly series of word embeddings and part of speech (POS) embeddings, encoding rich
context information. The conventional algorithms used in graphical models cannot deal with such high
dimensional features.

Graphical neural network (GNN) models have recently been used to process graphs (Duvenaud et
al., 2015; Santoro et al., 2017; Kipf et al., 2018). For example, the graph convolutional networks
(GCN) (Kipf and Welling, 2016; Defferrard et al., 2016) take graphs as input. Each node of the graph
contains features, and a matrix represents their mutual relations. The features and the relation matrix
are both used as input. Some filter layers, often shared by all nodes, process the features. The out-
put of the filters and the relation matrix are further processed by other layers. The final output is new
representations of nodes, which can be labels.

Our model shares some characteristics with GCNs. The triad input can be viewed as a basic graph:
triangle, and each node is a mention. The features we used (word embeddings, POS embeddings, speaker
identity, mention distance) are all associated with a node or a pair of nodes (edges). The three nodes share
recurrent neural network layers. Because the output of such layers are used together, higher layers in the
system have access to information from all the nodes. The output is a 3 dimensional binary vector, which
can be considered a graphical representation too. However, our goal here is to find pairwise relations,
and the triangle graphs are employed only to model (partial) mutual dependency among three mentions.

'Our source code is freely available here: https://github.com/text-machine-lab/entity-coref
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In contrast, CGNs are capable of generating new complex representations for the nodes and they rely on
the structure of the input graph, both of which are not applicable in our case.

3 System

The system consists of two major parts: the triad-based neural network model to compute mutual dis-
tances and a model to perform clustering. These two stages are not clearly divided, since defining mutual
distances affects the clustering strategy.

3.1 Input Features

Our input is triads of entity mentions. The triads have mutual (joint) features and individual features as
input. Speaker identity and mention distance are mutual features. The files in the CoNLL 2012 dataset
are largely transcripts of broadcast news and conversations, which typically involve several speakers. We
use a binary feature to indicate whether two mentions are from utterances of the same speaker (1) or not
(0). Mention distance indicates how far apart two mentions are in the text. If they are next to each other,
the distance is 1; if there is another mention in between, the distance is 2, and so on. We only count the
mentions in between, regardless the number of the words or sentences in between.

Individual features are word tokens and POS tokens for each entity mention. The word tokens include
the mentions themselves, as well as their 5 preceding tokens and 5 succeeding tokens. We also design
two special tokens to mark the beginning and end of each mention. Similarly, the POS tokens include
the POS tags of the mentions, as well as the POS tags of 5 preceding and 5 succeeding tokens. Two other
special tags are used to mark the beginning and end of the mentions for POS tokens too.

Each word token is represented by a 300-dimensional vector. We use glove.840B.300d word vectors?
to initialize them, and they are updated in the training process. Each POS token is represented by a one-
hot vector, and updated during training too. This enables the model to learn the similarities between
different POS tags (such as NNPS and NNS, for example). Table 1 gives a summary of input features.

Feature Description
Word tokens word embeddings of the mentions, and of 5 words before and after
POS tokens part-of-speech tag embeddings

Speaker identity | whether two mentions are from the same speaker
Mention distance | how many other mentions are between them

Table 1: Input features

3.2 Triad Neural Network

Word embeddings are fed into a bidirectional LSTM layer, which generates a representation for each
mention. The three members of the triad share the same LSTM layer. Similarly, POS embeddings are
fed into a shared bidirectional LSTM layer.

hword — Word-LSTM(X*°"4) (2)

P = POS-LSTM(X?*) 3)

where 7 = 0,1, 2 is the index of the three mentions, XZ”OTd is the sequence of word embeddings used
to represent mention 4, and X?** is the corresponding sequence of POS embeddings. Word-LSTM and
POS-LSTM are both bidirectional, and shared by all input mentions. For each pair in the triad, the LSTM
outputs for the two entities are concatenated with their joint features:

_ speaker ~rdistance pword pword jpos 1 pos
hij = f(X]] , X{ NEAEN SN N A 4)

*https://nlp.stanford.edu/projects/glove/
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where X7 caker is a binary speaker identity feature for the mentions i and 7, ij“t“”ce is the positive
integer feature tracking the distance between them, and f represents several fully connected layer(s),
shared by the three pairs. Our implementation uses two layers, with dropout between them.

While h;; represents the relation between ¢ and j, the other triad member needs taken into account as
well. We achieve this by constructing a shared context h; j:

hiji = g(hij @ hji @ hii) &)

where ¢ is another fully connected layer. Operator @ means elementwise vector summation. Now, we
can have a decoder layer d;; for each of the pairwise relations.

dij = fa(hij, hiji) (6)

Function f; is another fully connected layer. The three decoders work together to generate a 3D binary
vector, as in equation 7. Each element represents whether the mention pair refers to the same entity (O or
1).

y = Slngld(W(dw, djlm dkz) + b) (7)

where W and b are the weights and bias to be trained. The output y is a 1 x 3 vector. As we can
see, the three decoders do not make decisions independently, but rather, “consult” with each other, as in
equation 7. Each decoder also uses the shared context h; ;. at a lower level, as seen in equation 6.

3.3 Triads Generation

For n mentions in the text, there can be (];’[ ) triads. In most cases, we have dozens of mentions in an
article, which is not an issue. However, some long articles have hundreds of mentions, so generating all
triads is unpractical and unnecessary. For instance, for 500 mentions, the total number of triads would
be 20,708,500!

During the training process, we use only the mentions within the distance of 15 or less. In other words,
we consider the pairs with 14 or fewer mentions between them. For testing, we consider the mentions
with distances up to 40. However, this does not mean the long-distance coreference can never be detected.
Often, coreferent mentions in-between the distant ones may serve as bridges, and our clustering algorithm
is able to put them together. That being said, it is also true that long-distance mention pairs are less likely
to corefer than those in closer proximity. Training with triads that include very distant pairs could also
have the harmful effect of introducing too many negative samples.

3.4 Dyad Baseline System

To demonstrate that triads have advantages over a strictly pairwise approach, we also build a neural
network model which takes mention pairs as input, and make binary decisions on the pairs only. The
input features are the same as in the triad model, and the architecture can be considered a reduced triad
system. Now there is no context information shared by three entities. The pair representation is directly
connected to the output layer.

4 Entity Clustering

After the likelihood of pairwise coreference between all mentions has been determined, we use a clus-
tering algorithm to group them. At the end of this process, each entity is represented by a mention
cluster.

For every triad a, b and c, the system will produce three real values between [0,1] to represent the
“probability” of a coreference link. We will refer to them as affinity scores. The higher the score, the
more likely a pair of mentions refers to the same entity. The affinity score over a pair is computed as the
average of their scores in all triads, as shown in equation 8.

pab) =5 O o) (8)

ceW(a,b)
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Here, N is the total number of triads containing (a,b), ®(a,b) is the affinity score of a and b, and
®(a, b; c) is the affinity score of @ and b when another mention c is in the triad. W (a, b) represents the
set of mentions within the distance window of a or b. We have experimented with other methods besides
averaging, including taking the maximum, or the average of several top candidates. We found that the
average produces better results.

The mutual distance between a and b is defined as the reciprocal of the affinity score, except we set
the maximum value to be 10. Since the maximum value of ®(a, b) is 1, the minimum value of d(a, b) is
also 1 according to equation 9. In principle, we would like distance metrics to have 0 as the minimum,
which can be achieved by subtracting 1. However, for the purpose of clustering, it is not necessary.

d(a,b) = min{ 10} 9)

1
®(a,b)’
Recall that our system does not consider mention pairs too far apart in the text. For evaluation, the
maximum distance for consideration is 40 (i.e. they may have up to 39 other mentions in between). We
set the mutual distance between out-of-window mentions as 10, the maximal distance. As mentioned
before, this does not mean they can never be clustered together. The result depends on the choice of
linkage, and whether there is any coreferent entities in-between.

We use the hierarchical clustering function provided by SciPy library to build the sets of coreferent
entities. Other than the customized distance metric, we used the default settings, opting for the distance,
rather than inconsistent cutoff criterion. When the clusters are built hierarchically, those with distances
lower than a threshold are joined. Presumably, the threshold ¢ should be lower than 2, which corresponds
to affinity score higher than 0.5. The higher the threshold, the fewer clusters will be produced at the end.
Preliminary experiments showed that the results are not affected very much when ¢ is between 1.5~2.0.
We used the ¢ = 1.7, which corresponds to affinity score of 0.59.

The choice of linkage has a major impact on the results. We found the single linkage produces the
best results. Intuitively, it also makes sense. In a text, coreference among a group of mentions can only
be recognized via one or several bridging mentions. In this case, the single linkage can best represent
the relation, while the average and other linkages tend to overestimate the distances between clusters.

5 Experiments

For all the experiments, hyperparameters were tuned with the development set only. We use Adam
optimizer with binary cross-entropy loss. The learning rate is initially set as 107>, then 5 x 10~% after
100 sub-epochs, and 10~* after 100 sub-epochs. We use the term “sub-epoch” to refer to training on
50 files, rather than the whole training set. The training set is relatively big, so we implemented a data
generator with multiple subprocesses with a shared output queue. There are 1940 training files in total,
so roughly all training files can be consumed in 40 sub-epochs, although smaller files may be used more
frequently due to the nature of multiprocessing. The training completed in 300 sub-epochs. We use input
dropout ratio 0.5 for word embeddings and POS embeddings. The last layer of each pair representations
has dropout ratio 0.3. The bidirectional LSTMs use the average output of two directions.

For the baseline dyad model, the settings are similar. We also use 300 sub-epochs, but here it refers to
training on 100 files, not 50.

5.1 Results of Triad Model

Table 2 shows the results of our triad system, compared to other systems in literature. All results are
on the CoNLL 2012 English test data. As we can see, all the recent system have pretty much the same
average F1 scores over the three metrics. Likely, they all capture the relatively easy cases, and the
difficult ones remain to be tackled. Compared to other systems, ours has a very different distribution of
scores across the three metrics, which suggests our results are quite different. Our system performs by
far the best with the MUC evaluation metric, and is also the best with B3 metric, measured with F1 score.
However, the performance is quite low from the CEAF44 metric. To understand the discrepancies, we
need to analyze not only the nature of our system but also the nature of the metrics.
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MUC B3 CEAF 44
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1
Wiseman et al. (2016) 7749 69.75 7342 | 66.83 56.95 61.50 | 62.14 53.85 57.70 | 64.21
Clark & Manning (2016) | 7991 69.30 74.23 | 71.01 56.53 6295 | 63.84 5433 5870 | 65.29

Heuristic Loss 79.63 70.25 74.65| 6921 57.87 63.03 | 63.62 5397 5840 | 6536
REINFORCE 80.08 69.61 7448 | 70.70 56.96 63.09 | 63.59 54.46 58.67 | 65.41
Reward Rescaling 79.19 7044 7456 | 6993 5799 6340 | 63.46 5552 5923 | 65.73
Triad 8493 77.26 80.92 | 6035 71.77 65.65 | 44.43 59.20 50.76 | 65.78

Table 2: Results of coreference resolution systems on the ConLLL. 2012 English test data. Our model
(Triad) was trained on triads with the maximum distance of 15, making predictions on the triads with the
maximum distance of 40. All other results are copied from Clark and Manning (2016).

MUC (Vilain et al., 1995) is a link-based metric. Mentions in the same entity/cluster are considered
“linked”. MUC penalizes the missing links and incorrect links, each with the same weight. It has been
noted that MUC prefers over-merging entities (Luo, 2005) over under-merging. Incorrectly merging two
entities is penalized less than incorrectly splitting an entity. Since we chose the single linkage in our
clustering algorithm, it is likely to over-merge sometimes.

B? (Bagga and Baldwin, 1998) is a mention-based metric. The evaluation score depends on the fraction
of the correct mentions included in the response entities (i.e. entities created by the system). If a system
does not make any decision and leaves every mention as singletons (i.e. no coreference at all), it will
get a perfect precision score. Luo (2005) indicates that the B3 precision score prefers no decision. On
the other hand, the recall prefers over-merging entities. We have a high B3 recall and relatively low
precision, which reflects our results in MUC.

We manually spot-checked our results and the over-merging suggested by our MUC and B? scores
appears to be true. Figure 1 provides an example to illustrate this. The top subfigure is the true clusters
of entities, and the bottom shows the predictions. As we can see, the mentions are mostly grouped
correctly, but there is a very large cluster (red) on the right, which basically merges two big ground truth
clusters (light blue and yellow).

CEAF44 (Luo, 2005) assumes each key entity should only be mapped to one response entity, and
vice versa. It aligns the key entities (clusters) with the response entities in the best way, and com-
pute scores from that alignment. However, a major disadvantage of this approach is that the un-
aligned responses are totally ignored, even if they are legitimate clusters. Moosavi and Strube
(2016) used an example to illustrate the problem. From a text, system crl identifies two entities
{the American administration,ity,ite,its} and {they;,theys, them,their}. However, it misses
the fact that the two are actually the same entity. As we know, relatively few entities can be referred by
both it and they, as administration can. Another system cr2 only identifies the fist cluster, and misses
all of the second cluster. Our intuition is cr1 does a better job, because it resolves much more coreference
relations. However, CEAF 4 will score cr2 higher. This is what happens to our system. There are 4217
true coreference entities from the test set. However, our system generated 5619 entities, or 33% more.
Note our CEAF 4, recall score is also 33% higher than CEAF 4 precision score, which is related to their
definitions. As a result, our system identifies a lot of small subsets of entities, but may miss some crucial
links in between. MUC and B? will give partial credits to it, but CEAF 44 completely ignores the efforts
and only picks one subset for the best alignment.

In order to understand the distribution of entity/cluster sizes, we collected all the entities from test data
and from our system response. Figure 2 shows the distribution of entities with respect to their size. As
we can see, our system generates some very large entities, quite a few bigger than 100. This is evidence
of over-merging. On the other hand, the system also generates many small entities, as shown by the left-
most green bar. Note the y-axis there is in log scale, so the difference is not proportionally visualized.
Figure 1 also shows that there are 13 true entities in the file, but the system finds 17. On the one hand, it
merges two major entities; but on the other hand, it breaks down some small entities.

Different evaluation metrics help to diagnose different problems, and every system, as well as every
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Figure 1: Clustering results from the test file voa_0049. Top subfigure is the true clusters. Bottom is the
predicted results. Mentions with the same color are in the same cluster. The cutoff threshold is 1.7.

metric, would have its strength and weakness. In practice, what is needed depends on the purpose.
CoNLL 2012 Shared Task uses the average of the three metrics to rank systems. Even though our system
shows the best performance, the average here may not be very meaningful, given that our system has a
very different distribution of scores from the others.

5.2 Results of Dyads Model

The results of the dyad system are shown in Table 3. As we can see, the triad system has a big advantage
over the dyad system. Although we use maximum mention distance 15 for training, for prediction, it
is beneficial to allow larger distances in the triad model. However, even in prediction, it is difficult to
increase the distance beyond a certain point, since the number of triads increases very fast when the
allowed distance becomes larger. Below, we show the results of both dyad and triad systems using the
distance of up to 15 and up to 40 at test time.

MUC B? CEAF 44
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1
Dyad, max distance 15 | 76.83 78.16 77.49 | 46.03 70.59 55.73 | 4443 4158 4296 | 58.73
Dyad, max distance 40 | 77.80 82.84 80.24 | 37.65 77.86 50.76 | 47.99 36.49 41.46 | 57.48
Triad, max distance 15 | 84.48 7526 79.60 | 62.36 68.30 65.20 | 42.78 59.98 4994 | 6491
Triad, max distance 40 | 84.93 77.26 80.92 | 60.35 71.77 65.65 | 4443 59.20 50.76 | 65.78

Table 3: Results of the dyad model compared to the triad model. Two maximum mention distances are
tested: 15 and 40. They are all trained with maximum distance 15.

Generally, we found that dyad-based system generates more entities (less coreference) than the triad
system. For test data, we had 11,299 entities from the dyad-based model, but only 5,619 from the triad-
based model.

Triad model can also support additional restrictions. For example, we can require at least one pair in a
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Figure 2: Entity sizes (number of mentions). Horizontal axis is the size of entities. Blue/left bars are the
true counts from test set. Green/right bars are the counts from system response. Note the vertical axis
is drawn in log scale. Compared to the truth, our system produces more extreme cases i.e. entities with
very small number of mentions, or very big number of mentions.

triad to have a smaller distance. The point of allowing longer distances between mentions is to identify
coreferent mentions that are far apart in text. However, it is typically fairly rare to have mentions that are
far away refer to the same entity. We do not have to allow all sides of a triangle to be big, and imposing
this restriction may improve the overall quality of the response entities.

Note that this system can be easily extended from triads to tetrads (union of four mentions) and higher
polyads. Sometimes we may want to look at two more other places to determine whether a coreference
relation is present. Ideally, the larger the polyad, the better we can capture mutual dependencies. How-
ever, since the number of polyads grows fast with the polyad order, the computation may quickly become
intractable for larger texts.

6 Conclusion

We developed a triad-based neural network model that assigns affinity scores to mention pairs. A stan-
dard clustering algorithm using the resulting scores produces state-of-art performance on MUC and B3
metrics. Our system appears to behave quite differently from others, judging by its performance on dif-
ferent metrics. A dyad-based baseline model has substantially lower performance, suggesting that using
triads plays an important role. Note that approaches other than clustering, such as the mention ranking
models, can easily be used with our output as well, and we expect some of them would work better than
the simple agglomerative clustering.

Mutual dependencies among multiple mentions are important in coreference resolution tasks, but it is
often ignored. Our triad-based model addresses this gap. This model can be additionally constrained to
improve performance, and if necessary, easily extended from triads to polyads with higher order.
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Abstract

This paper describes an unsupervised model for morphological segmentation that exploits
the notion of paradigms, which are sets of morphological categories (e.g., suffixes) that can
be applied to a homogeneous set of words (e.g., nouns or verbs). Our algorithm identifies
statistically reliable paradigms from the morphological segmentation result of a probabilistic
model, and chooses reliable suffixes from them. The new suffixes can be fed back iteratively to
improve the accuracy of the probabilistic model. Finally, the unreliable paradigms are subjected
to pruning to eliminate unreliable morphological relations between words. The paradigm-based
algorithm significantly improves segmentation accuracy. Our method achieves state-of-the-
art results on experiments using the Morpho-Challenge data, including English, Turkish, and
Finnish. !

1 Introduction

Morphological learning aims to automatically uncover constitutive units of words. It is an especially
important task for many NLP applications such as language generation, information retrieval etc. (Sproat,
1992). Morphology analyzing is non-trivial especially for morphologically rich languages such as
Turkish where the word formation process is extremely productive and can create in principle tens of
billions of word forms. The identification of morphological relations between words provides a basis for
uncovering their syntactic and semantic relations, which in turn can be exploited by downstream NLP
applications.

Most unsupervised models of morphological segmentation (Virpioja et al., 2013; Goldwater and
Johnson, 2004; Creutz and Lagus, 2005; Creutz and Lagus, 2007; Lignos, 2010; Poon et al., 2009; Snyder
and Barzilay, 2008) treat words as concatenation of morphemes. In some models, the dependencies
between morphemes (e.g., the English suffix -es often follows a verbal stem with y changed to i, as
in carries) are recognized (Narasimhan et al., 2015), making use of transformations akin to rewrite
rules (Goldwater and Johnson, 2004; Lignos et al., 2010). In all these approaches, the dependency
between morphemes is generally local, and the overall distribution of the underlying paradigms implied
by the segmentation result is not explored.

In this paper, we propose to exploit the notion of the paradigm, a global property of morphological
systems, for the task of unsupervised morphological segmentation (Parkes et al., 1998; Goldsmith, 2001;
Chan, 2006). The idea of using paradigm to describe the morphological structure of a language can be
traced back to a long time ago, and has been widely adopted in modern linguistic studies, starting from
Ferdinand de Saussure. A paradigm refers to a set of morphological categories such as suffixes that can
be can be applied to a homogeneous class of words. For instance, the paradigm (NULL, -er, -est, -ly) is
defined over English adjectives (e.g., high, higher, highest, highly), the paradigm (NULL, -ing, -ed, -s,
-er) is defined over English verbs (e.g, walk, walking, walked, walks, walker), etc. In essence, a paradigm
establishes an equivalence class for word formation such that a word realized in one of the categories in
a paradigm can be expected to appear in all the categories in the paradigm.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:

http://creativecommons.org/licenses/by/4.0/
!Code is available here: https://github.com/xuhongzhi/ParaMA
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The advantages of using paradigms in morphological learning are manifold. On the one hand,
paradigms provide a principled strategy for tackling the data sparsity problem. Not all morphologically
possible forms of a word will be attested (Chan, 2006) and in a morphologically rich language such as
Turkish, only a small fraction will be attested even in very large corpora. Paradigms can extend the
attested morphological forms from few but high frequency words to low frequency words, likely the
majority, for which there is little data. On the other hand, high quality paradigms may prove effective at
detecting spurious morphological relations between words that have plagued many previous models.
For instance, it is not uncommon for unsupervised morphological segmentation models to produce
segmentations such as with-in, with-out, and with-er, where with is an attested word and -in, -out, and
especially -er, are highly plausible suffixes (or more generally, morphemes). From the perspective of
the paradigm, a global property defined over all words that take the suffix set (-in, -er, -out), it is clear
that such a paradigm is very poorly supported—in fact by only one stem, namely, with, rather than a
substantial set. This suffix set, then, is very unlikely to be a true paradigm and will be discarded, thereby
eliminating segmentation errors such as with-er.

In this paper, we show that high quality morphological paradigms can be automatically constructed,
resulting in considerable improvement in unsupervised morphological segmentation accuracy. Section 2
provides a review of previous and related work. Section 3 describes the general framework of our
approach. Section 4 describes how to use linguistically-motivated language-independent heuristics
to generate candidate segmentations with transformation rules for each word. Section 5 describes
a probabilistic model of morphological learning that provides an initial segmentation including the
identification of potential suffixes. Section 6 lays out the details of constructing morphological paradigms
and a pruning process that eliminates spurious morphological relations. Section 7 reports the results of
our experiments on Morpho-Challenge data including English, Turkish, and Finnish in comparison with
previous models. Section 8 concludes with a discussion of future research.

2 Related Work

The Morpho-Challenge, held from 2005 to 2010, led to many successful morphology learning models.
The Morfessor baseline system (Creutz and Lagus, 2002; Virpioja et al., 2013) provides a framework
that maximizes the likelihood of the observation under the MDL principle. Creutz and Lagus (2005;
2007) extend the model with the maximum a posteriori (MAP) on both observed data and the model.
Semi-supervised models have shown to be effective on morphological segmentation (Kohonen et al.,
2010; Spiegler et al., 2010). In this paper, we focus on unsupervised learning of language morphologies,
based on the consideration that constructing annotating data is expensive, especially for low-resource
languages.

Narasimhan et al. (2015) adopt a log-linear model with semantic similarity measures obtained from
word embedding to identify morphologically related word pairs (Schone and Jurafsky, 2001) and
achieve impressive segmentation results on the Morpho-Challenge data. Such semantically based model,
however, requires a large corpus to train reliable word embeddings, which renders the method unsuitable
for low-resource languages.

The idea of paradigms has been explored in previous studies (Parkes et al., 1998; Goldsmith,
2001; Dreyer and Eisner, 2011; Ahlberg et al., 2014). Parkes et al. (1998) propose a model that
learns neat inflectional paradigms only for English verbs from a corpus. Goldsmith (2001; 2006)
uses heuristic rules with the MDL principle to greedily search morphological patterns (signatures).
But the performance of rule-based search methods is crucially determined by the heuristic rules, and
transformation rules are difficult to incorporate. Dreyer and Eisner (2011) proposed a log-linear model
to identify paradigms. However, their method requires a number of seed paradigms for training. In
morphologically rich languages such as Turkish, where one paradigm can be extremely large, this method
requires considerable human annotation effort. Ahlberg et al. (2014) use a semi-supervised approach to
learn abstract paradigms from a given inflection table. However, the task is different from what we
discuss here, which somehow discovers inflection tables as an intermediate step.

In the paper, instead of constructing paradigms as a goal, we select statistically reliable paradigms from
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the initial segmentation generated from a simple probabilistic model, and then use the reliable paradigms
for pruning the unreliable ones, which we refer to paradigm pruning. The advantage of the proposed
model is that it mathematically maximizes the likelihood of the observed data through the probabilistic
model as well as maintains the global morphological structure in terms of paradigms. As will be
demonstrated later, our method produces state-of-the-art results for morphological segmentation. It also
provides a promising approach to unsupervised morphological learning for low-resource languages for
which there is no sufficient quantity of data to enable embedding methods.

3 Our Method

We now formally describe our model. We write w = (r,s,t) for a word w that consists of a root
r, a suffix s, and a transformation rule ¢ which captures stem changes in morphological processes. A
morphologically simple word is treated as taking an empty suffix NULL without transformation rules.
For example, the word realizing can be analyzed as deleting the last letter e from the word realize and
adding suffix -ing, i.e. (realize, -ing, DEL-e). To deal with words with multiple suffixes is trivial. If
w = (r,s,t)and r = (', s',t'), then w = ((+', s, t’), s,t). Here, we call r the immediate root of w.
If the word has itself as immediate root, i.e. taking a NULL sulffix, it is called atomic. If v’ is atomic,
it is called the final root of w, otherwise, it is called an intermediate root of w. For example, the word
realizing can be represented as ((real, -ize, NULL), -ing, DEL-e), where (real, -ize, NULL) represents the
word realize. So, the final root of realizing is real, and the word realize is an intermediate root. Finally,
the task of morphological segmentation for a word is to recursively find immediate root until its final root
is found.

3.1 Modeling Transformation Rules

We model three stem changes, called transformation rules, namely deletion, substitution, and duplication,
similarly to (Narasimhan et al., 2015). These three transformation rules were mainly designed to capture
stem changes that are involved in suffixation. All transformation rules are represented with the specific
characters involved in changes. The definitions of the three transformation rules are as follows.

1. Deletion (DEL) of the end letter of the root. For example, the word using can be analyzed as (use,
-ing, DEL-e).

2. Substitution (SUB) of the end letter of the root with another. For example, the word carries can be
analyzed as (carry, -es, SUB-y+i)

3. Duplication (DUP) of the end letter of the root. For example, the word stopped can be analyzed as
(stop, -ed, DUP+p).

We note, however, that certain morphological phenomena do not readily yield to the transformation-
based approach here. Infixation and templatic morphology are obvious examples. Even agglutinative
systems, which at first glance appear suitable for transformation rules that operate at word edges, may
still prove problematic when more global morphological processes are at play. For instance, the Turkish
suffixes -lar and -ler will fall under two distinct transformational rules but are in fact one morpheme that
is realized differently due to vowel harmony. This problem does not pose insurmountable problems for
the purpose of morphological segmentation since both -lar and -ler are relatively frequent and can be
identified as genuine (and distinct) suffixes, but clearly a more robust representation of morphological
processes will be necessary to account for the full range of languages. We leave this problem for future
research.

3.2 Morphological Segmentation Framework

Our method is schematically described in Algorithm 1. It has several major components. The GETPRIOR
function sets the prior of the model parameters by assigning each candidate segmentation (r, s,t) of a
word w equal probability. The function GENSEG generates candidate segmentations, (r, s,t), for each
word w. A probabilistic model is then used to compute the probability of each candidate, i.e. P(r, s,t)
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based on the parameters estimated by the function ESTIMATE. Then the segmentation with the maximum
probability is chosen. The final segmentation (e.g. words with multiple suffixes) can be constructed
recursively as described in the beginning of this section.

After that, the function PARADIGMS reorganizes the segmented words into paradigms. The function
RELIABLE then selects a set of statistically reliable paradigms. The function ESTIMATE estimates the
model parameters based on the segmentation result derived from reliable paradigms. Then the new
parameters are used by the probabilistic model to get better segmentation result. The procedure iterates
for several times. Here, we let the algorithm iterate twice as we find it sufficient to produce high quality
segmentations. The function PRUNE prunes the unreliable paradigms. The final result is generated based
on the reliable paradigms and the pruned ones with function SEGMENTATION. The following sections
describe each component in details.

Algorithm 1 The main procedure
procedure MAIN(WordList D)

1:

2 {P(r,s,t)} + GETPRIOR(D)

3 while iter < maxIter do

4: morph + {}

5: for all w in D do

6: segs < GENSEG(w)

7 seg ¢ argmax(r,s,1esegs L (T, 8, 1)

8 morph < morph + (w, seg)

9: pdgs < PARADIGMS (morph)
10: pdgs_reliable, pdgs_unreliable < RELIABLE(pdgs)
11: {P(r,s,t)} < ESTIMATE(pdgs-reliable)
12: pdgs_pruned < PRUNE(pdgs_unreliable)
13: return SEGMENTATION (pdgs_pruned + pdgs_reliable)

4 Generating Candidate Segmentations

4.1 Selecting Candidate Suffixes

To obtain a working set of suffixes, we first adopt a simple method from previous studies: given a word
pair (wy, wa), if we = wi + s, then s is a candidate suffix (Keshava and Pitler, 2006; Dasgupta and
Ng, 2007). By comparing all possible word pairs, we can generate a set of candidate suffixes with their
counted frequencies. The more frequent a candidate is, the more likely it is to be a real suffix. In our
system, we only keep candidate suffixes that are at most six character long and appear at least three times
in the word list. If applied naively, this method produces many short, spurious suffixes that are frequently
occurring substrings in words, e.g. (for, fore), (are, area), (not, note), (she, shed) etc. The problem can
be overcome by imposing a minimum length on words that are subject to candidate suffix generation. In
practice, we find that a minimum word length of four characters works well, which partially reflects the
prosodic constraints on minimal words from the linguistic literature (McCarthy and Prince, 1999).

In addition, if a candidate suffix can be taken by words of various lengths, it is more likely to be a real
one; if a candidate suffix can only be taken by short words, it is likely to be a false one. To further utilize
this information, we use the following equation to calculate the confidence value (conf) of a candidate
suffix.

conf(s) =log (14 |[W,|) x x> len(w) (1)

1
s| weWy

|W,
where W is the set of words that can take the candidate suffix s and form a new word, and len(w) is the
length of word w. Finally, we can select the top N candidates.

4.2 Generating Candidate Segmentations with Transformation Rules

The procedure for generating a candidate segmentation of target word w begins by stripping a possible
suffix s from the word. If the remaining part r is a valid word, then (r, s, NULL) is a possible candidate.
If 7 is not a word, but there exists a word r'=r+c and ¢ # s, then (', s, DEL-c) is a candidate. If 7 is in
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the form r’+c, and 7’ is a valid word also ending with ¢, then (r/, s, DUP-c) is a candidate. If r is in the
form r’+c, r’ is not a word, but there exist another word w’=r'+c¢’ and ¢’#c, then (w', s, SUB-c+c') is a
candidate. If no possible suffix s could be found, then add (w, NULL, NULL) as a candidate.

We apply the transformation rule types in the following ordering: (NULL, duplication, deletion,
substitution). A candidate with a transformation rule is generated only if no candidate could be found
with a previous type. The ordering reflects the linguistic approaches to morphology where suffixation
applies to the stem changes, and the changes take place at morpheme boundaries before affecting the rest
of the words on either side (Halle and Marantz, 1993). The linguistic reality of these processes, once
more widespread in English, is now only latently reflected in modern English orthography but can be
transparently observed in other languages.

5 A Probabilistic Model for Morphological Segmentation

We evaluate the conditional probability of a segmentation (r, s,t) given a word w. Since each triple
(r,s,t) is uniquely associated with a single word w, denoted as (r,s,t) = w, for all (r,s,t),
P(r,s,tjlw) = 0if (r, s,t) # w. Otherwise, we use the following formula to calculate this probability.

P(r,s,t)
Z(T",S’,t’):w P(T’,, S,, t/)

To compute P(r, s, t), we assume that r is independent of s, and that ¢ depends on both r and s. Taking
into account that the transformation rules are not word form specific, but rather follow some constraints
based on the phonological structures of the word and the suffix. We assume that the transformation rule
t is dependent on feature extracted from r and s, denoted by f(r, s). Thus, P(r, s, t) can be decomposed
as follows.

P(r,s,tlw) =

2

P(r,s,t)=P(r) x P(s) x P(t|f(r,s)) 3)

In our implementation, we assume that ¢ depends on the last character of the root r (end(r)) and the
initial character of the suffix s (init(s)), i.e. f(r,s) = end(r)-init(s). For example, the probability of
the segmentation (carry, -es, SUB-y-i) for the word carries can be calculated by multiplying P(carry),
P(-es), and P(SUB-y+ilf), where fis y-e. Again, this is an approximation of the morpho-phonological
properties of language but one which nevertheless proves effective for morphological segmentation.

Finally, the segmentation of a word w can be predicted by choosing the segmentation (r, s,t) that
maximizes P(r, s, t) as follows.

seg(w) = argmax P(r, s, t) 4)

(r,s,t)=w
5.1 Parameter Estimation

To estimate the parameters P(r), P(s), P(t|f), we initially assume that each candidate segmentation of
a word has equal probability because the unsupervised model has no access to gold data. Each (7, s, t)
of all possible segmentations seg of a word w then obtains 1/|seg| weight. After that, the probabilities
P(r), P(s), and P(t|f) can be easily computed based on the frequencies of 7, s, f, and (¢, f). This
first estimation of the parameters P(r), P(s), P(t|f) is the prior returned by the function GETPRIOR in
Algorithm 1.

Consequently, the probability of a segmentation (r, s, t) of a word w can be computed using Formula 3,
and select the segmentation with the maximum probability. Here, EM can also be used for estimating
parameters, but we found that this simple method works very well. After the first round, the parameters
can be re-estimated by only using the predicted segmentation of each word, with the function ESTIMATE
in Algorithm 1.

As discussed above, the reliability of a candidate suffix is also related to the length of words that
can take the suffix. So, another way of estimating P(s) is to use the confidence value calculated with
Equation 1. We will show that the method gives better results.
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English Turkish Finnish
Suffix Set Sup Suffix Set Sup Suffix Set Sup
(-ed, -ing, -s) 772 (-ki, -n) 1560 (-ssa, -ta) 2465
(-ed, -ing) 331 (-n1, na) 207 (-en, -ta) 1132
(-ed, -er, -ing, -s) 219 (-n1, -na, -nda) 201 (-la, -le, -ta) 808
(-ly, -ness) 208 (-ne, -ni) 199 (-n, -ssa) 693
(-ed, -ing, -ion, -s) 154 (-1, -a) 165 (-ssd, -td) 677
(-ic, -s) 125 (-de, -e, -1, -in) 126 (-sen, -set, -sia, -ta) 462
(-ly, -s) 109 | (-nde, -ne, -ni, -nin) 82 (-en, -ssa, -ta) 328
(-ed, -ing, -ment, -s) 63 (~dir, -ki, -n) 81 (-sen, -set, -sid, -td) 177
(-ism, -s) 52 (-8i, -tir) 81 | (-a, -ksi, -la, -le, -ssa, -ta) 160
(-ed, -es, -ing) 52 (-de, -1) 79 (-aan, -ni) 156

Table 1: Examples of paradigm suffix sets and their supports of English, Turkish, and Finnish.

6 Paradigm Construction and Pruning

In this section, we discuss how to perform a post-pruning with a paradigm-based algorithm to exclude
noisy segmentations. We define a paradigm formally as follows.

e Paradigm p = S x R is a Cartesian product of a set of suffix S = {s;} and a set of roots R = {r;},
such that for any suffix s € S and root r € R, r can take s to form a valid word w by applying a
transformation rule ¢ 2.

With this definition, the larger the cardinality | R| is, the more reliable a paradigm p is. On the other
hand, it is not always true that the larger | S| is, the more reliable a paradigm is. An extreme case occurs
when there is only one root in the paradigm, i.e. |R| = 1. For example, the root the forms a paradigm
with 42 possible suffixes and all of them are false. We therefore define the support of a paradigm as
follows.

e Support (SUP) of the a paradigm p = S x R is | R|, the cardinality of the root set R.

6.1 Constructing Paradigms

After we get the segmentation (7, s, t) for each word w, the paradigms can be easily obtained by grouping
together the words that share the same immediate root r, regardless of the transformation rules that
are involved. For example, the words reporting, reported, and reports are segmented as (report, -ed,
NULL), (report, -ing, NULL), and (report, s, NULL) respectively, and the words baked, baking, bakes
are segmented as (bake, -ed, DEL-e), (bake, -ing, DEL-¢), and (bake, -s, NULL). Then we can construct
a paradigm based on these two words as {-ed, -ing, -s} x {report, bake}.

6.2 Paradigm Pruning

We crucially assume that even though the segmentation result given by the initial model is not highly
accurate, the distribution of paradigms constructed will provide clear evidence of whether they are
reliable. Table 1 shows some examples of paradigms with more than one suffix, and these are indeed
consistent with the morphological structures of the languages.

The paradigms with more than one suffix and with support value larger than 1 are selected as the
reliable ones, the same strategy used by Goldsmith (2001) for filtering when constructing candidate
paradigms. The method has two consequences. First, we exclude a large proportion of suffixes that
only appear in unreliable paradigms so that the frequency of suffixes be estimated based on the reliable
paradigms. Second, we can use the reliable paradigms as references for pruning the unreliable ones.

The basic idea of pruning unreliable paradigms with reliable ones is to take the intersection of the
suffix set of a paradigm to be pruned and that of any of the reliable ones and to choose the one that
achieves the best score. The score of a set of suffixes is calculated according to the following equation.

Transformation rules (or stem changes) are not considered a part of the paradigms, because they are usually not directly
driven by morphological processes but rather some phonological rules or others
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English | Turkish Finnish
Training (MC:10) | 878,036 | 617,298 | 2,928,030
Test (MC:05-10) 2,218 2,534 2,495

Table 2: Data Set. MC:10 is the Morpho-Challenge 2010 and MC:05-10 is the combined data of Morpho-
Challenge 2005-2010.

score(S) = Z conf(s) 5)

ses

For instance, suppose we have an unreliable paradigm {-ed, -ing, -s, -se} x {appear} 3, which only
has support value 1, and there are two reliable paradigms with suffix sets (-ed, -ing, -s) and (-ed, -ing)
respectively. Then, the pruning algorithm calculates the intersection of the unreliable one and each of
the reliable ones, resulting in (-ed, -ing, -s) and (-ed, -ing). According to Equation 5, the former one will
be kept since it has a higher score. Thus, the original paradigm is pruned to {-ed, -ing, -s} x {appear},
and consequently, the false morphological relation between appease and appear (by -se) is filtered out.

7 Experiments

7.1 Experiment Setting
7.1.1 Data

We ran experiments on a combined version of the Morpho-Challenge 2005-2010 data sets including
English, Turkish, and Finnish, the same setup as Narasimhan et al. (2015). In our experiments, testing
words are included in the training set since the method is unsupervised. A statistical description of the
data is shown in Table 2.

As in previous work on unsupervised morphological learning, we use a frequency-based filtering
method to reduce noise in the data. This is necessary because the word list provided by Morpho-
Challenge 2010 is generated by lower-casing all running tokens in the corpora including abbreviations
and proper nouns. Many of these are three characters words. We use the following conditions to select
reliable roots: 1) freq > 2000 if len(word) < 3; 2) freq > 200 if len(word) < 4; 3) freq > 20 if
len(word) < 5;4) freq > 3 else. The motivation is that short words are expected to be more frequent;
rare short words are likely to be abbreviations or noise.

7.1.2 Compounding

We also add a compound inference module, which simply splits a word w before generating candidate
segmentations if it is composed of w; and ws. If there is more than one possible segmentation, then we
choose the one with maximum length of w;. The candidate segmentations are then generated for w; and
wy separately. The final segmentation result is obtained by combining the segmentation results of w;
and ws.

7.1.3 Evaluation

Following (Narasimhan et al., 2015), we measure the performance of our model with segmentation
points, i.e. the boundaries between morphemes in words. The precision, recall and F1 values on the
identification of segmentation points are reported.

7.2 Experiment Results

7.2.1 Ablation test

We first test five different variations of our model. The first one is the baseline system (Base) which only
uses the probabilistic Model without transformation rules. The second one (+Trans) is the baseline plus
transformation rules. The third one (+Comp) is the second one plus the compounding inference module.
The fourth one (+Prune) is the third one plus the paradigm pruning algorithm. The fifth one (+Conf) is

3The word appear takes suffix -se to form appease through a transformation rule DEL-r.

50



English Turkish Finnish
Prec | Rec F1 | Prec | Rec F1 | Prec | Rec F1
Base 0.483 [ 0.686 | 0.567 | 0.616 | 0.621 | 0.619 | 0.521 | 0.245 | 0.333
+Trans | 0.531 | 0.807 | 0.641 | 0.589 | 0.728 | 0.651 | 0.393 | 0.338 | 0.363
+Comp | 0.511 | 0.861 | 0.641 | 0.582 | 0.728 | 0.647 | 0.389 | 0.606 | 0.474
+Prune | 0.814 | 0.783 | 0.798 | 0.651 | 0.514 | 0.574 | 0.688 | 0.436 | 0.534
+Conf | 0.810 | 0.787 | 0.798 | 0.600 | 0.746 | 0.665 | 0.712 | 0.481 | 0.574

Table 3: Experimental result of our model.

English Turkish Finnish
Method | Prec Rec F1 Prec Rec F1 Prec Rec F1
Morf-Base | 0.740 | 0.623 | 0.677 | 0.827 | 0.362 | 0.504 | 0.839 | 0.357 | 0.501
Morf-Cat | 0.673 | 0.587 | 0.627 | 0.522 | 0.607 | 0.561 | 0.782 | 0.452 | 0.573
LogLinear-C | 0.555 | 0.792 | 0.653 | 0.516 | 0.652 | 0.576 | 0.483 | 0.650 | 0.554
LogLinear-Full | 0.807 | 0.722 | 0.762 | 0.743 | 0.520 | 0.612 | 0.428 | 0.496 | 0.460
Our model | 0.810 | 0.787 | 0.798 | 0.600 | 0.746 | 0.665 | 0.824 | 0.452 | 0.584

Table 4: Comparison of our model with others. The numbers for Finnish are obtained by running the
systems by ourselves. The other numbers are from (Narasimhan et al., 2015).

the same as the fourth one except that the estimation of P(s) is based on the confidence value calculated
through Equation 1. In order to achieve the best performance, if a feature harms the performance, it will
be removed in the next round.

The results are shown in Table 3. Firstly, we can see that incorporating of transformation rules
improves the performance for all the three languages with 7.6%, 3.2%, and 3.0% improvements of F1
measure respectively. After adding the compounding analysis module, the performance is significantly
improved on Finnish, with 11.1% improvement of F1 measure. The paradigm pruning algorithm
significantly improves the performance on English and Finnish, with 15.7% and 6.0% of F1 measure,
and improves precision of the model on Turkish, although the overall performance decreases. Finally,
by using confidence based estimation of P(s), the performance is improved further on all the three
languages, achieving the best result for English and Turkish. For Finnish, the best result is actually
achieved without transformation rules, namely 0.824, 0.452, and 0.584 in Precision, Recall, and F1
respectively.

7.2.2 Comparison with other models

We compare our model with three systems including the Morfessor Baseline system (Morf-Base) (Virpio-
jaetal., 2013), Morfessor CatMAP (Morf-Cat), and the Log-linear model with full features (LogLinear-
Full) and the model without semantic similarity (LogLinear-C) in (Narasimhan et al., 2015). Besides
English and Turkish as used in (Narasimhan et al., 2015), we also add Finnish for experiments. For
training word embeddings which will be in LogLinear-Full model, we use a corpus created in the DARPA
LORELEI # project, which contains about 101 million tokens.

The result is shown in Table 4. The numbers for English and Turkish are from (Narasimhan et
al., 2015). We can see that our model achieves the best performance in all the three languages. The
LogLinear-Full model is the second best model on English and Turkish. However, it is worth noting that
that model is based on semantic similarity features which requires training word vectors on independent
corpora. Our model, on the other hand, only uses a list of words. The word frequencies are only used to
filter noise. Our model is significantly better than the (Narasimhan et al., 2015) model without semantic
embedding (i.e. LogLinear-C), with 20.1% relative improvement of F1 on English and 12.8% relative
improvement on Turkish. For Finnish, the Morfessor CatMAP model has similar result as ours. The
semantic similarity information harms the LogLinear-Full model. We think that this is due to the data
sparseness problem as Finnish is a highly synthetic language, which then requires a larger corpus for
training effective word embeddings.

*https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
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7.3 Error Analysis and Discussion

Morphology learning systems in general suffer from two major problems, namely over-segmentation
and under-segmentation. Over-segmentation is usually caused by spurious roots, either intermediate
or final, such as the over-segmented words caused by the short frequent words, e.g. the, with, etc.
Under-segmentation is usually caused by unseen intermediate roots or unidentified real suffixes. In
morphologically rich languages like Turkish and Finnish where a root can take multiple suffixes, this
problem is more serious.

Firstly, we can see from Table 3 that the use of transformation rules significantly reduces the under-
segmentation problem in all the three languages as indicated by the increased recall rates. For English,
the transformation rules also reduce the over-segmentation problem. This is due to fact that the
transformation rules can well capture the morphology of English and thus significantly increase the
true positive segmentations. On the other hand, the transformation rules increase the over-segmentation
problem for Turkish and Finnish as indicated by the decreased precisions. For Finnish, the best
performance of the system is achieved without transformation rules. That is due to the fact that Finnish
morphology involves a large number of vowel changes, e.g. lengthening and shortening at non-boundary
positions, which cannot be captured by the current transformation rules. However, the transformation
rules we use introduce a large number of false stem changes which then causes the over-segmentation
problem increased. We will address this problem in our future research.

Secondly, the compounding module can further improve the recall rates and thus decrease the under-
segmentation problem for English and Finnish. This also reflects the compounding nature of the
languages and also the distribution of the test set.

Finally, the pruning algorithm significantly reduces over-segmentations for all three languages as
indicated by the increased precision values. However, the under-segmentation problem is also increased.
This is due to the identification of incomplete paradigms which is then caused by data sparseness
problem. For Turkish, the problem is even more serious. Pruning with incomplete paradigms will falsely
exclude real suffixes from an unreliable paradigm. This problem can be potentially addressed by merging
proper paradigms to identify the maximal suffix sets (complete paradigms). This will be in our future
research.

8 Conclusion and Future Work

In this paper, we propose an unsupervised model of morphology learning which outperforms the state-
of-the-art systems, using only orthographic information from a word list. Our contribution also lies
in providing a new method of using automatically learned paradigms to fine tune the morphological
segmentation results produced by a simple probabilistic model. This method is effective in eliminating
spurious segmentations and improving the segmentation accuracy. Finally, we also use the word length
information to select good candidate suffixes and estimate the suffix probabilities, which can further
improve the performance of the model. In addition, combining our model and semantics based systems
can potentially yield better result since they use different kinds of information and complement each
other.

We believe that our approach of using paradigms provides a foundation for dealing with other
morphological types such as prefixes, infixes, reduplication etc. In detail, the notation of the suffix
variable s can be generalized to f, a morphological function that takes a root as input and produces
the derived form. Correspondingly, the definition of paradigms could be easily revised as a set of
morphological functions that can take a set of words and generate their derived forms. We will work
on extending our system to process other types of morphologies in our future research.
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Abstract

Indigenous languages of the American continent are highly diverse. However, they have received
little attention from the technological perspective. In this paper, we review the research, the dig-
ital resources and the available NLP systems that focus on these languages. We present the main
challenges and research questions that arise when distant languages and low-resource scenarios
are faced. We would like to encourage NLP research in linguistically rich and diverse areas like
the Americas.

Title and Abstract in Nahuatl

Masehualtlahtoltecnologias ipan Americatlalli

In nepapan Americatlalli imacehualtlahtol, inin tlahtolli ahmo quinpiah miac tlahtoltecnologias
(“tecnologias del lenguaje”). Ipan inin amatl, tictemoah nochin macehualtlahtoltin intequiuh,
nochin recursos digitales ihuan nochin tlahtoltecnologias in ye mochiuhqueh. Cequintin
problemas monextiah ihcuac tlahtolli quinpiah tepitzin recursos kenin amoxtli, niman, ohuic
quinchihuaz tecnologia ihuan ohuic quinchihuaz macehualtlahtolmatiliztli. Cenca importante
in ocachi ticchihuilizqueh tlahtoltecnologias macehualtlahtolli, niman tipalehuilizqueh ahmo
mopolozqueh inin tlahtolli.

1 Introduction

The American continent is linguistically diverse, it comprises many indigenous languages that are nowa-
days spoken from North to South America. There is a wide range of linguistic families and they exhibit
linguistic phenomena that are different from the most common languages usually studied in Natural Lan-
guage Processing (NLP). There are approximately 28 million' people who self identify as members of
an indigenous group (Wagner, 2016) and they speak around 900% native or indigenous languages. This
represents an important cultural and linguistic richness. This richness was captured by the following
quote from McQuown (1955) “in one small portion of the area, in Mexico just north of the Isthmus
of Tehuantepec, one finds a diversity of linguistic type hard to match on an entire continent in the Old
World”. In spite of this, few language technologies have been developed for these languages, moreover,
many of the indigenous languages spoken in the Americas face a risk of language extinction.

The aim of this work is to explore the research in the NLP field for the indigenous languages spoken in
the American continent and to encourage research for these languages. We stress the need of developing
language resources and NLP tools for these languages and we point out some of the challenges that arise
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

"Each country has its own methodology and criteria to estimate the amount of speakers. This is the sum of all estimations.
2This number varies depending on the classification criteria used on different studies.
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when working on this field. Since indigenous languages are digitally scarce, developing technologies can
have a positive social impact for the communities which depend on these languages. The great diversity
of these languages posses interesting scientific challenges, e.g., adapting well established approaches,
creation of new methods, collecting new data. Tackling these challenges contributes to building more
general computational models of language, and to get a deeper insight into human language understand-
ing. Moreover, many statistical NLP methods seek to achieve language independence, however they
often lack of linguistic knowledge or they do not cover the broad diversity of languages (Bender, 2011).
In this sense, it is important to acknowledge the characteristics of the indigenous languages of the Amer-
icas as a way of complementing the current NLP methods.

Contributions. To sum up, we made the following contributions: (i) we gave a brief introduction into
the diverse language space of the indigenous languages of the American continent; (ii) we provide an
overview of the existing digital corpora and language sytems that have been developed for some of the
languages spoken in the Americas; (iii) and we discusses the advances, used methodologies, challenges
and open questions for the most researched NLP tasks in these languages.

In order to maintain the information of this paper updated of the computer readable resources, devel-
oped systems and scientific research we made a public available list> with the latest advances for the
Indigenous Languages of the Americas.

1.1 Languages overview

Linguistic typology is a field that studies the different languages of the world and tries to establish the
relationships among them. This is not an easy task since there is still limited knowledge about many
languages, specially in highly diverse regions. However, according to several linguistic atlas*, there
are around 140 linguistic families in the world, from these linguistic families almost 40% are native to
the Americas. Nowadays, approximately 900 different indigenous languages are spoken of this region,
making this continent a linguistically diverse territory.

Americas native languages can exhibit very different linguistic phenomena, these typological features
are important to be taken into account when developing language technologies (O’Horan et al., 2016).
It would be hard to provide a general description of all the languages spoken in the Americas, however,
we would like to highlight some of the linguistic features that usually represent a challenge when doing
NLP.

Many languages in North America tend to have a high degree of morphological synthesis, i.e., many
morphemes per word (Mithun, 2017). For instance, languages that belong to the Eskimo-Aleut family
(native to Canada, Alaska, Greenland and Siberia) are highly polysynthetic suffixing languages. Lan-
guages from other linguistic families spoken in North America also show specific degrees of aggluti-
nation, polysynthesis, and they have morphemes that express a wide range of functions and nuances of
space or direction (Mithun, 2001). Languages with this type of phenomena usually have compact word
constructions that are equivalent to whole sentences in other languages like English.

Another linguistic phenomena that is found in many languages spoken in the Americas is the tone, i.e.,
languages where the pitch is important to distinguish one word from another (the tone can express lexical
meaning and grammatical function). Some linguistics families like Oto-manguean (spoken in Mexico)
have languages with many types of tones. The orthography of these languages need to mark the wide
range of tones, however, many indigenous languages face a lack of orthographic normalization. This can
be specially problematic when trying to do NLP and processing text documents.

In general, the native languages of the Americas have a limited digital text production, in some cases
they may have a strong oral tradition but not a written one. Due to social and political reasons, alphabet-
ization and education programs are not always available for native speakers. Details about the languages
families for which we were able to identify digital and technological resources, are given in Appendix A

3Updated list of resources for Indigenous languages of the Americas: https://github.com/pywirrarika/naki
“Based on Ethnologue (Simons and Fennig, 2017), Glottolog(Nordhoff et al., 2013), WALS (Dryer and Haspelmath, 2013).
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2 Corpus and digital resources

Most of the current state of the art methods in NLP are data-driven approaches that require vast amounts
of corpora in order to achieve good performance. Widely popular machine learning methods and vector
space representations, e.g., neural networks and word embeddings, often rely in big monolingual corpora.

Annotated and unannotated corpora are required for several NLP tasks. For instance, parallel corpora
are essential for building statistical machine translation (MT) systems, while morphological annotated
data is essential for POS (Part-of-Speech) taggers and morphological analyzers, just to name a few.

In the case of MT, the most common sources for gathering large amounts of parallel data include
specific domain texts such as parliamentary proceedings, religious texts, and software manuals that are
translated into several languages. Additionally, the World Wide Web represents a good and typical source
for finding large-size and balanced parallel and monolingual text (Resnik and Smith, 2003). However,
many of the world languages do not have readily available digital corpora. Indigenous languages of the
Americas do not have a web presence or text production comparable to richer resourced languages and
it is difficult to find websites that offer their content the native languages.

We explored the resources that are digitally available for some of the native languages spoken in the
Americas. Regarding parallel corpora, the bible is a common source that contains translations to many
of these languages, although it is not always straightforward to extract the content in a digital format. On
the other hand, there are some projects that offer parallel content through a web search interface, e.g.,
Axolotl (Spanish-Nahuatl parallel corpus) that was mainly gathered from non-digital sources (books
from several domains), the documents have dialectal, diachronic and orthographic variation (Gutierrez-
Vasques et al., 2016). Nahuatl is a Uto-Aztecan language spoken in Mexico (approx. 1.5M speakers) that
lack of an orthographic normalization. In fact, this is the case for many languages spoken the Americas:
large dialectal variation, and missing standardization.

Also for the same language (Nahuatl), a comprehensive digital dictionary has been collected with
information from five previous dictionaries (Thouvenot, 2005), these dictionaries date from 16th to 21st
Century (de Olmos et al., 2002; Walters et al., 2002). The query interface of this resource is available
online’.

Another language that belongs to the Uto-Aztecan family is Wixarika or Huichol (approx. 45K speak-
ers). For this language, there is a parallel corpus (Wixarika-Spanish) that gathers translations of classic
Hans Christian Andersen’s literature (Mager et al., 2018). In this case, the translations belong to one
specific dialect (Nayarit). This resource can be fully downloaded from the web ©.

The Shipibo-konibo language (approx. 26,000 speakers) belongs to the Panoan language family, it
is spoken in the Amazon region of Peru and Brazil. Several types of digital resources are available for
this language. A parallel corpus between Spanish and this language was constructed using educational
and religious documents (Galarreta et al., 2017). Moreover, Shipibo-konibo language has a POS tagged
corpus, a set of words and its lemmas and an online-dictionary that has been recently released by Pereira-
Noriega et al. (2017).

Also spoken in South America, the Guarani language (approx. 8M speakers) belongs to the Tupi-
Guarani family. Abdelali et al. (2006) developed software for collecting Guarani resources from speak-
ers, from this gathering they were able to construct a parallel corpus (Spanish-English-Guarani) and
a monolingual corpus. There is also a digital Guarani dictionary (Ramirez and Wolf, 1996) available
online’.

Quechua is one of the most spoken language families on the continent (approx. 9M speakers) but
there is scarceness of corpora and language technologies. Espichdn-Linares and Oncevay-Marcos (2017)
released monolingual corpora in 16 Peruvian languages that belong to different linguistic families (in-
cluding Quechua).

Regarding speech resources, Guarani has a spoken corpus comprised by 1, 000 phrases from 110 dif-
ferent speakers, it was collected through a web interface (Maldonado et al., 2016), however, this dataset

5www.gdn.unam.mx

*https://github.com/pywirrarika/wixarikacorpora
"nttps://www.uni-mainz.de/cgi-bin/guarani2/dictionary.pl
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has not been publicly released. The Chatino language (approx. 45K speakers) is an Oto-Manguean lan-
guage spoken in southern Mexico, recently a language documentation and revitalization project has been
developed. They use automatic speech recognition and forced alignment tools to time align transcrip-
tions. Parts of this resource are freely available (Cavar et al., 2016).

There are some other types of datasets that are useful for developing language technologies, e.g.,
morphological annotated data. The CoNLL-SIGMORPHON 2017 Shared Task (Cotterell et al., 2017)
released a large morphological database with inflection information of 52 languages, including Haida
(7,040 words), Navajo (12,000 words), and Quechua (12,000 words), all of these are indigenous lan-
guages spoken in the Americas. In the same way, there is a Oto-manguean inflectional class database
which contains over 13,000 verbal entries from twenty Oto-Manguean languages spoken in Mexico,
along with information about each verb’s inflectional class membership (Palancar and Feist, 2015). For
morphological segmentation a data set of four Uto-Aztecan languages® were used and released by Kann
et al. (2018) (4, 468 segmented words from the Mexicanero, Nahutal, Wixarika and Yorem Nokki lan-
guages). The UQAILAUT Project contains roots, lexicalized words, infixes, noun and verb endings for
the Inuktitut language® (Farley, 2012). Plain Cree language, spoken in North America (Algic language
family) has also a lexicon databases (16,452 words) collected by Walters et al. (2002) and Wolfart and
Pardo (1973).

To improve the data recollection, Dunham et al. (2014) developed tools for annotation of text and audio
for Blackfoot, Gitksan, Okanagan, Tlingit, Plains Cree, Coeur d’ Alene and Kwak’wala. With these tool
they gather 19, 187 word forms, 324 texts and 18.8 GB of audio.

A collection of datasets have been developed for the Mapudungun or Mapuche language spoken
mainly in Chile (Araucanian language family) (Huenchullan, 2000; Monson et al., 2004). An audio
dataset with 170 hours of spoken Mapudungun, that covers three dialects (120 hours of Nguluche, 30
hours of Lafkenche and 20 hours of Pewenche) has been released. This resource contains a word list
with the 70,000 most frequent full form words (stem plus inflections) to support a spelling checker for
Mapudungun. Also a bilingual Mapudungun-Spanish lexicon was included, containing sample entries
1, 600.

Annotated data corresponding to higher linguistic levels is harder to find. For instance, almost no
treebanks have been developed for the indigenous languages of the Americas. To our knowledge, the
only available dataset is a parallel aligned treebank between Quechua and Spanish (Rios et al., 2008)
with 2, 000 annotated sentences.

It is important to mention that many of the languages spoken in the Americas have a Wikipedia’s set
of articles available!'®. This is useful for building monolingual and comparable corpora. Furthermore,
Wikipedia can be a helpful resource to predict Part-of-Speech (POS) tags for low resource languages
and other tasks (Hoenen, 2016). In any case, one common limitation of the digital resources for these
languages is the lack of orthographic standardization and difficulties for processing certain types of
characters. Table 1 summarizes the above-mentioned resources.

3 Morphological segmentation and analyses

Morphology has been studied in NLP field focusing mainly on the following tasks: lemmatization, stem-
ming, segmentation, analysis and inflection/reinfection. These tasks serve to other higher level tasks
such as machine translation. On this regard, there have been several studies which have been applied to
the Americas languages.

In NLP, lemmatization and stemming methods are used to reduce the morphological variation by
converting words forms to a standard form, i.e., a lemma or a stem. However, most of these technologies
are focused in a reduced set of languages. For languages like English there are plenty of resources,
however, this is not the case for all the languages. Specially for languages in the Americas with rich

8 Available at http: //turing.iimas.unam.mx/wix/mexseg

‘http://www.inuktitutcomputing.ca/DataBase/info.php

The available languages in wikipedia can be consulted at: https://es.wikipedia.org/wiki/Portal:
Lenguas_indgenas_de_Amrica. Until the publication of this article there are only entries in: Nahuatl, Navajo, Guarani,
Aymara, Klaalisut, Esquimal, Inukitut, Cherokee, and Cree.
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Type of resource

Languages

Size

Reference

Parallel

Parallel
Parallel
Parallel
Parallel

POS Tagged
Lemmatized words
Dictionary
Dictionary
Dictionary
Speech
Speech

Speech

Speech

Morphological In-
flection
Morphological In-
flection
Morphological
Segmentation

Morphological seg-
mentation

Monolingual

Monolingual

Treebank

Nahuatl-Spanish

Wikarika-Spanish
Shipibo konibo - Spanish
Spanish-English-Guarani
1259 languages

Shipibo konibo

Shipibo konibo

Shipibo konibo - Spanish
Nahuatl

Guarani

Guarani

Chatino

Blackfoot, Nata, Gitksan,
Okanagan, Tlingit, Plains

Cree, Ktunaxa, Coeur
d’Alene, Kwak’wala
Mapudungun

Quechua, Navajo, Haida

20 Oto-Manguean lan-

guages
Uto-Aztecan languages
(Mexicanero, Nahutal,

Wixarika, Yorem Nokki)
Inuktitut

16 Peruvian languages
Plain Cree

Quechua

18K sentences
8K sentences
11.8K sentences
250K sentences
217 sentences

3.5K words
3.5K words

1K phrases

10 hours with Tran-
scription

19.8 GB

170 hours

31K words

13K verbs

4.4K words

2K roots, 1.8K af-
fixes

Unknown

16K words

2K sentences

Gutierrez-Vasques et al.
(2016)

Mager et al. (2018)
Galarreta et al. (2017)
Abdelali et al. (2006)

Mayer and Cysouw (2014)
Pereira-Noriega et al. (2017)
Pereira-Noriega et al. (2017)
Pereira-Noriega et al. (2017)
Palancar and Feist (2015)
(Ramirez and Wolf, 1996)
Maldonado et al. (2016)
Cavar et al. (2016)

Dunham et al. (2014)

Huenchullan  (2000)
Monson et al. (2004)
Cotterell et al. (2017)

and

Palancar and Feist (2015)

Kann et al. (2018)

Farley (2012)
Espichan-Linares and
Oncevay-Marcos (2017)
Walters et al. (2002) and
(Wolfart and Pardo, 1973)
Rios et al. (2008)

Table 1: Digital available resources of American Indigenous Languages for NLP

morphological phenomena, and not always suffixal, where it is not enough to remove inflectional endings
in order to obtain a stem.

Morphological segmentation is the task of splitting a word into the surface forms of its smallest
meaning-bearing units, its morphemes. On the other hand, Morphological analysis not only focuses
in the segmentation of words, but also in assigning tags to each part of the word. There are several ap-
proaches to do these tasks, i.e., rule-based, semi-supervised and unsupervised (Goldsmith, 2001; Creutz
and Lagus, 2002; Kohonen et al., 2010). Some examples of rule-based methods applied to the Americas
languages are the Finite State approaches to model the morphology of a language: plains Cree (Arppe et
al., 2017; Harrigan et al., 2017; Wolfart and Pardo, 1973; Snoek et al., 2014), East Cree (Arppe et al.,
2017) , for the East Odawa dialect of Ojibwe (Bowers et al., 2017), for Mohawk (Iroquoian language
family) (Assini, 2014), for the Bribri (Chibchense language family) (Solérzano, 2017) using the FOMA
tool (Hulden, 2009), Quechua (Vilca et al., 2012; Monson et al., 2006), Mapudungun (Monson et al.,
2006), and the Argentinian branch of Quechua and Toba (Porta, 2010). More recently a new hybrid ap-
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proach of finite-state transducer (FST) with statistical inference is part of the Basic Language Technology
Toolkit for Quechua (Rios, 2016).

For Uto-Aztecan languages, there exists a computational tool called “chachalaca” that performs mor-
phological analysis (Thouvenot, 2011) of Nahuatl. This is a rule-based software focused on Classical
Nahuatl, it is able to generate more than one morphological analysis candidate per word. It is based on
grammars that describe most of the 16th-century-word constructions. Additionally, Mager et al. (2018)
propose a morphological segmentation tool for the Wixarika language, with a supervised approach, using
previous given morphological tables and a probabilistic model to infer the inherent morphological rules.

Regarding to unsupervised methods, neural methods have been used to tackle the rich morphology
of the languages of the continent. Micher (2017) propose a Segmental Recurrent Neural Network
(RNN) for segmenting and tagging Inuktitut. Kann et al. (2018) used a set of extensions to the Encoder-
Decoder RNN architecture with Gated Recurrent Units (GRU) for automatically segmenting four Uto-
Aztecan languages (Mexicanero, Nahuatl, Wixarika and Yorem Nokki). Semisupervised segmentation
approaches like Morfessor have also been successfully applied to Nahuatl (Gutierrez-Vasques, 2017).
For the Uto-Aztecan language Tarahumara and the Mayan language Chuj, there are works that try to
automatically discover affixes through unsupervised approaches (Medina-Urrea, 2007; Medina-Urrea,
2008; Medina Urrea and Garcia, 2006).

Lately, there has been interest in the reinflection task, i.e., generating an inflected form for a given
target tag and lemma. The CoNLL-SIGMORPHON Shared Task (Cotterell et al., 2016; Cotterell et al.,
2017) released a dataset for reinflection of 52 languages, including 3 Native American languages. The
systems that got the best performance (Kann and Schiitze, 2016; Kann and Schiitze, 2017; Makarov et
al., 2017).

In some cases it is difficult to disambiguate between homonym morphs. To deal with this problem,
Rios et al. (2008) used Conditional Random Fields (CRFs) (Lafferty et al., 2001).

Most of the methods that we found that deal with morphology are based on FST. However, the indige-
nous languages of the continent are far too diverse, it would be expensive to build such analyzers with
expert knowledge for each language, besides the fact that the analyzers need to be constantly updated to
cope with language change (Creutz and Lagus, 2005).

4 Machine Translation

Machine Translation is a natural task for indigenous languages, since it might provide a communication
window with more popular languages. The development of MT systems for indigenous languages have
follow the trends in the field, from rule-based, to statistical and neural based approaches.

Rule-Based Machine Translation (RBMT) approaches are sometimes suitable for low resource lan-
guages since they do not require aligned parallel corpora. However. In recent years, research on data-
driven approaches has increased, with the aim to overcome the scarcity of data using different methods.
In any case, translation of low-resource languages represents an interesting and active research problem
in the NLP field.

In the case of native American languages, there have been some efforts in building rule-based sys-
tems. The Apertium system (Tyers et al., 2009; Forcada et al., 2011) is a big help for this approach, and
at least two languages has translation teams working with it. This is the case of Quechua (Eastern Apuri-
mac Quechua and Cusco Quechua)-Spanish (Cavero and Madariaga, 2007) and Spanish-Wayuunaiki
(Spoken in Venezuela and Colombia) (Fernandez et al., 2013). Other RBMT systems were created for
Aymara-Spanish (spoken in Peru) (Coler and Homola, 2014) Wayuunaki-Spanish, Quechua-Spanish and
Mapuche-Spanish (Monson et al., 2006). For the latter a web available translator!! (Gonzélez Herndndez,
2016) is available. We found that there are mobile apps for translating indigenous languages, this is the
case of Zapotec-Spanish language pair (spoken in Mexico from the Oto-Manguean family)'?.

All of this RBMT systems have a set of shortcomings. The majority is not able to translate complex
constructions, specially when the languages are distant from each other, which increases the complexity

Uhttp://142.4.219.173/wt/
Phttps://play.google.com/store/apps/details?id=com.SimplesoftMx.Didxazapp&hl=es
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of the machine translation rules. One way to overcome this is to include linguistic information, e.g.,
morphology, syntax. However, this kind of knowledge or linguistic tools is not always available, espe-
cially for low-resource languages. Experiments using the Example Based Machine Translation (EBMT)
methodology are not common, we only found the work of Llitjés et al. (2005) and Monson et al. (2006)
for the Mapuche-Spanish pair.

Statistical Machine Translation (SMT) Systems are data-driven since they use vast amounts of par-
allel corpora to model the translations between sentences or subunits. Their performance is highly
dependent on the number of training data; they represent a challenge when low resource conditions
are faced. In the case of the native languages of the Americas, they tend to be morphologically rich
and this must be taken into account to improve the translation and reduce the data sparseness. An
example of this is the Wixarika-Spanish SMT system that aligns Wixarika morphemes with Spanish
words or tokens (Mager Hois et al., 2016; Mager Hois, 2017)!3. A similar case can be found for the
Nahuatl-Spanish pair. Uto-Aztecan languages can be highly agglutinative with the polysynthetic ten-
dency, Gutierrez-Vasques (2015) extracts bilingual correspondences from a parallel corpus, by aligning
the Nahuatl non-grammatical morphs to Spanish words. Another example was collected for the pair
Mixteco-Spanish (Santiago, 2017). The same trend can be observed in SMT for Shipibo-konibo (Galar-
reta et al., 2017).

Regarding commercial systems, Microsoft has targeted some languages spoken in Mexico, Mayan and
Otomi (Queretaro variant)'*. SMT was also applied for the Guarani, it translates to Spanish, but also to
English, French, Italian, German and Portuguese15 .

Recently, there has been an increasing interest in Neural Machine Translation (NMT) models, which
are also statistical based, but they use neural networks architectures that are feed with very big amounts
of parallel corpora. Mager and Meza (2018) showed that in such low-resource scenarios, translating
from Mexicanero, Nahuatl, Purepecha, Wixarika and Yorem-Nokki to Spanish, SMT systems achieve
better performance than NMT. Even though these architectures are not suitable for low-resource set-
tings, there have been some recent efforts to adapt them. Soriano (2018) experimented with the Mexican
Purepecha (an isolated language with about 140 thousand speakers) using the OpenNMT toolkit (Klein
et al., ). Tiedemann (2018) took the massive bible corpus (Mayer and Cysouw, 2014) and trained a mul-
tilingual NMT model to improve overall translation performance. Experiments included Oto-manguean,
Quechua and Mayan families. Moreover, empirical results (Vania and Lopez, 2017) show that problem
of data sparsity of rich morphological languages can be handled with subword models: the usage of
character level NMT improve performance over token level translation and unsupervised morphological
segmentation (Creutz and Lagus, 2002). But their experiment also conclude that a canonical segmenta-
tion enhances character level translation.

In order to alleviate the lack of resources automatic data recollection has been proposed, this has been
tried for Guarani language (Abdelali et al., 2006). Moreover, it would be very useful to have big reposito-
ries of translated texts. One alternative is to create parallel corpora between many languages using man-
ual translations (controlled elicitation) as described for the Mapudungun (Mapuche) language (Probst et
al., 2001).

In any case, SMT and NMT systems should be adapted to deal with the scarcity, of the sparseness
of word forms and the rich morphology of languages. Although there are works that try to deal with
morphology (Virpioja et al., 2007; Popovic and Ney, 2004; Costa-jussa and Fonollosa, 2016; Sennrich
et al., 2016; Dalvi et al., 2017), they are rarely applied to Native American languages.

5 Other studies and tools
5.1 Multilinguality and Code-Switching

Most native speakers of indigenous languages are at least bilingual, they have to communicate using the
primary or official language of their own country, i.e., Spanish, Portuguese, French or English. Only few

13 Available at http://turing.iimas.unam.mx/wix
Yhttps://www.microsoft.com/en-us/translator/languages.aspx
Bhttp://www.iguarani.com/?p=traductor
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communities remain completely monolingual in their native language, moreover, modern migrations and
the use of social networks contribute to bilingualism and code-switching.

Code-switching occurs when a speaker alternates between two or more languages in a conversation.
This adds a challenge when doing NLP for this kind of data. Code-switching is not a new phenomenon,
it can be found in historical documents, Garrette and Alpert-Abrams (2016) proposes an unsupervised
approach of paired encoding (words and characters) to improve language modeling (Latin, Spanish and
Nahuatl) in an Optical character recognition (OCR) task. King and Abney (2013) applies weakly super-
vised methods for labeling the language of each word in documents that can have many mixed languages.
The targeted languages are 30, including Chippewa, Nahuatl, and Ojibwa.

Being able to automatically detect Code-switching could be useful when doing NLP for minority
languages, for instance to use the web as a source for a corpus.

From the quantitative linguistics perspective, parallel corpora of an outstanding number of languages
have been extracted from the Bible and used to perform typological studies in many languages, included
native languages of the Americas. For instance, exploring the tense behavior (Asgari and Schiitze, 2017),
contrasting the morphological complexity in many languages (Bentz et al., 2016; Kettunen, 2014) just to
mention some.

5.2 Language Tools

For some rich resource languages, there are already available NLP tools that deal with several phenomena
and linguistics levels of processing. However, for low resource languages, there is still much work to
do. In this section we summarize some of the works related with POS Tagging, OCR, Parsing, Spell
Checking, Language Identification and other tasks, that we have found for the languages of the Americas.

Speech synthesis and recognition has made some progress for the Raramuri language (Urrea et al.,
2009), using a unit selection approach based on function words, suffix sequences and diphones of the
language. For speech recognition, Maldonado et al. (2016) applied on Guarani a Hidden Markov Model
(HMM) with the CMU Sphinx toolkit (Lamere et al., 2003). Coto-Solano and Solérzano (2016) proposes
an automatic aligner of text and voice for the indigenous language Bribri of Costa Rica.

Part-of-Speech (POS) tagging assigns a category from a given symbol set to each token in an input
string. It is used as a prepossessing step that serves as input for other tasks or for higher level NLP task.
POS Tagging was also incorporated into the Peruvian Shipibo-konibo NLP toolkit (Pereira-Noriega et
al., 2017).

Spell checking is not a trivial task for highly agglutinative and polysynthetic languages, that can’t rely
on a token based evaluation, and need sub-word level models. We found only two tools that handle this
issue: Monson et al. (2006) build a dictionary based tool for Quechua and Alva and Oncevay (2017) for
Shipibo-Konibo used rule-based analysis and dictionaries.

Another field that is crucial to increase the amount of digitized data for other tasks is Optic Char-
acter Recognizing (OCR). Maxwell and Bills (2017) studied the challenges regarding the digitalization
of Tzeltal-Spanish, Muinane-Spanish, Cubeo-Spanish dictionaries. Garrette and Alpert-Abrams (2016)
developed an unsupervised transcription model for dealing with orthographic variation in digitized his-
torical documents, some of them were written in Nahuatl.

In the context of indigenous Language Identification (LID), Espichan-Linares and Oncevay-Marcos
(2017) studied LID on 17 languages from the Arawak, Aru, Jibaro, Pano and Quechua linguistic families.
The proposed models were flexible enough to handle the lack of orthographic standardization of the
language.

Another important NLP task is parsing. The research in this area is also weak, however, the Quechua-
Spanish Treebank helped to perform some experiments in this topic (Bresnan et al., 2015; Rios, 2016).
For other languages parsing experiments were performed on Ayamara (Homola, 2011) using Lexical-
Functional Grammar (LFG).
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6 Discussion

Study of the languages of the Americas has increased in the recent years, in both the linguistic and the
language technology fields. Many factors have contributed to this, such as speakers self-awareness about
the importance of their languages and digital inclusion. Figure 1 shows that many of the papers that we
reviewed, were published from year 2000 to present day, with a notable increase in the activity in the last
five years. The most studied NLP tasks are Machine Translation and Morphology, however, from 2013
upon now, other tasks, e.g., POS-tagging, parsing, speech, spell correction, also received attention.

Despite the fact that we found NLP contributions for around 35 languages, this is still a small number if
we take into account the big diversity and number of languages that exist in the continent. Table 2 showed
that some linguistic families have concentrated the attention, but even for these languages the developed
technology is not enough. We noticed that North American languages are the most studied, despite some
of them don’t have a big number of speakers compared to other indigenous languages, e.g., Navajo,
Haida, Cree, Chippewa, Ojibwa, Blackfoot, Nata, Gitksan, Okanagan, Tlingit, Plains Cree, Ktunaxa,
Coeur d’Alene, Kwak’wala, and Inuktitut. Uto-Aztecan language family that includes languages like
Raramuri, Nahuatl, Wixarika, Yorem Nokki, Mexicanero (spoken mainly in Mexico) have also received
attention from the NLP community. Regarding to South America, the most spoken native languages,
Quechua, Mapuche, Guarani and Ayamara, have several resources available. Surprisingly, languages
with less speakers such as Shipibo-konibo, Arawak, Aru, Jibaro, Pano and Wayuunaki have been also
studied.

The diversity in the linguistic phenomena of these languages makes developing language technologies
a challenging task. In recent years, NLP and Machine Learning fields have paid attention to low resource
settings, organizing workshops and special tracks to tackle this issue. Indigenous languages could be
greatly benefit from this kind of research in the future. In particular, American languages with rich mor-
phology, e.g., agglutinative and polysyntehthic, seems to benefit from approaches that take into account
the morphology and sub-word modeling.

We also noticed that some NLP tasks that are considered almost solved for languages like English,
need to be adapted or started from scratch when applied to the languages of the American continent.
Moreover, fields like machine translation could enable in the future the creation of multilingual tech-
nologies for all of the languages in the world that face a similar situation, this could have a great impact
in these communities.

Amount of scientific research per task Total Amount of scientific papers
12 5 _
10 + Machine Translation 15
Datasets
8 | —-— Other

10

Figure 1: NLP papers and digital resources that contain any indigenous language of the Americas (be-
tween 2000 and 2017)

7 Conclusions

In this work, we presented a review of NLP research focused on Indigenous Languages of the Ameri-
cas. We showed which languages have available digital resources and their related tools. Research has
focused in tasks like morphology and machine translation, however, there is still a lot of work to be done
since these languages exhibit a wide range of linguistic phenomena while resources are scarce.
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Through this work, we discussed some of the challenges that must be taken into account, e.g., small
datasets, high dialectal variation, rich morphology, lack of orthographic normalization, scarcity of lin-
guistic preprocessing tools.

NLP research for these languages can broad the understanding of human language structures and help
to build more general computational models. Moreover, the development of language technologies can
have a positive social impact for the speakers of the indigenous languages, helping to maintain the living
cultural heritage that each language represents.
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Appendix A. Language Families

Table 2 summarizes the language families for which we were able to identify some digital and techno-
logical resources during this research. We distinguish among only two geographical macroareas: North
America (it includes Central America) and South America (Dryer and Haspelmath, 2013).

L. Family Macroarea | Papers | L. Family | Macroarea | Papers
Uto-Aztecan North A. 16 Mayan North A. 4
Oto-Manguean | North A. 3 Arawakan South A. 3
Haida North A. 4 Ayamaran South A. 2
Na-Dene North A. 5 Aru South A. 1
Eskimo-Aleut North A. 2 Jibaro South A. 1
Algic North A. 8 || Bora—Witéto | South A. 1
Tsimshianic North A. 1 Tucanoan South A. 1
Penutian North A. 1 | Araucanian South A. 7
Salishan North A. 2 Panoan South A. 4
Wakashan North A. 1 Tupian South A. 5
Iroquoian North A. 1 Quechuan South A. 15
Chibchan North A. 2 || Guaicuruan South A. 1

Table 2: Language families (L. Family) for which some technology was found, and the number of
NLP/Computer Linguistic papers referring to each (one paper can reference more than one languages).
North A. stands for North America and South A. for South America.
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Abstract

The use of machine learning for NLP generally requires resources for training. Tasks performed
in a low-resource language usually rely on labeled data in another, typically resource-rich, lan-
guage. However, there might not be enough labeled data even in a resource-rich language such
as English. In such cases, one approach is to use a hand-crafted approach that utilizes only a
small bilingual dictionary with minimal manual verification to create distantly supervised data.
Another is to explore typical machine learning techniques, for example adversarial training of
bilingual word representations. We find that in event-type detection task—the task to classify
[parts of] documents into a fixed set of labels—they give about the same performance. We ex-
plore ways in which the two methods can be complementary and also see how to best utilize a
limited budget for manual annotation to maximize performance gain.

1 Introduction

For most languages of the world, few or no language processing tools or resources exist (Baumann and
Pierrehumbert, 2014). This hinders efforts to apply certain language technologies enjoyed by languages
like English, in which much current research is done.

To perform natural language processing tasks in resource-poor languages, one way to overcome data
scarcity is to tap on resources from another resource-rich language. Assuming that there are already
good resources and tools to solve the same tasks in the more resource-rich language (henceforth, aux-
iliary language), the only remaining challenge is to transfer the learning process into the resource-poor
language (henceforth, target language) and adapt it to the specifics of that language. One way to do
this is to build a shared word representation across the two languages and train an NL engine on this
shared representation, perhaps using an adversarial domain adaptation approach to handle the domain
(language) shift (Chen et al., 2017). Usually, these approaches assume the availability of large labeled
data in the auxiliary language, on the order of hundred thousands to millions.

However, for some more complex or specialized tasks, there might not be enough available training
data even in a resource-rich language such as English. A case in point is the event-type classification
task over the publicly available datasets, such as ACE 2005' and TAC KBP ? datasets, which usually
contain only a few hundred to a few thousand documents. The situation frame (SF) detection task is one
example of event-type classification task, where the objective is to extract from each document one or
more situation frames with their corresponding arguments. A situation frame (SF) is either an issue being
described in the articles, such as civil unrest or terrorism, or a need situation such as the need for water
or medical aid. In our task there are 11 situation frame types, each associated with a set of arguments,
namely the location, status, relief, and urgency. For example, an article titled “Millions of people are
at the risk of starvation due to the food shortage in South Sudan”, with content describing the details
and the cause of the food shortage, including a mention of difficulty accessing certain regions, can be
classified as describing a food need and an infrastructure need.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

"https://catalog.ldc.upenn.edu/1dc2006t06
https://tac.nist.gov/2016/KBP/
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As described below, we have tried two approaches: (1) a simple keyword-matching system utilizing
only a small bilingual dictionary and minimal manual verification and (2) a sophisticated neural adversar-
ial network that learns bilingual word representations for cross-lingual transfer. We find that the methods
have similar performance. We therefore explore ways in which few keyword-based models can create
additional, distantly supervised data to improve the performance of a neural cross-lingual event type de-
tection system. Our contributions are: (1) an evaluation of a state-of-the-art method in a different task
showing its similar result against a simple baseline, (2) ways to improve performance of such models,
and (3) an analysis of the result, with insights to practitioners as to where to focus the available, yet
limited, budget for manual annotation work.

This paper is organized as follows: we first describe the related work on cross-lingual NLP tasks in
low-resource settings, specifically how the available resources are used. Based on previous work, we then
apply our proposed training data augmentation methods and run experiments to show the effectiveness
of our methods. We then analyze the results, and follow with a few suggestions on how to best utilize
the available annotation effort for maximum gain.

2 Related Work

Keyword-based Models A keyword-based heuristic model is a simple yet effective approach to
extract specific information such as events (Keane et al., 2015), because keywords often indicate a strong
presence of important information contained in documents (Marujo et al., 2015). Such methods have
been used in different tasks like text categorization (Ozgiir et al., 2005) and information retrieval (Marujo
et al., 2013) to extract the required information. Keyword heuristics have also been used to overcome
language and domain barriers using bilingual dictionaries (Szarvas, 2008; Tran et al., 2013). However,
a weak bilingual dictionary could result in low coverage with this method. Hence, to overcome the
limiting bilingual dictionary people employ bootstrapping methods to improve the coverage (Knopp,
2011; Ebrahimi et al., 2016).

Cross-Lingual Text Classification Cross-lingual event type detection is closely related to cross-
lingual text classification (CLTC), which aims to classify text in a target language using training data
from an auxiliary language (Bel et al., 2003).

To bridge the language gap, early approaches of CLTC relied on a comprehensive bilingual dictionary
to translate documents between languages (Bel et al., 2003; Shi et al., 2010; Mihalcea et al., 2007).
However, in resource-poor languages, bilingual dictionaries may be small and sparse. Therefore, the
performance of direct word translation will be unsatisfactory. Some researchers utilized the bilingual
dictionary to translate the models instead (Xu et al., 2016; Littell et al., 2017).

Another line of work focuses on the use of automatic machine translation as an oracle. The various
learning algorithms treated the translations as a second view of document and facilitate cross-lingual
learning with co-training (Wan, 2009), majority learning (Amini et al., 2009), matrix completion (Xiao
and Guo, 2013) and multi-view co-regularization (Guo and Xiao, 2012a).

Instead of word-level or sentence-level translation, various other approaches seek some cross-lingual
mapping between document representation (Littman et al., 1998; Vinokourov et al., 2002; Platt et al.,
2010; Jagarlamudi et al., 2011; De Smet et al., 2011; Guo and Xiao, 2012b; Zhou et al., 2015; Zhou et
al., 2016a; Zhou et al., 2016b; Chen et al., 2017) or label distribution (Xu and Yang, 2017).

Bilingual Word Embedding The most recent method for sharing document representation between
languages is bilingual word embedding (Mikolov et al., 2013a; Faruqui and Dyer, 2014; Luong et al.,
2015). The goal is to learn a shared embedding space between words in two languages. With the shared
embedding, we are able to project all documents into a shared space. The model trained in one language
can, therefore, be used in the other language.

3 Models

To see how well recent state-of-the-art methods for CLTC work in our task, we implemented a convolu-
tional neural classifier. We compare this against a simple keyword-based method.
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Figure 1: Architecture of the neural classifier with adversarial domain (language) adaptation by Ganin
and Lempitsky (2015). Arrows show the flow of gradient.

3.1 Adversarial Convolutional Network

The first step is to train a bilingual word embedding as a shared feature representation space between the
two languages. We trained our bilingual word embedding for English and the incident language using
the method proposed in XlingualEmb (Duong et al., 2016). This method is a cross-lingual extension
from word2vec model (Mikolov et al., 2013b) to bilingual text using two large monolingual corpora and
a bilingual dictionary.

Based on the shared representation, we then used a convolutional neural network (CNN) (Kim, 2014)
to perform the classification. There are two main advantages of choosing a deep neural classifier over a
shallow one. First, CNN outperforms shallow models like SVM or Logistic Regression in various text
classification benchmark datasets (Kim, 2014; Lai et al., 2015; Johnson and Zhang, 2015; Xu and Yang,
2017). Second, CNN takes dense word vector representations as input, allowing one to incorporate the
state-of-the-art bilingual word embedding methods into the pipeline.

The CNN model takes a sequence of word embeddings as input and applies 1-D convolutional oper-
ation on the input to extract semantic features. The features are then passed through a fully-connected
layer before reaching the final soft-max layer. The model is trained in English using the ReliefWeb
dataset (Littell et al., 2017, Sec 2.3), which is annotated at sentence level with disaster relief needs and
emergency situations. Thanks to the bilingual word embedding, which maps the words from the two
languages to the same distributional semantic space, the model trained in English can be applied to
documents in the target language.

Ideally, if the bilingual word embedding captures the ground-truth mapping between two languages, a
classifier learned from English training documents should generalize well on the target language. How-
ever, in practice, we can observe obvious domain gaps between documents in different languages when
we represent them with bilingual word embeddings. In order to close the domain (language) gap be-
tween training and testing, we adapt our learned model in English to the target language with similar
adversarial training techniques used in (Xu and Yang, 2017; Chen et al., 2017). In order to alleviate the
domain mismatch, we are essentially looking for a feature extractor that only captures the semantics of
the event types but not the difference in language usage between English and the target language. In other
words, we want the features captured by CNN to be informative for the event type classification and to
be language-invariant at the same time. To achieve this goal, we include an auxiliary classifier that takes
the features extracted by CNN and predicts the language that the input belongs to. During training, we
update our parameter to simultaneously minimize the loss of the event type classification and maximize
the loss of language classification through Gradient Reversal Layer (Ganin and Lempitsky, 2015).

3.2 Keyword-based Model

As mentioned previously, a keyword-based model is a simple, quick, yet effective approach to perform
text classification without much training data. In our case, we do this in two steps: (1) build a list of key-
words for each SF type in English, then (2) translate the keywords into the target language automatically
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Table 1: Statistics of the various sources of training data. Eng-Orig and Eng-KW refer to training data
in English described in Littell et al. (2017, Sec 2.3) and from our English keyword model’s output on
ReliefWeb corpus, respectively, while Tgt-Boot and Tgt-Ann refer to training data in the target language
obtained from bootstrapped keyword-spotting and from annotation, respectively. The “none” class sig-
nifies negative examples in the data. The last column shows a visualization of the SF types, excluding
“none”. Note: for Test Data, the instances refer to documents, while for the rest, instances refer to
sentences.

using a bilingual dictionary. We also asked native speakers of the target language to refine the translation,
especially for domain-specific keywords which are not adequately captured by the bilingual dictionary.?

Building English keywords is again a two-step process. First, we use the ReliefWeb dataset to generate
a list of 100 candidate keywords for each class by taking the top-100 words with the highest TEIDF
scores. Similar to the keyword generation method described by Littell et al. (2017), we manually refined
the keyword list by pruning based on world knowledge. For each candidate keyword, we added 30 most
similar words using the English word2vec model trained on the Google News corpus*. We retained only
the words that have cosine-similarity greater than 70%. For each candidate keyword in this extended
list, we computed a label affinity score with each SF class label (e.g., water, evacuation) using cosine-
similarity between their word2vec embeddings. Candidate keywords with similarity above a certain

threshold ¢th| were retained and used as keywords for the corresponding classes’.

4 Method: Training Data Augmentation

Chen et al. (2017) assumed the auxiliary language contains a large amount of labeled data for the task,
about 700k Yelp reviews. For our case, the original training data, which was built semi-automatically
by Littell et al. (2017, Sec 2.3), contains only about 80k sentences (Table 1, first row). To improve
the performance of the neural model, therefore, we propose to utilize the keyword-based system to
automatically augment the original training data. We also explore using additional training data obtained
via manual annotation for comparison.

Figure 2 is a summary of the various training data sources we compare in this paper: the original
training data (©)), keyword-spotting in the auxiliary language (®)), keyword-spotting with bootstrapping
in the target language ((T)), and annotated data in the target language (@®). The additional training data
from keyword-spotting in English (®)) can be directly obtained by using the keyword list in English that
we used for the keyword model (Section 3.2) to label a larger ReliefWeb corpus. We describe the other
two ways ((T) and (&) to obtain additional training data in the following sections.

3We showed the native speakers translation pairs obtained through the bilingual dictionary, and asked them to verify the
translation as acceptable, or to supply a better translation.

*https://code.google.com/archive/p/word2vec/

>Threshold th; = 0.9 was determined by a grid search on a held-out English dataset.
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Figure 2: A summary of the various training data sources that we compare in this paper (©), ®), D, @).

4.1 Bootstrapping Language-specific Keywords

We note that using simple keyword matching can result in low coverage due to missing keywords in
the bilingual dictionary or word-variations in the target language. To overcome this, we developed an
iterative bootstrapping algorithm that takes into account the newly labeled documents from keyword-
spotting and generates additional language-specific keywords in a two-step process ((T) in Figure 2).

Clustering: In the first step, we collected labeled documents from each class, and generated clusters
for them (D = {D,,,..,D.,, }, where D¢, is the cluster of the class ¢;). For each cluster D., and non-
keyword w; in it, we then computed the label affinity score S, (w;), defined as follows:

Y. cos(w;, wy)

u}jGWp
(Wl

Sp(w;) = tfidf (w;) +

where W), was the set of keywords present in D.,. We then appended the words which exceed a certain
threshold ths to the keywords list of class cp.

The rationale for this step is that the keywords that were missed in the initial keyword list (due to an
incomplete bilingual dictionary, the keywords being language-specific, or incident-specific) may appear
more frequently in the document cluster, and the second term in .S}, (w;) will capture this.

Labeling: With the updated set of keywords for each class, we relabeled the documents to obtain
a new set of labeled documents and again executed the clustering step to get more keywords. We can
repeat this two-step process n times until we have the desired coverage or until this process no longer
gives useful new keywords. In our experiments, we found that n = 10 generally gives good coverage.
To generate the training data, we ran this procedure on the test set and took the top-100 most confident
predictions.®

4.2 Annotation in Target Language

When we have the budget and annotators to do so, we can also annotate documents in the target language
with class labels of interest. Given the limited budget and the rarity of documents with SFs (14-18%
in our dataset), however, one question remains: how to best pick the documents to be annotated to
maximize the gain from the additional training data? Seeing that the number of documents with at least
one positive class is much less common compared to the number of documents without any positive
class (see Table 1), simply taking a randomly sampled document from the unlabeled documents will
likely give a document with no class, which is less useful compared to document with at least one
positive class. Thus, we opt for a simpler method of asking annotators to make a binary decision on a

®As explained below, we used sentences as our training data, by taking the sentences which contain the keywords found.
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Tigrinya Oromo
#Documents 2,991 (100%) 2,810 (100%)
— single sentence | 2,508 (83.9%) 2,432 (86.6%)
— with 0 SFs 2,565 (85.7%) 2,307 (82.1%)
— with 1 SF 295 (9.9%) 361 (12.9%)
— with 2 SFs 95 (3.2%) 99 (3.5%)
— with 3 SFs 26 (0.9%) 26 (0.9%)
#Sentences 9,412 11,905
#SFs 612 721

Table 2: Data statistics for Situation Frame (SF) type extraction task in Tigrinya and Oromo dataset.

subset of our model’s output on a separate dataset, different from the test set. We obtained 653 annotated
sentences in Tigrinya this way (and 652 in Oromo). In addition to the native speakers, we also had
non-speaker linguists annotate another separate (359) sentences in Tigrinya, assisted by grapheme-to-
phoneme conversion, morphological glossing, and machine translation (MT) output.” This results in
1,012 sentences annotated in Tigrinya (@) in Figure 2 and Table 1). Overall, we spent less than 12 man-
hours with native speakers of the target language to do the keyword translation and the annotation, with
the larger amount of time spent on keyword translation.

5 Experiments

5.1 Dataset

For the purpose of the experiments and analysis, we used the dataset from the LoReHLT 20178 shared
task, which consists of news articles in two Ethiopian languages: Tigrinya and Oromo.” The statistics of
the dataset is shown in Table 2.

The available resources that we used for this experiment consist of:

1. Monolingual articles in Tigrinya and Oromo in various genres (news, discussion, social media).

2. Bilingual word dictionary (English-Tigrinya and English-Oromo).

3. A few hours of interaction with volunteers who are native speakers of Tigrinya or Oromo.

4. English documents about disaster recovery from ReliefWeb!® and CrisisNet!! annotated semi-
automatically with disaster type and theme (Littell et al., 2017, Sec 2.3).'2

5.2 Setup

We summarize more details about the experiment setup.

Sentence-level prediction: Although the model we used can be applied to produce document-level pre-
dictions directly, working at sentence-level provided more training data for the model and made
it easier to train. Doing so also enabled some insight on which sentences contain the information
about the document-level predictions.

Document-level aggregation: We then aggregate sentence-level predictions to a document-level predic-
tion by assigning to each SF type the maximum confidence score of that type across all sentences
in the document. Based on these scores, we calculate the mean confidence score pi, of each SF
type c,. We then took the top-k (k = 3 in our experiments) SF types as our document-level predic-
tion and filter out the predicted SF types which have confidence scores below ji,. In the absence

"The MT model was also trained in a low-resource setting, with BLEU score around 12 for Tigrinya.

dhttps://www.nist.gov/itl/iad/mig/lorehlt-evaluations#lorehltl?

For Oromo, the original dataset includes one annotator (out of 4) which annotated most of the documents with a single
class. We did not consider this outlier annotator in our experiments.

Ohttps://reliefweb.int/

Uhttp://http://crisis.net/

12 Also available at http://dx.doi.org/10.7910/DVN/TGOPRU
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Tigrinya Oromo
P R F P R F
Kw 48.72 55.63 51.95 | 14.83 2440 18.45
KW (bootstrap) 4590 60.71 5228 | 13.35 44.56 20.55
NN (©) 50.30 58.38 54.04 | 9.09 1824 12.13
NN (O+®) 56.53 65.86 60.84 | 13.65 22.10 16.87
NN (0O+®) 5332 67.67 59.64 | 14.82 23779 18.27
NN (O+®E+®) 5540 65.69 60.11 | 25776 28.62 27.12
NN (©O+@) | 48.01 6542 5646 | 17.45 1476 16.00
NN (O+®+D+®@) | 55.39 70.25 61.94 | 32.80 14.07 19.70

Table 3: Performance of the neural model (NN) with various sources of training data. ©) is the original
training data, (E) is the additional training data in English from keyword-spotting, (T) is the additional
training data in target language from bootstrapping, and @) is the additional training data in target lan-
guage from annotation. The result on keyword model (KW) is also shown for comparison.

of labeled data in the target language to be used as development set, this is one method that we
can use without much tuning. In later sections we show how different document-level aggregation
procedures may affect the performance.

Metric: We followed the metric defined in LoReHLT 2017 guidelines'?, which is occurrence-weighted
scores, defined as follows:

D o1:" D oY1 b 2 Po Roce
occ Z atp + Z afp) occ Z atp + Z afn Y occ PDCC + ROCC

where ) | o), is the number of true positives, weighted with the number of annotators that agree with
it. Y~ oy, and Y oy, are similarly defined for false positives and false negatives. False negatives
always have weight 1. For brevity, we drop the occ subscript when referring to these scores.

Model hyperparameters: In our neural CNN model, we used filter lengths of {3,4, 5} and 300 filters
for each length. We also applied dropout on the extracted feature by CNN at a rate of 0.2. The
model was optimized in mini-batches of size 128 by Adam (Kingma and Ba, 2014) optimizer at the
learning rate of 0.001. The optimization was terminated after 30 epochs or a convergence criteria
was satisfied on the held-out training data.

5.3 Results

Table 3 shows the results in Tigrinya and Oromo with the varying training data described in Section 4.

First, the keyword model (KW) gave results comparable to the neural model (NN ©), even outper-
forming it in Oromo. This suggests that in a low-resource setting, a keyword-based model can be used
as a way to quickly get a working classifier, without the hassle of training a machine learning classifier
or getting a large additional training data.

Next, the additional training data did help to significantly improve the performance of the baseline
neural model in both languages. The large additional English data (+®)) provided a large boost both in
Tigrinya (+6.8) and Oromo (+4.7). Interestingly, with only about 900 examples in the target language,
the additional annotation in the target language (+@)) gave about the same improvements in F}-score in
Tigrinya, and even 1.4 points higher in Oromo compared to the large additional training data in English.
Recall that the annotation was done on a subset of the neural model’s output (trained on ©)). This
suggests that when an annotation budget is available, using that to verify the output of a model is a good
investment.

It is interesting to note that each source of additional training data improved a different aspect of the
model. The additional training data in English (©+(E) seemed to improve precision more, while the

Bhttps://goo.gl/FwRCw]
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additional training data in target language from annotation seemed to improve recall more (©+@®)), and
combining both (0O+E+@®) provided the best of both worlds, especially in Oromo.

When we included the training data in target language from the keyword model with bootstrapping
together with all other training data (O+®+@+@®)), it further improved the result in Tigrinya, but not in
Oromo, although when it was used alone (©)+()) it still gave some improvements. This could be due to
the lower quality of the keyword system in Oromo. Recall that it was created by taking the top-100 most
confident predictions of the keyword model. This set of predictions gave 75.9% precision in Tigrinya
and 47.1% precision in Oromo. This lower quality of Oromo bootstrapping method can also be seen in
the diverging SF Type distribution, as can be seen in Table 1.

The best overall improvement was more pronounced in Oromo (+14.99 points in F} for ©+®+®)
than in Tigrinya (+7.90 points in F for ©+®+D+@®). This could be related to the fact that the baseline
score was much lower in Oromo than in Tigrinya to begin with.

For completeness, we also compare the results of the keyword model (KW) in target language with-
out and with bootstrapping in the first two rows of Table 3. As anticipated, the bootstrapping process
increased recall significantly, almost doubling the recall in Oromo. Although the precision was slightly
reduced, it still resulted in an overall improvement in F}-score for both languages.

In summary, there are four main observations:

1. The Neural model (NN ©) gave similar performance to the keyword (KW) model in Tigrinya and
lower performance in Oromo, although the keyword model was a much simpler system.

2. With large additional training data in English (+®)), we obtained large improvements both in
Tigrinya (+6.8) and Oromo (+4.7).

3. With only small additional annotations in target language (+®)) we obtained similar performance to
using large English training data in Tigrinya, and even better in Oromo.

4. Getting additional training data in the target language through the keyword model can help if the
quality of the keyword model is good enough.

6 Discussion

We hypothesize that the focused improvements on precision when using additional training data in En-
glish () could be attributed to the similarity of the SF distribution to the original training data, since
both are in English. This causes the model to be more confident in its prediction, at the expense of diverg-
ing away from the true distribution of SF types in the target language. In contrast, the annotated dataset
in the target language (&) has similar distribution to the true distribution, making the model able to rank
correct SF types higher. We can see this from the SF type distribution shown in Table 1 by comparing
the visualization at the last column.

Another explanation for the higher recall when adding annotated data in the target language is word
coverage. The other two additional sources of data rely on keywords, and although bootstrapping helps
improve coverage, the annotated data in the target language will cover more subtle correlations between
word forms and class labels.

To analyze the differences between the various source of additional training data, we plot the co-
occurrence of classes on the Tigrinya dataset in Figure 3. Each row describes the percentage of a partic-
ular SF type co-occurring with other SF types in the same document (recall that each document might
be labeled with multiple SF types), including none, in which the SF type is the single label for that
document. The numbers in a row sums to unity.

As can be seen, predictions of the NN system trained on the additional English data (Figure 3b)
and target language data (Figure 3c) have different co-occurrence patterns. The additional English data
apparently allowed the NN to find a strong correlation between the crime violence class and the terrorism
and regime change classes, which is consistent with our intuition. On the other hand, the NN fine-tuned
on the Tigrinya annotations apparently found the terrorism and regime change classes tend to occur
alone.

There is also an interesting phenomenon that arises from the correlation between keywords and class
labels. We found that the SF type terrorism is associated with the keyword “d7y4A 2" which means
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Figure 3: Co-occurrence of classes.

Tigrinya Oromo
Method P R F p R F
NN (O+®E+®) top-1 68.77 5245 59.51 | 36.03 19.93 25.66
NN (0+®+®) top-2 61.05 6294 6198 | 27.15 24.76 25.90
NN (O+®+®) top-3 5540 65.69 60.11 | 25.76 28.62 27.12
NN (0+®+®) mean 4211 71.54 53.01 | 1774 36.71 23.92
NN (O+®+®) | Tuned onref. | 80.00 55.03 65.21 | 36.43 44.08 39.89

Table 4: Impact of various aggregation strategy to the performance.

“youth” or “juvenile”, as in the example sentence (English translation, the word recognized as keyword
in the original language underlined) “According to the information, the Eritrean girls killed in the incident
hide near the tyre of a car and was hot by the Sudanese soldiers.” Examining the various examples in
the dataset, we found that the violence inherent in terrorism is often depicted with youths as the victims.
This could be related to the tendency of news outlets to focus on the suffering experienced by young
people to make more emotional appeal.

6.1 Impact of Document-level Aggregation Strategy

In Section 5.2 we showed one heuristic to do document-level aggregation. One might wonder whether
one can do better in the classification performance by using another aggregation strategy, such as filtering
out classes with confidence scores under certain threshold, or using different £ when taking top-£ classes.
In this section, we explore the impact of different aggregation strategies on the performance under dif-
ferent conditions. Assuming the more realistic case of having no development set to prefer one strategy
over another, we can use the top-k strategy like we did in our experiments, or set a fixed threshold on
the confidence score based on the average confidence score of each type across all documents in the test
set. We also show the result when we set the threshold based on the reference annotation, to show how
well the result can be in the case that we have a development set to find the best threshold. The result is
shown in Table 4.

78



The significant gap of performance between the one tuned on the reference annotation and the rest
suggests that if additional training data can be obtained in the target language, independently from the
model’s predictions, we should allocate a portion of them to be used for validation, since there are still
large room for improvements just from tuning the thresholds (3-4% in Tigrinya and over 12% in Oromo).
Note that in our experiments, since the annotation was done on the output of our neural model, we cannot
use them as validation set, as it is biased towards the output of our model. So there is a trade-off between
ease of annotation process and the amount of data that can be used as validation set.

7 Conclusion and Future Work

In this paper we tackled the problem of event type detection and classification in low-resource setting.
We found that a neural model with adversarial training compared about the same as a simple keyword-
based model using a small bilingual dictionary. Given that the problem lies with the limited amount of
training data available, we proposed and compared methods to increase the amount of training data: to
get significant gain in performance one can either use a very large additional semi-automatically labeled
dataset in a resource-rich language, or annotate a small amount of documents in the target resource-poor
language. We also showed how investing in a development set for tuning might also be a good strategy
when there is a limited budget for annotation, after allocating some of them for keyword translation and
additional training data.

One possible direction for future work is to address the mismatch of distribution of the classes between
the additional training data and the actual test data as we see in Oromo. One way to mitigate the mismatch
would be to make the classifier itself less prone to overfitting. In Section 6.1 we have shown how the
document-level aggregation strategy may significantly affect the final result. Thus, exploring ways to
effectively select the thresholds might be worthwhile. We could also incorporate the correlation between
classes as evident from Figure 3, which has proven useful in multi-label classification (Zhang and Zhang,
2010).
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Abstract

We present a neural transition-based model that uses a simple set of edit actions (copy, delete,
insert) for morphological transduction tasks such as inflection generation, lemmatization, and
reinflection. In a large-scale evaluation on four datasets and dozens of languages, our approach
consistently outperforms state-of-the-art systems on low and medium training-set sizes and is
competitive in the high-resource setting. Learning to apply a generic copy action enables our
approach to generalize quickly from a few data points. We successfully leverage minimum risk
training to compensate for the weaknesses of MLE parameter learning and neutralize the negative
effects of training a pipeline with a separate character aligner.

1 Introduction

Morphological string transduction involves mapping one word form into another, possibly given a feature
specification for the mapping, and comprises such inflectional morphology tasks as reinflection and
lemmatization (Figure 1), and related problems such as normalization of historical texts. Traditionally,
this task has been solved with weighted finite state transducers (Mohri, 2004; Eisner, 2002, WFST).
Recently, it has been approached with neural sequence-to-sequence (seq2seq) methods (Faruqui et al.,
2016; Kann and Schiitze, 2016), inspired by the advances in neural machine translation (Sutskever et
al., 2014; Bahdanau et al., 2014). Albeit offering a general solution to a special case of the string-to-
string mapping problem, seq2seq models are highly data-intensive. The long tradition of modeling for
morphology offers insights into the specifics of the task, suggesting models that would exploit inductive
biases and thereby attain lower sample complexity. Recent works in seq2seq morphology model full
input string context and unbounded dependencies in the output, but also propose conditioning generation
on the context-enriched representation of one input character at a time (Aharoni and Goldberg, 2017; Yu
et al., 2016). This and constraining character alignment to be monotonic bring this line of work close to
traditional WFST approaches, which monotonically modify a string by performing local changes.

fliegen
{VERB, PAST TENSE, > flog na hainmneacha [>  ainm
3RD PERSON, SINGULAR}

Figure 1: Morphological inflection generation in German (left). Lemmatization in Irish (right).

Having as our starting point the hard monotonic attention model of Aharoni and Goldberg (2017,
HA), our goal is to improve seq2seq morphological processing by explicitly modeling local string edits
commonly studied in traditional approaches. Our contributions are as follows:

o First, we explain HA as a neural transition-based system over edit actions. Alternative models are
then available, differing in the choice of edit actions. We argue that extending HA with the COPY

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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edit action is crucial and supported by the nature of the problem, accounting for large performance
gains especially in the low-resource setting.

e Second, trained with the original MLE procedure, HA relies on gold action sequences computed by
a separate character aligner. As a result, the overall approach is a pipeline. We propose enabling
exploration at training (e.g. via expected risk minimization (MRT) or reinforcement learning-style
training), thereby allowing the model to prefer alternative actions that also lead to the correct output
sequence and neutralizing negative effects of the pipelined architecture. Additionally, this approach
benefits from directly optimizing a sequence-level performance metric.

e Third, we conduct extensive experiments on the morphological inflection generation, reinflection
and lemmatization tasks, showing that our approaches come near to or improve on the state-of-the-
art results. We make our code and model predictions publicly available.'

2 Model Description

In our approach, we seek the most probable sequence of edit actions for a given input string and an
optional feature specification for the transduction. Unlike traditional WFST approaches to this prob-
lem, we abandon the explicit modeling of all possible edit sequences via latent alignments in favor of a
greedy, representationally rich RNN-powered transition-based architecture. When training with the MLE
criterion following Aharoni and Goldberg (2017), our overall set-up is a pipeline of a character aligner
followed by a greedy neural string transducer. Character alignments generated by the aligner are mapped
to gold action sequences, whose conditional likelihood the neural transducer then learns to maximize.
Under training with exploration, the neural transducer no longer relies on gold action sequences. Instead,
the parameters are adjusted to directly maximize the model’s accuracy of producing training-set output
sequences.

Let Xz, Xy, and X, be alphabets of input characters, output characters, and edit actions, respectively.
Letx = x1,...,Ty, 7; € X, denote an input sequence, y = ¥y1,...,¥p, ¥; € Xy an output sequence,
anda = ay,...,an, a; € X, an action sequence. Let { fh}hH:1 be the set of morpho-syntactic features.

seq2seq state-transition system We build a greedy transition-based string transducer that uses a
seq2seq neural network to model arbitrary dependencies in the input sequence, the unbounded action
history, and the non-deterministic choice of the next action. The system operates a buffer filled with
RNN-encoded input characters, and a decoder RNN, which implements a push-only stack. The config-
uration of the system is given by the decoder state. Transitions are scored based on the output of the
decoder, which takes as input the encoded character from the top of the buffer. Here, we elaborate on the
model architecture.
We encode input sequence x with a bidirectional LSTM (Graves and Schmidhuber, 2005)

hy, ..., h, = BILSTM(E(z1), ..., E(zy)), (1)

where F returns the embedding for x;. Vector h; is thus the representation of x; in the context of the
entire sequence x. We push hy, ..., h, in reversed order into the buffer. Transduction begins with the
full buffer and the empty decoder state.

The decoder LSTM keeps track of the past actions and—through conditioning at each step on h;—
knows of character x; at the top of the buffer and the full contents of the buffer. From the latest state of
the decoder c;_1, we compute the configuration of the system:

st = LSTM(ci_1, [A(ar_1) ; by ; £]), )

where the input is the concatenation of (i) the embedding of the previous action (given by A), (ii) h;
from the top of the buffer indicating the current position in x, and—optionally—(iii) feature vector f,

"https://github.com/ZurichNLP/coling201l8-neural-transition-based-morphology
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4 DELETE [f, 1] [DELETE, DELETE, ... ] [g, e, n, EOS]
5 INSERT(0) [f, 1, 0] [INSERT(0), DELETE, ...] [g, e, n, EOS]
6 COPY [f,1,0,g] [COPY,INSERT(0),...] [e, n, EOS]
7 DELETE [f,I,0,g] [DELETE, COPY,...] [n, EOS]
8 DELETE [f,1,0,g] [DELETE, DELETE,...] [EOS]
9 INSERT(EOS) | [f,1, 0, g]

Figure 2: Transduction of “fliegen” to “flog”. (Above) Visualization of the system as it chooses ag =
DELETE. (Below) Full transition sequence. Action ag is always fixed to INSERT(BOS).

which is the concatenation of the embedded morpho-syntactic features ¢ C { fh}hH:1 associated with this
transduction: f = [F'(f1); --- ; F(fm)] and F(fy) = F(0) if f, € ¢.
To compute probabilities of transitions a;, we feed s; through a softmax classifier:

P(a; = k | acy,x,0) = softmaxy, (W - s; + b) (3)

Model parameters O include softmax classifier parameters W and b, the embedding parameters, and the
parameters of the encoder and decoder.

Edit actions Traditional transducers edit input sequence X into output sequence y by a sequence of
single-character edit actions from the following set (Cotterell et al., 2014):

e DELETE: Read z; and write nothing. ¢ SUBST(c) for ¢ € 3,: Read z; and write c.
e INSERT(c) for ¢ € ¥,: Write c and read nothing. e COPY: Read x; and write ;.

Let INSERTS,, be the set of all insertions with respect to XJ,. We consider the following two action
alphabets: 74 = INSERTS,, U {DELETE} and ¥{4 = 74 U {copy}.

Alphabet ©7 4 is from Aharoni and Goldberg (2017) and includes only the INSERT and DELETE
actions. Both substitution and copying of ¢ are expressed as an INSERT(c) followed by a DELETE.

Alphabet EaCA adds a designated COPY action to X 4 Thus, copying z; to the output sequence can
be executed by one single action. This results in shorter and simpler action sequences dominated by
COPY actions, following the observation that inflectional changes are typically small and most of x is
preserved in y.?

Action execution Operationally, reading x; corresponds to popping its representation h; from the top
of the buffer. The transducer terminates when the buffer is empty and the latest action a; is INSERT(EOS),
where EOS is the end-of-sequence character. If we constrain the number of successive insertions to at
most g, the transducer runs in O(n) time, where n is the length of input x.3

We also experimented with extending £ and $:¢'* with actions for character substitutions. The resulting models perform

similarly to models without substitutions, and so we do not report them here.
3In practice, we simply cap the number of actions at 150.
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Figure 3: Longest Common Substring (LCS, left) and Chinese Restaurant Process (CRP, right) character

alignments for the same x and y. Input sequence x is at the top, output sequence y at the bottom. A CRP
aligner recovers this alignment given sufficient training data and number of iterations.

MLE training The model is trained to maximize the conditional log-likelihood of the data D =
{(x®,a®)}N , which is an everywhere differentiable function of parameters ©:

N m
= Z Z log P(a 2, x(), @) 4)

=1 t=1

The gold action sequences a(!) are computed by a deterministic algorithm from some character align-
ment: al!) = Cgiig n(x(l) , y(l)). Figure 3 illustrates different character alignment algorithms that we use
in our experiments. A simple procedure for the generation of gold actions from alphabet ¢4 would call
the following subroutine d on each pair of character alignment (b, c1), ..., (by, ¢;) between input x and

output y, where b, € ¥, U {e} and ¢;, € ¥, U {€} but not b, = ¢, = €:

COPY, ifb=c,

d(b, ¢) DELETE, if c = ¢,
JC = .

INSERT(C), if b =,

DELETE, INSERT(c) otherwise % substitution

Applying this procedure to e.g. the CRP alignment from Figure 3, we obtain the following gold action
sequence: COPY, COPY, DELETE, INSERT(O), DELETE, COPY, DELETE, DELETE.

Learning with exploration Training with MLE comes with a number of limitations. First, the model
is not exposed to its own errors at training time: It makes predictions conditioned on gold-action his-
tories, which is at odds with test time when the model has to condition on predicted actions. Second,
MLE training increases the model’s per-action likelihood, although at test time, the model’s performance
is assessed with sequence-level accuracy or edit distance. Both constitute well-known MLE training
biases—the exposure bias and the loss-evaluation mismatch (Wiseman and Rush, 2016). Finally, we
would like the model to be less dependent on the gold actions generated by the aligner, which is unin-
formed of the downstream task, and that at training, the model can choose alternative action sequences
leading to correct predictions, if that helps it generalize.

To address all these issues at once, we train the model by minimizing the expected risk (Och, 2003;
Smith and Eisner, 2006) of the actual training data T = {(x(), y@)}V :

N
=1

where y is computed from a and x, and the risk is given by a combination of normalized Levenshtein
distance (NLD) and accuracy:

A(y,y?) =NLD(y,y") — 1{y =y} (6)

Thus, an action sequence a attains the lowest risk of —1 if its corresponding output sequence y is identical
to y" of the training sample and the highest risk of +1 if the number of edits from y to y(® equals the
maximum of their lengths.
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Figure 4: Accuracy as a function of dataset size (left) and the ratio of dataset size to the num-
ber of unique transformations (right) for selected experiments. A log scale is used for the
X axis. CLXS50/CLX300=average scores on CELEX with 50/300 samples (Figure 5), SGMI16
=SIGMORPHON2016, SGM17L/SGM17M=SIGMORPHON2017-low/medium, LEM=average scores on
lemmatization, LEMGA/LEMTL=lemmatization Irish/Tagalog.

Following Shen et al. (2016), we approximate the expectation under the posterior distribution P(a |
x(: ©) with ancestral sampling from the model and re-normalize the sampled probability scores to get
a new distribution Q):

N
R(D,©)~Y > Qa|x";6,0) Aly,y") (7)
=1 acS(x®)

P(a|xW; @)
Zalgs(x(l)) P(a | x; @)~

Here, S(x(!)) denotes the set of samples from P(a | x();©) and a € R is a hyper-parameter that
controls for the peakedness of the new distribution ().

Qa|x";0,a) = (8)

3 Experiments

In the following experiments, we evaluate the performance of our model with an explicit copy action
(referred to as CA) and show how it further improves with exploration training (-MRT).

Unless stated otherwise, our MLE models are trained on gold actions computed using Mans Hulden’s
Chinese Restaurant Process string-pair aligner (indicated as CRP)* and decoded with beam search. On
some problems, we find a simple strategy, which heuristically maximizes the number of COPY actions, to
work surprisingly well: The Longest Common Substring aligner (LCS) first aligns the longest common
substring of x and y and then pads both strings to the same length.

MRT models are initialized with the corresponding MLE models and decoded with beam search. We
found the best value of & = 1 from {1,0.1,0.05} on the CELEX-ALL task (§ 3.1) and used that for all
other datasets as well.

We use the same embedding parameters for characters and insertion actions (i.e. A(INSERT(b)) =
E(b)) to match closely the set-up of Aharoni and Goldberg (2017). In all our systems, the dimension of
the character and action embeddings is 100, LSTM hidden layers are of size 200, and all LSTMs are single-
layer. We use LSTMs with peephole connections and coupled input and forget gates (Greff et al., 2016).
We optimize with ADADELTA (Zeiler, 2012) and update parameters at a single training sample (=batch
size 1) during MLE training. For MRT, we build sets S (x(l)) by drawing twenty samples per training
example. We mini-batch using these sets as batches. We include the gold action sequence (generated for
MLE training) into the batch. We implement our models using DyNet (Neubig et al., 2017).

All experiments report exact accuracies. They are mean accuracies over single runs with different
initializations, unless the model is an ensemble (marked with an -E suffix). The ensembles are built with
majority voting over differently initialized runs of the same model.

*nttps://github.com/ryancotterell/sigmorphon2016/blob/master/src/baseline/align.c
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Model 13SIA 2PIE 2PKE rP | Avg.
celex2PKE celex13SIA CELEX-BY-TASK

5).’1 T LAT 875 934 874 849883
851 P ¥ P NWEST 85.1 944 855 83.0 | 87.0
. | e HA* 846 939 881 851|879
801 /,7 80 v/,f;/ /7 CA 850 945 880 849 | 88.1
o o HA*-MRT | 848 940 88.1 852 88.0
7514 51¢ /7 CA-MRT 85.6 94.6 88.0 853 | 884

ol i ol ,v CELEX-ALL (ensembles)
i i MED 839 950 876 840/ 872
ol ,I.' . ,! —v— HA" HA 858 951 895 872|895
i i —V— NWEST HA*-E 853 948 889 874 | 89.1
60_*; o i :: (Lj/:T CA-E 858 949 88.8 86.7 | 89.1
f | | | ‘ | . : HA*-MRT-E 85.8 95.0 89.2 87.7 | 894
50 100 300 500 50 100 300 500 CA-MRT-E 86.7 94.9 89.3 87.1 | 89.5

Figure 5: Learning curves on the CELEX dataset.

Table 1: Results on the CELEX dataset.

We evaluate our approaches on four standard morphological datasets and compare to the following
published systems: (HA) the ensemble of five MLE models over Zf A of Aharoni and Goldberg (2017)
as well as our re-implementation of a single model marked as HA*; (MED) the ensemble of five soft-
attentional models of Kann and Schiitze (2016) and an alternative implementation of the soft-attention
approach, SOFT, by Aharoni and Goldberg (2017); (NWFST) the neural WFST model of Rastogi et al.
(2016) and (LAT) the non-neural WFST with latent variables of Dreyer et al. (2008).

3.1 Morphological reinflection

The task is to map an inflected form x into another form y of that word given a feature specification ¢
for this transformation.

CELEX This dataset of German verbal morphology transformations was compiled by Dreyer et
al. (2008) from the CELEX database (Baayen et al., 1993). It comprises four transformations
(13SIA—13SKE, 2PIE+— 13PKE, 2PKEz, tP—pA),’ featuring such morphological phenomena as cir-
cumfixation, infixation, and irregular stem changes. The data are split into five folds, each with 500
training samples per transformation. We conduct two types of evaluation on these data. In the original
experiment, which we call CELEX-BY-TASK, models are trained on each transformation separately, and
scores are averaged over the folds. In the second experiment, CELEX-ALL, five single models are trained
on all the 2,000 samples of one fold and then ensembled. Again, scores are averaged over the folds.
As part of CELEX-BY-TASK, we additionally evaluate how our models perform on even fewer—50, 100,
and 300—training samples on two tasks, 2PKE and 13SIA. CELEX could be considered a relatively sim-
ple dataset as the ratio of the number of training samples to the number of unique transformations is
high, even though the overall training-data size is modest. On the other hand, most CELEX tasks require
learning complex lexical properties such as the distinction between strong and weak verbs or prefix types.

3.2 Morphological inflection generation

Given a feature specification ¢ and a base form x, the task is to generate the corresponding inflected
form y.

Sigmorphon 2017 The low (100 training samples) and medium (1,000 training samples) settings of the
SIGMORPHON 2017 shared task data (Cotterell et al., 2017) feature fifty-two languages. The datasets
contain extremely diverse language material and morphological transformations. Unlike CELEX, input x
is always a dictionary form, however morphological changes are unrestricted. The low setting constitutes
a very hard learning problem, with the ratio of training samples to unique transformations being 2.8 on

>Glossary: 13SIA=1st/3rd person singular indicative past; 13SKE=1st/3rd person singular subjunctive present; 2PIE=2nd
person plural indicative present; 13PKE=1st/3rd plural subjunctive present; 2PKE=2nd person plural subjunctive present;

z="zu” infinitive; rP=plural imperative; pA=past participle.
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Model (averages) low medium ‘ Model (ensembles) low medium

baseline 37.9 64.7 37.9 64.7
HA* Ics 29.1 78.5 HA*-E Ics 31.5 80.2
CA Ics 47.3 79.5 CA-E Ics 48.8 81.0
HA* crp 23.9 75.4 HA*-E crp 26.1 77.8
CA crp 42.5 78.9 CA-E crp 44.0 80.6
HA*-MRT Ics 30.2 79.6 HA*-MRT-E Ics 33.1 81.5
CA-MRT  Ics 48.1 80.3 CA-MRT-E  Ics 49.9 81.9

HA*-MRT crp 25.3 78.1 HA*-MRT-E  crp 28.1 80.5
CA-MRT  crp 43.6 81.1 CA-MRT-E  crp 45.7 82.9

HACM-E7 46.8 81.8
HAEM-E7 48.5 80.3
HA[EC|M-E15 50.6 82.8

Table 2: Results on the SIGMORPHON 2017 dataset.

average (SD = 2.9). In the medium setting, the mean number of unique transformations rises to 19.8
(SD = 29.3), with a minimum of 1.4 observed for Basque and a maximum of 200 for English.

For this dataset, we also show the results for the official baseline, a ruled-based system that is particu-
larly strong in the low setting,® and the best systems of the shared task (Makarov et al., 2017).

Sigmorphon 2016 The SIGMORPHON 2016 shared task dataset (Cotterell et al., 2016) is the largest
dataset. It comprises ten languages with about 12,800 training examples on average. The number of
samples per transformation varies from 6 for Maltese to 198 for Hungarian, being 112 samples per
transformation on average (SD = 51.3). In both SIGMORPHONS, we train five single models for each
language.

3.3 Lemmatization

Given an inflected word form x (without any feature specification), the task is to predict the correct
dictionary form y. Following Dreyer (2011) and Rastogi et al. (2016), we evaluate our approach on a
subset of the dataset by Wicentowski (2002). The data, split into ten folds, comprise four languages, with
per-fold training sizes ranging on average from 1,100 for Irish to 7,635 for Tagalog. For each language,
we train a separate model for each fold and then average the scores over the folds.

4 Results and Discussion

Generally, comparing the performance of CA and HA (or HA*), we observe that CA achieves great per-
formance gains on small-sized problems while matching HA in the higher-resource setting (Figure 4).

4.1 Morphological reinflection

CA is a very competitive model on both CELEX-BY-TASK and CELEX-ALL, and adding exploration (CA-
MRT) results in the strongest performance in both evaluations (Table 1). In contrast to HA*, in very low
settings (Figure 5), CA performs not much worse than the only non-neural model, LAT. HA* and NWFST
need around 300 training examples to start catching up, and the extremely low-resource conditions (50,
100) on 13SIA are especially troublesome for HA*. On CELEX-ALL, even with more training data,
soft-attentional ensemble MED is typically much weaker, including tasks with infixation (2PKE) and
circumfixation (rP).

Advancing further on most CELEX tasks is difficult due to morphological irregularities. As an example,
examining the predictions of CA-MRT on one fold of the rP task reveals that the system largely fails to
predict strong-verb participles (71% of the errors), conjugating 67% of them as if they were regular.

*https://github.com/sigmorphon/conll2017/tree/master/baseline
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Model | RU DE ES KA FI TR HU NV AR MT | Avg.
HA* 91.32 9591 98.63 97.69 94.75 96.99 98.44 90.57 93.93 85.28 | 94.35
CA 90.81 9597 98.75 9797 9559 97.11 98.64 89.74 93.59 85.77 | 94.39
ensembles
MED 9146 95.80 98.84 98.50 9547 98.93 96.80 91.48 99.30 88.99 | 95.56
SOFT 92.18 96.51 98.88 98.88 96.99 99.37 97.01 9541 99.30 88.86 | 96.34
HA 92.21 96.58 98.92 98.12 9591 97.99 96.25 93.01 98.77 88.32 | 95.61
HA*-E | 91.95 96.28 98.85 97.90 9578 97.55 98.77 92.14 95.08 87.82 | 95.21
CA-E 91.87 96.36 98.84 98.35 96.50 97.74 98.90 92.14 94.63 87.66 | 95.30

Table 3: Results on the SIGMORPHON 2016 dataset: ru=Russian, de=German, es=Spanish,
ka=Georgian, fi=Finnish, tr=Turkish, hu=Hungarian, nv=Navaho, ar=Arabic, mt=Maltese.

4.2 Morphological inflection generation

Table 2 summarizes the results on the SIGMORPHON 2017 dataset. In the low setting, CA easily beats
the baseline system, whereas HA* fails to do so. Our simple majority-vote ensemble CA-MRT-E over five
models comes very close to the complex 15-strong ensemble HA[EC]M-E15 of Makarov et al. (2017),
the best system of the shared task. Under a paired permutation test, the latter system is statistically
significantly better (p < 0.05) on only twenty one languages.

In the medium setting, CA maintains the advantage, although the performance gap from HA* is much
smaller. CA-MRT-E even outperforms the shared task’s best system, although the gain is statistically
significant for only ten languages. In both settings, MRT consistently improves the performance of both
the HA* and CA models.

In the high-resource scenario of SIGMORPHON 2016 (Table 3), HA* and CA attain virtually identical
results, occasionally outperforming the soft-attentional ensembles. Unlike HA, we use the same set of
hyper-parameters (the dimension of embeddings, the number of hidden LSTM layers, etc.) for all of
our experiments, which might explain that both our reimplementation HA* and CA perform less strongly
here. Due to computational restrictions, we could not apply MRT to this dataset.

4.3 Lemmatization

On the lemmatization task (Table 4), CA strongly outperforms WFST models LAT and NWFST on aver-
age. Yet, the HA* reimplementation consistently delivers the best results on every language. The error
analysis for English in Rastogi et al. (2016) mentions the tendency of their system, NWFST, to simply
copy the inflected word over, which accounts for 25% of English-language errors. Given that CA also
has a dedicated copy action, one might suspect that the inferior performance of CA compared to HA* for
English and Basque would be due to excessive copying. An inspection of the incorrectly predicted lem-
mas reveals that both systems produce virtually the same number of copy errors. The difference in error
counts is actually due to cases where the system modifies the inflected word form. For English, errors
typically occur in strong verbs and verbs with graphemic alternations, as e.g. “oozing” gets incorrectly
lemmatized as “00z”. The scores of over 97% on every language and the kind of unsolved cases, likely
requiring external resources, suggest that this task should be considered solved.

As a final remark, we note that with the datasets at hand, performance attribution is often hampered
by the lack of explicit characterization of morphological phenomena or lexical properties at the example
level (we have derived some of these meta-data for the CELEX rP task). Given the difficulties interpreting
neural models, computational morphology could arguably profit from challenge sets that have recently
been gaining popularity in machine translation (Sennrich, 2017; Avramidis et al., 2018).

5 Related Work

Traditional models for morphological string transduction are discriminatively trained WFSTs (Cotterell
et al., 2014; Dreyer et al., 2008; Eisner, 2002). The transducer defines eligible edit sequences for x (each
implying a different monotonic character alignment), and its weights are expressed in terms of hand-
crafted features. Rastogi et al. (2016) employ RNNs to parametrize the weights of a globally normalized
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Model basque english irish tagalog | Avg.

Size 4.7K 3.9k 1.1k 7.6K 4.3K
LAT 93.6 96.9 97.9 88.6 94.2
NWFST 91.5 94.5 97.9 97.4 95.3

HA® Ics 97.0 97.5 97.9 98.3 97.7
CA Ics 96.3 96.9 91.7 98.3 973
HA* cp 96.2 97.7 97.3 97.9 97.3
cA crp 96.1 96.7 96.8 97.6 96.8

Table 4: Results on the lemmatization dataset.

WEST, thereby conditioning on global context. The powerful approach of Dreyer et al. (2008) adds latent
variables to a globally normalized log-linear WFST to learn task-specific properties: a word’s paradigm
class and approximate morphological segmentation.

Enabling soft character alignment via a deterministic function of inputs (Kann and Schiitze, 2016) has
proven crucial to the success of seq2seq models first proposed for this task in Faruqui et al. (2016). In
line with the traditional simplification of the task, other neural-network approaches treat hard monotone
character alignment as a latent variable that the model marginalizes out using dynamic programming,
while enabling unbounded dependencies in the output and permitting online generation (Yu et al., 2016;
Graves, 2012). An appealing alternative to latent alignment is to learn from supervised alignment, an
idea explored to train soft-attention models (Mi et al., 2016). For hard-attention models (Aharoni and
Goldberg, 2017), training with an observed alignment is particularly simple as it results in learning from
a single gold action sequence.

A state-transition system is an elegant, linear-time model for morphological string transduction, in
which eligible monotonic edit sequences are implied by the semantics of the actions. As demonstrated
on other tasks (Dyer et al., 2015; Andor et al., 2016), when provided with global context via RNNs,
the model overcomes the limitations of a locally normalized conditional distribution, while retaining
computational efficiency.

Using a single designated copy action in not new in morphological string transduction, e.g. the SI1G-
MORPHON 2016 feature-based state-transition baseline uses COPY[n], where n is the number of char-
acters to copy. Biasing towards copy edits is crucial to the performance of the model of Rastogi et al.
(2016). An alternative to the copy action is to introduce a binary latent variable that signals whether
y; is copied from x; or generated (Gu et al., 2016; Gulcehre et al., 2016; See et al., 2017). Extending
models with alignment variables with such a copying mechanism is simple as the the choice of which z;
has to be copied need not be modeled (Makarov et al., 2017): The copy variable points to the x; that y;
is aligned with. This alternative requires learning additional model parameters, which could explain its
somewhat worse performance on smaller-sized problems.

Minimum risk training (Smith and Eisner, 2006; Och, 2003) is one simple solution enabling explo-
ration and addressing the loss-evaluation mismatch. The approach of Shen et al. (2016) closely relates
to classical policy gradient methods in reinforcement learning (Edunov et al., 2018). A number of alter-
native methods have recently been proposed to address the MLE training biases in the context of seq2seq
models (Andor et al., 2016; Wiseman and Rush, 2016; Ranzato et al., 2016; Rennie et al., 2017).

6 Conclusion

In a large-scale evaluation on different morphological tasks and languages, we show that a neural
transition-based system over edit actions consistently outperforms state-of-the-art systems on morpho-
logical string transduction tasks in low- and medium-resource settings and is competitive on large training
sets. Crucially, adding a designated action to copy the input character over to the output string helps the
transition model generalize quickly from very few data points. Using a training procedure that enables
exploration of the action space (e.g. minimum risk training) consistently improves the performance of
our models as they are exposed to action sequences other than those proposed by the character aligner
underlying the static oracle in the MLE training procedure.
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Abstract

Capturing interactions among multiple predicate-argument structures (PASs) is a crucial issue
in the task of analyzing PAS in Japanese. In this paper, we propose new Japanese PAS analysis
models that integrate the label prediction information of arguments in multiple PASs by extending
the input and last layers of a standard deep bidirectional recurrent neural network (bi-RNN)
model. In these models, using the mechanisms of pooling and attention, we aim to directly
capture the potential interactions among multiple PASs, without being disturbed by the word
order and distance. Our experiments show that the proposed models improve the prediction
accuracy specifically for cases where the predicate and argument are in an indirect dependency
relation and achieve a new state of the art in the overall F7 on a standard benchmark corpus.

1 Introduction

A predicate-argument structure (PAS) is a structure that represents the relationships between a predicate
and its arguments. Identifying PASs in Japanese text is a long-standing challenge chiefly due to the
abundance of omitted (elliptical) arguments. In the example in Figure 1, the dative relation between
answer and reporters is not explicitly indicated by the syntactic structure of the sentence. We regard
such arguments as elliptical and call those argument slots Zero cases. 25% of the obligatory arguments
in Japanese newspaper articles are reported to be elliptical.! The accuracy of identifying the fillers of
such Zero cases remains only around 50% in terms of F} even if the task is restricted to the identification
of intra-sentential predicate-argument relations (Matsubayashi and Inui, 2017).

DAT
NOM DAT NOM
REE A 8hd & (&4 A BZ = o
[reporters]-von  ask then  [prime minister]-xox answer-past

‘The prime minister answered when the reporters asked.’

Figure 1: Example of PAS analysis. The dashed lines represent the predicate-argument relations.
“[reporters]-NOM ask then” constitutes a subordinate clause and “[prime minister]-NOM answer-
PAST” constitutes a matrix clause.

One promising approach for addressing this problem is to model argument sharing across multiple
predicates (Ilida et al., 2015; Ouchi et al., 2015; Ouchi et al., 2017). In Figure 1, for example, one
can find very limited syntactic clues for predicting the long-distance dative relation between answer
and reporters. However, the relation must be easy to identify for human readers who know that the
person who asks a question is likely to be answered; namely, the nominative argument of ask is likely
to be shared with the dative argument of answer. Capturing such inter-predicative dependencies has,
therefore, been considered crucial of Japanese PAS analysis.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/
IStatistics from the NAIST Text Corpus 1.5. (Iida et al., 2017)
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(a) Base model (b) Proposed models

Figure 2: Network structures of the base and proposed models.

With this goal in mind, lida et al. (2015) constructed a subject-shared predicate network with an
accurate recognizer of subject-sharing relations and deterministically propagated the predicted subjects
to the other predicates in the graph. However, this method is applied only to subject sharing, so it cannot
take into account the relationships among multiple argument labels.

More recently, as an end-to-end model considering multi-predicate dependencies, Ouchi et al. (2017)
used Grid RNN to incorporate intermediate representations of the prediction for one predicate generated
by an RNN layer into the inputs of the RNN layer for another predicate. However, in this model, since the
information of multiple predicates also propagates through the RNNs, the integration of the prediction
information is influenced by word order and distance, which is not necessarily important for aspects of
syntactic and semantic relations. Consequently, there might be information loss caused by the surface
distances of words, as previous work had pointed out for RNN language models (Linzen et al., 2016).

In this study, we propose new Japanese PAS analysis models that integrate the prediction information
of arguments in multiple predicates. We extend a standard end-to-end style deep bi-RNN model (Fig-
ure 2a) and introduce components that consider the multiple predicate interactions into both the input
and last layers (Figures 2b and 3). In contrast to Grid RNN, our extended models stack the extra layers
using pooling and attention mechanisms on top of a deep bi-RNN so that they can directly associate the
label prediction information for a target (predicate, word) pair with the predictions for words strongly
related to the target pair. Through experiments, we show that the proposed models improve argument
prediction accuracy, especially for the Zero cases, and achieve a new state-of-the-art performance in the
overall F7 on a standard benchmark corpus.

2 Task

In this paper, we employ a task definition based on the NAIST Text Corpus (NTC) (lida et al., 2010; Iida
et al., 2017), a commonly used benchmark corpus annotated with nominative (NOM), accusative (ACC),
and dative (DAT) arguments for predicates. Given a tokenized sentence w = wq, ..., W, and its predicate
positions p = pi, ..., Py, our task is to identify at most one head of the filler tokens for each argument
slot of each predicate. In this study, we follow the setting of lida et al. (2015), Ouchi et al. (2017), and
Matsubayashi and Inui (2017), and focus only on analyzing arguments in a target sentence. In addition,
we exclude argument instances that are in the same bunsetsu, a base phrase unit in Japanese, as the target
predicate, following Ouchi et al. (2017), which we will compare with the results in experiments.

The semantic labels used in NTC may seem to be rather syntactic as they are named nominative,
accusative, etc. However, this annotation task markedly differs from shallow syntactic parsing and is,
in fact, more like a semantic role labeling (SRL) task including implicit argument prediction. First, the
semantic labels in NTC generalize case alteration caused by voice alteration and thus represent semantic
roles analogous to ARG0, ARGI, etc. in the PropBank-style annotation (Palmer et al., 2005). Second,
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Figure 3: Three variants of interaction layers.

in the corpus, when an argument is omitted (i.e., zero-anaphora), the antecedent is identified with an
appropriate semantic role, which is a prominent problem in Japanese semantic analysis and is the primary
target of this study.

3 Base Model

Our proposed models extend end-to-end style SRL systems using deep bi-RNN (Zhou and Xu, 2015; He
et al., 2017; Ouchi et al., 2017) to combine mechanisms that consider multiple predicate interactions.
Figure 2a shows the network of our base model. Formally, given a word sequence w = wi, ..., Wy
and a target predicate position p; in p, the model outputs a label probability for each word position:
p(ciali,p,w),...,p(cinli, p,w). Here, ¢;; € {NOM, ACC,DAT,NONE} represents the argument label of
the word w; for the target predicate w, .

The input layer creates a vector hgt € R%*1 for each pair of a predicate wp, and a word w; by
concatenating a word embedding e(w;) € R% and a binary value representing the target predicate
position in a method similar to that of He et al. (2017). The obtained vectors are then input into the deep
bi-RNN, where the directions of the layers alternate (Zhou and Xu, 2015):

{

Here, hﬁ : € R%" is the output of the k-th RNN layer for a pair (wp,, wy), and " is a function representing
the k-th RNN layer. We employ gated recurrent units (GRUs) (Cho et al., 2014) for the RNNs. In
addition, we use the residual connections (He et al., 2016) following Ouchi et al. (2017). Then, a four-
dimensional vector representing a probability p(c; |, p, w) is obtained by applying a softmax layer to
each output of the last RNN layer hf(t For each argument label c of each predicate, we eventually select
a word with the maximum probability that exceeds an output threshold 6.

k=1, k(pk—1 pk
hiy +r(hiy  hi_y)

hit_l + Tk(hk_l hl’it—i—l)

wt '

(k is odd)

hL, =Y (RO, R}, ),
it ( RN 1) (k is eVen)

hy, = (k>

2). ()

4 Proposed Models

Our base model independently predicts the arguments of each predicate. In order to capture depen-
dencies between the arguments of multiple predicates, we apply two extensions to our base model: a
multi-predicate input layer and three variants of interaction layers on top of the deep bi-RNNs. Fig-
ures 2b and 3 show the network structures of the extended models.

In contrast to the Grid RNN model of Ouchi et al. (2017), where the information of multiple predicates
propagates through the RNNs, our interaction layers use pooling and attention mechanisms to directly
associate the label prediction information for a target (predicate, word) pair with that for words strongly
related to the target pair, without being disturbed by word order and distance.

4.1 Interaction Layers

Pooling (POOL) Argument sharing across multiple predicates can be captured with both syntactic and
semantic clues. At the syntactic level, we want to capture tendencies that, for example, the subject of
the predicate of a matrix clause is likely to fill argument slots of other predicates in the same sentence.
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At the semantic level, we want to model semantic dependencies between neighboring events such as the
person who asks a question is likely to be answered, as in Figure 1. Our proposal is to capture both types
of clues by incorporating a max pooling layer on top of the base model.

Specifically, as illustrated in Figure 3a, for each word wy, we integrate the intermediate representation
of label prediction for each predicate h{ft by applying max pooling to the vectors that represent pairs of
prediction information for two predicates hfft and hft (including the case ¢ = j):

h;+ = maxpool,(fijt), where f;;;=ReLU(W; [hfft, tht] +by). 2)

In this equation, maxpool;(f; ;) is an operation to extract the maximum value of each dimension in
{fi1ts - fiqt}. The newly obtained vector h;; for wy, and wy is input into the softmax layer in the
same manner as in the base model.

Attention-then-Pooling (ATT-POOL) Besides the argument sharing across multiple predicates, we
would also like to capture dependencies between different arguments of a single predicate (and poten-
tially, arguments of multiple predicates). For example, syntactically, two distinct argument slots of a
single predicate are unlikely to share the same filler. Semantically, the subject of a predicate take is
likely to be a person when its object is a bread, but is likely to be a company if the object is a new
employee.

To capture such dependencies, we integrate the intermediate label prediction hft, of wy for an arbitrary
predicate wp, (including the case ¢ = j) into the prediction of w; for a target predicate wy,. In the
integration, we aim to weigh the prediction information for (w,,,w; ) based on its relatedness to the
target pair (wy, , w;) using the attention mechanism (Bahdanau et al., 2015). As in Figure 3b, we calculate
a weight a; ; (') € R for each of hfl, e hfn on the basis of the prediction hi{{t for the target pair and
we obtain a weighted sum of hft, as a summary of the argument information of wj,;, which is expected
to be useful for the label prediction of (wp,, w;):

I (LK oy XP(Wag, ;4 4 +ba)
hl}]}t - Zt/am’t(t) h]}t” where aw’t(t) = 2o exp(Wag; ;4 tba)’ 3)

Gijaw = tanh(Wy[h%, hft,] +by). 4)

The obtained ha ;¢ are concatenated with the prediction for the target pair h{ft and linearly transformed
with the ReLU activation. Max pooling is then applied to these vectors to combine the predictions for
multiple predicates.

hit = maxpool;(f; i), Wwhere fi;;= ReLU(Wf[h{’(t, h;’j’t] +by) 5)

Pooling-then-Self-Attention (POOL-SELFATT) The ATT-POOL model involves a high computational
cost because it must compute ng? different attentions regarding the number of words n and the number
of predicates ¢ in a sentence. Therefore, as illustrated in Figure 3c, in this model, we first apply the
max pooling that we applied in the POOL model to reduce the sequences for which attentions must be
computed by integrating the label predictions of w; for all the other predicates in advance.

mit = maxpoolj(fi,j,t), where  f; j; = ReLU(W; [hz{(t, tht] +by) 6)

Then, we combine the information in the obtained sequence m; 1, ..., m; 5, in a similar manner as in the
ATT-POOL model using the attention mechanism, but this time, with self-attention, that is, computing
the weights of the elements in the sequence based on the relatedness to the element inside the sequence.

hi = ReLU(Wh[mg s, b ;] + bp) (7)
exp(Wag; 4 4+ +ba)

h;’t - Zt/ai7t(t/) it where ai’t(t/) - 2o exp(Wa;it,t//era) (8)

it = tanh(Wylmg e, mi p/] + by) ©)

Consequently, the number of attentions that must be computed is reduced to ng.
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Self-Attention (SELFATT) To conduct ablation tests to assess the impact of the proposed extensions,
we also implemented a model only with self-attention. This model explicitly considers the relationships
between arguments of a single predicate, but not arguments across multiple predicates.

hiy = ReLU(Wy[hfS, hi ] + by) (10)
exp(Wag, ; 4 +ba)

hé,t - Zt/ai’t(t,) ' hl{(t" where ai’t(t,) - Do Iejxp(Vgayg;,t,tu-i-ba) (11)

Gigw = tanh(Wy[hfS, bS] + by) (12)

4.2 Multi-Predicate Input Layer (MP)

In addition, we add a simple but effective extension to the input layer. As He et al. (2016) reported, the
information of the target predicate w,,, propagates to the intermediate prediction hl{(t of the candidate
argument w, through the deep bi-RNN by just adding a binary value representing the predicate position.
Inspired by this finding, as shown in Figure 2b, in the input layer, we add another binary value that
represents all the predicate positions to h?}t, aiming to propagate multiple predicate information.

5 Experiments

We evaluated the impacts of our extensions and compared their performances to those of previous studies.
Our main hypothesis is that the pooling and attention mechanisms are both useful for capturing different
types of argument interactions as we explained in Section 4 and do work complementarily of each other
to improve the prediction accuracy, especially for arguments in a long-distance dependency.

5.1 Settings
5.2 Dataset and Implementation Details

The experiments were performed on NTC 1.5. We divided the corpus into the commonly used divisions
of training, development, and test sets (Taira et al., 2008), each of which includes 24,283, 4,833, and
9,284 sentences, respectively. NTC represents each argument of a predicate by indicating a coreference
cluster in a text. For each given predicate-argument slot, we count a system’s output as correct if the
output token is included in the coreference cluster corresponding to the slot fillers. The evaluation is
performed on the basis of the precision, recall, and F} score.

The hyperparameters were selected to obtain a maximum F; on the development set. The details of the
hyperparameter selection and preprocessing are described in the supplemental material. In the following
experiments, we train each model 10 times with the same training data and hyperparameters and then
show the average scores.

5.3 Grid RNN Baseline (GRID)

In order to strictly compare the impact of our extensions to the method used for integrating multiple
pieces of predicate information in the state-of-the-art end-to-end model, in addition to our base model,
we replicated the method of Ouchi et al. (2017) by modifying Equations (1) of our base model as follows:

N R L e N T e A ()
’ r ([hi,t 7hi+1,t]7hz‘,t+1) (k is even)

(13)

if 1 <1 < g; otherwise, hﬁt = 0. The performance of this replicated model may not be strictly the same
as that reported in Ouchi et al. (2017) due to discrepancies in the embeddings of inputs, hyperparameters
(a training batch size, a hidden unit size, etc.), and training strategy (an optimizing algorithm, a regular-
ization method, an early stopping method, etc.). The predicate positions p = p1, ..., pq are arranged in
ascending order.
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‘ I All ‘ F at different dependency distances

| Model [| F1 (%) SD || Prec. | Rec. | Dep | Zero | 2| 3 4] 25
BASE (d, = 32, K = 8) 81.22  +0.19 84.30 | 78.37 | 8839 | 49.12 | 5573 | 47.1 39 29
Baseline GRID (d, = 32, K = 8) 81.06  +0.31 84.33 | 78.04 | 88.17 | 48.73 | 5526 | 47.5 | 39 28
Models BASE 8339  +0.13 85.85 81.07 | 89.90 | 54.37 | 61.09 | 53.8 | 44 31
GRID 8294  +0.17 85.38 | 80.63 89.51 53.57 | 60.28 | 52.4 | 44 32
SELFATT 83.56  +0.22 85.91 81.34 | 90.06 | 54.84 | 6136 | 543 | 45 32
PooL 83.56  +0.16 86.05 81.21 90.00 | 54.81 61.54 | 543 | 45 31
Proposed ATT-POOL 8348  +0.24 8597 | 81.12 | 89.98 | 54.57 | 61.19 | 54.0 | 44 32
Models POOL-SELFATT 8376  +0.17 86.11 81.54 | 90.17 | 55.19 | 62.10 | 54.0 | 45 32
MP 83.67 +0.22 86.08 | 81.39 | 90.10 | 54.80 | 61.67 | 53.8 | 44 32
MP-SELFATT 8379  +0.22 86.11 81.60 | 90.22 | 5526 | 61.88 | 543 | 45 33
MP-POOL-SELFATT 8394  +0.12 86.58 | 81.46 | 90.26 | 55.55 | 62.44 | 54.7 | 45 32

Previous Ouchi et al. (2017) 81.42 88.17 47.12
SOTAs M&I 2017 83.50  +0.17 86.00 | 81.15 89.89 | 51.79 | 60.17 | 494 | 38 23
Ensemble MP-POOL-SELFATT (10 models) 85.34 87.90 | 8293 | 91.26 | 58.07 | 64.89 | 57.5 | 47 33
Models M&I 2017 (5 models) 84.07 86.09 | 82.15 | 90.24 | 53.66 | 61.94 | 51.8 | 40 24

Table 1: I scores on the NTC 1.5 test set. Dep and Zero denote instances where the dependency distance
between the predicate and argument is one and more than one, respectively. M&I 2017 is the model of
Matsubayashi and Inui (2017).

Model B BASE ATT- SELFATT PooL MP PooL- MP-
Model A ‘ F1 (%) SD ‘ ‘ PooL ‘ ‘ ‘ ‘ SELFATT ‘ SELFATT
BASE 8339  40.13
ATT-POOL 83.48 +0.24 0.18
SELFATT 83.56 +0.22 0.03 0.22
PooL 83.56 +0.16 0.014 0.21 0.53
MP 83.67 4022 0.003 0.048 0.16 0.12
POOL-SELFATT 83.76  £0.17 | 4.3E-5 0.004 0.023 | 0.0084 0.16
MP-SELFATT 83.79 +0.22 | 1.0E-4 | 0.0046 0.021 | 0.0096 0.13 0.39
MP-POOL-SELFATT 83.94  +0.12 | 54E-6 | 5.4E-6 2.2E-4 | 2.7E-5 | 0.0013 0.013 0.046

Table 2: p-values in one-sided permutation test using 10 overall F; scores for each model. The bold
values indicate that an average Fj score of model A outperforms that of model B at the 5% significance
level.

5.4 Results
Impact of Extensions

The first two sets of rows in Table 1 compare the impact of each component of our extension. The
effects of incorporating the interaction layer can be seen in the comparisons of the BASE model with
the SELFATT, POOL, ATT-POOL, and POOL-SELFATT models. Among the four proposed extensions,
POOL-SELFATT, an integration of POOL and SELFATT, achieved the best performance (83.76 in F1),
gaining 0.37 points in overall 7 from BASE. Also, the significance tests in Table 2 show that the
PooL and SELFATT models significantly outperform the BASE model, and the POOL-SELFATT model
makes a further significant gain from the POOL and SELFATT models. This indicates that POOL and
SELFATT work complementarily with each other, and combining them makes a further improvement
from each individual extension. Recall that SELFATT is designed to capture long-distance dependencies
over a single predicate-argument structure, whereas POOL is expected to capture argument sharing across
multiple predicates. These results provide empirical support to the hypotheses behind our design of the
interaction layer.

The MP model, where the input layer is extended to represent the positions of all the predicates in a
sentence, significantly outperforms the BASE model by 0.28 points in overall F;. This result suggests
the importance of position information regarding the neighboring predicates in identifying the arguments
of a given predicate. Furthermore, the MP-POOL-SELFATT model, which is a combination of MP and
POOL-SELFATT, resulted in a further 0.27-point improvement and consequently achieved the best overall
I of 83.94 as a single model.

Following Matsubayashi and Inui (2017), we also assess F7 values at different dependency distances.
The results are shown in the right half of Table 1. From the table, we can see that MP-POOL-SELFATT
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Modified NTC 1.5

Dep Zero N

Model ALL | ALL NOM ACC DAT | ALL NOM ACC DAT (lida et al,, 2016)

MP-POOL-SELFATT 83.94 | 9026 90.88 9499 6757 | 5555 57.99  48.9 23 Model ‘ Zero

Ouchi et al. (2015) 7923 | 8607  88.13 9274 3839 | 44.09 4811 244 438 NoM

Ouchi et al. (2017) 8142 | 88.17 8875 93.68 6438 | 47.12 5065 324 15 Ouchi et al. (2015) 73

M&I 2017 83.50 | 89.89 9119 9518 6190 | 5179 5469 418 17 Tida et al. (2015) nl
Tida et al. (2016) 525

MP-POOL-SELFATT (ens.) | 8534 | 91.26 91.84 9557 708 | 5807 6021 525 26

M&I 2017 (ens. of 5) 84.07 | 9024 9159 9529  62.61 | 53.66 5647 447 16 (Note) Results on a dataset

different from our experiments

Table 3: F} scores of each argument label on the NTC 1.5 test set.

improves F} from BASE by 0.9-1.4 points consistently across all the distance categories other than Dep.

Comparison to Related Work

The third set of rows in Table 1 shows the reported performance of related studies. Grid RNN of Ouchi
et al. (2017) is a state-of-the-art end-to-end model, designed to capture interactions among multiple
predicate-argument relations. A comparison between their model and the proposed models was some-
what tricky because our replication of Grid RNN did not reproduce the reported performance on the same
dataset (see the row of GRID in Table 1). Unlike the results reported in Ouchi et al. (2017), the GRID
model in our experiment did not clearly outperform the model without the grid architecture, i.e., the
Base model. We first suspected that this might have resulted from the difference in dimensionality d,. of
RNN hidden states: d,, = 32 in Ouchi et al. (2017), whereas d,, = 256 in our experiments. Specifically,
we speculated that the base model with a low dimensionality left a larger margin for improvement and
incorporating the Grid architecture derived positive effects. We thus trained our GRID model with Ouchi
et al. (2017)’s settings (d, = 32 and K = 8) and the best performing hyperparameters; however, we
were not able to reproduce the reported gain from Grid RNN (see the row of “GRID (d, = 32, K = 8)”
in Table 1).? This might be an indication of the difficulty in capturing multi-predicate interactions by
threading deep bi-RNNs with RNNs, as we discussed in Section 1.

Another previous state-of-the-art model was proposed by Matsubayashi and Inui (2017) (M &1 2017).
This model extends a feedforward NN with dependency path embeddings and other new features to
capture long-distance dependencies in a single PAS. The row “M &I 2017 in Table 1 shows the reported
performance of their model.> The performance of M&I 2017 is comparable with the performance of
our SELFATT model. This result provides another piece of empirical evidence that the self-attention
mechanism has a comparably positive effect in incorporating dependency path information for capturing
long-distance dependencies in a single PAS.

Overall, the proposed methods of using the pooling and attention mechanisms for capturing inter-
actions across predicates and arguments gained considerable improvement and achieved state-of-the-art
accuracy, significantly outperforming the previous state-of-the-art models. The last set of rows in Table 1
shows the results of the ensemble models. A model that predicts arguments with the average score of
the 10 MP-POOL-ATT models further improves the overall F; by 1.4 points from that of a single model,
achieving state-of-the-art accuracy for NTC 1.5.

Table 3 shows the F} score for each case label. In a comparison of the single models, although our
MP-POOL-ATT model slightly degrades the scores of NOM and ACC on the Dep cases compared to the
state-of-the-art model (M &I 2017), it greatly improves the scores for DAT and the Zero cases. Regarding
the ensemble models, MP-POOL-ATT improves the scores for all cases.

Iida et al. (2015) and Iida et al. (2016) report Japanese subject anaphora resolution systems, designed
to predict only Zero NOM arguments. It is not straightforward to directly compare their results with ours
due to the differences in the experimental settings. However, our best performing model outperforms the

>We discussed this negative result, including the implementation details, with one of the authors of Ouchi et al. (2017).
However, we could not find a plausible reason for the results.

3For the purpose of a strict comparison with Ouchi et al. (2017), we re-evaluate the model of Matsubayashi and Inui (2017)
by excluding the instances for which the argument is in the same bunsetsu phrase as the predicate; this is the same setting as
that in Ouchi et al. (2017). We have reported the new results in Tables 1 and 3.
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) Hf & [MIEU prep] 2 [ wowrase] O . Bt d A yoweown] o

spine ACC stretch little  thinking of after (nominal) , respond Tanigawa
‘[Tanigawa yow_orp], responding after [stretching prep] his spine and [thinking yom_rarsg] briefly.”
2 K¥ B [5 wougorn] W% HUF 2 WoT . 77yZA T WY Aw s o HE D
university professor PLURAL NOM underground DAT dive ,  fax by contacting ACC take each-other , district of organization of
) %  [¥AT pe] W5 o [NONEwowrase/
activities ACC support PROGRESSIVE
“The university [professors yom_goLp] went into hiding and are [supporting prep ] the activities of the local organizations, contacting each other by fax. [NONE yom rarse]”
3) Wk BT wourase/ A [WE wowcown/ & WU I ® DR & [ZVJD ppep] & 1o mE
central ministries NOM  staff DAT against “ night in entertainment TOP accept NEGIMperaTIVE ~ as notification
ER1IES B 2k 7z o

VERBALIZERcoNpITIONAL finish NOMINALIZER COPULA.
‘It is sufficient enough if the central [ministries youm_rarse] tell the [staffyom_gorn] “Do not [accept prep] a business dinner.”

@ +=H°H F& o AR fER . AN IEZ [5 woucorn] 1< &5 FEH D FEVAML—=vay B [ATD ppep]
13 day afternoon DAT TOP bonsai artist , Kimura Masahiko Mr. {by- -by} techniques of demonstration NOM perform
ns o [NONEyouraLse]
PASSIVE .

‘On the afternoon of 13th, a practical demonstration by the bonsai artist [Mr. yom_gorp] Masahiko Kimura will be [performed prgp]. [NONE youm rarse]”

Figure 4: Examples of prediction errors. In Example (1), only SELFATT failed to predict the answer. In
Example (2), only MP-POOL-SELFATT correctly predicted the answer. In Examples (3) and (4), none
of the systems predict the answers correctly.

thinking 0.01 015 0.02 026 0.01 0.00 000 0.01 010 000 |
stretc
Tanigawa | 012 0.00 0.06 0.010.00 0.00 0.00 0.00 0.06 0.00

SelfAtt

thinking | 0.03 0.00 0.01 0.01 0.05 0.00 0.01 0.01 (B3N 0.01

) ' respond
Tanigawa | 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.01@ 0.01

thinking 0.02 0.07 0.01 0.09 0.00 0.00 0.00 0.01 0.00 stretch

Tanigawa | 0.25 0.02 0.11 0.05 0.33 0.01 0.01 0.00 0.00 0.23 0.00

thinking | 0.03 0.00 0.01 0.01 0.02 0.00 0.02 0.02 0.310.01 respond

MP-SelfAtt

Tanigawa 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.31 HeE-ES 0.03

thinking | 0-18 0.00 0.06 0.01 0.19 0.01 0.01 0.00 0.000.01 stretch

Tanigawa 0.26 0.00 0.27 0.01 0.00 0.00 0.00 0.00 0.05 0.00

thinking | 0.00 0.00 0.00 0.00 0.06 0.01 0.03 0.01 0.300.01 respond

MP-Pool-SelfAtt

Tanigawa | 0.00 0.00 0.01 0.00 0.06 0.00 0.04 0.02 jeR:iM 0.05 0.01
[

spine
ACC
after

Keys

stretch

thinking
respond
Tanigawa

Figure 5: Attention weights of proposed models for Example (1).

model of Ouchi et al. (2015), which is then reported to outperform both Iida et al. (2015) and Iida et al.
(2016) in their experimental settings.

5.5 Detailed Analysis

To analyze the behavior of our proposed models in detail, we show some prediction examples of the
SELFATT, MP-SELFATT, and MP-POOL-ATT models in the development set with the weights in the
attention layers in Figures 4-7.

In Figure 4, Examples (1) and (2) are the instances for which only SELFATT failed to predict the
answer and for which only MP-POOL-SELFATT correctly predicted the answer, respectively. For these
examples, the weights in the attention layers behave similarly. Figure 5 shows the weights for Exam-
ple (1). In this sentence, the correct NOM of stretch, Tanigawa, is also NOM of respond, which is relatively
easy to predict. SELFATT, which is designed to capture dependencies over a single predicate-argument
structure, failed to predict NOM of stretch most likely because the answer Tanigawa is distant from the
target predicate with its limited syntactic clues. Conversely, MP-POOL-SELFATT and MP-SELFATT
successfully predicted the answer by taking the answer token 7Tanigawa into account when computing the
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ministries | 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 ¥} 0.00 0.18 0.03 0.02 0.00 0.01 0.00 0.00 0.02 0.00 0.00
staff | 0.00 0.21 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 10.26 0.02 0.02 0.00 0.01 0.00 0.00 0.04 0.00 0.00

ministries | 0.00 0.06 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.32 0.02 0.04 0.01 0.00 [notification +
staff | 0.00 [0¥EH 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.11 0.18 0.01 0.03 0.00 0.00 |[VERBALIZER

ministries | 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.030.08 0.01 0.00
staff | 0.00 {e8R 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.26 0.05 0.00 0.00
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Figure 6: Attention weights of MP-POOL-SELFATT for Example (3).

artist | 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.01 0.01
Masahiko | 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.01 0.01 rform
Mr. | 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.03 0.00 p
technique | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.01 0.00
& , o~ > ' . .
kys| [T § § 8¢ FF 0§58 E g || predicates |
§ <
L+

Figure 7: Attention weights of MP-POOL-SELFATT for Example (4).

score of the counter candidate thinking. MP-SELFATT, the model that incorporates the other predicate
positions into SELFATT, significantly increases the weight for the answer token. MP-POOL-SELFATT,
which explicitly integrates the predictions for the other predicates, further increases the weight for the
answer token. This example demonstrates that the proposed extensions successfully predict a correct
argument by considering the relation to the argument in another predicate where the syntactic relation
between the predicate and argument is much clearer and thus the argument relation is relatively easy to
predict. Due to space limitations, we cannot show the weights for Example (2), but the same also holds
for that example. MP-POOL-SELFATT focuses on professors, which is the “easy-to-predict” NOM ar-
gument of dive, when the model computes the scores of this token for take and, consequently, support.
SELFATT and MP-SELFATT assign smaller weights to that token for fake and even smaller weights for
support, which is far from the answer token.

Examples (3) and (4) are the instances where all the three models failed to predict the answers. Figure 6
illustrates the attention weights in MP-POOL-SELFATT for Example (3). To solve this example, the
model is expected to understand that NOM of accept should be the same as the persons who received
the order from the ministries. However, MP-POOL-SELFATT could not acquire this kind of dialog-level
knowledge and pays little attention to the correct argument staff when the model computes the score of
the wrong answer ministries for NOM of accept.

In Example (4), NOM of the nominal predicate demonstration can be a clue for predicting NOM of
perform. However, the models currently do not predict the arguments of nominal predicates and therefore
cannot capture the relationships between these two sufficiently (Figure 7). This example suggests one of
our future directions: the joint prediction of verbal and nominal predicates.

6 Related Work

End-to-End Models in SRL.  End-to-end approaches to SRL have been widely explored recently, and
many state-of-the-art results have been achieved (Zhou and Xu, 2015; He et al., 2017; Marcheggiani and
Titov, 2017; Tan et al., 2018). Following these advanced models, we adopted a stacked bi-RNN as our
base model.

Methods for Dealing with Long-Distance Dependencies in End-to-End Models In SRL studies,
Marcheggiani and Titov (2017) proposed a variant of deep bi-RNN models that connects the intermediate
representations of the predictions for the words in syntactic dependency relations on top of the deep RNN.
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Very recently, aiming to directly connect the related words, Tan et al. (2018) stacked self-attention layers,
each of which followed a feedforward layer, in a manner similar to the method of Vaswani et al. (2017),
which was originally applied to an encoder-decoder model.

Self-attention has been successfully applied to several NLP tasks, including textual entailment, sen-
timent analysis, summarization, machine translation, and language understanding (Paulus et al., 2017;
Shen et al., 2018; Lin et al., 2017; Vaswani et al., 2017). Techniques using pooling have been applied
to merge intermediate expressions in predictions in the tasks where related tokens are often at long dis-
tance such as coreference resolution and machine reading (Clark and Manning, 2016; Kobayashi et al.,
2016). One major contribution of this study is its novel idea of using these techniques for capturing
long-distance dependencies for modeling interactions among multiple predicate-argument relations.

Approaches to Capturing Multi-Predicate Interactions For Japanese, Ouchi et al. (2015) jointly
identified arguments of multiple predicates by modeling argument interactions with a bipartite graph.
Iida et al. (2015) constructed a subject-shared predicate network and deterministically propagated the
predicted subjects to other predicates. Shibata et al. (2016) adapted a NN framework to Ouchi et al.
(2015)’s model using a feedforward network. For an end-to-end neural model, Ouchi et al. (2017) used
a Grid RNN to capture multiple predicate interactions. Through experiments, we demonstrated that our
proposed models outperformed these models in terms of the overall F on a standard benchmark corpus.*

To the best of our knowledge, there are few previous studies related to SRL considering multiple pred-
icate interactions for languages other than Japanese. Yang and Zong (2014) performed a discriminative
reranking in the role classification of shared arguments. Lei et al. (2015) proposed an SRL model based
on the dimensionality reduction on a tensor representation to capture meaningful interactions between
the argument, predicate, corresponding features, and role label. It is not straightforward to compare these
methods with our models; however, it is an intriguing future issue to consider how well the techniques
devised for Japanese PAS analysis work for other languages.

Other Approaches to Argument Omission In order to perform robust prediction for arguments with
fewer syntactic clues, several previous studies have explored various types of selectional preference
scores that consider the semantic relations between a predicate and its arguments (Iida et al., 2007;
Imamura et al., 2009; Komachi et al., 2010; Sasano and Kurohashi, 2011; Shibata et al., 2016). This
direction of research is orthogonal to our approach, suggesting that the models could be further improved
by being combined with these extra features.

7 Conclusion

In this study, we have proposed new Japanese PAS analysis models that integrate prediction information
of arguments in multiple predicates. We extended the end-to-end style model using a deep bi-RNN and
introduced the components that consider the multiple predicate interactions into the input and last layers.
As aresult, we achieved a new state-of-the-art accuracy on the standard benchmark data.

Our detailed analysis showed that the proposed models successfully predict the correct arguments
by using the information of the “easy-to-predict” arguments in other predicates. In addition, the error
analysis suggests that jointly predicting the arguments of verbal and nominal predicates may further
improve the performance. An intriguing issue we plan to address next is how to extend the proposed
interaction layer to cross-sentential interactions of PASs.
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Appendix A: Implementation Details

Hyperparameters The hyperparameters were selected to obtain a maximum F; on the development
set. The dimension of the word embeddings d,, was set to 256. The dimension of the hidden state of
the GRUs d, was set to 256 from {128,256,512} and the number of the GRU layers was set to 10
from {6, 8,10, 12}. The dropout rate of the GRUs was set to 0.1 from {0.0,0.1,0.2}. The dimensions
of the outputs of the nonlinear transformations f, g and h;; were set to 1024 from {512, 768,1024}.
We set the batch size of the training data as the number of predicates in each sentence. We employed
the negative log likelihood as the training loss and an Adam optimizer with 8; = 0.9, f2 = 0.999,
and € = le — 08. During the training, we halved the learning rate when the F; score on the devel-
opment set did not improve after four epochs, and restarted training with the parameters that obtained
the maximum F7 score. We repeated this process and terminated the training when the new learning
rate was less than 1/16 of the initial value. The initial learning rate of each model was selected from
{0.00002, 0.00005,0.0001,0.0002,0.0005}. The output threshold for each label 6. € [0.0,1.0] was
searched in increments of 0.01 to maximize the Fj score in the training data.

Preprocessing As initial word embeddings, we used vectors obtained via the same procedure as the
one proposed by Matsubayashi and Inui (2017) using Japanese Wikipedia articles. These vectors were
fine-tuned in the training. Following their approach, we used part of speech (PoS) vectors for words that
were not contained in the lexicon of the Wikipedia articles. We used the CaboCha parser v0.68 > with
the JUMAN dictionary for word segmentation and PoS tagging of NTC.

*https://taku910.github.io/cabocha/
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Abstract

We present a method for detecting annotation errors in manually and automatically annotated
dependency parse trees, based on ensemble parsing in combination with Bayesian inference,
guided by active learning. We evaluate our method in different scenarios: (i) for error detection
in dependency treebanks and (ii) for improving parsing accuracy on in- and out-of-domain data.

1 Introduction

Structural syntactic information is an important ingredient for many NLP applications. In recent years,
the Universal Dependencies (UD) framework (Nivre et al., 2016) has become increasingly popular as a
source for syntactically annotated training data, mainly for two reasons. First, the UD project provides
a unified framework for multilingual applications and second, its annotation scheme encodes semantic
information in a more transparent way, yielding better support for semantic applications.

The project already provides treebanks for over 60 languages, some of them, however, rather small. To
obtain high parsing accuracies, a sufficient amount of training data is needed, preferably from different
genres and domains. Since treebanking is a notoriously time-consuming task, most of the UD treebanks
have been automatically converted from other frameworks and thus include some noise introduced in
the conversion, in addition to the usual annotation noise that stems from inconsistencies in the human
annotations. Due to limited funding, a full manual quality check is often not feasible. Therefore, methods
that are able to detect errors in automatically predicted parse trees are of great value for data clean-up
and might also be of use for domain adaptation settings and when dealing with low-resource languages.

We present such a method, aimed at the detection of parser errors in manually and automatically
predicted parse trees. We evaluate our approach in two different scenarios, i) in an active learning (AL)
setup where we try to detect and manually correct errors in existing treebanks, and ii) in a domain
adaptation setting where we automatically improve parsing performance without manual correction. We
make an implementation of our approach publically available.!

2 Model

Our error detection model is an adaptation and substantial extension of MACE-AL (Rehbein and Rup-
penhofer, 2017) which combines a generative, unsupervised method for estimating annotator reliability
(MACE) (Hovy et al., 2013) with active learning for the task of error detection in automatically annotated
data. MACE-AL can be applied to any classification task and has been tested in two applications, POS
tagging and Named Entity Recognition (NER) (Rehbein and Ruppenhofer, 2017). The model is, how-
ever, not applicable to tasks with structured output such as trees or graphs. In contrast to POS tagging or
NER where we try to detect annotation errors in the predicted labels for individual tokens, when looking
for errors in parse trees we have to deal with directed, labelled relations between nodes, and changing
the relation or label between two nodes in the tree usually requires the adjustment of other attachment
and labelling decisions in the same tree.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
'"MACE-AL-TREE can be downloaded from http://www.cl.uni-heidelberg.de/research/downloads/
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She eats spaghetti with chopsticks She eats spaghetti with chopsticks She eats spaghetti with chopsticks

Figure 1: Correct tree (left), tree with label error (center) and tree with attachment error (right).

A high-precision method for error detection in automatically predicted trees, however, would be of
tremendous use for many treebanking projects. Below, we first describe the approach of Hovy et al.
(2013) and Rehbein and Ruppenhofer (2017) for unstructured data (§2.1) and then our extension of the
model for the purpose of error detection in tree structures (§2.2).

2.1 MACE-AL: Error detection in unstructured data

MACE-AL combines variational inference (VI) with active learning (AL) to model the reliability of
automatically predicted annotations. As input, it takes the output of a committee of classifiers (e.g. the
output of NV POS taggers) and uses Bayesian inference to learn which taggers’ predictions are more
trustworthy than others. The method is unsupervised, meaning that the distribution of the true labels
Y = {y1,v2, ..., yn} is unknown. Instead, the model tries to approximate the posterior distribution over
the set of unobserved random variables Y by a variational distribution Q(Y"), based on the observed data
X (the predictions made by the classifier committee).

MACE-AL is based on MACE (Hovy et al., 2013), a tool for estimating annotator reliability in a
crowdsourcing setting. MACE implements a simple graphical model where the observed annotations A
are generated as follows. The (unobserved) “true” label 7T} is sampled from a uniform prior, based on the
assumption that the annotators always try to predict the correct label and thus the majority of the anno-
tations should, more often than not, be correct. To model each annotator’s behaviour, a binary variable
S;j (also unobserved) is drawn from a Bernoulli distribution that describes whether annotator j is trying
to predict the correct label for instance ¢ or whether s/he is just spamming (a behaviour not uncommon
in crowdsourcing settings). If S;; is 0, the “true” label T; is used to generate the annotation A;;. If .S;; is
1, the predicted label A;; for instance ¢ comes from a multinomial distribution with parameter vector ;.

Rehbein and Ruppenhofer (2017) showed that MACE, while highly successful when applied to human
annotations from crowdsourcing, is not able to outperform the majority baseline when the predictions
have been generated automatically by a classifier committee. MACE-AL, however, addresses this short-
coming by combining variational inference with human feedback from active learning. Active learning
is an approach to minimise human annotation effort by only selecting instances for labelling that pro-
vide useful information to the classifier. It has been shown that annotating only a small set of carefully
selected instances not only reduces manual annotation effort but can yield the same accuracy as when
training on a larger set of randomly selected instances (Settles, 2009).

The extended model, guided by human feedback, is now able to pick up on the signal and significantly
outperforms the majority baseline as well as a query by committee strategy for error detection where the
next instance for manual inspection is selected based on the entropy in the classifiers’ predictions.

2.2 MACE-AL-TREE - An extension to structured data

To be able to apply the model to tree structures, we need to solve the following two problems. First, we
need to track two different types of errors, namely labelling errors and attachment errors, and encode
them in a meaningful way so that the variational model is able to learn from the data. Second, we need
to collect the local predictions from the variational model and translate them back into a tree structure.

Error encoding We need to track labelling errors where a directed arc has been assigned the wrong
label (Figure 1 (center)), and attachment errors where the relation between two nodes has been predicted
incorrectly (Figure 1 (right)). We do this by training two separate variational models, one for the labelling
decisions and the other one for the attachment relations between nodes.”

2Combining both into one model would blow up the number of possible labels and thus make the model unnecessarily hard
to learn, and would also take too much time for training to be used in an active learning scenario.
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Figure 2: Error detection model with VI and AL (Error Detection (ED) precision: no. of True Positives /
total no. of instances selected for error correction; True Positives: no. of instances selected for correction
that are true errors; Recall: correctly identified errors / total no. of errors in the corpus).

Let’s assume we have a dependency tree forest where each tree consists of a set of nodes V', one for
each word in the sentence, and of a set of edge labels R that hold between the nodes. Let L = [y, 1o, ..., L
be the set of all possible edge labels. A = ay, ..., a, is the set of annotators, in our case the committee
of dependency parsers used for obtaining the predicted parse trees. We then train two variational models
where the first model aims at learning the reliability of each annotator with regard to the edge label
predictions, and the second model learns the reliability of the attachment decisions for each of the parsers.
The input to the labelling model for MACE-AL-TREE is a matrix with all labels predicted by the
annotators (parsers) Aj_,, and the MACE-AL-TREE attachment model takes a matrix with the head
information for each token, extracted from the parser output of the different annotators A;_,,.

After preprocessing the data to obtain the parser output trees, we transform the predicted trees as de-
scribed above and train the variational inference model of MACE-AL-TREE separately on the label and
attachment encodings (Figure 2). After training, each model outputs the posterior entropies for its re-
spective decisions about the preprocessed input. We then alternate in extracting the label and attachment
decisions with the highest posterior entropy, according to the variational model. The intuition behind this
is simple: The labels or attachments with the highest entropy are most likely incorrect.

We either present the selected instances to the human annotator and request the correct annotation
or, in a simulation, we extract the correct annotation from the gold tree. In the first setting, the human
annotator is shown the sentence with the token in question highlighted in blue while and all the nodes that
are predicted as potential heads of the token by any of the parsers are highlighted in red. The annotator
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then enters the correct label and head for this token. The information is used to update both the label and
attachment matrices by randomly selecting one of the annotators and replacing the predictions of that
annotator for the instance in question with the new prediction.? Note that the update does not necessarily
result in an increase in accuracy (or decrease in the number of errors) because the prediction may already
have been correct to start with. After updating the annotation matrices, we start over and retrain the
variational model on the updated annotations. To save time, we alternate in retraining the models so that
each model is retrained after every other iteration. We can repeat this process as many times as we like.

Generating trees Once we are done with error correction, we want to output the trees. However,
what we get from the variational model are local decisions for individual labels and edges, and it is not
straight-forward to generate connected trees based on these decisions. We test two different methods for
generating the output trees. In the first setting, MACE-AL-TREE, we simply use the final predictions of
the variational inference model to select the most trustworthy labels and edges and combine those in a
final tree. Please note that this does not necessarily result in a fully connected tree, a problem that also
affects the output of many local, greedy parsers. Our second approach uses the Chu-Liu-Edmonds (CLE)
algorithm (Chu and Liu, 1965; Edmonds, 1967) to select the highest scoring, well-formed tree from a
weight matrix, where the weights are based on the votes from the parser committee, weighted by the
competence estimates learned by the variational inference model (MACE-AL-TREE-CLE).

Overall workflow Figure 2 illustrates the workflow of our error detection model. During preprocess-
ing, we collect parse predictions from a committee of /V dependency parsers. Based on these predictions,
we create the two input matrices, one for dependency labels and one for attachments, that we use to train
the two variational inference models. Based on the posterior entropy from the variational inference
model, we select the next instances to be annotated during active learning. After the instances have
been corrected, we alternately retrain the variational inference model: in even iterations we retrain the
labeling model and in odd runs the attachment model. This saves time over retraining both models in
each iteration. We do, however, update both matrices in each iteration, based on the attachment and label
annotations we get from the human annotator (the oracle).

Once we are done with active learning, we collect the annotations for the labels and the attach-
ments and generate the output trees, either based on the predictions from the variational inference model
(MACE-AL-TREE) or on the output from the Chu-Liu-Edmonds algorithm (MACE-AL-TREE-CLE).

A key advantage of our model is that, while making use of the feedback from active learning, we do not
have to retrain the parsers after each iteration, which would be infeasible due to the time requirements.
Instead, we only train the parsers once, for offline preprocessing, before active learning starts.

3 Experiments

In our experiments, we use five different dependency parsers for preprocessing to predict the parse trees.
We employ the neural BiILSTM parser (BISTGqpp) of Kiperwasser and Goldberg (2016) and the RBG
parser (Lei et al., 2014), both graph-based, as well as the transition-based IMSTrans parser (Bjorkelund
and Nivre, 2015) and the slightly outdated Malt parser (Nivre et al., 2006).* As the fifth model, we
use our in-house implementation of the head-selection parser of Zhang et al. (2017) which also employs
bidirectional LSTMs (Hochreiter and Schmidhuber, 1997) for learning the feature representations. We
chose the parsers so that they cover a range of different parsing algorithms and approaches, as it has been
shown before that the parsers’ predictions, due to the inductive biases of the algorithms involved, can
complement each other (McDonald and Nivre, 2007). All parsers use default settings as reported in the
literature. For the BIST g, parser, we selected the model with the highest LAS on the development
set after 10 training iterations.> We run the Malt parser with the settings arc-eager; liblinear without
any further optimisation. For all experiments, we remove the language-specific extended labels and only
train the parsers on the universal dependency relations.

3Other update strategies such as always updating the predictions of the annotator with the lowest performance, or updating
the predictions of all annotators did not yield the same increase in results.

*It has been shown that the most important success criterion for ensemble parsing is the diversity of the base parsers rather
than model complexity or a high accuracy for the individual parsers (Surdeanu and Manning, 2010).

>We started with 30 iterations but noticed no further increase in LAS after the first 10 iterations.

110



genre #trees | dev test train # unlabelled sent.
answers 3,488 | 1,000 | 2,488 | 13,134 27,274
email 4,900 | 1,000 | 3,900 | 11,722 1,194,173
newsgroups 2,391 | 1,000 | 1,391 | 14,231 1,000,000
rewiews 3,813 | 1,000 | 2,813 | 12,809 1,965,350
weblogs 2,030 | 1,000 | 1,030 | 14,592 524,834

Table 1: Distribution in the UD-En web treebank (training set does not include data from the respective
genre but contains all the remaining treebank sentences excluding the ones for this particular genre).

3.1 Error detection with active learning for manually annotated trees

The first experiment focusses on error detection in the German UD treebank which includes newswire,
reviews and text from Wikipedia. Our goal is to test our error detection method in a realistic setup where
we want to improve the quality of an existing dataset with minimal manual effort.

We run the task as an active learning experiment with a real human annotator in the loop who provides
the correct labels for the selected error candidates. The annotator is a trained linguist with experience
in linguistic annotation. The annotation task, however, is not easy due to the non-canonicity of the
web data which includes many ungrammatical structures and does not conform to standard spelling
conventions. Therefore, we asked a second trained linguist to adjudicate the disagreements between the
original treebank annotations and the modifications carried out by the first annotator, using MaltEval
(Nilsson and Nivre, 2008) to visualise the trees.

For preprocessing, we split the training part of the treebank into two sections and trained the five
parsers on each section. Then we used the parsing models to predict the trees for the test set. Splitting
the training data has the advantage that we now have 10 different versions of the test set (5 parsers x 2
training sets) that we can use to extract the input matrices for the active learning approach. A systematic
and principled evaluation of the impact of data size and the number of annotators for the error detection
approach is still outstanding.® Here we start with a set of 7 annotators (parsing models) for preprocessing
as this setup yielded good results for POS tagging and NER (Rehbein and Ruppenhofer, 2017).”

Then we run 200 iterations of active learning where in each iteration the human judge had to assign
the correct dependency label and head for the next token selected for annotation. After 200 iterations, we
generated the parse trees for the corrected instances using the CLE algorithm weighted by the competence
scores from the VI model (see §2.2) and compared them to the original treebank annotations.

The evaluation shows that out of the 200 instances from the test set inspected by the first annotator,
the annotator did not agree with the original treebank annotation in 96 cases. Our second annotator
agreed with the first judge on 71 of the 96 instances. For 15 instances, the annotator prefered the original
annotations and for 8 instances, the second judge would have chosen a label or attachment different
from the original treebank and from the first judge. This corresponds to an error detection precision of
35.5% (71/200) which should be considered as a lower bound as the instances where the second judge
did neither agree with the first annotator nor with the original annotations might also be errors.

3.2 Error detection with AL on out-of-domain data

After validating our approach on the task of identifying errors in manually annotated trees, we now
present an AL simulation study where we try to detect errors in automatically predicted parse trees. For
this, we use the data from the English web treebank (Linguistic Data Consortium release LDC2012T13),
originally annotated with constituency trees (Bies, 2012) and automatically converted to universal depen-
dencies. The treebank includes data from five different web genres (reviews, weblogs, answers, emails,
newsgroups) and provides us with a good test bed for error detection in a domain adaptation scenario.
The simulation study also allows us to systematically evaluate different parameters in a controlled setting,
without the need to employ human annotators.

SPreliminary experiments on English showed the same results with a smaller number of annotators for some datasets while
for others a higher number of annotators was crucial to obtain a high error detection precision.

"To obtain a diverse parser committee, we selected the BIST and Dense models trained on the first section of the treebank,
the Malt parser (arc-eager, lib-linear) trained on the second section, and both models for the RBG and IMSTrans parsers.
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line answer | ED | email | ED | newsgroup | ED | reviews | ED | weblog | ED
no. LAS prec | LAS | prec LAS prec LAS prec LAS prec
parser LAS for individual parsers
1 BISTGraph 85.03 82.27 82.86 86.73 84.73
2 Dense 84.57 82.81 82.43 86.41 84.41
3 IMSTrans 84.99 82.21 81.94 86.19 84.75
4 Malt | 81.38 78.61 79.18 83.24 79.23
5 RBG | 85.01 82.23 83.53 86.41 84.93
# iterations MACE-AL-TREE
6 0 86.82 - 84.07 - 85.72 - 87.28 - 86.98 -
7 100 87.04 85.0 | 84.26 | 89.0 86.07 92.0 87.40 49.0 87.33 78.0
8 200 87.27 86.0 | 84.45 | 86.5 86.34 80.5 87.48 42.0 87.65 75.5
9 300 87.46 83.0 | 84.61 | 83.3 86.64 78.7 87.45 24.3 87.96 73.7
10 400 87.64 80.5 | 84.77 | 80.7 86.91 76.7 87.56 29.0 88.27 72.5
11 500 87.84 79.8 | 84.96 | 81.8 87.14 73.4 87.68 33.8 88.56 71.2
12 600 88.04 79.0 | 85.11 | 80.2 87.31 68.3 87.84 39.2 88.84 69.7
13 700 88.20 76.7 | 8528 | 79.7 87.60 69.1 88.02 44.0 89.13 69.3
14 800 88.37 75.5 | 8545 | 719.7 87.90 70.1 88.17 46.6 89.46 69.7
15 900 88.51 734 | 85.63 | 79.7 88.13 68.9 88.36 49.7 89.71 67.3
16 1000 88.69 73.1 | 8579 | 79.2 88.41 69.2 88.54 52.7 89.97 67.3
# iterations MACE-AL-TREE-CLE
17 0] 8691 - 84.10 - 85.67 - 87.47 - 86.87 -
18 500 87.86 742 | 8493 | 76.8 87.08 72.4 88.19 59.6 88.49 72.8
19 1000 88.67 68.8 | 85.75 | 76.4 88.33 68.4 88.74 53.0 89.93 68.8
# iterations Majority vote baseline
20 0 86.72 - 84.06 - 85.52 - 88.05 - 86.83 -
21 500 87.07 27.0 | 8438 | 29.8 86.01 25.0 88.47 35.0 87.49 30.0
22 1000 87.35 244 | 8459 | 24.2 86.44 23.7 88.91 35.8 88.01 26.7

Table 2: Performance for individual parsers and parse combinations based on the predictions of the VI
model with AL (MACE-AL-TREE) and with CLE (MACE-AL-TREE-CLE) for generating the trees
(simulation study; Labelled attachment score (LAS) and error detection (ED) precision)

We preprocess the data as follows. First, we separate the data according to the five web genres and
put all the trees for each genre into a genre-specific test set, pretending that no annotated trees for this
genre are available for training. Instead, we use all remaining genres as training data. We further split
the available test data for each genre into a development set, using the first 1,000 trees of each genre, and
a test set including all the remaining trees (Table 1).

Table 2 (lines 1-5) shows the results for the individual baseline parsers on the different web genres.
Please note that we did not optimise the parsers on the data and thus the comparison should be taken
with a grain of salt. However, it is interesting to see that there is not one best parser but that the different
parsers (excluding the ’vintage’ Malt system) all yield results in the same range and the best performing
parser varies depending on the dataset.®

Then we run an AL simulation for 1,000 iterations, where in each iteration one instance is selected
according to our error detection model and the correct label and attachment decision is retrieved from
the gold standard. Table 2 (lines 6-16) shows the parsing accuracies after increasing iterations of error
correction (from 0-1000 where O is the output of MACE-AL-TREE with O iterations of active learning).

We first compare the results for MACE-AL-TREE with the ones for the best individual parser and ob-
serve an increase in LAS between 0.6% (for reviews) and more than 2% (for newsgroups and weblogs).
This increase was obtained without any manual error correction. Using MACE-AL-TREE in this par-
ticular setup can be seen as a form of ensemble parsing where we use the predictions of the variational
inference model to select the edges and labels of the parser output trees to be included in the final tree.

Now we want to evaluate the precision of the error detection method after increasing iterations of
error correction via active learning. We calculate error detection (ED) precision as the number of error
candidates that are real errors, divided by the number of instances selected for error detection.

Table 2 (lines 6-16) shows the LAS and ED precision for the different web genres. In the beginning,
ED precision is quite high (between 78-92%) for nearly all genres, with the exception of the reviews.

8The results are not directly comparable to the ones from the SANCL shared task where the parsers were trained on the
PTB while we use the data from the other web genres as training data.
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line no. | #iterations | ED prec | LAS | lineno. | #iterations | ED prec | LAS
0 — 88.8
100 74.0 89.7
200 66.0 90.3
300 64.3 91.1
400 62.7 91.7
500 60.0 92.3

600 57.8 92.8
700 55.3 93.3
800 54.4 93.9
900 52.7 94.3
1000 50.1 94.6

oKV, I NS | N
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Table 3: Results for error detection on data from the German TiGer treebank for increasing iterations of
AL; trees generated with MACE-AL-TREE-CLE (simulation study; ED prec: error detection precision).

Here we start with an ED precision of 49% after 100 iterations. While for the other genres it becomes
slightly harder with increasing numbers of iterations to detect new errors and ED precision slowly de-
creases, for the reviews the picture is rather mixed. After inspecting 1,000 instances we have a higher
precision than in the beginning. We can only suspect that this might be an artefact of either idiosyncracies
in the data or inconsistencies in the gold annotations.

While precision for error detection is high for all genres, the increase in LAS seems to vary across
individual genres. This is because the number of tokens in the test sets also varies. The inspected 1,000
tokens correspond to 2,6% of the answers data, 2.2% for emails, 3,9% for newsgroups, 2,4% for reviews
and 4.4% for the weblogs data. This means that we examined between 2.2 to 4.4% of the tokens in the
data which resulted in an increase in labelled accuracy (LAS) in the range of 2 to 5%, which seems like
a very good trade-off between time investment and reward in terms of data quality.’

Next, we compare the two different methods for generating the final parse trees. The first meth-
ods simply uses the predictions of the variational inference model (MACE-AL-TREE) and combines
the highest-ranked labels and attachments into a tree. Our second method uses the Chu-Liu-Edmonds
algorithm to generate well-formed trees (MACE-AL-TREE-CLE) that also allow for non-projectivity.
Interestingly, as shown in Table 2 (lines 17-19), we notice only very small differences between the two
methods and it is hard to say which method is superior as the differences in results might also be an effect
of different initialisations of the variational inference model.'® This observation is in line with the results
from Zhang et al. (2017) who compared the output of their greedy local bi-LSTM parser with the same
trees that had undergone additional postprocessing with the CLE algorithm. The authors also report only
insignificant improvements for postprocessing German and Czech parser output.

Finally, we want to evaluate the importance of the generative unsupervised model as a component in
our error detection model. Surdeanu and Manning (2010) emphasize that the most important success
criterion for ensemble parsing is not the complexity of the model but the diversity of the baseline parsers.
Therefore it is conceivable that we could get similar results using a simpler model, based merely on the
predictions of the parsers without the variational inference model. To test this, we run 1,000 iterations of
AL but select the next instance based on the entropy in the predictions of the baseline parsers instead of
using the posterior entropy from the VI model (Table 2, lines 20-22) and generate the final trees running
the CLE algorithm on the unweighted votes of the parser ensemble.

Table 2 shows that for 4 out of 5 genres we get substantially higher results using MACE-AL-TREE.
After 1,000 iterations our model shows an increase in LAS that is between 1-2% higher than the one for
the simpler model (lines 16, 19 and 22). The only outlier is the reviews subcorpus which also seemed to
behave differently from the other genres with regard to error detection precision.'!

“Improvements in LAS over the best individual parser after correcting 1,000 instances: answers 3.6%, emails 2.9%, news-
group 4.8%, reviews 2.0%, weblogs 5.0%.

9As we use the model in an active learning setup where we need to keep the time requirements for training as small as
possible, we only initialise the model once. The original model of Hovy et al. (2013) (MACE) allows for a higher number of
restarts with random initialisation and then selects the best model.

"'"The lower error detection precision for the reviews in combination with higher LAS (line 22: ED: 35.8%, LAS: 88.91%
after 1,000 iterations) is due to the fact that the initial predictions for the reviews based on the majority vote of the baseline
parsers yielded a higher accuracy, which means that we start with a smaller amount of errors in the data. As ED precision is
based on the overall number of errors in the set, we obtain a lower precision even though the model was able to detect more
errors than MACE-AL-TREE.
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core args | coord & modifiers | clause structure other head type # head type #

SB | 42 | CJ 28 | RC 12 | CM, CC, :

OA | 23 | D > | pAR 12 | DM modifiers 128 | clauses 43
PD | 11 | APP 8 | OC 10 | NK, 28 punctuation | 77 core args | 43
DA 8 | MO 58 | RE 6 | NMC F gt igs

e | o | MR % | s > | PN coordination | 39 apposition | 10
PG 2 | OP 11 ROOT 11 SVP noun kernel 19 other 26

Table 4: Distribution of labelling errors (left table) and attachment errors (right table) in the German
TiGer data found in 1000 iterations of AL error correction.

3.3 Error detection with AL on in-domain data

We showed that our approach yields high error detection precision in out-of-domain scenarios. We now
want to test whether our method is also suited for in-domain settings where we start with a higher parser
output quality, which means that errors in the data might be harder to find.

Again, we run a simulation study, but this time on German newspaper text from the TiGer treebank
(Brants et al., 2002). We use the version from the SPRML 2014 shared task (Seddah et al., 2014) with
40,472 sentences in the training set and 5000 sentences for testing. We train five parsers!? on the training
portion of the data and predict parse trees for the automatically tagged test file provided by the shared
task organisers. Parsing accuracies for the individual parsers on our testset with automatically predicted
POS and morphological tags are in the range of 84.2-90.3% UAS and of 81.1-87.6% LAS.

We then run an AL simulation on the first 500 sentences in the testset, with 1000 iterations of active
learning. In each iteration we select one instance and replace its head and label with the gold information.
Again, it is not guaranteed that each modification will improve results as we might select instances which,
according to the VI model, are already predicted correctly. Table 3 shows results for increasing iterations
of error correction with AL, and error detection (ED) precision and LAS.

We can observe the same trend on the German in-domain data as we saw for the English out-of-domain
data. LAS for the generated output trees based on the predictions of the parser ensemble with CLE (Table
3, line 1), weighted by the competence score from the VI model, is significantly higher with 88.9% than
the score for the best individual parser (87.6% LAS). Looking at increasing numbers of AL iterations
(lines 2-11), we also see a high error detection (ED) precision, starting with 70% and slowly decreasing
as it gets harder to find new errors. After 1000 iterations, we still have an error detection precision of
> 50%, meaning that every second instance that we inspect is a real error. In terms of accuracy, running
1000 iterations of error correction on the TiGer subcorpus translates into an increase in LAS from 88.8%
to 94.6% while keeping the number of instances for manual correction reasonably low.

3.4 Error analysis

Having established that our model is able to detect errors in manually and automatically annotated parse
trees on in-domain and out-of-domain data, we would now like to learn more about the types of errors
our model is able to detect. We thus evaluate the output trees generated from the German newspaper
corpus (Section 3.3) before and after running 1000 iterations of AL for error correction.

Overall, our error correction resulted in 385 changed attachment decisions and in 298 modified de-
pendency labels. In 167 cases, both label and attachment have been changed. Looking only at the label
errors, we can see that the errors are distributed over 25 different dependency labels. The most frequent
ones concern labels for core arguments (subject (SB), direct and indirect object (OA/DA), predicate (PD)
and genitive attributes (AG/PQG)) that are, due to the semi-free German word order and ambiguity arising
through case syncretism, one of the major sources for parsing errors.

Other frequent labelling errors include the distinction between verb and noun attachment for PPs
(modifier (MO)/noun modifier to the right (MNR)). The distinction between modifying (MO) and oblig-
atory PPs (OP) is another frequent error that the model was able to detect. Our model also finds errors
concerning coordination (CJ, CD) and clause structure, such as relative clauses (RC), parenthesis (PAR),
clausal objects (OC), repeated element (RE) and reported speech (RS).

2For German, we used the IMSTrans parser, the head-selection parser and the BISTrqpn parser that we also used in the
previous set of experiments. In addition, we also use the transition-based biLSTM parser of (Kiperwasser and Goldberg, 2016)
(BIST7rans) and the RBG parser (Lei et al., 2014).
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# unlabelled | LAS LAS | LAS LAS LAS
sentences answer | email | newsgroup | reviews | weblog
Results without self-training (best individual parser)
[ [ 85.03 [ 8281 | 8353 [ 86.73 ] 84.93 ]
Baseline 1: self-training (best individual parser)

5,000 85.11 83.40 | 83.23 87.19 85.14
10,000 85.33 83.25 | 84.06 87.06 85.32
15,000 85.43 83.37 | 83.62 87.38 84.82
20,000 85.26 83.25 | 82.52 87.01 85.27
25,000 - 83.46 | 82.56 87.50 85.79

Baseline 2: self-training (agreement betw. 2 parsers)

5,000 85.36 82.58 | 83.38 87.33 85.80
10,000 - 82.65 | 82.56 87.28 86.22
15,000 - 82.53 | 83.34 87.31 85.57
20,000 - 83.16 | 83.64 87.62 85.26
25,000 - 83.09 | 82.82 87.74 85.04

MACE-AL-TREE (with self-training)

5,000 85.77 83.07 | 83.93 87.39 86.27
10,000 85.89 83.71 | 84.25 87.82 86.28
15,000 85.74 83.85 | 83.83 87.54 86.08
20,000 86.09 83.51 | 84.41 87.93 86.26
25,000 - 84.11 | 85.09 88.04 86.16

MACE-AL-TREE (without self-training)
[ [ 86.82 [ 84.07 | 85.72 [ 8728 ] 8698 |

Table 5: Baselines and results for self-training on the different web genres.

Looking at the attachment errors that have been detected by our model (Table 4, right), we find that the
most frequent head types that have been re-attached are modifiers (MO, MNR). This not only includes
PPs but also adverbal and adjectival modification. The next frequent error type are incorrectly attached
punctuations. This, however, is not an error type we are concerned with and it might make sense to
exclude punctuation from the error correction.'?> More interesting attachment errors include coordination
(CJ, CD), parenthesis (PAR), apposition (APP) and again the core arguments (OA, AG, DA, SB, PD).

This shows that our model is not biased toward a small set of specific error types but is able to detect
frequent parsing errors that are well-known from the literature (Kummerfeld et al., 2012).

3.5 Domain adaptation with self-training

In the final set of experiments we want to test whether we can use our method to automatically correct
parser output for self-training, to improve parsing accuracy for out-of-domain data. As before, we use the
English web treebank, split into different genres as described above. Again, we pretend that no annotated
training data for the different genres are available. This time, however, we make use of the supplementary
raw text data for the five web genres (Table 1) that were provided for the SANCL shared task (Petrov and
McDonald, 2012). The data is segmented into sentences and pre-tokenised. For preprocessing, we use
UDPipe (Straka and Strakové, 2017) with the pretrained models from the CoNLL-2017 shared task.'*
We also remove unlabelled sentences with a length > 60 tokens. !

We parse the additional data using the following settings. As our first baseline, we use the parser that
achieved the best LAS on this particular genre for preprocessing. For our second baseline, we apply the
best two parsers for each genre to parse the raw text and then select only those trees for self-training
where the two parsers agree (excluding punctuation). In the last setting, we use MACE-AL-TREE (but
without active learning) to generate the parse trees for each bin of automatically parsed text, based on
the predictions of the parser ensemble.

We then use the output of each setting and combine the bins with the original training data for each
genre, resulting in new training sets of increasing sizes. Then we train the BIST .4y, parser on the new
data and select the best model, based on the results on the development set after 10 iterations of training.

In the original constituency-based TiGer treebank, all punctuation marks are attached to a virtual root node and have been
reattached during the conversion to dependencies. This results in many arbitrary attachment decisions which makes it hard for
the parser to learn these attachments.

“The models are available from https://1indat .mff.cuni.cz/repository/xmlui/handle/11234/1-1990.

I5For the answers where we only have 27,274 raw sentences, this results in only 4 samples after removing long sentences,
and only one sample for the agreement-based self-training (baseline 2).
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Table 5 reports results for the three different settings. Looking at the self-training results where we
retrain the BIST,qpn parser on the predictions of the best individual parser, we can see mostly small
improvements but sometimes also a decrease in LAS. The results for baseline 2 are also a bit mixed.
When adding only 5,000 additional sentences, we obtain slightly higher results as compared to baseline
1. When adding more data, however, it shows that this improvement is not stable and sometimes results
are lower than for the first baseline. A possible explanation is that the agreement-based selection strategy
favors shorter sentences (as those are the ones where the two parsers tend to agree more often), and that
we thus only add less complex structures that are not very informative for the parser. In addition, we
introduce a bias in the training set that also might have a negative effect on results.

The third setting, however, clearly outperforms our baselines and shows a significant increase in pars-
ing accuracy. Nonetheless, when comparing the results for MACE-AL-TREE with self-training to the
results without self-training we see that our self-training approach fails to beat the results obtained on the
original data on three web genres. We only observe improved results on the emails and on the reviews.
These two genres are also the ones that have the largest amount of unknown words which might explain
why self-training is more promising for emails and reviews than for the other three genres, as Reichart
and Rappoport (2007) have shown that the number of unknown words can be a good indicator for the
potential benefit from self-training.

4 Related work

Most studies on error detection in treebanks have focussed on finding errors in manual annotations
(Dickinson and Meurers, 2003; Ule and Simov, 2004; van Noord, 2004; Dickinson and Meurers, 2005;
Agrawal et al., 2013). Dickinson and Meurers (2003; 2005) proposed the use of variation n-grams to
detect inconsistencies in manually annotated constituency treebanks and Boyd et al. (2008) extend this
line of work to dependency trees. This approach, however, only works for manually annotated treebanks
while for automatic parses where the errors are consistent and systematic, looking for variation in the
predictions will not be very helpful. Volokh and Neumann (2011) address the latter problem and use two
different parsing models to reproduce the annotations in the training data. They consider an instance
to be erroneous if the two parsers agree in their predictions for the attachment of the token but disagree
with the gold standard. The authors report a high precision for automatic error correction. However,
their method only addresses attachment errors but does not handle label errors.

Work on predicting automatic parser errors includes Dickinson and Smith (2011) who develop a
grammar-based method for error detection. They use ngrams extracted from automatic parses and weigh
them by comparing them to the rules in a small gold grammar. Follow-up work (Dickinson and Smith,
2017) builds on this approach and uses parse simulations to extend the training grammar.

Relevant for our work are also studies on parse accuracy prediction. Ravi et al. (2008) predict parser
performance for data from new domains. Our error detection method can be applied to automatic parses
in a domain adaptation setting and can not only predict the accuracy of the parses but also improve
the accuracy of the parser output. Our work can be seen as a combination of semi-supervised and
ensemble-based methods and is thus similar in spirit to Sggaard and Rishgj (2010) who use tri-training
in combination with self-training for dependency parsing and report an increase in labelled attachment
score (LAS) for different languages in the range of 1.4 to 2.6%. Their self-training experiments, however,
were based on a much larger amount of additional data (100,000 sentences vs. up to 25,000 sentences in
our self-training experiments). It would be interesting to see whether more unlabelled data can further
improve results, as suggested by the results for MACE-AL-TREE with self-training.

5 Conclusions

We presented a method for error detection in treebanks, based on the combination of (i) ensemble parsing,
(i1) an unsupervised generative inference model, and (iii) human guidance from active learning. We
validated our model on the task of error detection in manual and automatic annotations using active
learning and showed that we can identify parse errors with precisions in the range of 35% to over 90%.
Our approach can also be used to improve the quality of automatic annotations on out-of-domain data,
without any human feedback, where we obtained gains in accuracy of up to 2% and more.
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Non-local features have been exploited by syntactic parsers for capturing dependencies between sub
output structures. Such features have been a key to the success of state-of-the-art statistical parsers. With
the rise of deep learning, however, it has been shown that local output decisions can give highly compet-
itive accuracies, thanks to the power of dense neural input representations that embody global syntactic
information. We investigate two conceptually simple local neural models for constituent parsing, which
make local decisions to constituent spans and CFG rules, respectively. Consistent with previous find-
ings along the line, our best model gives highly competitive results, achieving the labeled bracketing F1
scores of 92.4% on PTB and 87.3% on CTB 5.1.

1 Introduction

Non-local features have been shown crucial for statistical parsing (Huang, 2008a; Zhang and Nivre,
2011). For dependency parsing, High-order dynamic programs (Koo and Collins, 2010), integer linear
programming (Martins et al., 2010) and dual decomposition (Koo et al., 2010) techniques have been
exploited by graph-based parser to integrate non-local features. Transition-based parsers (Nivre, 2003;
Nivre, 2008; Zhang and Nivre, 2011; Bohnet, 2010; Huang et al., 2012) are also known for leveraging
non-local features for achieving high accuracies. For most state-of-the-art statistical parsers, a global
training objective over the entire parse tree has been defined to avoid label bias (Lafferty et al., 2001).

For neural parsing, on the other hand, local models have been shown to give highly competitive ac-
curacies (Cross and Huang, 2016b; Stern et al., 2017) as compared to those that employ long-range
features (Watanabe and Sumita, 2015; Zhou et al., 2015; Andor et al., 2016; Durrett and Klein, 2015).
Highly local features have been used in recent state-of-the-art models (Stern et al., 2017; Dozat and
Manning, 2016; Shi et al., 2017). In particular, Dozat and Manning (2016) show that a locally trained
arc-factored model can give the best reported accuracies on dependency parsing. The surprising result
has been largely attributed to the representation power of long short-term memory (LSTM) encoders
(Kiperwasser and Goldberg, 2016).

An interesting research question is to what extent the encoding power can be leveraged for constituent
parsing. We investigate the problem by building a chart-based model that is local to unlabeled constituent
spans (Abney, 1991) and CFG-rules, which have been explored by early PCFG models (Collins, 2003;
Klein and Manning, 2003). In particular, our models first predict unlabeled CFG trees leveraging bi-
affine modelling (Dozat and Manning, 2016). Then, constituent labels are assigned on unlabeled trees by
using a tree-LSTM to encode the syntactic structure, and a LSTM decoder for yielding label sequences
on each node, which can include unary rules.

Experiments show that our conceptually simple models give highly competitive performances com-
pared with the state-of-the-art. Our best models give labeled bracketing F1 scores of 92.4% on PTB and
87.3% on CTB 5.1 test sets, without reranking, ensembling and external parses. We release our code at

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: An example workflow of our parsers for the sentence “The stock price keeps falling”. We an-
notate every non-terminal span with its covered span range. Figure 1a shows constituent span classifiers
making 0/1 decisions for all possible spans. Based on the local classification probabilities, we obtain an
unlabeled binarized parse tree (Figure 1b) using binary CKY parsing algorithms. We then hierarchically
generate labels for each span (Figure 1c) using encoder-decoder models. Figure 1d shows the final output
parse tree after debinarization.

https://github.com/zeeeyang/two-local-neural—-conparsers.

2 Model

Our models consist of an unlabeled binarized tree parser and a label generator. Figure 1 shows a running
example of our parsing model. The unlabeled parser (Figure 1a, 1b) learns an unlabeled parse tree using
simple BiLSTM encoders (Hochreiter and Schmidhuber, 1997). The label generator (Figure 1c, 1d)
predicts constituent labels for each span in the unlabeled tree using tree-LSTM models.

In particular, we design two different classification models for unlabeled parsing: the span model
(Section 2.1) and the rule model (Section 2.2). The span model identifies the probability of an arbitrary
span being a constituent span. For example, the span [1,2] in Figure 1a belongs to the correct parse
tree (Figure 1d). Ideally, our model assigns a high probability to this span. In contrast, the span [0, 3]
is not a valid constituent span and our model labels it with 0. Different from the span model, the rule
model considers the probability P([¢, j] — [i, k|[k + 1, 5]|.S) for the production rule that the span [, j]
is composed by two children spans [i, k] and [k + 1, j|, where i < k < j. For example, in Figure 1a, the
rule model assigns high probability to the rule [0, 2] — [0, 0][1, 2] instead of the rule [0, 2] — [0, 1][2, 2].
Given the local probabilities, we use CKY algorithm to find the unlabeled binarized parses.

The label generator encodes a binarized unlabeled tree and to predict constituent labels for every span.
The encoder is a binary tree-LSTM (Tai et al., 2015; Zhu et al., 2015), which recursively composes the
representation vectors for tree nodes bottom-up. Based on the representation vector of a constituent span,
a LSTM decoder (Cho et al., 2014; Sutskever et al., 2014) generates chains of constituent labels, which

120



can represent unary rules. For example, the decoder outputs “VP —S— </L>" for the span [4, 4] and
“NP— </L>” for the span [0,2] in Figure 1c¢ where </L> is a stopping symbol.

2.1 Span Model

Given an unlabeled binarized tree T, for the sentence S, S = wp, w; ... wy—1, the span model trains a
neural network model P(Y[m-] |S, ©) to distinguish constituent spans from non-constituent spans, where
0<i<n-2,1<j<n,i<j. Y;; = 1indicates the span [i, j] is a constituent span ([7, j] € Typ),
and Y; ;) = 0 for otherwise, © are model parameters. We do not model spans with length 1 since the
span [i, 7| always belongs to Ty.

Network Structure. Figure 2a shows the neural network structures for the binary classification model.
In the bottom, a bidirectional LSTM layer encodes the input sentence to extract non-local features. In
particular, we append a starting symbol <s> and an ending symbol </s> to the left-to-right LSTM and
the right-to-left LSTM, respectively. We denote the output hidden vectors of the left-to-right LSTM
and the right-to-left LSTM for wq, w1, ..., wp—11is f1,f5,...,f, and rg,r1,...,r,_1, respectively. We
obtain the representation vector v|[i, j] of the span [¢, j] by simply concatenating the bidirectional output
vectors at the input word ¢ and the input word j,

V[Z,j} = [fi+1;ri;fj+1;rj]. (1)

v[i,j] is then passed through a nonlinear transformation layer and the probability distribution
P(Y}; 3115, ©) is given by

oli, j] = tanh(Wovli, j] + bo), uli,j] = Wyoli, j] + bu, P(Y};;|S,0) = softmax(uli, j]), (2)

where W, b,, W, and b,, are model parameters.
Input Representation. Words and part-of-speech (POS) tags are integrated to obtain the input repre-
sentation vectors. Given a word w, its corresponding characters ¢y, . . ., ¢|,,|—1 and POS tag ¢, first, we

obtain the word embedding Ei; .. character embeddings EZ) ... ,EZ'}:;‘; ', and POS tag embedding

Eztm using lookup operations. Then a bidirectional LSTM is used to extract character-level features.

Suppose that the last output vectors of the left-to-right and right-to-left LSTMs are hfhw and hl, .
respectively. The final input vector X;,,,¢ is given by

Xchar = tanh(chharhlchar + Wghathhar + bChaT)? Xinput = [Elwuord + Xchar; E;OS]’ (3)

where Wi,m, W/, . and by, are model parameters.
Training objective. The training objective is to maximize the probabilities of P(Y[; ; = 1[5, ©) for
spans [i, j] € T, and minimize the probabilities of P(Y[; ;; = 1|5, ©) for spans [i, j] ¢ T at the same

time. Formally, the training loss for binary span classification Lyinary is given by

ACbinary = - Z logP(Y'[z',j] = 1‘87 @) - Z 1OgP(}/[i,j} = 0|S’ @)’
[i:3)€Tup (6.3 Tt 4
0<i<n—21<j<n,i<j)
For a sentence with length 7, there are ”(nT_l) terms in total in Eq 4.
Neural CKY algorithm. The unlabeled production probability for the rule r : [i, j] — [i, k][k + 1, j]
given by the binary classification model is,

During decoding, we find the optimal parse tree 7}, using the CKY algorithm. Note that our CKY
algorithm is different from the standard CKY algorithm mainly in that there is no explicit phrase rule
probabilities being involved. Hence our model can be regarded as a zero-order constituent tree model,
which is the most local. All structural relations in a constituent tree must be implicitly captured by the
BiLSTM encoder over the sentence alone.
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Figure 2: Neural network structures for span and rule models using BiLSTM encoders.

Multi-class Span Classification Model. The previous model preforms binary classifications to iden-
tify constituent spans. In this way, the classification model only captures the existence of constituent
labels but does not leverage constituent label type information. In order to incorporate the syntactic label
information into the span model, we use a multi-class classification model P(Y}; ; = c[S, ©) to describe
the probability that c is a constituent label for span [i, j]. The network structure is the same as the binary
span classification model except the last layer. For the last layer, given of; j in Eq 2, P(Y}; ;) = c|lS,0)
is calculated by,

m[lu.j] - Wmo[%]] + bm, P(Yr[z,]} - C|S7®) = SOftmax(m[iuj])[c]' (5)

Here W,,, b,,,, W,,, and b,,, are model parameters. The subscript [c] is to pick the probability for the
label c. The training loss is,

Ll = Z Z logp( [i,5] — C|S @) Z log P(Yv[z,j] = </L>|Sa @),
[6,5]€Tup c€lij,c#</L> (4,51 Tup (6)
0<i<n—21<j<n,i<j)

Note that there is an additional sum inside the first term in Eq 6, which is different from the first term in
Eq 4. This is to say that we treat all constituent labels equally of a unary chain. For example, suppose
there is a unary chain S— VP in span [4,4]. For this span, we hypothesize that both labels are plausible
answers and pay equal attentions to VP and S during training. For the second term in Eq 6, we maximize
the probability of the ending label for non-constituent spans.

For decoding, we transform the multi-class probability distribution into a binary probability distribu-
tion by using,

P(Y;;=18,0)= Y P(Y;=cS0), P(Y;;=0S0)=PY;=</L>|56)
c,cAE</L>

In this way, the probability of a span being a constituent span takes all possible syntactic labels into
considerations.

2.2 Rule Model

The rule model directly calculates the probabilities of all possible splitting points k£ (i < k < j) for the
span [, j]. Suppose the partition score of splitting point k is psy. The unlabeled production probability
for the rule r : [4, j] — [¢, k][k + 1, j] is given by a softmax distribution,

exp(psy)

J—1

P([i, 5] = [i, k][k + 1,]|5, ©) = :
17— exp(pspr)
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The training objective is to minimize the log probability loss of all unlabeled production rules.

Lose = — Y log P(r: [i,j] = [i, k][k +1,]]|5,©)

r€Tyu

The decoding algorithm is the standard CKY algorithm, which we omit here. The rule model can
be regarded as a first-order constituent model, with the probability of each phrase rule being modeled.
However, unlike structured learning algorithms (Finkel et al., 2008; Carreras et al., 2008), which use a
global score for each tree, our model learns each production rule probability individually. Such local
learning has traditionally been found subjective to label bias (Lafferty et al., 2001). Our model relies on
input representations solely for resolving this issue.

Span Representation. Figure 2b shows one possible network architecture for the rule model by taking
the partition point & = 1 for the span [1, 3] as an example. The BiLSTM encoder layer in the bottom is the
same as that of the previous span classification model. We obtain the span representation vectors using
difference vectors (Wang and Chang, 2016; Cross and Huang, 2016b). Formally, the span representation
vector sr[i, j] is given by,

s[i,j] = [fj+1 — fi;ri — rj34],

sr[i, j] = [s]0,7 — 1]; s[4, j];s[j + 1, n — 1]]. @

We first combine the difference vectors (f; 11 —f;) and (r; —r;11) to obtain a simple span representation
vector s[i, j]. In order to take more contextual information such as f, where p > j + 1 and r, where
q < i, we concatenate s[0,7 — 1], s[4, j], and s[j + 1,n — 1] to produce the final span representation
vector sr[i, j]. We then transform sr([s, j] to an output vector r[é, j| using an activation function ¢,

rfi, j] = (W} srli, j] + b)), (8)

where W2 and b and model parameters, and M is a parameter set index. We use separate parameters
for the nonlinear transforming layer. M € {P, L, R} are for the parent span [i, j|, the left child span
[i, k] and the right child span [k + 1, j], respectively.

After obtaining the span representation vectors, we use these vectors to calculate the partition score
psk. In particular, we investigate two scoring methods.

Linear Model. In the linear model, the partition score is calculated by a linear affine transformation.
For the splitting point &,

sk = Wiy rli, k] +wi ek + 1, 5]+ by

where W?Z’ ;. and Wﬁ, ;; are two vectors, and by . is a size 1 parameter.

Biaffine model. Since the possible splitting points for spans are varied with the length of span, we
also try a biaffine scoring model (as shown in Figure 2b), which is good at handling variable-sized
classification problems (Dozat and Manning, 2016; Ma and Hovy, 2017). The biaffine model produces
the score Ips;, between the parent span [4, j] and the left child span [z, k] using a biaffine scorer

Ipsy, = (v[i, 5] © 1) Wi (x[i, k] @ 1) )

where W, is model parameters. Similarly, we calculate the score 7ps;, between the parent span [, j]
and the right child span [k + 1, j] using W, and by, as parameters. The overall partition score ps;, is
therefore given by

Sy, = lpsy, + rpsy,.
2.3 Label Generator

Lexicalized Tree-LSTM Encoder. Shown in Figure 1c, we use lexicalized tree LSTM (Teng and Zhang,
2016) for encoding, which shows good representation abilities for unlabeled trees. The encoder first
propagates lexical information from two children spans to their parent using a lexical gate, then it pro-
duces the representation vectors of the parent span by composing the vectors of children spans using a

123



binarized tree-LSTM (Tai et al., 2015; Zhu et al., 2015). Formally, the lexical vector tx[i, j] for the span
[i, ] with the partition point at k is defined by:

lffﬂ;} = o(Wi“tx[i, k] + W tx[k + 1, j] + Wiihy 5 + WShp 1 + bres)
tx[i, j] = 11[2?} © tx[i, k] + (1.0 — lffﬁ]) ® tx[k + 1, 7],

where erf” , W€ and by, are model parameters, © is element-wise multiplication and o is the logistic
function. The lexical vector tx[s, ] for the leaf node i is the concatenate of the output vectors of the
BiLSTM encoder and the input representation Xinput [i] (Eq 3), as shown in Figure lc.

The output state vector h[i, j] of the span [i, j] given by a binary tree LSTM encoder is,

i, = o(Witx, + Woh; + W3c; + W4h, + Wise, + by),

f = o(Wetx, + Wrh; + Wse; + Woh, + Wige, + by),

f) = o(Wiitx, + Wigh, + Wize; + Wigh, + Wise, + bs),

gp = tanh(Wystx, + Wizh; + Wigh, + by),
cp=f0c+f Oc +i,0g),

o, = 0(Wigtx, + Waoh, + Wy h, + Wasc, + bs), h, =0, ® tanh(c,).

Here the subscripts p, [ and r denote [4, j], [i, k] and [k + 1, j], respectively.

Label Decoder. Suppose that the constituent label chain for the span [i,j] is
(YL?Z. YL[lZ ij»+-+» YLi? ). The decoder for the span [i, j] learns a conditional language model
dependmg on the output vector h[i,j] from the tree LSTM encoder. Formally, the probability

distribution of generating the label at time step z is given by,
P(YLE, ;| Tup, YLES)") = softmax (g(h[z 71 Braber (YLE D), dz,l)),

where YL[Z<’]” is the decoding prefix, d,_; is the state vector of the decoder LSTM and Elabel(YL[Z_]l)
is the embedding of the previous output label.
The training objective is to minimize the negative log-likelihood of the label generation distribution,

Liabe [1, J] ZlogP YL, ;| Tup, YLEST),

Liber = Y Luaalli, j].

[ia.ﬂeTub

2.4 Joint training

In conclusion, each model contains an unlabeled structure predictor and a label generator. The latter is the
same for all models. All the span models perform binary classification. The difference is that BinarySpan
doesn’t consider label information for unlabeled tree prediction. While MultiSpan guides unlabeled
tree prediction with such information, simulating binary classifications. The unlabeled parser and the
label generator share parts of the network components, such as word embeddings, char embeddings,
POS embeddings and the BiLSTM encoding layer. We jointly train the unlabeled parser and the label
generator for each model by minimizing the overall loss

A
Etotal = »Cparser + Llabel + 5 | ‘@| |27

where ) is a regularization hyper-parameter. We set Lpaser = Lbinary OF Lpaser = Lmui and
L'parser = Le When using the binary span classification model, the multi-class model and the rule
model, respectively.
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hyper-parameter value hyper-parameter value

Word embeddings English: 100 Chinese: 80 | Word LSTM layers 2

Word LSTM hidden units 200 Character embeddings 20

Character LSTM layers 1 Character LSTM hidden units 25
Tree-LSTM hidden units 200 POS tag embeddings 32
Constituent label embeddings 32 Label LSTM layers 1

Label LSTM hidden units 200 Last output layer hidden units 128

Maximum training epochs 50 Dropout English: 0.5, Chinese 0.3
Trainer SGD Initial learning rate 0.1

Per-epoch decay 0.05 10} ELU (Clevert et al., 2015)

Table 1: Hyper-parameters for training.

3 Experiments

3.1 Experimental Settings

Data. We perform experiments for both English and Chinese. Following standard conventions, our
English data are obtained from the Wall Street Journal (WSJ) of the Penn Treebank (PTB) (Marcus et
al., 1993). Sections 02-21, section 22 and section 23 are used for training, development and test sets,
respectively. Our Chinese data are the version 5.1 of the Penn Chinese Treebank (CTB) (Xue et al.,
2005). The training set consists of articles 001-270 and 440-1151, the development set contains articles
301-325 and the test set includes articles 271-300. We use automatically reassigned POS tags in the same
way as Cross and Huang (2016b) for English and Dyer et al. (2016) for Chinese.

We use ZPar (Zhang and Clark, 2011)! to binarize both English and Chinese data with the head rules of
Collins (2003). The head directions of the binarization results are ignored during training. The types of
English and Chinese constituent span labels after binarization are 52 and 56, respectively. The maximum
number of greedy decoding steps for generating consecutive constituent labels is limited to 4 for both
English and Chinese. We evaluate parsing performance in terms of both unlabeled bracketing metrics
and labeled bracketing metrics including unlabeled F1 (UF)?, labeled precision (LP), labeled recall (LR)
and labeled bracketing F1 (LF) after debinarization using EVALB?.

Unknown words. For English, we combine the methods of Dyer et al. (2016) and Cross and Huang
(2016b) to handle unknown words. In particular, we first map all words (not just singleton words) in
the training corpus into unknown word classes using the same rule as Dyer et al. (2016). During each
training epoch, every word w in the training corpus is stochastically mapped into its corresponding
unknown word class unk,, with probability P(w — unk,,) = ﬁ, where #w is the frequency count
and ~ is a control parameter. Intuitively, the more times a word appears, the less opportunity it will be
mapped into its unknown word type. There are 54 unknown word types for English. Following Cross
and Huang (2016b), v = 0.8375. For Chinese, we simply use one unknown word type to dynamically
replace singletons words with a probability of 0.5.

Hyper-parameters. Table 1 shows all hyper-parameters. These values are tuned using the corre-
sponding development sets. We optimize our models with stochastic gradient descent (SGD). The initial
learning rate is 0.1. Our model are initialized with pretrained word embeddings both for English and
Chinese. The pretrained word embeddings are the same as those used in Dyer et al. (2016). The other
parameters are initialized according to the default settings of DyNet (Neubig et al., 2017). We apply
dropout (Srivastava et al., 2014) to the inputs of every LSTM layer, including the word LSTM layers,
the character LSTM layers, the tree-structured LSTM layers and the constituent label LSTM layers. For
Chinese, we find that 0.3 is a good choice for the dropout probability. The number of training epochs
is decided by the evaluation performances on development set. In particular, we perform evaluations on
development set for every 10,000 examples. The training procedure stops when the results of next 20
evaluations do not become better than the previous best record.

"https://github.com/SUTDNLP/ZPar
2For UF, we exclude the sentence span [0,n-1] and all spans with length 1.
3http://nlp.cs.nyu.edu/evalb
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English Chinese
LP [ LR [ LF | LP | LR | LF
BinarySpan |92.16|92.19 | 92.17|91.31 | 90.48 | 90.89
MultiSpan | 92.47 | 92.41 | 92.44| 91.69 | 90.91 | 91.30
LinearRule |92.03]92.03|92.03 [91.03 | 89.19|90.10
BiaffineRule | 92.49 | 92.23 | 92.36 | 91.31 | 91.28 | 91.29

Model SpanVec| LP | LR | LF Model
V] [92.16 [ 92.19 | 92.07
srli.j] |91.90|91.70|91.80
. VTi,j] 917919167 (91,73
BiaffineRule | 57 1 92.49|92.23 | 92.36

BinarySpan

Table 2: Span representation methods. Table 3: Main development results.

3.2 Development Results

We study the two span representation methods, namely the simple concatenating representation v|i, j]
(Eq 1) and the combining of three difference vectors sr[i, j] (Eq 7), and the two representative mod-
els, i.e, the binary span classification model (BinarySpan) and the biaffine rule model (BiaffineRule).
We investigate appropriate representations for different models on the English dev dataset. Table 2
shows the effects of different span representation methods, where vz, j] is better for BinarySpan and
sr[i, 7] is better for BiaffineRule. When using sr|i, j] for BinarySpan, the performance drops
greatly (92.17 — 91.80). Similar observations can be found when replacing sr[i, j] with v[i, j] for
BiaffineRule. Therefore, we use v|[i, j| for the span models and sr|[i, j| for the rule models in latter
experiments.

Table 3 shows the main results on the English and Chinese dev sets. For English, BinarySpan
acheives 92.17 LF score. The multi-class span classifier (MultiSpan) is much better than BinarySpan
due to the awareness of label information. Similar phenomenon can be observed on the Chinese dataset.
We also test the linear rule (LinearRule) methods. For English, LinearRule obtains 92.03 LF score,
which is much worse than BiaffineRule. In general, the performances of BiaffineRule and
MultiSpan are quite close both for English and Chinese.

For MultiSpan, both the first stage (unlabeled tree prediction) and the second stage (label genera-
tion) exploit constituent types. We design three development experiments to answer what the accuracy
would be like of the predicted labels of the first stage were directly used in the second stage. The first one
doesn’t include the label probabilities of the first stage for the second stage. For the second experiment,
we directly use the model output from the first setting for decoding, summing up the label classification
probabilities of the first stage and the label generation probabilities of the second stage in order to make
label decisions. For the third setting, we do the sum-up of label probabilities for the second stage both
during training and decoding. These settings give LF scores of 92.44, 92.49 and 92.44, respectively,
which are very similar. We choose the first one due to its simplicity.

3.3 Main Results

English. Table 4 summarizes the performances of various constituent parsers on PTB test set.
BinarySpan achieves 92.1 LF score, outperforming the neural CKY parsing models (Durrett and
Klein, 2015) and the top-down neural parser (Stern et al., 2017). MultiSpan and BiaffineRule
obtain similar performances. Both are better than BianrySpan. MultiSpan obtains 92.4 LF score,
which is very close to the state-of-the-art result when no external parses are included. An interesting
observation is that the model of Stern et al. (2017) show higher LP score than our models (93.2 v.s
92.6), while our model gives better LR scores (90.4 v.s. 93.2). This potentially suggests that the global
constraints such as structured label loss used in (Stern et al., 2017) helps make careful decisions. Our
local models are likely to gain a better balance between bold guesses and accurate scoring of constituent
spans. Table 7 shows the unlabeled parsing accuracies on PTB test set. Mult i Span performs the best,
showing 92.50 UF score. When the unlabeled parser is 100% correct, BiaffineRule are better than
the other two, producing an oracle LF score of 97.12%, which shows the robustness of our label gener-
ator. The decoding speeds of BinarySpan and Mut1iSpan are similar, reaching about 21 sentences
per second. BiaffineRule is much slower than the span models.

Chinese. Table 5 shows the parsing performance on CTB 5.1 test set. Under the same settings, all
the three models outperform the state-of-the-art neural model (Dyer et al., 2016; Liu and Zhang, 2017a).
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Parser LR |LP |LF |Parser LR |LP |LF

Zhu et al. (2013) (S) 91.1|91.5|91.3 | Charniak (2000) 89.5189.9 | 89.5
McClosky et al. (2006) (S) 92.1192.5]92.3 | Collins (2003) 88.1]88.3 | 88.2
Choe and Charniak (2016) (S,R,E) 93.8 | Sagae and Lavie (2006) 87.8 | 88.1|87.9
Durrett and Klein (2015) (S) 91.1 | Petrov and Klein (2007) 90.1 |1 90.2 | 90.1
Vinyals et al. (2015) (S, E) 92.8 | Carreras et al. (2008) 90.7 | 914 |91.1
Charniak and Johnson (2005) (S, R) [ 91.2 | 91.8 | 91.5 | Zhu et al. (2013) 90.2190.7 | 90.4
Huang (2008b) (R) 91.7 | Watanabe and Sumita (2015) 90.7
Huang and Harper (2009) (ST) 91.1 | 91.6 | 91.3 | Fernandez-Gonzalez and Martins (2015) | 89.9 | 90.4 | 90.2
Huang et al. (2010) (ST) 92.7192.2 | 92.5 | Cross and Huang (2016b) 90.5192.1 913
Shindo et al. (2012) (E) 92.4 | Kuncoro et al. (2017) 91.2
Socher et al. (2013) (R) 90.4 | Liu and Zhang (2017b) 91.3192.1|91.7
Dyer et al. (2016) (R) 93.3 | Stern et al. (2017) top-down 90.4193.2|91.8
Kuncoro et al. (2017) (R) 93.6 | BinarySpan 91.9192.292.1
Liu and Zhang (2017a) (R) 94.2 | MultiSpan 9221925924
Fried et al. (2017) (ES) 94.7 | BiaffineRule 92.0]92.6|92.3

Table 4: Results on the PTB test set. S denotes parsers using auto parsed trees. E, R and ST denote
ensembling, reranking and self-training systems, respectively.

Parser LR |LP |LF | Parser LR |LP |LF

Charniak and Johnson (2005) (R) | 80.8 | 83.8 | 82.3 | Petrov and Klein (2007) 81.9 | 84.8 | 83.3
Zhu et al. (2013) (S) 84.4 | 86.8 | 85.6 | Zhang and Clark (2009) 78.6 | 78.0 | 78.3
Wang et al. (2015) (S) 86.6 | Watanabe and Sumita (2015) 84.3
Huang and Harper (2009) (ST) 85.2 | Dyer et al. (2016) 84.6
Dyer et al. (2016) (R) 86.9 | BinarySpan 85.9|87.1|86.5
Liu and Zhang (2017b) 85.2 1 85.9 | 85.5 | MultiSpan 86.6 | 88.0 | 87.3
Liu and Zhang (2017a) 86.1 | BiaffineRule 87.1|87.5|87.3

Table 5: Results on the Chinese Treebank 5.1 test set.

Compared with the in-order transition-based parser, our best model improves the labeled F1 score by 1.2
(86.1 — 87.3). In addition, MultiSpan and BiaffineRule achieve better performance than the
reranking system using recurrent neural network grammars (Dyer et al., 2016) and methods that do joint
POS tagging and parsing (Wang and Xue, 2014; Wang et al., 2015).

4 Analysis

Constituent label. Table 6 shows the LF scores for eight major constituent labels on PTB test
set. BinarySpan consistently underperforms to the other two models. The error distribution of
MultiSpan and BiaffineRule are different. For constituent labels including SBAR, WHNP and
QP, BiaffineRule is the winner. This is likely because the partition point distribution of these la-
bels are less trivial than other labels. For NP, PP, ADVP and ADJP, MultiSpan obtains better scores
than BiaffineRule, showing the importance of the explicit type information for correctly identifying
these labels. In addition, the three models give similar performances of VP and S, indicating that simple
local classifiers might be sufficient enough for these two labels.

LF v.s. Length. Figure 3 and Figure 4 show the LF score distributions against sentence length and
span length on the PTB test set, respectively. We also include the output of the previous state-of-the-art
top-down neural parser (Stern et al., 2017) and the reranking results of transition-based neural generative
parser (RNNG) (Dyer et al., 2016), which represents models that can access more global information.
For sentence length, the overall trends of the five models are similar. The LF score decreases as the
length increases, but there is no salient difference in the downing rate (also true for span length <6),
demonstrating our local models can alleviate the label bias problem. BiaffineRule outperforms the
other three models (except RNNG) when the sentence length less than 30 or the span length less than 4.
This suggests that when the length is short, the rule model can easily recognize the partition point. When
the sentence length greater than 30 or the span length greater than 10, MultiSpan becomes the best
option (except RNNG), showing that for long spans, the constituent label information are useful.
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Figure 3: Sentence length v.s LF scores. Figure 4: Span length v.s LF scores.
Model NP | VP S PP |SBAR|ADVP|ADJP|WHNP| QP Model UF | LF |Speed(sents/s)

BinarySpan |93.35]93.26|92.55[89.58| 88.59 | 85.85 | 76.86 | 95.87 |89.57 BinarySpan |92.16|96.79 22.12
MultiSpan  |93.61|93.41|92.76 |89.96 | 89.16 | 86.39 | 78.21 | 9598 |89.51 MultiSpan |92.50|97.03 21.55
BiaffineRule | 93.53|93.46 | 92.78 | 89.30 | 89.56 | 85.89 | 77.47 | 96.66 |90.31 BiaffineRule|92.22|97.12 6.00

Table 6: LF scores for major constituent labels. Table 7: UF, oralce LF and speed.

5 Related Work

Globally trained discriminative models have given highly competitive accuracies on graph-based con-
stituent parsing. The key is to explicitly consider connections between output substructures in order to
avoid label bias. State-of-the-art statistical methods use a single model to score a feature representation
for all phrase-structure rules in a parse tree (Taskar et al., 2004; Finkel et al., 2008; Carreras et al., 2008).
More sophisticated features that span over more than one rule have been used for reranking (Huang,
2008b). Durrett and Klein (2015) used neural networks to augment manual indicator features for CRF
parsing. Structured learning has been used for transition-based constituent parsing also (Sagae and Lavie,
2005; Zhang and Clark, 2009; Zhang and Clark, 2011; Zhu et al., 2013), and neural network models have
been used to substitute indicator features for transition-based parsing (Watanabe and Sumita, 2015; Dyer
et al., 2016; Goldberg et al., 2014; Kiperwasser and Goldberg, 2016; Cross and Huang, 2016a; Coavoux
and Crabbé, 2016; Shi et al., 2017).

Compared to the above methods on constituent parsing, our method does not use global structured
learning, but instead learns local constituent patterns, relying on a bi-directional LSTM encoder for
capturing non-local structural relations in the input. Our work is inspired by the biaffine dependency
parser of Dozat and Manning (2016). Similar to our work, Stern et al. (2017) show that a model that
bi-partitions spans locally can give high accuracies under a highly-supervised setting. Compared to their
model, we build direct local span classification and CFG rule classification models instead of using span
labeling and splitting features to learn a margin-based objective. Our results are better although our
models are simple. In addition, they collapse unary chains as fixed patterns while we handle them with
an encoder-decoder model.

6 Conclusion

We investigated two locally trained span-level constituent parsers using BiLSTM encoders, demonstrat-
ing empirically the strength of the local models on learning syntactic structures. On standard evaluation,
our models give the best results among existing neural constituent parsers without external parses.
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Abstract

The paper explores the ability of LSTM networks trained on a language modeling task to
detect linguistic structures which are ungrammatical due to extraction violations (extra argu-
ments and subject-relative clause island violations), and considers its implications for the de-
bate on language innatism. The results show that the current RNN model can correctly classify
(un)grammatical sentences, in certain conditions, but it is sensitive to linguistic processing fac-
tors and probably ultimately unable to induce a more abstract notion of grammaticality, at least
in the domain we tested.

Title and Abstract in Italian
RNN Simulazioni di giudizi di grammaticita sulle dipendenze a distanza

Larticolo studia la capacita delle reti neurali LSTM addestrate su un compito di modellazione
linguistica di rilevare strutture linguistiche che sono agrammaticali a causa di violazioni nella
estrazione di argomenti (dovute alla presenza di argomenti di troppo, o alla presenza di isole del
soggetto e delle frasi relative), esplorando le implicazioni per il dibattito sull’innatismo linguis-
tico. I risultati mostrano che 1’attuale modello RNN puo classificare correttamente frasi gram-
maticali, in certe condizioni, ma ¢ eccessivamente sensibile a fattori di elaborazione linguistica
e probabilmente non in grado di indurre una nozione piu astratta di grammaticalita, almeno nel
dominio da noi testato.

1 Introduction

Native speaker intuitions about the meaning and grammaticality of linguistic expressions have been the
key methodology in theoretical linguistics since at least Chomsky (1957), and are widely seen as a crucial
window on the internalized linguistic competence which theoretical linguistics aims to study. Despite
lively discussions on the limits of the methodology (see Cowart, 1997; Sprouse and Almeida, 2012;
Sprouse et al., 2013, 2016), the availability of very large corpora has not replaced in linguistics the need
for judgments on artificially constructed cases whenever theoretical points hinge on the status of very rare
or complex constructions, concern languages or dialects for which large corpora do not exist, or involve
semantic intuitions that have no easily detectable correlates in corpora (e.g. semantic scope alternations).

Due to its scarce practical applications, modeling grammaticality judgments with computers has never
been a typical NLP task, but it can be an important testbed for theories of language processing and
grammatical competence. In particular, judgments on syntactic well-formedness require a sensitivity to
long-distance structural cues which is a crucial aspect of language competence (Everaert ef al., 2015).
Elman’s (1991) pioneering work on the application of simple recurrent neural network (RNN, Elman
1990) to linguistic sequences showed that such networks could indeed learn some linguistic structures,
but had a tendency to forget important linguistic features (e.g. the presence of a Wh-element) as new

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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material arrived. However, more recent network architectures, like Long-Short Term Memory Network
(LSTMs, Hochreiter and Schmidhuber 1997) or Gated Recurrent Networks (GRU, Chung et al. 2014)
incorporate memory-management systems which yield much better performances. The seminal work of
Linzen et al. (2016) and other recent papers (Bernardy and Lappin, 2017; Gulordava et al., 2018) have
shown these networks to be capable, in certain conditions, to approximate human levels in a subject-verb
number agreement task, even across intervening nouns and verb (e.g. The boys [that the girl has seen]
are/¥*is. . .).

These advances raise the question whether similar models, trained on corpora of naturally occurring
sentences, could come to approximate the full range of human grammaticality judgments, including
judgments on structures which, unlike agreement, are virtually non-existent in the training input. The
ability to do so would have implications for the debate on language innatism (Christiansen and Kirby,
2003; Sprouse et al., 2013): a generalist (R)NN has no language-specific learning skills, no innate lin-
guistic parameters to set (Chomsky and Lasnik, 1993; Baker, 2001); if such a device could manage to
replicate fine-grained human intuitions inducing them from the raw training input this would be evi-
dence that exposure to language structures (albeit in an amount orders of magnitude larger than the one
a child receives, and without a connection to the non-linguistic context of utterance) should in principle
be sufficient to derive a syntactic competence, against the innatist hypothesis. Suppose on the other hand
that NNs could approximate human intuitions on some linguistic phenomena but not on others, despite
similar statistical distributions in the training input: this would now count as strong evidence that the ‘un-
learnable’ phenomena tap on aspects of the grammar faculty that have limited representations in normal
language samples, and are good candidates for being innate.

This paper is a step in the direction of this research program. We trained two types of RNNs (GRU
and LSTM) on a large corpus of English (Wikipedia and parts of UKWAC, Ferraresi et al. 2008), then
tested their performances or a range of artificially constructed language structures, contrasting gram-
matical and ungrammatical examples. Unlike Lau et al. (2017), who use LSTM to prove that they can
learn the graded nature of human grammaticality, we only look at long distance dependencies (the re-
lation between a dislocated element like a Wh-nominal or the head of a relative clause and its gap). As
a preliminary task (Task A), we check whether the network is sensitive to the difference in processing
complexity between subject and object relatives, a much-studied domain in the psycholinguistic liter-
ature; next, we turn to two cases of ungrammaticality, one due to a violation of the principle of Full
Interpretation (Chomsky, 1986a, p.98-99) (Task B), one to extraction out of “strong” syntactic islands
(Ross, 1982), specifically, subject and relative clause islands (Task C). Violations of these types have
been regarded as sharp both in the theoretical (Szabolcsi and den Dikken, 1999) and the experimental
literature (Sorace and Keller, 2005; Cowart, 1997; Sprouse et al., 2013).

Our preliminary conclusions are that while the models are able to catch a surprising range of subtle
differences in Task A and to correctly classify grammatical and ungrammatical cases in Task B, their
performances are highly sensitive to processing factors (esp. sentence length, sentence complexity), a
fact which becomes particularly evident in Task C. Two possible conclusions can be drawn: either the
NN has troubles disentangling processing and grammaticality, or the most obvious ways for detecting
this distinction are not effective for this target.

In the following sections, we first present a brief overview of the methodology used in this study
(Section 2), followed by the a detailed task description in Section 3. The results and observation of
the network behavior is presented in Section 4; we conclude the study and discuss future directions in
Section 5.

2 Methodology

The use of RNN for the evaluation of grammaticality can already be found in Tomida and Utsumi (2013)
(areply to a non-NN learning model in Pearl and Sprouse 2013). However, their RNN (a Jordan RNN,
Jordan 1997) worked on abstract data (it was trained on preassigned constituent labels and had to gener-
ate other label sequences), a choice that in our opinion requires too many underlying assumptions. RNN
trained on raw textual input are first found in Linzen et al. (2016), who achieve a very high score (<1%
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error rate) in the subject-verb number agreement task. However, they specifically train an LSMN classi-
fier on this task alone. This is fine as a demonstration that the input contains enough network-accessible
information to make the correct choice, but it puts the network at an unfair advantage over humans, since
giving explicit grammaticality judgment is a rather marginal and non-natural linguistic task (though we
make use of implicit judgments when we decide if someone is a native speaker, we choose the best word-
ing in a text, etc.). Moreover, it is a task which arguably plays no role in language acquisition. While
there are of course immense quantitative and qualitative differences between the language learning pro-
cess in humans and NNs, we believe that a comparison between their final states can still make sense,
under two conditions: (i) that the comparison is not directly between humans and NN judgments, but
rather between task-dependent judgment differences, i.e. minimal task-pairs which are very similar for
the machine but very different for humans, or vice versa; (ii) that the NN has not been specifically trained
on this tasks. When Linzen et al. (2016) trained their LSTM on a general task (language modeling: pre-
dicting the following word, arguably a more natural task, see van Berkum 2010) and tried to use the
resulting network for the judgment task, the error rate increased to around 7% error rate. More recently,
a group including Linzen himself (Gulordava et al., 2018) has shown that, with better tuning, a different
LSTM trained on a language modeling task is in fact capable of performances comparable to those of the
classifier in Linzen et al. (2016), even in the absence of any semantic information (a potential confound
in Linzen et al. 2016).

Assessing grammaticality judgments in a task which is not binary like number agreement raises im-
portant methodological questions. We want the network to discriminate between (l1a) and (1b). The
acceptable Wh-question in (1a) might end with a question mark right at the gap (the object position of
catch), but also continue with an adverbial, or even (at the coast of decreasing acceptability) a nominal
containing a gap (the tail of). The ungrammatical case (1b) ends with a normal verb argument (the fail).

(1) a. Which mouse did the cat catch {? / last night ? / the tail of ? }
b. *Which mouse did the cat catch the tail?

The question is which NN measure best corresponds to the speaker’s perception of ungrammaticality
in (1b), keeping into account that even in the theoretical and psycholinguistic literature there are no
established metrics to measure ‘degrees of ungrammaticality’ (see Cowart 1997; Sorace and Keller 2005
for discussion).

2.1 Evaluation Measures

We explored various possibilities, from global measures like perplexity (PPL) and non-normalized sen-
tence cross-entropy loss (CEL), to local measures like the normalized log probability of a full stop
LogP,(FS) or question mark LogP,,(QM) after the current word.

Cross-entropy loss (CEL) measures the distance between the output distribution predicted by the
model and one-hot vector representing the target word (¢;). The loss for the test sentence can therefore
be described as an approximation of the equation CEL = > | In P(t;), where P(t;) is the probabil-
ity given by the model to the i target word in the sentence of length n. In our analysis, we mostly
use the averaged CEL (ACEL) while comparing each particular set of cases. Note that (A)CEL is not
normalized by sentence length. Perplexity measures how many equally probable words can follow a
point in the text; as the sentence grows longer and more information accumulates, the options for the
following word decrease. Perplexity is calculated by PPL = 6_%, where the total cross-entropy
loss (TTCEL = Y CFEL) is computed for the sub-dataset and the total number of words, N, in the
corresponding dataset. Both measures are based on the intuition that an ungrammatical sentence should
‘confuse’ the NN more than a corresponding grammatical one, and that this confusion will translate in a
decreased ability to make correct predictions.

As for the local measure, normalized log probability of the full stop and question mark is calculated
as LogP,(QM/FS) = log(i 21(((?))) where p,,, () is the probability of the symbol, <, at a given position
given by the model; p, () is the unigram probability of the .

As it turns out, neither PPL or CEL are perfect ways to evaluate a language model for ungrammatical-
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ity, since they do not locate it at a specific point in the sentences. Yet, this could also be an advantage,
since global measures like PPL/CEL can potentially catch parsing problems that arise earlier than ex-
pected, and record a perturbation in the NN’s later predictions as it recovers from an ungrammatical point
earlier in the text. Therefore, these methods seem appropriate for a first exploration of this task.

On the other hand, the advantage of the local measure used in this study (P(FS/QM), i.e. the confidence
that the sentence is about to end) is that it can give precise information about the point at which ungram-
maticality is detected (e.g. after catch in (1)), or can be used to track the NN expectations through time,
as we do in Figure 1. The disadvantage is that, as example (1a) shows, a sentence can always continue in
unexpected ways. Moreover, in some cases of ungrammaticality the presence of individual words might
not be a significant predictor.

2.2 RNN Architecture

In order to simulate an “unbiased learner” that tries to model human grammatical intuitions, inducing
them from the raw training input, we designed a RNN-based language model. A language model is often
defined as a model learning the conditional probability over words, given a historical context. The model
includes a vocabulary V' of size |V|; when learning a training sentence, each word is represented by a
one-hot encoding vector, z € RIVI, with a corresponding index in V.

For this study we used two successful variant of simple RNN — long-short term memory (LSTM) and
gated recurrent unit (GRU) models. GRU is basically an LSTM without the output gate; the content of the
memory cell is copied into the network at each time steps. We trained the models varying the number of
hidden units (u={100, 1500}). For our datasets we observed that the un-tuned LSTM (u=100) performed
slightly better than the GRU architecture with same parameters. Though it is possible that with better
tuning the GRU could outperform LSTM, for the purpose of this study we present data from just the
LSTM model tuned only for number of hidden units v = 1500, layer = 2 and embedding dimension,
e = 256. To avoid over-fitting the model on the training data we also applied dropout — a regularization
technique — in different layers. For training the model, we used a PyTorch RNN implementation with
an SGD optimizer. We have not tuned the models for different dropout or learning rate parameters, and
we used a fixed batch size of 80.

To train the RNN model we used an English corpus extracted from Wikipedia plus a small subset
of UKWaC (= 0.32% of the training data), crawled from .uk domain. For the Wikipedia data, we
downloaded the WikiText-103 raw data containing the original case, punctuation and numbers. We then
tokenized both datasets, removing urls, email addresses, emoticons and text enclosed in any form of
brackets ({.},(.), [.]). We replaced rare words (tokens with frequency <10) with <unk> token along
with its signatures (e.g. -ed, -ing, -ly etc.) to represent every possible out-of-vocabulary (OOV) words.
We also replaced numbers (exponential, comma separated etc) with a <NUM > tag. After these prepro-
cessing steps, our training data consisted of ~ 136 M words, with a vocabulary of size |V| = 0.1 M. Itis
to be noted that the style of the texts selected to train the language model is mostly encyclopedic, due to
the prevalence of Wikipedia over other web corpus data. This is of course not representative of the typi-
cal registers of English language, but it does give us a good proportion of complex embedded sentences,
which match some of the deeply embedded constructions present in the task set. Recall, moreover, that
the measures in this study are always relative, i.e. they contrast minimally different inputs within the
same language model. Thus, any imbalance in the training data should not be expected to make a large
difference in the global results.

3 Task Description

In order to filter out the effect of words which could affect the network performance in ways orthogonal
to the structures at issue, we opted to increase the number of sentences to evaluate by building them
as sentence schemata, (e.g. (2) for the subject relative Task A), which were expanded automatically to
generate all the possible ways of picking one of the expressions within {}. Note that some of the variable
were experimental conditions (e.g. the presence of that or who in (2)), others were added just to increase
variety at the level of the content lexicon, so as to minimize possible effects of collocations or sentences
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the network might have encountered in the training phase. The results we present are averaged across all
the sentences that express the same experimental condition.

(2)  {The/A/Every/Some } { student/ man / professor / driver } { that/ who } had { seen / spoken
with / interviewed / mentioned / approached / met / lived with }{ her / Mary / the woman } gave
a brief speech.

The phenomena' we tested are the following:

A. SUBJECT VS. OBJECT RELATIVE CLAUSES: Much psycholinguistic literature since Gibson (1998);
Gordon et al. (2001) has shown that object relatives such as (3a) are harder to parse than subject
relatives (3b) (in terms of time, accuracy, etc.), and that the presence of certain material intervening
between the head (boy) and the gap (indicate with an underscore) can affect reaction times (Gor-
don et al., 2002, 2004). While this is not a contrast in grammaticality (both structures are clearly
acceptable for adults, Adani et al. 2010), we designed this preliminary task to check if the network
was sensitive to the position of the gap and to the type of intervening subject: a pronoun, a proper
name or a full noun phrase. According to Rizzi’s Featural Relativized Minimality (Friedmann et al.,
2009; Adani et al., 2010), an intervener with many grammatical features in common with the moved
element can make the extraction harder, or even ungrammatical (see esp. Villata ef al. 2016 for the
case of ‘weak islands’).

3) a. The boy that Mary has invited __ object extraction
b.  The boy that __invited Mary subject extraction

A second variable was the relative pronoun, which could be that, who or null (in object relatives: The
girl Anna saw). This test set comprised 1680 expanded sentences.

B. WH EXTRACTIONS: A second test set involves cases of Wh-extraction where the gap position could
be empty (4a) or filled by an overt element (4b) (a personal pronoun, an indefinite pronoun, a demon-
strative NP).

4) a.  Which candidate/issue should the students discuss ?
b. *Which candidate/issue should the students discuss {him / it / something else / this can-
didate / this issue}

(4b) is a very strong semantic/syntactic violation, since either the Wh or the final nominal cannot
be connected to the verb, violating the principle of Full Interpretation (Chomsky, 1986b). However,
certain uses of pronouns are standardly treated as bound variables in formal semantics (and there
are languages, e.g. Hebrew or Welsh, which use so-called resumptive pronouns in place of gaps
at least in relative clauses), so we expected that filling the gap with pronouns might be better than
filling it with full noun phrases. If the NN is able to carry over semantic information from the Wh-
phrase to the gap position, we also expected that gap-fillers that match in animacy (which candidate
... him/this candidate) should be better than non matching cases (which issue ... him/this candidate).
The sentences were generated at 0, 1 or 2 levels of embedding (e.g. Who did John claim [that the
professor assumed [that the students should discuss (it)]]? is level 2), to see if distance makes the
network ‘forget’ the Wh or its features.

All the Wh cases above were contrasted with corresponding affirmative sentences. In this case, how-
ever, the gap is the ungrammatical case (5a), while the gap fillers we see in (5b) all yield grammatical
sentences. The pre-gap verbs, discuss, mention, describe, write about, worry about, address, pro-
mote, consider were chosen not to easily allow intransitive counterparts.

5 a. *The student should consider .

!The expanded test sets for each task can be found in
https://github.com/LiCo-TREiL/Computational-Ungrammaticality.
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b.  The student should consider {him / it / something else / this candidate / this issue}

This allows us to directly compare the interrogative and affirmative case. What makes this task par-
ticularly interesting is the fact that, locally, the beginning and the end of each sentence is perfectly
grammatical; they become strongly ungrammatical only when seen together, possibly at a distance
which is rarely (if ever) attested in corpora. When fully expanded, this test set contains 72720 sen-
tences.

C. SUBJECT AND RELATIVE ISLAND VIOLATIONS: While the previous test measures the ability of
the network to carry information from the Wh phrase across the whole sentence, the last test set
pitches them against the phenomenon of syntactic islands (Ross, 1967). Descriptively, a subject
island blocks a dependency whose gap is inside (hence the tag ‘subextraction’) a nominal subject
(6a), as opposed to a nominal object (6b); a relative clause island bars gaps inside relatives (7). Note
that (7b) combines the two types of islands, and should be worse if the effect of multiple violations
is cumulative.

(6) a. *Who did [a classmate of __] ruin John ?
b. ?Who did John see of [a classmate of __]?

@) a. *Which girl did John see [the person that dated __]?
b. **Which girl did [the person that dated __] see John ?

Despite decades of research, there is no established functional explanations why islands exist (though
see Szabolcsi and Zwarts 1990; Sprouse et al. 2012 for some approaches). Thus, they represent a
good starting point to verify the limits of NN performance. In this case, we provided Y/N question
and affirmative counterparts for each of the Wh-interrogatives, as a point of reference.

4 Results and Discussion

Task A. Subject vs. Object Relative Clauses: Tables 1-2 contains the results of the Subject vs. Object
Relative Task. As it can be observed, the network is better (both in terms of PPL and CEL) at dealing with
subject than object relatives, thus indicating a sensitivity for the position of the gap which corresponds to
the preference found in humans, and especially children (Adani et al., 2010). Moreover, the network loss
(Avg. CEL) improves (i.e. it is lower) when the other nominal inside the RC is a pronoun (recall that in
object relatives the non-gapped nominal intervenes between the Wh-element and the gap): the pronoun
improves by ~ 2.83 over (proper name) PN and ~ 2.94 over the (noun phrase) NP in subject RC, by
~ 5.55 and ~ 5.93 respectively in object relative; there is no significant difference in loss between PNs
and full NPs. The fact that the pronoun effect is larger in subject position is particularly noteworthy. It
could be due to the greater frequency of pronouns in subject than object position reported in Gordon et al.
(2001), but this tendency is also in line with the Featural Relativized Minimality approach of Friedmann
et al. (2009); Villata et al. (2016): in object RC the RC-internal nominal intervenes between the relative
head and its gap; the more features the head and the nominal have in common, the more the connection
between head and gap is disrupted; pronouns have fewer features in common with the relative head (boy
in (3)) than other nominals (e.g. no +N(oun)), so they interfere less.

With respect to relative pronoun type, Table 2 shows a significant preference for that over who in
Subject RC, and a preference for null relative pronouns over overt ones in object RC (i.e. the boy Mary
saw > the boy that/who Mary saw, “>"" = easier for the NN), in terms of ACEL. This seems in line with
corpus frequencies measured on UKWACO1, where Det NP that is about 4 times more frequent than Det
NP who.

Cases PPL | ACEL (&std) [ # |

Subj-relatives | 84.52 | 55.99 (£3.60) | 672
Obj-relatives | 105.59 | 57.25 (£4.23) | 1008

Table 1: Task A Results: Subject vs. Object RC. # represents the number of instances in that sub-data
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Subj-R | Obj-R Subj-R | Obj-R

Nom-Rel AC)]EL ACJEL Rel-Pronoun AC;i‘L ACJEL
pronoun 54.07 53.42 || that 57.7 57.4
proper name 56.9 5897 || who 54.28 58.25
full Noun Phrase | 57.01 59.35 || no Rel Pron. - 56.09

Table 2: Task A Results: Nom-Rel represents Nominal inside Relative clause and Rel-Pronoun represents
Relative Pronouns.

Task B. Wh extractions and FI violations: To analyze the Task B dataset we initially divided it into
four cases: [WH...GAP], [AFF(ERMATIVE). .. NOGAP] (both grammatical) and [WH. .. NOGAP],
[AFF. .. GAP] (both ungrammatical). We studied the overall network perplexity (PPL) and the ACEL
loss for the sentence given by the NN. We observed that the PPL is 106.10 overall for the gram-
matical sets, 151.57 for the ungrammatical ones. When we keep Wh and affirmative cases apart,
[AFF...NOGAP] have PPL = 67.72 (calculated over 11640 instances), which is as expected lower
than [AFF...GAP], PPL = 76.63 (calculated over 2940 instances). However, the perplexity given
by grammatical [WH...GAP] (163.16, with 11616 instances) is higher than that of the ungrammatical
[WH...NOoGAP]-sentences (PPL = 156.42, 46560 instances).

‘ Options to Select from ‘ CEL ‘ C t: ‘

0O1: What should Mary discuss? Gramm. 29.14

02: What should Mary discuss it? 32.79

03: What should Mary discuss him? 34.32 | CEL(O1) <CEL(02-6)
04: What should Mary discuss something else? 39.63 | Correct if Ol is chosen
0O5: What should Mary discuss this topic? 40.22

06: What should Mary discuss this candidate? 42.37

O1: The professor has said that Mary should consider. UnGramm. | 48.40

02: The professor has said that Mary should consider it. 49.15 | CEL(O1) <CEL(02-5)
03: The professor has said that Mary should consider something else. | 55.53 | Correct if any of 02-O5
04: The professor has said that Mary should consider this topic. 56.87 | is chosen

0O5: The professor has said that Mary should consider this candidate. | 58.40

Table 3: Example of Gramm. vs UnGramm. classification task by RNN using ACEL as a measure.
Lower values are better.

To explore this further, we designed a simple classification task where each sentence was presented
with 5 or 6 possible alternatives in the gap position, as shown in Table 3. The NN’s choice was correct if
the CEL for the correct option was the lowest. The experiment included a total of 14520 instances con-
taining Wh and affirmative sentences and had an accuracy of 91.45%, indicating that the RNN network
is largely able to pick the correct option for Wh (99.1% out of 11616 instances) and for Aff (60.7% out of
2904 instances). The very different margins of the two effects, which probably account for the WH/AFF
PPL difference above, are actually not unexpected, as it is probably easier to accommodate the existence
of an intransitive version of a transitive verb than to explain away an extra argument.

Since all the sentences in Task B could potentially end at the (filled) gap, we decided to investigate the
effect of sentence type on the network’s perception that the sentence is about to end. Figure 1 tracks the
NN expectation that the following word is going to be a full stop (P(FS)), or a question mark (P(QM)).
The results are intriguing: in general, an end-of-sentence (EOS) is least expected after an auxiliary or
modal; in affirmatives “.” is unlikely after the final verb, very likely after the object. Interestingly,
the possibility of a question mark (i.e. a question marked by intonation alone) is always present in
affirmatives. Wh-sentences are dominated by the expectation of a gap (whose proxy is “?”), peaking at
the first verb and decreasing slowly. The unexpected arrival of the object seems to convince the NN that
the sentence is after all not a direct interrogative (. higher than “?”).

Turning to an analysis of the impact of each filled overt element in the Wh-extraction dataset, Table 3
shows that when the gap is filled by a personal pronoun (Pro, e.g. it, him), the overall PPL, of such set, is
much better than when the gap filled by an indefinite pronoun (IndPro, something else) or a demonstrative
NP (a 10 point difference). A similar pattern obtains with ACEL: Pro > IndPro > DemNP. The ability
of the NN to track semantic information (specifically, animacy) from the Wh to the gap (i.e. which
candidate .. .this candidate and which issue ... this topic) was also confirmed: the global PPL of the
cases with a match in animacy is lower (PPL = 220.05) than the unmatched cases (PPL = 223.89),
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LogP,(#) as next word
LogP,(#) as next word

a) Affirmative: Gap = Filled b) Wh: Gap = Filled

Figure 1: The EOS expectations for different types of sentences. Log Probability that the next word is
a“?’ (red) or a “.” (blue), according to the LSTM model. The sentence is an example for the whole
category.

but by only 3 points; once again, a similar pattern with a minor difference of 0.31 obtains using average
CEL.

In Figure 2, we presents the effect of different levels of embedding between the wh-element and the gap
position in cases where the gap is filled (Ungrammatical cases) or empty (Grammatical). Our findings
suggests that in all our scenarios (grammatical and ungrammatical, Wh and affirmatives) an increase in
the level of embedding increases the average CEL very significantly. A similar pattern is observed with
affirmative sentences.
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Figure 2: Variation of CEL for different level of embedding; Wh cases with gap empty or filled.

Task C. Subject and Relative Island Violations: So far we have seen that the RNN model was able

to distinguish grammatical from ungrammatical pairs with some success, but also to capture a number
of interesting effect from the psycholinguistic literature: in Task A, the preference for subject relatives
and the effect of intervening pronouns vs. full DPs (see Table 2); in Task B, the almost acceptability of
Wh-resumptive pronouns vs. indefinites vs. the fully ungrammatical demonstrative fillers (Table 3), the
matching animacy, and the shifting preferences for full stops or question marks (Figure 1). However,
in many of these cases the margin of success was small with respective to others; for instance, only 3
ACEL points divide What should Mary discuss from What should Mary discuss it, but the ACEL distance
between e.g. What should Mary discuss and What has she said that Mary should discuss is over 20 ACEL
points.

We now turn to see how the model performs on the typically syntactic Task C. The overall results for
subject (S) and object (O) position are presented in Table 4. Since many of the gaps are non final we do
not employ the local P(FS/QM) measure and only present the two global measures. At a first glance, the
network seems to have been able to capture the facts with exactly the right progression: in the ACEL
measure object subextractions are best, followed at an 8 ACEL point distance by subextractions from
subjects, subject of passives, relatives in object position and relatives in subject position. The PPL facts
are harder to fit, especially for the passive (NSp: 95.64). It should be noted, however, that NSp could be
interpreted as a parasitic gap construction (Ross, 1967; Engdahl, 1985), which is normally judged fairly
acceptable (Who was a portrait of __ painted by __ ?), plus a spurious Tim filling the second gap, as in
Task B.

Has our model learned syntactic islands from Wikipedia? It would appear so, down to the fact that the
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| Cases | PPL | ACEL (£std) | # |

OBJ NP extraction (NO): Who has Tim seen a portrait of __? | 95.87 | 43.50 (£8.32) | 480
SUBJ NP extraction (NS): Who has a portrait of __ scared Tim? | 159.78 | 48.37 (£7.30) | 480
SUBIJ NP extr. from pass. (NSp): Who was a portrait of __ painted by Tim? | 95.64 | 49.75 (£5.95) | 480
OBJ RC extraction (RO): Who has Tim seen a portrait that showed __ ? | 131.75 | 51.64 (£8.76) | 768
SUBIJ RC extraction (RS):  Who has a portrait that showed __ scared Tim? | 181.87 | 56.11 (£6.90) | 960

Table 4: Overall results of Task C: Subject and Relative Clause (RC) island violations, where overall
PPL represents the perplexity on the sub-dataset, ACEL represents the average cross-entropy loss given
by the network and # represents the number of instances in that sub-data set. The losses differ from each
other significantly, p-value < 0.05.

Cases Wh-interrogatives | Y/N interrogatives | Affirmatives Ratio PPL Ratio CEL

ACEL ACEL ACEL (Wh-/YN), (Wh-/Aff) | (Who/YN), (Who/Aff)
OBJ pos. extraction (NO) 51.26 45.81 36.4 (1.57,2.78) (1.12, 1.42)
SUBIJ. pos. extraction (NS) 54.32 51.05 41.73 (1.27,2.03) (1.06, 1.30)
SUBJ. Pos. extr. + Passive (NSp) 53.51 51.92 45.08 (1.07,2.01) (1.03,1.19)
OBJ. RC (RO) 59.11 54.35 43.95 (1.43,2.46) (1.09, 1.34)
SUBJ. RC (RS) 60.76 58.54 50.57 (1.12, 1.47) (1.04, 1.20)

Table 5: Results of Task C: Subject and Relative Island Violations, divided in to wh- interrogatives; Y/N
interrogatives and affirmatives. ACEL represents the average cross-entropy loss given by the network
and #, the number of instances in that sub-data set. For ACEL the lower the value the better. The losses
we obtain differ from each other significantly, p-value < 0.05.

last case, RS extraction, is the worst because, arguably, it is the sum of two distinct islands — relative
and subject. However, a look at the performance of the model on a set of parallel cases shows that the
interpretation of these facts should probably be quite different. Recall that for each Wh case, our Task C
test set contains the corresponding Y/N and affirmative sentences (8):

(8) a.  Who did John see the person that dated __?
b.  Did John see the person that dated Mary?
c. John saw the person that dated Mary.

Table 5 shows the ACEL scores for all three types, as well as the ratio between the scores given to the
sentence types. One remarkable aspect is that the Wh cases have a much higher (i.e. worse) score than
the corresponding affirmative; even more remarkable, however, is the fact that Y/N questions are also
very far from assertions, much closer in fact to their Wh counterparts. But Y/N questions have no Wh
gap, hence no island effects. Equally remarkably, Y/N-questions and assertions follow a progression
which is almost identical to the one of Wh-cases: NO>NS>NSp>RO>RS. This is quite visible from
the ratios, which remain very stable under ACEL, and taper down slightly in PPL.

This data shows that the increased perplexity with Wh cases has nothing to do with island effects, or
we would not find it in Yes/No questions and assertions. Our hypothesis is that it is rather the cumulative
effect of increasing syntactic complexity, plus position. Suppose that an NP such as a classmate of John
is more complex than John, a classmate and possibly John’s classmate, thus potentially more ambiguous.
Suppose further that relative clauses are even more complex/ambiguous. Ambiguity leads to uncertainty,
so by increasing it we increase perplexity as well, yielding the difference between NO,NS>RO,RS.

This does not yet explain why NO>NS and RO>RS (recall that they are made of the same words, just
in different orders). This, we hypothesize, is the effect of position. A complex structure at the beginning
of a sentence (subject position) can be more damaging than one at the end (object position), probably
since it can lead the intermediate network units into a “wrong” state of activation, which will be fed
back to the RNN as the next word enters, generating additional perplexity. To test this hypothesis, we
placed other types of complex nominals (NP conjunctions, NPs containing adjectival and PP modifiers
in both subject ((9a), (9c)) and object position (e.g. (9b), (9d)) in Y/N-interrogatives and in the corre-
sponding affirmative sentences. We observed that the PPL/ACEL for sentences with complex subjects
was 154.79/73.01, vs. 99.70/66.64 with complex objects. The pattern was similar in Y/N-interrogatives
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and affirmatives, and across the two different types of complex nominals.

) Did [the publisher, the journalist and their families] meet Mary?
Did Mary meet [the man, the woman and their families]?
Did [a well built, blond-haired man with a large, heavy backpack] meet Mary ?

Did Mary meet [a well built, blond-haired man with a large, heavy backpack]?

a0 o

In addition, all things being equal, a Wh might generate additional perplexity, since it leads the model to
expect a gap at multiple points (cf. Figure 1b). Putting these factors together, it is not strange that the RS
case (relative complexity + subject position + Wh perplexity) might come out with the highest score.

5 Conclusions and future work

Our work builds on Linzen et al. (2016); Gulordava et al. (2018); Bernardy and Lappin (2017), but
with a difference goal: the possibility for an RNN to learn to classify sentences by grammaticality,
focusing on two specific long-distance effects: the presence of an extra argument (Task B) and the island
effects in extraction (Task C). The results showed, first of all, that our NN model was good at capturing
known effects in the processing of relatives (subject/object preferences, effect of interveners), and good
at spotting the selective need for a final argument (Task B). The fact that the ungrammatical cases were
graded, with pronouns next best after gaps (see Table 3) shows that the network wasn’t just using the
simple rule “If it starts with Wh*, pick the version with fewer words, if not, don’t”. On the other hand,
the overwhelming effect of processing factors like the level of embedding (Figure 2), and the fact that
the apparent success of the NN in the island task in not based on the island extraction effect itself cast
doubts on the idea that the NN is using an abstract dimension of ‘grammaticality’.

It could be tempting to take this as a cue that even human ungrammaticality should be reduced to
processing (see Villata et al. 2016 for discussion in the domain of weak islands, which we did not test
here), but there are reasons to believe that, while processing might play a role, it cannot be the whole
story. As is well-known to anyone who has practiced a musical instrument, pronounced tongue-twisters
or read centrally-embedded sentences, processing difficulties improve a lot with practice. However,
multiple repetitions of Who did John see Mary? by humans are not likely to make it better.

The study raises several methodological issues, first and foremost in the choice of measures. Perplexity
seems to be an obvious first choice for a language model, but even when it is normalized by the number
of words in the sentence it is sensitive to contrasting effects: longer sentences are more predictable, but
recursively embedded sentences are less. Moreover, complex structures increase perplexity more when
they are at the beginning of a sentence than at the end (see our discussion of Task C results). In future
work we plan to explore variations of these measures with different properties, and use bidirectional
LSTMs to mitigate the latter effect. Local prediction tracking as in Figure 1, on the other hand, seems
to be a promising, intuitive tool to see what the NN is “thinking” throughout a parse, but it is not always
applicable. This is related to a final point. Grammaticality is typically judged relative to a (grammatical)
point of comparison. Thus, Who did a portrait that showed scared Tim? is truly awful if judged as the
RC+Subj extraction from The portrait that showed who scared Bill?, but what if the NN takes it as a
variant of a structure such as [(the person) who has a dress that (really) showed] scared Tim? Humans
can be given minimal pairs to make the difference clear. Learning how to do this with NN remains for
future work. Only after these issues have been resolved and a performance plateau has been reached we
will be in a position to go back to the original question: are (R)NN feasible models of innate-grammar-
free language learners? Which abstract properties can they learn from the input?
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Abstract

Modeling U.S. Congressional legislation and roll-call votes has received significant attention in
previous literature. However, while legislators across 50 state governments and D.C. propose
over 100,000 bills each year, and on average enact over 30% of them, state level analysis has
received relatively less attention due in part to the difficulty in obtaining the necessary data.
Since each state legislature is guided by their own procedures, politics and issues, however, it
is difficult to qualitatively asses the factors that affect the likelihood of a legislative initiative
succeeding. Herein, we present several methods for modeling the likelihood of a bill receiving
floor action across all 50 states and D.C. We utilize the lexical content of over 1 million bills,
along with contextual legislature and legislator derived features to build our predictive models,
allowing a comparison of the factors that are important to the lawmaking process. Furthermore,
we show that these signals hold complementary predictive power, together achieving an average
improvement in accuracy of 18% over state specific baselines.

1 Introduction

Federal institutions in the U.S., like Congress and the Supreme Court, play a significant role in lawmak-
ing, and in many observable ways define our legal system. Thus, as data and computational resources
have become more readily available, political scientists have increasingly been adopting quantitative
methods focused on understanding these entities and the role they play in our society (Katz et al., 2017;
Poole and Rosenthal, 2007; Slapin and Proksch, 2008; Lauderdale and Clark, 2014).

Although many issues are legislated and regulated primarily at the federal level, state governments
have significant power over certain areas. An increasing number of important issues are being decided
at the state or local levels, especially in emerging industries and technologies, such as the gig economy
and autonomous vehicles (Hedge, 1998). Moreover, there are 535 members of Congress who introduce
over 10,000 pieces of legislation a session,! of which less than 5% is enacted. Similar dynamics exist
at the state level, except on a much broader scale. There are over 7,000 state legislators, in aggregate
introducing over 100,000 pieces of legislation, with over 30% being enacted. In order to be enacted,
every bill must pass through one or more legislative committees and be considered on the chamber floor,
a process we refer to as receiving floor action. This process is one of the most pivotal steps during
lawmaking (Rosenthal, 1974; Hamm, 1980; Francis, 1989; Rakoff and Sarner, 1975), as on average,
only 41% of bills receive floor action, with most legislation languishing in the committees.

Legislative policymaking decisions are extremely complex, and are influenced by a myriad of factors,
ranging from the content of the legislation, to legislators’ personal characteristics, such as profession,
religion, and party and ideological affiliations, to their constituents’ demographics, to governor agendas,
to interest group activities, and to world events (Canfield-Davis et al., 2010; Hicks and Smith, 2009;
Talbert and Potoski, 2002).

Despite this complexity, in this paper we present an approach to better understand state lawmaking
dynamics and the legislative process by focusing on the task of predicting the likelihood that legislation
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/.
'A session is the period of time a legislative body is actively enacting legislation, usually one to two years.
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will reach the floor in each state. As there are many dimensions underlying the content of the legislation,
such as the policy area and ideology of the sponsor (Linder et al., 2018), that may affect the likelihood of
floor action, in addition to text we examine several established contextual legislature and legislator de-
rived features. To the best of our knowledge, this is the first work quantitatively modeling the floor action
process across all 50 states and using the text of legislation alongside traditional contextual information.

2 Related Work

Much of the work analyzing the federal legislature is aimed at understanding legislator preferences
through the use of voting patterns. One of the most popular techniques in political science is the ap-
plication of spatial, or ideal point, models built from voting records (Poole and Rosenthal, 1985; Poole
and Rosenthal, 2007), that is often used to represent unidimensional or multidimensional ideological
stances (Clinton et al., 2004). However, there is also an increasing literature examining broader legisla-
tive dynamics, such as measuring legislative effectiveness (Harbridge, 2016), evaluating the impact of
legislation on stock prices using legislators’ constituents (Cohen et al., 2012), creating cosponsorship
networks (Fowler, 2006), and examining the role of lobbying (Bertrand et al., 2018; Matthew et al.,
2013),

In recent years a variety of primary and secondary textual legal data, such as legislation, floor debates,
and committee transcripts, has become increasingly available, enabling the NLP community to create
richer multidimensional ideal point estimation (Gerrish and Blei, 2011; Nguyen et al., 2015; Kornilova
et al., 2018), and examine ideology detection from political speech (Iyyer et al., 2014), voting prediction
from debates (Thomas et al., 2006), committee referral (Yano et al., 2012), and enactment (Nay, 2016).

While there is also an increasing amount of state legislative research, states have received significantly
less attention (Hamm et al., 2014). One major reason for this is that quantitative methods require data,
and the availability of data for Congress far exceeds that of states. In fact, Yano et al. (2012) noted “When
we consider a larger goal of understanding legislative behavior across many legislative bodies (e.g.,
states in the U.S., other nations, or international bodies), the challenge of creating and maintaining such
reliable, clean, and complete databases seems insurmountable.” Thus, while there has been scholarship
quantifying the role of committees, it has been limited in scope, to a few sessions or states, or reliant on
survey data (Francis, 1989; Rakoff and Sarner, 1975; Rosenthal, 1974; Hamm, 1980). More recently,
as different kinds of state data has become more accessible, it has enabled studying the affect of interest
groups on legislative activity (Gray and Lowery, 1995), the application of spatial models (Shor et al.,
2010; Shor and McCarty, 2011), and comparisons of textual similarity (Linder et al., 2018).

The contribution of this work is to continue building a broader understanding of state legislative dy-
namics by evaluating how predictable state lawmaking is, and what factors influence that process. We
create a novel task, predicting the likelihood of legislation receiving floor action, and utilize a corpus of
over 1 million bills to build computational models of all 50 states and D.C. We present several baseline
models utilizing various features, and show that combining the legislative and legislator contextual in-
formation with the text content of bills consistently provides the best predictions. Our analysis considers
various factors and their respective importance in the predictive models across the states, showing that
although there are some consistent patterns, there are many variations and differences in what affects the
likelihood in each state.

3 Data

There is state-to-state variation in the legislative procedure of how a bill becomes law, but the path is
largely similar. Legislation is introduced by one or more members of the legislature in their respective
chamber,” and assigned to one or more standing subject committees.> Committees are made up of a
subset of members of their respective chamber, and are chaired by the majority party. Once in committee,

2All legislatures are bicameral, with either a House or Assembly as the lower chamber, and the Senate as the upper chamber,
except D.C. and Nebraska, which are unicameral.

3Depending on the state, other groups can introduce legislation, including legislative committees, legislative delegations,
the governor, or non-elected individuals. For the purpose of this work we focus on legislator sponsored legislation.
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Figure 1: Dataset characteristics.

legislation is subject to debate and amendment only by the committee members, with the successful
outcome being a favorable referral, or a recommendation, to be considered by the full chamber on the
floor.

The primary data we use to model floor action was scraped directly from each state legislatures’
website. For each state, we downloaded legislation, committee, and legislator pages for all sessions that
were publicly accessible. Legislation pages were automatically parsed to determine legislative contextual
metadata, which includes bill text versions, sponsors, committee assignments, and the timeline of actions.
Legislator pages were parsed to obtain sponsor contextual metadata, which includes party affiliation,
committee assignments, and committee roles.

As states demarcate legislative status in the timeline of actions differently, we automatically map
and normalize all textual descriptions of legislative actions to a finite set of statuses.* These statuses
are used to determine whether a piece of legislation survived committee and received a floor action, or
consideration on the floor. All bills having a status of passed in their introductory chamber, or having
had a recorded floor vote are treated as positive examples, while any status prior to passed is considered
failed, including legislation that was reported out of committee but not considered on the floor.

Finally, since each state follows their own conventions with regard to classifying the type of legislation,
we normalize all legislation across states to two types: resolutions and bills.’

Figure la shows the total number of bills introduced and receiving floor action for each state. In
total, our dataset consists of 1.3 million pieces of state legislation, broken into 1 million bills, with 360k
receiving floor action, at an average rate across states of 41%, and 275k resolutions, with 210k receiving
floor action. On average, we have 10 legislative sessions of data per state.® As bills represent substantive
legislation, with a much lower floor action rate, while resolutions are much more likely to receive floor
action, for the rest of this paper we focus on bills only, and refer to bills and legislation interchangeably.
We include 15 sessions of U.S federal legislation in our data for comparative purposes, with 23k of 172k
bills receiving floor action.

Figure 1b presents the percent of bills receiving floor action. It is interesting to note the difference
in difficulty for legislation to receive floor action in different states. For example, in New Jersey and
Massachusetts, fewer than 15% of bills reach the floor, whereas 75% do in Colorado and Arkansas.’

4 Methods
4.1 Models

In order to not only be able to predict, but also examine the importance of features to our prediction,
we chose three relatively interpretable models for our modeling framework. Formally, let our training

“The normalized statuses include introduced, assigned to committee, reported from committee, and passed.

SResolutions are pieces of legislation of type appointment, resolution, joint resolution, concurrent resolution, joint memorial,
memorial, proclamation, nomination. Bills are those of type bill, amendment, urgency, appropriation, tax levy, or constitutional
amendment.

SFull data statistics are given in Table 7 in Appendix A.

"Our average across states, chambers, and sessions is in line with previous single state and session findings; in examining
five states Rosenthal (1974) found between 34% and 73% of legislation did not survive committee.
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data (X,Y) consist of n pairs (x;,y;)"_, where, each x; is a bill and y; a binary indicator of whether
x; received floor action. Let f(x;) be a feature vector representation of x;, and w the parameter vector
indicating the weight of each feature learned by the model.

The first two models are linear classifiers, where the prediction of floor action, g;, is given by
sign(w'f(x)). The first is a regularized conditional log-linear model py (y | ):

exp{w'f(z)}

Z(x) M

pw(ylz) =

where Z () is the partition function given by >, exp {wTf(x)}. The model optimizes w according to

mvinz_logpw(yimi)Jr)\HWH @

The second model is NBSVM (Wang and Manning, 2012), an interpolation between multinomial
Naive Bayes and a support vector machine, which optimizes w according to:

m“i/nC Z max(0,1 — yi(w' (f(z;) or)))* + | |w]|? )

where r is the log-count ratio of features occurring in positive and negative examples. The third model
is non-linear, in the form of a tree-based gradient boosted machine (Friedman, 2000), which optimizes
w according to:

n K
H}’éﬂzl(yiaﬁi) + ZQ(tk) “)
: k=1

where K is the number of trees, [ is the loss function, typically binomial deviance, and g; is given by
SO tr(@;) where ty, is a tree.

We use the scikit-learn (Pedregosa et al., 2011) implementation for the log-linear and gradient
boosted models, and implemented NBSVM based on the interpolated version in Wang and Manning
(2012).

As hyperparameters, such as learning rate and regularization, have a significant impact on model per-
formance, we use Bayesian hyperparameter optimization (Bergstra et al., 2011) to select the optimal hy-
perparameters for each model on a held-out development set. We used the tree-structured Parzen Estima-
tor (TPE) algorithm implemented in hyperopt for our sequential model-based optimization (Bergstra
et al., 2013). After individually optimizing hyperparameters and training each of the three base models,
we use their outputs to train a meta-ensemble model, a regularized conditional log-linear model, forming
a linear combination over their predictions (Breiman, 1996).

As the lawmaking process in each state, and even within each chamber, is different, we divide the
problem space by state and chamber, building separate models for each subset. Specifically, we consider
each of these as separate problems: upper chamber bills and lower chamber bills. Thus, we have 2
predictions per state, and each prediction is comprised of 4 model outputs, three from the base models,
and one from the meta-ensemble, resulting in 400 models.?

4.2 Features

As there are many dimensions underlying bills that may affect the likelihood of floor action, we compute
and utilize several established contextual legislature and legislator derived features. Previous literature
has proposed various factors that may affect legislation, including the content of bills,” number of and

8There are only upper chamber bills in D.C. and Nebraska, resulting in 49 states x 2 prediction types + 2 states x 1 prediction
type) x 4 models = 400.

°In most previous literature the content is determined via a manual analysis of each bill to establish the scope of impact, the
complexity, or the incremental nature.
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Feature Type || Description

Sponsor primary and cosponsor(s) identity, primary and cosponsors(s) party affiliation, num-
ber of primary and sponsors, number of Republicans, number of Democrats, sponsors
bicameral, sponsors bipartisan, sponsor in majority/minority, majority party Repub-
lican or Democrat

Committee identity of assigned committee(s), number of committee assignments, number of
sponsors members of the committee, sponsor same party as committee chairman,
sponsor role on the committee, referral rate of committee(s)

Bill chamber, bill type, session, introductory date, companion bill(s) existence, compan-
ion(s) current status.

Table 1: Contextual feature types and descriptions.

identity of sponsors, extra-legislative forms of support, timing of introduction, leadership’s position,
seniority, identity of chairperson of the committee, identity of one’s own party, and membership of the
dominant faction (Hamm, 1980; Rakoff and Sarner, 1975; Harbridge, 2016; Yano et al., 2012).

In order to quantitatively evaluate these factors and establish a strong baseline from which to measure
the affect of text, we include the contextual features shown in Table 1. These indicator features derived
from the sponsors, committees, and bills are meant to capture many of the major factors that are proposed
in the literature.!” To strengthen the representation of legislators in our model beyond the basic features
described above, we compute several measures of legislator effectiveness. The effectiveness score is
calculated from the sponsoring and cosponsoring activity of each legislator, and meant to represent where
they stand in relation to other legislators in successfully passing legislation.!!

Similar to Harbridge (2016), the score we compute for each legislator is a combination of several
partial scores, computed for each important stage of the legislative process. Each legislator gets a score
for how many bills they sponsored, getting those bills out of committee, getting them to the floor, passing
their own chamber, passing the legislature, and getting enacted. The score for each stage is further broken
down by how many of those pieces of legislation were substantive, i.e. bills, attempting a meaningful
legal change, versus non-substantive, i.e. resolutions. This results in 12 factors for each individual.
To compute a score for each legislator’s relative performance at each stage to the other members in the
chamber, we create a weighted combination of that legislator’s bills and resolutions, where bills get more
weight, and compute the ratio based on the weighted contribution of the other members in the chamber.
All the stage scores are then combined into a second weighted combination, where each successive stage
in the process gets more weight, to get the final score. Finally, the scores are normalized to 0-10. In
addition to using the effectiveness scores directly as features, we further compute and discretize several
statistics derived from them, including ranks, percentiles, and deviations from the mean thereof.

To further enrich the bill representation beyond contextual information, we utilize the textual content of
the bills. The legislation in our collection is comprised of long documents, with an average of 11 thousand
words, often containing significant amounts of procedural language and pieces of extant statutes. As this
can create additional challenges in identifying the salient points, for this work we chose to focus on
a condensed amount of text, specifically the state provided title and description, that average 17 and
18 words, respectively.!? Both are preprocessed by lowercasing and stemming. We compute the tf-idf
weighting for n-grams of size (1,3) on the training data for each prediction task, and select the top 10k

0Each count based feature, such as number of sponsors, also spawns a number of discretized features, including ranks,
percentiles, and deviations from the mean thereof. We automatically compute companion bills using a cosine-based lexical
similarity.

"'This is not a holistic representation of being an effective legislator, as someone may consider themselves effective by not
passing anything, or preventing others from doing so. Members may also be highly influential and their support is needed
behind the scenes but their names do not appear on the legislation. We can only account for recorded activity. Despite the
limitations, we argue this is a fair, if incomplete, assessment of how well the legislator advances their agenda.

12 Although this is a coarse approximation of the bill content, we believe it should capture the substantive aspects of the bill.
Full details of the length of documents in each state are given in Table 7 in Appendix A.

149



Condition Feature Set

combined sponsor, committee, bill, text
no_txt sponsor, committee, bill
no_txt_spon committee, bill

just_txt text

just_spon sponsor

Table 2: The five feature settings with contextual and lexical features.

n-grams from the title and description separately.

While we would like to study the predictability of reaching the floor upon first introduction, bills often
change after introduction and are updated with additional information. Thus, we limit our features to
those available at the time of first introduction.

5 Results

In order to clarify the impact that each set of features described in Section 4.2 has on predictive perfor-
mance, we create five different subsets of features described in Table 2, and train models on each one of
them separately.

The first condition, combined contains all the contextual and text content features. The second
condition, no_txt, removes text content, allowing us to study the importance of all contextual fea-
tures, and by comparing combined to no_txt we can evaluate if text has any complementary infor-
mation to contextual features. The third condition, no_txt_spon further removes sponsor features,
essentially allowing us to study the importance of committee information. By comparing no_txt to
no_txt_spon we can evaluate what sponsors contribute. The fourth and fifth conditions use only
sponsor and only text features, respectively, to study the importance of each individually.

All models for a given condition are built from the same training data and feature space. We measure
and report several performance metrics of our models using 10-fold cross validation. The baseline model
represents guessing the majority class; for some states this means all fail, for others it is all receive floor
action, based on the state specific rate.

Although accuracy is informative with respect to how many correct binary decisions the model made,
as noted in Bradley (1997) for imbalanced problems such as this, where one class dominates, the baseline
accuracy can be very high. As a supplement, it is useful to measure a probabilistic loss, where there is a
cost associated with how correct the decision was. Thus, we move beyond pure predictive performance
and consider the actual probability distributions created by our models under different conditions. The
log-linear and gradient boosted models are probabilistic, while NBSVM is not, thus we train a probability
transformation on top of NBSVM using Platts Scaling to obtain probability estimates.

In additional to accuracy, we measure model performance on log-loss and AUROC (area under the
receiver operating characteristic curve) (Bradley, 1997). Log-loss, L L is defined as:

n

LE =~ 3" Uy = i) log(p) + (1~ 1(y: = 1) log(1 — py) 5)
i=1
where 1(y; = ¥;) is an binary indicator function equaling 1 if the model prediction y; was correct,
and 0 otherwise. L equals zero for a perfect classifier, and increases with worse probability estimates.
Specifically, L L penalizes models more the more confident they are in an incorrect classification.
AUROC allows us to measure the relationship between a model’s true positive (TP), how many floor
action bills were correctly predicted as floor action, and false positive rate (FP), how many failed bills
were predicted as floor action. It is defined by:

N
AUROC =) p(TP)Ap(FP) +
=1

S (Bp(TP)AN(FP) ©
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Feature Set Accuracy Log-Loss AUROC
Average Std Dev | Average Std Dev | Average Std Dev

baseline 0.68 0.1 0.6 0.09 0.5 0
just_txt 0.732 0.09 0.53 0.14 0.7 0.14
just_spon 0.759 0.102 0.48 0.16 0.74 0.15
no_txt_spon 0.81 0.113 0.39 0.18 0.8 0.18
no_txt 0.846 0.098 0.32 0.18 0.82 0.21
combined 0.859 0.093 0.31 0.17 0.85 0.21

Table 3: Average and standard deviation across states on accuracy, log-loss, AUROC for bills on each
feature set.

By considering the TP and FP at different values, we can construct an ROC curve. The area under
that curve, AUROC, can be interpreted as the probability that the model will rank a uniformly selected
positive instance (floor action) higher than a uniformly selected negative instance (failure), or in other
words, the average rank of a positive example. A random model will have a AUROC of 0.5, and a 45-
degree diagonal curve, while a perfect model will have an AUROC of 1, and be vertical, then horizontal.

Table 3 shows the average accuracy, L L, and AUROC with standard deviations for each of the five
conditions. The just_txt model achieves an accuracy of 73%, outperforming the baseline by 5%, and
notably, shows that there is a predictive signal even within the limited amount of text available in the title
and descriptions.

To examine where text content is most and least predictive on its own, we disentangle the average
performance of the just_txt model in Figure 2a, showing the per state and chamber pair change from
baseline. The states that improve the most over baseline, with 15% improvement or more using only
textual features are Oregon, Oklahoma, Tennessee, D.C., South Carolina, Louisiana (lower), Georgia
(lower), and Alabama (lower). On the other hand, text is least predictive in Connecticut, Wyoming,
Idaho, New Jersey, Utah (upper), New Hampshire (upper), North Dakota (upper), all underperforming
the baseline.

The relatively small improvement over baseline of just_txt provides insight into the lawmaking
process, raising the possibility that other contextual factors, outside the subject matter of the legislation,
such as who the sponsors are and what committee the bill is assigned to, are often more important than
the subject of the legislation.

The just_spon model achieves an average accuracy of 76%, slightly outperforming just_txt
with an improvement over baseline of 8%. This further indicates that knowing sponsor related infor-
mation, without reference to the subject of the legislation, is itself highly predictive. In fact, Figure 2b
shows that except for New Hampshire (upper), almost all states achieve gains using sponsor only infor-
mation, with Oklahoma, Texas, and Ohio achieving gains of 30% or more. The committee information in
no_txt_spon, which includes the sponsor committee positions, is even more predictive than sponsor
and text only, and the addition of sponsors in no_txt improves performance by 3.5%.

Including text in the combined model further improves performance by 1.3% over no_txt, and
18% over the majority class baseline, showing the complementary effects of contextual and lexical in-
formation, as this model consistently outperforms all others. Figure 2c shows the per state and chamber
pair baseline and combined model performance. The AUROC performance follows a very similar
trajectory.

On L L, the model performance follows a similar path, with all models showing improvement in prob-
ability estimates from the baseline. L L almost doubles from the combined model’s 0.31 to 0.6 on
baseline. This reinforces that the combined model makes very confident correct predictions. In-
cluding text in the combined improves performance slightly over no_t xt, while having just sponsors
or just text decreases the L L to around 0.5.
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Figure 2: Performance improvements for text-only (2a) and sponsor-only models (2b), and combined
performance (2c)

6 Analysis

All contextual and lexical features considered above are available upon the introduction of a bill, or
shortly thereafter,! thus the evaluation above indicates how well floor action can be predicted from
the day of introduction. However, after the bill is introduced, subsequent legislative actions indicate
further contextual information about the legislative process. As it is reasonable to assume these actions
carry relevant predictive information, we further examine subsequent events in the legislative process
in the combined+act feature set. We include a binary feature for the occurrence of amendment
introduction and outcomes, votes, committee referral outcomes and readings up to the point of floor
action. By comparing combined+act to combined we can examine how important different events
in the legislative procedure are to predicting floor action.

Table 4: Average accuracy, log-loss, AUROC for bills using legislative events post introduction.

Feature Set Accuracy Log-Loss AUROC
Average SD | Average SD | Average SD
combined 0.859  0.093 0.31 0.17 0.85 0.21
combined+act 0.94 0.059 0.16 0.12 0.97 0.04

Table 4 shows the results of the combined+act feature set. Accuracy improves to 0.94, while
LL drops by half to 0.16, confirming that legislative events occurring up to the point point of floor
action carry significant complementary information to other contextual factors and are highly indicative
of floor action. While combined+act confirms the predictive power of procedural factors outside
the legislative text, sponsor, and committee assignment, the combined model is arguably the most
important result, as it indicates how well we can predict on features that are available upon introduction.

Beyond the predictions, we are interested in identifying the different features that contribute to legisla-
tive success across the states. As there are both a large number of models, and features in each model,
in order to understand the relative predictive importance of contextual and legislature specific dynamics,
we choose several previously proposed factors deemed to be important for floor action, and compare the
rank and weight they received in each model.

We first examine the median rank and weight given to the following features in the just_spon con-
dition across all states: bipartisan, sponsor in minority, sponsor in majority, and the number of sponsors.
While many of these contextual features are highly ranked, there are many variations and differences
across states. The top half of Table 5 shows the top ten states for which each feature was ranked among
the top 20. For example, the bipartisan feature is ranked in the top 5 in Missouri, Virginia, Maine, and
Mississippi, accounting for up to 6% of the explanatory power. As a comparison, in South Dakota,
Hawaii, Minnesota, Wisconsin, and Pennsylvania, bipartisanship ranked lower than 200. Whether the
sponsor is in the minority is important in the U.S. Congress, where it is ranked 6", along with Delaware,
Tennessee, and West Virginia. Being in the majority accounts for 10% in Kentucky, and 7% in Wiscon-
sin. This aligns with previous literature, as Wisconsin is known to have a strong party system (Hamm,

13Some states do not indicate committee assignment immediately, for those we include the first assignment after introduction.
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Feature Median | Top | Top States Bottom States
Bipartisan 64 11 | mo,va,me,ms,nc,sc,ak,de,wa,us | sd,mn,wi,pa,ut,ne,id,fl,dc,ar
in Min 24 20 | de,us,wv,tn,ia,wi,al,nd,md,mi ca, il,hi,tx,nj,ut,ne,fl,dc,ar
in Maj 23 22 | wi,mn,tn,ky,nh,nc,co,il,al,oh ak,tx,ma,va,ne,nj,me,ut,fl,ar
Num Spon 28 20 | co, ut,il,vt,in,ia,or,sd,oh,us pa, az,wa,wy,nm,nv,va,ms,mn,ar
Ranking Mbr 24 15 | ne,vt,arky,us,ga,ok,me,ny,or ks,mo,mt,oh,pa,ri,tn,ut,va,wy
No Cmte Mbr 17 23 | ar,me,ne,il,sd,nc,nv,nm,de ky hi,id,ia,ks,mt,oh,pa,tn,ut,wy
Members 6 33 | de,ct,me,sd,nc,nv,0k,ny,ga,il hi,id,ia,ks,mt,oh,pa,tn,ut,wy

Table 5: Median ranking of across states for bipartisan, sponsor in minority, sponsor in majority, and
number of sponsor features for sponsor only model, and having a ranking majority of the committee as a
sponsor, not being a committee member as a sponsor, and being a member of the committee as a sponsor
in the committee model. The top column indicates how many states have that feature ranked within the
top 20 weighted features. The top states lists the ten states where each feature was ranked the highest
and was one of the first 20 features. The bottom rows lists the ten states where each feature was ranked
the worst.

1980), and indeed we find sponsor in majority and in minority features to be ranked 1°* and 9*", re-
spectively, while in Texas, which has a much weaker party system, those features are ranked among the
lowest of all states.'*

Similar ranking is presented for committee features in the bottom half of Table 5 in the
no_txt_spon condition. The committee features play a similarly predictive role, with the spon-
sors holding membership positions on the committee accounting for over 10% of explanatory power
in Delaware, Connecticut, Maine, and South Dakota.

To examine the difference in probability assigned by the models under different conditions, we chose a
representative example where neither contextual nor lexical features dominate, as shown in Figure 2, and
show the boxplots for Pennsylvania’s lower chamber in Figure 3. Each subfigure shows the probability
of floor action for legislation that received floor action (pass) and did not (failed). In all cases, the median
of the probabilities on legislation that received floor action is higher than the median of the probabilities
on legislation that failed. The combined models median and mean predictions on bills receiving action
are above 90%, and it has the largest difference between the two cases. The no_txt model has a
similar mean, but the probabilities become more distributed on both pass and fail. Removing sponsors
significantly affects the distribution, and shifts the mean lower to 70%. just_spon and just_text
both drop the mean to around 40%.

In addition, we show the calibration curves and distribution of predictions for the same settings in
Figure 4 and ROC curves in Figure 5 in Appendix A. All models are well calibrated, closely following
the diagonal line. The combined model is very confident in its predictions, resembling a bimodal
distribution, placing most predictions close to either 0 or 1 probability. just_spon has the most
distributed probability estimates, while just_txt moves the lower part of the distribution slightly
forward. The combined model is quite accurate, with each subsequent model moving the ROC curve
to the right, and thus allowing more false positives to reach the same true positive rate. !>

Finally, we examine language ranked most and least predictive on the just_txt condition for New
Mexico, Pennsylvania, and New York in Table 6.!¢ Previous literature has proposed several theories on
how content affects legislative passage, including that the more redistributive a policy is perceived, the
higher in controversy, or the greater in scope, the lower the passage likelihood (Rakoff and Sarner, 1975;
Hamm, 1980). While each state has a unique set of issues that are likely to be taken to the floor, and
conversely, to be left in committee, there is also evident overlap. In the top phrases, several states contain

!4Full rankings and weights are presented in Table 8 in Appendix A.

'5For comparison to a state with a higher rate of floor action, we include analogous figures for California’s lower chamber in
Appendix A.

1 Addition states are presented in Table 9 in Appendix A.
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State

Top Phrases

Bottom Phrases

New Mexico (upper)

day, campus, recognit, month, defin, alcohol,
date, recipi, procur, cours, registr plate, revis,

tax credit chang, enmu, residenti, lobbi,
statewid, or, abort, safeti, date for, test for, pri-
mari care, analysi,

New Mexico (lower)

day, studi, length, citi, of nm, fingerprint,
geotherm, fund project, dog, definit, loan for,
month,

of game fish, peac, senior citizen, math scienc,
transfer of, state fair, self, bachelor, develop tax
credit, nmhu, wolf, equip tax,

Pennsylvania (upper)

provid for alloc, creation of board, manufactur
or, an appropri to, of applic and, medic examin,
fiscal offic, for request for, corpor power, within
the general, for the offic,

an act amend, as the tax, known the, act provid,
known the tax, wage, act prohibit, citizen, of
pennsylvania further, tax, youth, requir the de-
part,

Pennsylvania (lower)

or the, contract further, and for special, memori
highwai, within the general, in game, first class
township, whistleblow, emerg telephon, offens
of sexual, for promulg,

act amend titl, an act amend, act provid, known,
act prohibit, amend the, pennsylvania, an act
provid, code of, act establish, an act relat, the
constitut,

New York (upper)

fiscal year relat, memori highway, year relat to,
implement the health, for retroact real, portion
of state, the public protect, implement the pub-
lic, inc to appli, budget author, program in relat,
which are necessari

languag assist, direct the superintend, the de-
velop of, author shall, subsidi, automobil insur,
such elect, limit profit, disabl act, polici base,
polici to provid

New York (lower)

care insur, applic for real, physic educ, fire dis-
trict elect, establish credit, to file an, abolit or,
hous program, the suspens of, are necessari to,
the membership of, relat to hous

appropri, fuel and, numer, school ground, ve-
hicular, incom tax for, prohibit public, tag, senat
and assembl, on school, on school, class feloni

Table 6: Top and bottom ranked phrases for New Mexico, Pennsylvania, and New York.

budgetary issues, expressed with fiscal and appropriation language, as most states have to pass budgetary
measures. We also see commendation and procedural language, which is often less contentious. In the
bottom phrases, several states have tax related language, and several education related topics.

While outside the scope of this work, in future work we hope to explore the differing language identi-
fied by the model to help identify important questions about the policymaking process in each state, and
allow comparison within states of what successful legislation contains, and across states, of how different
issues take shape. In addition, as we only included a limited amount of text, we would like to explore
how to incorporate the full body text of legislation effectively.

(a) combined (b) no_txt (¢c) no_txt_spon (d) just_spon (e) just_txt

Figure 3: Box plot distributions of predicted probabilities for legislation in Pennsylvania lower chamber.
The box extends from the lower to upper quartile values of the predictions, with a line at the median, and
triangle at the mean.

7 Conclusion

In this paper we explored the state legislative process by introducing the task of predicting floor action
across all 50 states and D.C. We presented several baseline models and showed that combining contextual
information about the legislators and legislatures with bill text consistently provides the best predictions,
achieving an accuracy of 86% on which legislation will reach the floor upon first introduction. We
further analyzed various factors and their respective importance in the predictive models across the states,
gaining a broader understanding of state legislative dynamics. While the factors that influence legislative
floor action success are diverse and understandably inconsistent among states, by examining them we
can empirically help elucidate the similarities and differences of the policymaking processes.
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A Appendix

(a) combined (b) no_txt (¢) no_txt_spon (d) just_spon (e) just_txt

Figure 4: Calibration plots for Pennsylvania lower chamber.

(a) combined (b) no_txt (c) no_txt_spon (d) just_spon (e) just_txt

Figure 5: ROC curves and AUC for Pennsylvania lower chamber. Green pointers indicate probability
thresholds on the Recall-Precision curve, and the title includes accuracy at the best performing threshold.
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Figure 6: Distributions of predicted probabilities for legislation in California lower chamber that received
floor action (pass) and did not (fail) in a box plot. The box extends from the lower to upper quartile values
of the predictions, with a line at the median, and triangle at the mean.
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Figure 7: Calibration plots for California lower chamber.

(a) combined (b) no_txt (c) no_txt_spon (d) just_spon (e) just_txt

Figure 8: ROC curves and AUC for California lower chamber. Green pointers indicate probability
thresholds on the Recall-Precision curve, and the title includes accuracy at the best performing threshold.
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State | Floor Action Introduced Rate | Sessions | Title Desc  Body
al 6697 14327 0.467 16 21 - 11280
ak 781 2527 0.309 4 34 - 12054
az 3719 9308 0.4 24 4 - 13284
ar 3809 5076 0.75 8 17 - 7297
ca 18978 32143 0.59 17 5 186 16631
co 4808 6428 0.748 11 5 20 10671
ct 3044 16236 0.187 8 12 19 4748
de 3185 4858 0.656 6 19 89 9327
dc 8515 15593 0.546 9 11 - 7083
fl 6592 21298 0.31 15 6 29 16471
ga 7416 15379 0.482 13 8 43 5654
hi 5630 21615 0.26 5 9 28 6910
id 3259 4446 0.733 8 40 - 10458
il 14106 66926 0.211 10 3 46 7022
in 1958 5291 0.37 4 5 55 16918
ia 3434 21457 0.16 7 28 - 12740
ks 2123 6324 0.336 6 12 - 22294
ky 3149 8185 0.385 20 51 52 14218
la 18346 35277 0.52 32 20 - 7454
me 9268 17095 0.542 8 14 - 5583
md 9857 26125 0.377 14 10 59 8107
ma 6862 52467 0.131 7 11 26 14535
mi 14520 41730 0.348 11 27 - 10929
mn 4494 27240 0.165 10 11 - 10251
ms 6621 25450 0.26 21 12 77 14475
mo 2736 14143 0.193 8 18 - 16486
mt 5910 9905 0.597 8 7 - 13758
ne 1837 4829 0.38 6 12 - 11775
nv 2614 4163 0.628 7 14 12 21165
nh 3243 6793 0.477 6 12 - 3269
nj 6900 59861 0.115 8 16 - 12883
nm 4253 10909 0.39 8 5 - 11639
ny 23071 89072 0.259 4 16 23 8913
nc 6922 25152 0.275 10 4 - 7039
nd 5735 8089 0.709 9 42 3 5847
oh 4356 8605 0.506 9 8 - 33216
ok 16579 36827 0.45 10 13 - 10333
or 5240 14404 0.364 12 9 54 14500
pa 2887 16414 0.176 5 32 - 5466
ri 6596 16584 0.398 5 31 - 8838
sC 3269 11532 0.283 6 77 7 6255
sd 1647 2539 0.649 9 16 - 6437
tn 33936 77331 0.439 12 30 - 3256
tx 8371 25771 0.325 9 16 - 5145
ut 7816 11072 0.706 23 7 - 24623
vt 1035 4520 0.229 4 14 - 6046
va 14215 27813 0.511 24 9 37 8310
wa 8317 24578 0.338 6 10 - 14735
wv 4308 23917 0.18 12 12 10 11501
wi 4982 13761 0.362 14 40 2 12090
wy 2825 4223 0.669 11 4 38 7032
us 22973 172921 0.133 15 14 178 14043

Table 7: Data statistics for number of bills introduced and receiving floor action for each state. Word
counts are given for title, description, and bill body.
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State Bipartisan in Min in Maj Num Spon AP Eff BP Eff
Rank Weight | Rank Weight | Rank Weight | Rank Weight | Rank Weight | Rank  Weight
al 57 0.003 12 0.012 5 0.017 54 0.003 17 0.015 95 0.003

ak 9 0.029 22 0.009 57 0.002 62 0.006 3 0.059 3 0.046
az 133 0.003 46 0.004 28 0.008 69 0.006 89 0.003 11 0.012
ar - - - - - - - - 0 0.326 1 0.236
ca 43 0.006 108 0.003 29 0.007 13 0.01 70 0.003 3 0.027

co 49 0.006 19 0.014 3 0.025 0 0.137 94 0.002 135 0.0
ct 128 0.001 75 0.003 26 0.008 58 0.004 210 0.001 - -
de 13 0.013 3 0.023 36 0.013 22 0.009 79 0.003 115 0.002

dc - - - - 16 0.015 33 0.011 - - - -
fl - - - - - - 27 0.012 1 0.072 0 0.137
ga 80 0.003 23 0.01 9 0.015 32 0.006 303 0.0 291 0.0

hi 224 0.0 120 0.001 26 0.006 12 0.009 136 0.001 0 0.321

- - 24 0.001 28 0.001 24 0.002 14 0.018 - -

il 159 0.001 109 0.015 3 0.037 2 0.015 179 0.0 24 0.006
in 43 0.005 101 0.002 50 0.009 2 0.044 42 0.007 48 0.004
ia 98 0.001 8 0.026 14 0.015 3 0.086 192 0.0 - -
ks 112 0.0 69 0.001 32 0.007 16 0.016 39 0.009 61 0.005
ky 35 0.004 38 0.006 2 0.103 67 0.004 - - -
la 32 0.004 30 0.005 24 0.006 14 0.053 23 0.005 35 0.003
me 5 0.055 21 0.012 - - 21 0.013 40 0.001 - -
md 36 0.006 14 0.011 22 0.008 33 0.006 4 0.049 7 0.029
ma 151 0.004 69 0.003 66 0.003 16 0.009 35 0.009 3 0.045
mi 80 0.002 14 0.01 10 0.033 28 0.006 98 0.002 138 0.001

mn 231 0.0 60 0.003 1 0.046 283 0.0 156 0.003 140 0.003
ms 5 0.029 30 0.01 32 0.018 107 0.003 58 0.005 32 0.007

mo 3 0.049 19 0.008 17 0.019 49 0.003 90 0.001 118 0.001
mt 123 0.003 18 0.022 11 0.019 16 0.017 - - -

- - 275 0.0 19 0.01 0 0.057 3 0.037
nv 20 0.01 33 0.006 35 0.006 101 0.002 2 0.072 6 0.044
nh 21 0.012 57 0.011 2 0.089 42 0.004 44 0.005 27 0.009
nj 66 0.004 352 0.0 363 0.0 14 0.01 397 0.0 340 0.0

nm 225 0.0 60 0.006 34 0.009 91 0.002 69 0.005 101 0.004
ny 167 0.002 20 0.012 20 0.014 36 0.004 47 0.007 49 0.006

nc 8 0.017 18 0.026 3 0.058 30 0.007 37 0.005 43 0.003
nd 121 0.002 13 0.016 14 0.02 12 0.014 - - - -
oh 207 0.001 18 0.01 5 0.033 10 0.026 29 0.019 21 0.019
ok 116 0.0 82 0.0 21 0.001 66 0.46 134 0.0 174 0.0

or 32 0.012 34 0.006 27 0.007 4 0.025 40 0.007 2 0.029
pa 333 0.001 18 0.014 20 0.013 68 0.004 16 0.01 36 0.01
ri 126 0.002 16 0.022 24 0.008 42 0.006 - - - -

sc 8 0.019 19 0.01 14 0.014 37 0.007 - - - -
sd 227 0.0 46 0.006 27 0.0 7 0.042 - - -
tn 62 0.004 7 0.016 2 0.023 17 0.012 96 0.003 68 0.006
tx 147 0.003 212 0.001 61 0.003 22 0.014 112 0.001 108 0.002

ut - - - - - - 1 0.032 - - 19 0.003
vt 46 0.004 53 0.003 44 0.004 2 0.084 20 0.019 50 0.097
va 4 0.048 59 0.003 139 0.001 101 0.002 136 0.001 222 0.001
wa 16 0.014 20 0.011 24 0.011 73 0.003 51 0.004 111 0.002

wv 35 0.004 7 0.018 6 0.042 34 0.003 2 0.099 7 0.021
wi 232 0.002 9 0.024 1 0.072 47 0.007 5 0.022 1 0.103
wy 162 0.0 49 0.004 48 0.004 85 0.002 - - -
us 20 0.016 6 0.029 6 0.025 10 0.01 16 0.02 16 0.013

Table 8: Feature ranks and weight for bipartisan, sponsor in minority, sponsor in majority, number of
sponsors, average primary sponsor effectiveness and best primary sponsor effectiveness features in the
gradient boosted model with just sponsor features across all states. Dash indicates feature was not ranked
within the top 400.
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State

Top Phrases

Bottom Phrases

New Jersey (upper)

for farmland preserv, preserv trust, green acr
fund, acquisit and, mmvv million from, vehicl
from, budget for, fund for state, in feder fund,
unemploy, for state acquisit, infrastructur trust

retir benefit for, of educ for, school board mem-
ber, clarifi law, contract and, tax reimburs pro-
gram, appropri mmvv for, to develop and, tax
rate, credit under corpor, certain vehicl

New Jersey (lower)

environment infrastructur, to dissemin, farm to,
dmva to, concern certain, and dhs, unsolicit,
atm, contract law, link to, manufactur rebat,
limit liabil

polit, import, all school, for water, facil to be,
respons for, grant program for, relat crime, state
administ, from tax, chair, to all

Maryland (upper)

financ the construct, festiv licens, issu the li-
cens, grante provid and, to effect, advisori com-
miss, an evalu of, that provis of, financ state-
ment, board licens, to borrow, defer

not to, phase, be use as, use as, facil locat in,
to own, law petit, or expenditur, trust establish,
expend match, and expend match

Maryland (lower)

charl counti alcohol, improv or, to financ the,
termin provis relat, counti sale, sanction, alter,
counti special tax, montgomeri counti alcohol,
report requir repeal, length, licens mc

grant to the, creation state debt, educ fund, state
debt baltimor, establish the amount, elimin, dis-
clos to, propos amend, incom tax rate, purpos
relat, crimin gang, deced die after

California (upper)

ab, revolv fund, household, intent that, these
provis until, restitut, counsel, employe, onli if
ab, properti, if ab, would incorpor addit

legisl, cost of, veterinari, enact legisl, to the,
law, regul econom, governor, incom tax deduct,
hour, motor vehicl recreat, decis

California (lower)

add articl, to amend repeal, bill would incorpor,
to add and, budget act of, urgenc statut, make
nonsubstant, and make, as bill provid, relat the
budget, and of the, ab

would make nonsubstant, enact legisl, make
technic nonsubstant, would make technic, un-
specifi, code to add, baccalaur degre, salari,
fraud prevent, flexibl, of the state, would

Florida (upper)

ogsr, abrog provis relat, grant trust fund, govern
act, person inform, to supplement, employ con-
tribut to, legisl audit committe, jac, maintain by
the, insur regul, financi inform

senat relat to, senat relat, to, ssb, elder, school,
municip that, and legislatur by, that law enforc,
provid minimum, admiss to, local law enforc

Florida (lower)

etc, certain propos, re creat, repeal under, to
qualifi, boundari, program revis requir, environ-
ment permit, counti hospit district, alcohol bev-
erag licens, except under, ranch

hous relat, day, renew energi, provid for alloc,
make recommend, for employ of, of damag,
from particip, week, catastroph, dhsmv to de-
velop, employ from

Delaware (upper)

uniform, would increas the, amend chapter
volum, person convict, relat the delawar, dealer,
child support, bureau, violenc, associ, charter
chang, for fiscal year

rent, state languag, the content, act regul, cer-
tain licens, give local, assembl from, delawar
code establish, for citizen, reimburs, propos
constitut amend, salari

Delaware (lower)

of the th, tax refund, thi act also, amend of the,
this section of, the titl, the act to, of member
of, electron transmiss, for in the, and the date,
parent guardian

predatori, hour per, relat state employe, unfair
practic, communic, open meet, equal the, to the
construct, the construct, medicaid, state agenc,
relat to prevail

Table 9: Top and bottom ranked phrases for New Jersey, Maryland, California, and Florida.
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Abstract

Reading comprehension models are based on recurrent neural networks that sequentially process
the document tokens. As interest turns to answering more complex questions over longer docu-
ments, sequential reading of large portions of text becomes a substantial bottleneck. Inspired by
how humans use document structure, we propose a novel framework for reading comprehension.
We represent documents as trees, and model an agent that learns to interleave quick navigation
through the document tree with more expensive answer extraction. To encourage exploration of
the document tree, we propose a new algorithm, based on Deep Q-Network (DQN), which strate-
gically samples tree nodes at training time. Empirically we find our algorithm improves question
answering performance compared to DQN and a strong information-retrieval (IR) baseline, and
that ensembling our model with the IR baseline results in further gains in performance.

1 Introduction

Reading comprehension (RC), the task of reading documents and answering questions about their con-
tent, has attracted immense attention recently. While early work focused on simple questions and short
paragraphs (Hermann et al., 2015; Rajpurkar et al., 2016; Trischler et al., 2017; Onishi et al., 2016),
current work is shifting towards more complex questions that require reasoning over long documents
(Joshi et al., 2017; Hewlett et al., 2016; Welbl et al., 2017; Kocisky et al., 2017).

Long documents pose a challenge for current RC models, as they are dominated by recurrent neural
networks (RNNs) (Chen et al., 2016; Kadlec et al., 2016; Xiong et al., 2017). RNNs process documents
token-by-token, and thus using them for long documents is prohibitive. A common solution is to retrieve
part of the document with an IR approach (Chen et al., 2017; Clark and Gardner, 2017) or a cheap model
(Watanabe et al., 2017), and run an RNN over the retrieved excerpts. However, as documents become
longer and questions become complex, two problems emerge: (a) retrieving all the necessary text with a
one-shot IR method when performing complex reasoning becomes harder, and thus thousands of tokens
are retrieved (Clark and Gardner, 2017). (b) Running even a cheap model over the document in its
entirety becomes expensive (Choi et al., 2017).

Humans, in lieu of a mental inverted index, use document structure to guide their search for answers.
E.g., the answer to “What high school did Leonard Cohen go to?” is likely to appear in “Early life”,
while the answer to “How hot is it in Melbourne in July?” is likely to appear in “Climate”. In this work
we investigate whether we can train a model to navigate through a document using its structure and find
the answer, while reading only a small portion of the entire document.

We represent documents as trees and train an agent that navigates through the document tree until
returning a final answer. Figure 1 illustrates this process. Our agent reads the question “The vacation
destinations of Pattaya and Phuket are in which country?” and starts navigation at the title of the doc-
ument. After reading a paragraph, and skipping “History”, it drills down to “Geography” until finally
halting at a paragraph that specifies the answer (“Thailand”). The agent observes at each step only a
glimpse of the local text to determine its next action, which can be movement to a tree node, answering

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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(4] The vacation destinations of Pattaya and Phuket
are in which country?

Phuket Province

g

There are several possible derivations

{iiory

Gcography

@ Phukel is the largest island in Thailand.

Figure 1: An overview of our framework: an agent answers the question ¢ for a document d by starting at the title, performing
navigation actions until reaching the relevant paragraph, extracting the answer a, and then stopping.

the question with a more expensive RC model, or terminating navigation. Thus, the agent consumes only
a small fraction of the entire document.

Our training data is question-document-answer triplets, without gold navigation paths, and thus we
train our model with the Deep Q-Network (DQN) algorithm. Because the dataset is biased towards
answers appearing at the beginning of the document, the algorithm tends to stop early and does not
explore the document well. To overcome this challenge, we propose DOCQN: a variant of DQN for tree
navigation that improves exploration by sampling nodes from multiple parts of the tree.

We evaluate the ability of our agent to navigate to paragraphs containing the answer on a variant of
TRIVIAQA (Joshi et al., 2017) and find that: (a) DOCQN navigates better than DQN in documents both
quantitatively and qualitatively. (b) While DOCQN observes only 6% of the document tokens, it outper-
forms an IR method in end-to-end QA performance. (c¢) An ensemble of DOCQN and IR substantially
improves both navigation and end-to-end QA performance over the ensemble components.

To summarize, in this paper we ask: can an agent use document structure and learn to find answers for
complex questions in long documents? We propose a new model and training algorithm that overcomes
an inherent bias in the data, answering the aforementioned question in the affirmative. Our code and
dataset are available at https://github.com/mega002/DocQN.

2 Problem Overview

We work in the traditional RC setup, where we are given question-document-answer triplets
{(¢i,di,a;) }fil as a training set, and aim to learn a function that finds the answer for an unseen question-
document pair. Unlike prior work, we assume documents are trees, where every tree node u corresponds
to a structural element and is labeled with text [(u). Specifically, the root is labeled with the document
title, sections and subsections are labeled by their title, and paragraphs and sentences are labeled by
the text they contain. In addition, we order all non-sentence tree nodes by a pre-order traversal (which
corresponds to the linear order of text in the document), and denote the index of a node u by n(u). For
sentence nodes, n(u) is the index of their parent (a paragraph).

Figure 1 shows an example tree, where for each node we show the relevant structural element and
index (sentence nodes are not shown in the figure).

With this document representation, answering questions can be viewed as a Markov Decision Process
(MDP), where in each state the agent is located in a particular tree node, actions allow movement through
the document tree, answering the question with a RC model, or stopping, and a reward is based on
whether the agent locates a node that contains the answer.

Our agent interleaves actions that navigate in the document, with an action that runs an RC model in
a certain document position and extracts an answer. Thus, the agent can decide to continue navigation
after extracting a certain answer. This is strictly more expressive than existing approaches that combine
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TRIVIAQA  TRIVIAQA-NOP TriviaQA
Train Questions 61,888 57,220 . ‘
Documents 110,647 99,315 TriviaQA-NoP H 14 \

Questions 7,993 7,336 0 10 20 30 40 50 60 70 80 90 100 110
Development Documents 14,229 12,706 FAO node index (n(u))
Test Questions 7,701 6,507
©s Documents 13,661 10,481

Figure 2: FAO node index distribution of TRIVIAQA and
Table 1: Data statistics for TRIVIAQA vs. TRIVIAQA-NoP. ~ TRIVIAQA-NOP (median values in red).

TRIVIAQA  TRIVIAQA-NOP

Average number of tokens 5590.7 .
Average number of tree nodes 332.2 Ques[}ons _ 86-7? 83.8%
Average number of high-level sections 6.6 Question-document pairs 69.7% 66.9%

Table 2: Data statistics for the evidence documents of  lable 3: Portion of answerable samples in a random subset
TRIVIAQA-NOP. of the training set, which contains 278 questions and 475
question-document pairs.

IR with RC, where some text is retrieved exactly once before applying an RC model. As RC shifts to
reasoning over complex questions, navigating and reading multiple parts of the document will become
necessary. We show in Section 5 this approach indeed improves QA performance.

3 Data

To test our framework, we capitalize on the recently-released TRIVIAQA dataset, which contains
question-answer pairs, along with a small set of documents that (in almost all cases) contain the an-
swer. TRIVIAQA is suitable for our purposes as it is a large scale dataset, where questions are relatively
complex and documents are fairly long. The dataset includes only raw text, and thus for every evi-
dence document, we built a tree representation by extracting the html metadata from the corresponding
Wikipedia page, and constructing the document structure from it.

Because our goal is to investigate whether a model can learn to search through a document, it is impor-
tant that a non-negligible fraction of the questions require navigation through the document. However,
in Wikipedia each document starts with a preface that summarizes the document, and thus often contains
the answer. Consequently, a model that ignores the question and document and always stops in the first
paragraph is likely to obtain good performance. Figure 2 shows the distribution of the first answer oc-
currence (FAO) in a document in TRIVIAQA over the node indices n(u) (x-axis), where all tree nodes,
except sentences are considered (see Section 2). We find that in most question-document pairs the FAO
is in the first few paragraphs, and that in 60% of the cases it is in the preface section.

To alleviate this heavy bias, we derive a new dataset, termed TRIVIAQA-NOP, where we remove the
preface section from every document. After removing the preface, 2,144 out of 77,582 (2.8%) questions
and 6,124 out of 138,537 (4.4%) question-document pairs are left without an answer and are removed.
To further reduce the number of cases where an answer can not be inferred from a document, we drop
question-document pairs where: (a) the answer appears only in titles; (b) the answer is a single-character;
(c) the FAO node index is > 700 (in most cases the answer is an item in a list). Finally, the dataset
includes 91.6% of the questions and 88.4% of the question-document pairs from the original dataset. We
provide full statistics on the dataset in Tables 1 and 2.

To verify that questions remain answerable in TRIVIAQA-NOP after removing the preface, we per-
form manual analysis on a random sample of 278 questions and 475 documents from the training set
(Table 3). We find that the portion of answerable questions and question-document pairs remains high
and is reduced by less than 3% in comparison to TRIVIAQA . This demonstrates that indeed, for most
questions and documents, the context necessary for answering the question also appears in the document
body and not only in the preface.

Figure 2 shows the FAO node index distribution in TRIVIAQA-NOP. We observe, compared to TRIV-
IAQA, that the first occurrence of an answer is much more spread out across the document, and that the
median increases from 3 to 14, which will require more navigation from the agent. However, even in
TRIVIAQA-NOP answers tend to appear at the beginning of the document, because document content is
usually organized by importance. This bias results in an exploration challenge for our training algorithm,
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Example

o “Phuket Province Name”
#r: height 2
¢2 : depth

n
(j)‘:’z h_dist_start

¢i: h._dist-end

¢;r’7 parent.h_dist_start
d)fL: parent.h.dist_end
4’777 navigation step

e E=IE=IE I E=1

Table 4: An example observation o and list of navigation features ¢, for node 1 in Figure 1. The features height and depth
correspond to distance from the farthest leaf and root, respectively (height is 2 since sentence nodes are omitted from the
figure). h-dist_start and h_dist_end measure the horizontal distance from the first and last child of the node’s parent.
navigation step is a counter for the number of performed steps.

which we will address in Section 4.

4 Method

In this section, we describe a model for the agent and a training algorithm based on DQN (Mnih et al.,
2015). Specifically, we introduce a tree-sampling strategy, which addresses the exploration challenge
stemming from the bias towards answers early in the document.

4.1 Framework

We represent the MDP as a tuple (S, A, R, T'), where S is the state space, A is the action space, R(s, a)
is a reward function, and T'(s, a) is a deterministic transition function. Our model implements an action-
value function (s, a), which takes a state s € S and returns a value for every action a € A. This
function defines a policy 7(s) = arg max,c4 Q(s,a). We now describe the state space, actions and
reward function.

States Given a tree node u, a state is a tuple s* = (q, 0, 2z, ¢n, @), where ¢ is the question, o is an
observation, z is an answer prediction, and ¢,,, ¢, are navigation and answer prediction features. An
observation o = (o1, ..., 0‘O|) is a sequence of tokens produced by recursively concatenating the first k
tokens of text in the label /() to the observation of u’s parent. An answer prediction 2z = (z1,. .., 2/,|)
is the sequence of tokens that were extracted by an RC model, if an RC model was already run on ()
(and a null token otherwise). The answer prediction features ¢, = (2, 2;, 2zp) provide information on
the distribution over answer spans provided by the RC model, which reflects its confidence: z. is the
entropy of the distribution, z; is the logit value for z, and z, is the number of tokens in /(). Navigation
features ¢,, provide information on the relative location of « in the document. An example observation
and full list of navigation features are given in Table 4.

Note that the state s does not depend on the history of visited tree nodes.! While incorporating his-
tory could be beneficial, a memory-less model enables us to explore tree-sampling strategies, which is
important for training (Section 4.2).

Actions We define the following set of actions .A. Let u be a node with an ordered list of children
(v1,v2,v3), and w be a child of vy. We define five movement actions (Figure 3), where DOWN moves
from w to its first child v;, RIGHT moves from v to v3, and LEFT moves from vs to v;. Because moving
upwards reaches a node we already visited, we define UPR, which moves from w to v3, and UPL, which
moves from w to v;. If an illegal action is chosen (e.g., LEFT from vy ), then the agent stays in its current
position. The action ANSWER returns an answer (and a distribution over spans) by running a RC model
on [(u), unless u is a sentence, in which case it is run on the paragraph containing u. After ANSWER,
the agent can resume navigation. The action STOP also returns the answer given the current node u, but
also terminates navigation.

Reward Our goal is to develop an agent that can navigate in the document, and thus we define the
reward based on whether the agent stops in a node that contains the gold answer text (this is noisy,

'except for navigation step, which can be approximated by the shortest path from the root to any node.
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Figure 3: Movement actions in our environment.

because the answer might be there sporadically). While a simple reward would be an indicator for
whether the agent stopped at a correct node, such a reward would not capture the proximity of the agent
to the answer. Moreover, we would like to consider the overall document length, rewarding successful
navigations in long documents. Therefore, we define the following reward:

2 a = STOP, [n(u) —n(u*)| =0
r(s,a) = 1-— % a = STOP, [n(u) — n(u*)| >0
’ —0.06 a = ANSWER
—0.02 a ¢ { ANSWER, STOP}

where u is the node where the agent is located and «* is the closest tree node that contains the answer
(n(u) is the node index as defined above). Thus, when stopping, the reward is proportional to the distance
to the closest answer location given the document length. An additional reward is given if navigation
is successful, and a penalty is given for any other action, to encourage shorter trajectories. We further
penalize the ANSWER action to discourage frequent usage of the RC model.

4.2 DoOcCQN: DQN with Tree Sampling

Training the navigation model is based on DQN (Mnih et al., 2015). In DQN, at every step an agent
at state s; selects an action a; using e-greedy policy, given the current action-value function Qg(s¢, at)
parameterized by 6. The agent observes a reward r; and a state s;11 = T'(s¢, a;) and adds a transition
(S¢yae, T, Se41) to a replay memory buffer D that holds a large number of recent transitions. The pa-
rameters are then optimized so that the action-value function matches better the observed reward. This
is done by sampling a batch of random transitions from D and minimizing the regression loss

(e + 7y max Q(str1,d') — Qolse,ar))?, (D

where 6 are the parameters of a farget network, which is a periodic copy of 6 that is not optimized, and
«y is a discount factor.

We also add some of the recent enhancements to DQN (Hessel et al., 2017), which have proved to be
useful in our setup. Specifically we implement Double Q-Learning (van Hasselt et al., 2016), Prioritized
Experienced Replay (Schaul et al., 2015), and Dueling Networks (Wang et al., 2016).

Reducing bias with DOCQN The DQN algorithm contains episodes, where in each episode the agent
is placed at an initial state sg, from which it starts taking actions. In our setup, this state corresponds to
the root of the document tree. Because the data has a bias towards answers appearing at the beginning of
the document, the agent learns that stopping early improves the reward and is stuck at a local minimum,
where it ceases exploration. Examining Figures 2 and 8, we observe that DQN learns to stop very early
in the document compared to the FAO node index distribution of TRIVIAQA-NOP, amplifying the bias
in the data.

To address this issue, we suggest DOCQN, a variant of DQN aimed at increasing exploration when
navigating in a document structure. DOCQN capitalized on two properties. First, DQN is an off-policy
algorithm that trains from transitions (s¢, a¢, ¢, S¢+1). Second, our model is memory-less, and thus
we can sample any node u and compute the corresponding state s*. Therefore, we modify DQN, and
instead of initializing every episode with sy and performing a sequence of actions, we sample states from
distributions that explore the document better. By exploring transitions from across the document, the
model learns from more distant parts of the document.
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Figure 4: Illustration of the different state distributions for a specific documents tree. Nodes with darker color have higher
sampling probability, and nodes marked in red are paragraph nodes containing the answer.

value advantages

Algorithm 1: DOCQN

1: Let f be a distribution over tree nodes

2: Initialize replay memory D and parameters 6, 6 p?ezlaclzzsn

3: for episode =1, M do

4 if random() < €5 then

5: for i=1...K do { L
6: sample node u ~ f and generate s" concat ™.
7: sample action a from s* (e-greedily). hidden @ 2L /E ) \
8: r <+ R(s%,a),s’ + T(s", a) represema"o" LSTM ) (LsiM )
9: store (s*,a,r,s’) in D BILSTM /‘
10:  else
11: Initialize start state so wordand | ) ) ) !
12: for t=0...T—1 do character |

13: sample action a from s; (e-greedily). embeddings \ \ \
14: r < R(st,a), 8141 < T(s¢,0a)

15: store (s¢, a,, S¢4+1) in D ( 4 ) 2 ) =]

16: UPDATEPARAMS (6, 0, D) (Equation 1) Figure 5: High-level overview of the network architecture.

Algorithm 1 provides the details of DOCQN. The algorithm initializes the replay memory buffer, the
model and target network parameters, and chooses a distribution f over tree nodes. At the beginning
of every episode, with probability € (line 4),> we sample K state transitions using f and store them in
D, and with probability (1 — ;) (line 10), we start at the initial state sy and sample a trajectory as in
DQN. Parameters are updated as in DQN by sampling transitions from the replay buffer and minimizing
Equation 1. If f samples nodes from various locations in the document, the algorithm will explore better
and will not getting stuck at its beginning. We consider the following instantiations of f:

1. fu: Uniform sampling over nodes, except we discourage sampling sentences by uniformly sampling

with probability 0.2 a leaf (sentence), and probability 0.8 an inner node.

2. fp: Backward sampling: We uniformly sample a paragraph node p that contains the gold answer,

then uniformly a number of actions B € {1, 2, 3}, and perform B random movement actions from
p to output a node. This results in a node that is “close” to the answer a, and can be viewed as
similar to bi-directional search or backward search (Lao et al., 2015).

Figure 4 shows the distribution over tree nodes for a specific document tree where the answer appears
in two paragraph nodes (ignoring sentence nodes). We see that sequential sampling (as in DQN) puts
most of the probability mass close to the root, uniform sampling is uniform (across paragraphs, as sen-
tence nodes are omitted), and backward sampling is concentrated close to answer nodes. This illustrates
how different distributions result in different exploration strategies.

Network Architecture We briefly describe the neural architecture (Figure 5) and provide full details
in the supplementary material. As explained in Section 4.1, the input to the network is the state s, which
comprises the question tokens g, observation tokens o, answer prediction tokens z and features ¢,,, ¢..
The question, observation and answer prediction tokens are encoded with pre-trained word embeddings
and trained character embeddings, where character embeddings are followed by a convolutional layer
with max pooling, yielding a single vector per token. Each token is then represented by concatenating
the word embedding with the character embedding.

Question tokens, observation tokens, and answer to are then fed into a BILSTM and LSTM (Hochreiter
and Schmidhuber, 1997) respectively and the LSTM outputs are compressed to a single vector through

%¢ is annealed from 1 to 0.5 during training.
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self attention (Cheng et al., 2016), resulting in one vector for ¢ and one for 0. Answer prediction tokens
are fed into an LSTM, where the last hidden state is concatenated to the features ¢, thus creating a third
vector for the answer prediction.

We concatenate these three vectors, and pass them through a one layer feed-forward network that then
branches to two networks according to the Dueling DQN architecture (Wang et al., 2016). In each branch
we also concatenate the navigation features ¢,,. One branch predicts the value of the state Vy(s) € R,
and the other branch predicts the advantage of every action Agy(s,a) € R for every possible action a.
The output of the network is Qg (s, a) = Vp(s) + (Ag(s,a) — i Yo Ao(s,a’)) as in Wang et al. (2016).

5 Experimental Evaluation

Our experimental evaluation aims to answer the following questions: (a) Can document structure be used
to learn to navigate to an answer in a document? (b) How does DOCQN compare to DQN? (c) How does
DocQN compare to IR methods that observe the entire document?

5.1 Experimental Setup

We evaluate on TRIVIAQA-NOP. Because our focus is on the navigation ability of the agent, we train
a single RC model and fix it in all experiments. Specifically, we download RASOR (Lee et al., 2017;
Salant and Berant, 2018),? and exactly follow the procedure described by the authors of TRIVIAQA for
training a RC model, i.e., we train RASOR on the first 400 tokens of each document in TRIVIAQA-
NOP. As a sanity check for our RC model, we also train and evaluate RASOR on the original TRIVIAQA
dataset. Indeed, RASOR obtains 48.6% EM and 53.4% F1, which is substantially higher than the baseline
reported by Joshi et al. (2017).

Evaluation We use two metrics: First, we measure navigation accuracy, i.e., for a question-document
pair, whether a method returns text containing a gold answer (if the agent stops at a sentence node we
evaluate the encompassing paragraph). Because questions in TRIVIAQA-NOP often have more than one
evidence document, we also measure aggregated navigation accuracy, where we give credit if the agent
navigated correctly in any of the documents. This gives performance assuming an oracle that always
chooses the best document for the question. Because the test set in TRIVIAQA is hidden, we evaluated
navigation accuracy on the development set only.

In addition, we measure end-to-end QA performance with the official Exact Match (EM) and F1
metrics. The EM metric measures the percentage of predictions that match exactly any of the answer
aliases, and the F1 metric measures the average overlap between the prediction and answer. To aggregate
evidence from multiple documents we follow Joshi et al. (2017) and define the score of an answer to be
the sum of probabilities for that answer across all documents.

Models We compare the following models:

e DOCQN: This is our main model, where we use the sampling distribution fy;1p = % fu+ % /B

e DQN: DQN algorithm without state sampling.

e {DOCQN|DQN}-COUPLED: A less expressive version of the model, where the actions ANSWER
and STOP are coupled, i.e., the agent can use the RC model exactly once and then stops. This is
similar to a setup where retrieval is performed once and not interleaved with navigation.

o RANDOMWALK An agent that selects an action at each step uniformly at random.

o RANDOMPARA An agent that randomly selects a non-sentence tree node.

e DOC-TF-IDF: An IR baseline, where a paragraph is selected based on its tf-idf score. We imple-
ment the tf-idf scheme of DOCQA (Clark and Gardner, 2017), which is a high-performing system on
TRIVIAQA. Here, idf is computed for each paragraph in the context of the current document, and the
paragraph with highest cosine similarity to the question is chosen. Note that DOC-TF-IDF processes
the entire document (up to tens of thousands of tokens), while DOCQN processes only a small fraction.

o TF-IDF: Vanilla tf-idf, where the idf score is computed from all documents in TRIVIAQA-NOP.

*https://github.com/shimisalant/RaSoR
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e Ensemble: We ensemble DOCQN f7+ g with DOC-TF-IDF in two ways: (1) for finding the final
answer, we aggregate scores as described above, that is, we sum the probabilities from both models
over all documents and choose the answer with highest score. (2) For navigation, we simply tune on
the development set a threshold /, where we take the prediction of DOCQN f7 p if it stopped at a
node with index < [ and use DOC-TF-IDF otherwise.

o READTOP: Following Joshi et al. (2017), a model that runs the RC model on the first 800 tokens of
the document. Note that running the RC model on the text retrieved by DOCQN involves consuming
far fewer tokens, namely, RASOR consumes only 160 tokens on average.

We report the value of all hyper-parameters in the supplementary material (all fixed without tuning).

5.2 Results

q:  According to the rhyme, what is Wednesday’s child? a:  ['full of woe']

Step [Node Observation Tokens Answer | Action ; BOQ(I:\IQN
0 0 |['Wednesday'] DOWN a Doc-TF-IDE
1 1 |[Wednesday', 'Etymology'] DOWN \ TF-IDF

['Wednesday', 'Etymology’, 'See’, 'Names', 'of', 'the’, 039 —
, e e R - 02- — T N
2 2 |'days', 'of, 'the’, 'week, 'for', 'more’, 'on’, 'naming’, UPR 01 _\‘\-\_“1_ SN
'conventions', "] 0.0 — T
3 25 |['Wednesday', ‘Religious’, 'observances'] DOWN é
g 00- 0 0 0 0 g g 0 g g g
['Wednesday', 'Religious’, 'observances', 'The', NI T A R A DR

'Creation’, 'narrative', "in', 'the’, 'Hebrew', 'Bible’, -

4 26 . ANS first answer node
‘places’, 'the’, 'creation’, 'of, 'the’, 'Sun’, 'and’,
Locieh o] Figure 7: Model performance (top) and portion of sam-

['Wednesday’, 'Religious’, 'observances’, 'The', ples in the development set (bottom) as functions of the
5 % 'Creation’, 'narrative', "in', 'the’, 'Hebrew', 'Bible’, Sun and U, node index of the FAO.
‘places’, 'the’, 'creation’, 'of, 'the’, 'Sun’, 'and’, Moon

'Moon', 'ont, ", "the’, "fourth’, 'day']

6 37 |['Wednesday", "Cultural', 'usage'] DOWN

['Wednesday', 'Cultural’, 'usage', 'In', 'Hindu', DQN %

'mythology’, ', ", 'is', 'the’, 'god), 'of', Mercury', '(,
7 | ap | molosy s e ged, o, Mewny, | g | oocon HIEI—————
planet, ', ", ‘mid-week’, 'Wednesday', ', "and’, ‘of;, 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
'Merchants'] Navigation last node index (n(u))

['Wednesday', "Cultural’, 'usage', 'In', 'Hindu',
'mythology’, ", 'is, 'the’, 'god, 'of, ‘Mercury’, '(, Figure 8: Distribution of node index at navigation stop-

'planet’, ), ", ‘mid-week', Wednesday’, ", 'and’, 'of, Budha \RIGHT|  1yine point (median value in red) for DQN and DOCQN.

'Merchants']

['Wednesday', "Cultural’, 'usage’, 'In’, 'the’, 'folk’,
9 39 |'rhyme', "™, 'Wednesday', \'s', 'child’, 'is', 'full’, 'of', ANS
‘woe', V\", '), 'reciting’, 'the’, 'days’, 'of', 'the’, 'week']

['Wednesday', "Cultural’, 'usage’, 'In’, 'the’, 'folk’,
full of

10 | 39 |'thyme', ™, 'Wednesday', \'s', 'child, 'is', 'full’, 'of', STOP
woe
‘woe', V", ', 'reciting’, 'the’, 'days’, 'of, 'the’, 'week']

Figure 6: Navigation example of DOCQN.

Tables 5 and 6 show the results of our experiments. Focusing on navigation accuracy, we see that
randomly walking or choosing a paragraph yields low performance. Vanilla TF-IDF performs consid-
erably better than the random baselines, but is outperformed by all other models. Comparing DQN to
DocQN, we see that DOCQN outperforms DQN. Allowing DQN and DOCQN to run the RC model
during navigation improves their performance, but the accuracy gain is substantially higher for DOCQN
(2.3% accuracy and 3.1% aggregated accuracy) than for DQN (0.4% accuracy and 0.7% aggregated accu-
racy). DocC-TF-IDF, which has access to the entire document outperforms DOCQN, which consumes on
average 6% of the entire document. Nonetheless, the two models obtain the same aggregated accuracy.
This good performance of DOC-TF-IDF shows that in TRIVIAQA-NOP answer paragraphs share a lot of
lexical material with the question. Importantly, an ensemble of DOC-TF-IDF with DOCQN substantially
improves the overall performance, reaching accuracy of 35% and aggregated accuracy of 48%. This is
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Dev.  Dev. Agg. -
RANDOMWALK 18 31 lgiflol’mlfft EMT‘”‘ -
RANDOMPARA 13.4 20.9 DON 317 765 01 241
DQN-COUPLED 26.8 38.8 DocQN 236 279 210 255
DQN 27.2 39.5 DoC-TF-IDF 204 271 182 235
DOCQN-COUPLED 28.1 40.5 Ensemble (threshold, I = 5) 268 320 242 204
DocQN 304 43.6 Ensemble (answer) 284 334 254 305
TF-IDF 253 354
DoC-TE-IDF 354 33 [ READTOP 325 367 281 324 |
Ensemble (threshold, I = 5) 35.0 48.0
Table 6: End-to-end QA performance of all models on the
Table 5: Navigation accuracy for all models on the devel- development and test sets of TRIVIAQA-NOP. For the en-
opment set of TRIVIAQA-NOP. semble model, we choose the best threshold of [ = 5.
DQN DOCQN
Path length avg. 7.7, range [1,36] avg. 15.2, range [3,100]
Answer predictions avg. 2.8 avg. 4.1
Tokens consumed 3.4% 6.2%
Stopping node 0.5% title, 2.2% head- | 0% title, 0.4% head-
line, 89.0% paragraph, line, 75.1% paragraph,
8.3% sentence 24.5% sentence

Table 7: Comparing navigation properties of DQN and DOCQN on the development set. The average and range of navigation
path length in steps, relative amount of consumed tokens, and distribution of stopping node types.

in sharp contrast to an ensemble with DQN, where for any value of [, DOC-TF-IDF performs better on
its own.

Examining end-to-end performance, DOCQN again outperforms DQN, but DOCQN is now better
than Doc-TF-IDF. This suggests that when DOC-TF-IDF selects a paragraph with the answer, it is often
difficult to extract with the RC model. Again, the ensembles leads to a dramatic increase in performance,
showing that DOC-TF-IDF and DOCQN are complementary. However, READTOP, which consumes
the first 800 tokens of each document compared to ~ 160 for DOCQN, substantially outperforms all
navigation models. This shows that the bias for answers at the beginning of documents is still strong in
TRIVIAQA-NOP.

To further elucidate the differences between navigation models, Figure 7 shows navigation accuracy
of different models and the proportion of samples for different node indices of the FAO. We see that
DQN outperforms DOCQN when the answer is at the top of the document, but DOCQN dominates DQN
when the answer is further down, showing that DOCQN learns to find answers deeper in the document.
Doc-TF-IDF has a more balanced navigation accuracy across the document, which explains why an
ensemble of DoC-TF-IDF with DOCQN works, as they are complementary to one another.

Analysis Figure 6 shows a navigation example, which includes the navigation step, node index, obser-
vation o, and the action a taken. For the observation we also highlight the attention distribution from the
self-attention component. In this figure the question is about culture, and we see the agent going into
multiple sections, reading them, running the RC model and continuing forward, until finally stopping at
a paragraph that contains the answer. We provide many more examples in the supplementary material.

Table 7 highlights some differences between DQN and DOCQN. DOCQN has longer trajectories,
and stops at sentence nodes more frequently, suggesting it reads the document at a finer granularity.
Additionally, it leverages the RC model to collect more information and confidence during navigation,
by choosing the action ANSWER more frequently. Both models consume less than 7% of the entire
document. Figure 8 illustrates the navigation stopping point, and shows that DOCQN navigates deeper
into the document.

6 Related Work

Handling the challenges of reasoning over multiple long documents is gaining fast momentum recently
(Shen et al., 2017). As mentioned, some approaches use IR for reducing the amount of processed text
(Chen et al., 2017; Clark and Gardner, 2017), while others use cheap or parallelizable models to handle
long documents (Hewlett et al., 2017; Swayamdipta et al., 2018; Wang et al., 2018a). Searching for
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answers while using a trained RC model as a black-box was also implemented recently in Wang et al.
(2018b), for open-domain questions and multiple short evidence texts from the Web. Another thrust has
focused on skimming text in a sequential manner (Yu et al., 2017), or designing recurrent architectures
that can consume text quickly (Bradbury et al., 2017; Seo et al., 2018; Campos et al., 2018; Yu et al.,
2018). However, to the best of our knowledge no work has previously applied these methods to long
documents such as Wikipedia pages.

In this work we use TRIVIAQA-NOP for evaluation of our navigation based approach and comparison
to an IR baseline. While there are various aspects to consider in such evaluation setup, our choice of data
was derived mainly by the requirements for long and structured context. Recently, several new datasets
such as WIKIHOP and NARRATIVEQA were published. These datasets try to focus on the tendency
of RC models to match local context patterns, and are designed for multi-step reasoning. (Welbl et al.,
2017; Wadhwa et al., 2018; Kocisky et al., 2017).

Our work is also related to several papers which model an agent that navigates in an environment to
find objects in an image (Ba et al., 2015), relations in a knowledge-base (Das et al., 2018), or documents
on the web (Nogueira and Cho, 2016).

7 Conclusions

We investigate whether document structure can be leveraged to train an agent that finds answers to
questions in long documents while reading only a small fraction of it. We show that an agent that
reads 6% of the document can improve QA performance compared to an IR method that utilizes the
entire document, and that ensembling the two substantially improves performance. We also present
DocCQN, an algorithm that promotes better exploration of the document, and show it outperforms DQN
qualitatively and quantitatively.

Our approach represents a conceptual departure from previous methods for reading long documents,
as it interleaves searching for an answer in the document with extracting the answer from a particular
paragraph, which we show improves both navigation and QA performance. We expect that as RC models
tackle longer documents that require reasoning and reading text that is spread in multiple parts of the
document, models that can efficiently navigate and collect evidence will become more and more crucial.
Our agent provides a first step in this important research direction.
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A Supplementary Material

A.1 Network Architecture Details

Here, we elaborate on the network architecture, which was briefly described in the paper. Given an input
state s = (q, 0, z, opn, P.), we denote by ¢ = (q1,...,qn), 0 = (01,...,0p) and z = (z1,..., 2z,) the
question tokens, observation tokens and answer prediction tokens, respectively.

Word-level embedding For everyi = 1,...,n, every j = 1,...,m and every k = 1,...,r, we create
an embedding of the input tokens ¢;, 0, 2;, in two steps. First, we embed every token with a pre-trained
GloVe word embedding matrix W,,:

w . wo__ . wo__
e, =Wy q ; eoj—Ww‘oj ey =Wy 2

qi 2k
Next, we apply character-level embeddings with a learned embedding matrix W,.. The embedded

characters are then summarized with a max-pooling convolutional neural network:

e = CNN({W, - g }\%!))
5, = ONN({W..- 0;2},%))

¢¢ = CNN({W, - o}

Concatenation of the two components yields the final word-level embeddings:

w C

€q; = [eqi ) eqi] v €0 = [eoj 1 Co; 20 Ca

Question sequence encoding The question is encoded with a BiLSTM, where for every timestamp ¢,
the forward and backward outputs are concatenated:

{ug,, ..., ug, } = BILSTM(ey,, ..., €4, )
— ST
Uq; = [LSTM( h Gi—1> eqz') ) STM( h Git+1° eQi)]

The outputs are then summarized with a self-attention:

n
hg = E :aiu‘h
i=1

where the coefficients a1, ..., o, are obtained by feeding the outputs to a two-layer feed-forward network,
and normalizing the output logits with softmax:

e

- D pp €%

Observation sequence encoding The observation sequence encoding h, is obtained in an analogous
manner to i, except that we use a LSTM rather than a BiLSTM.

a; = FFNN(ug,) ; o

Answer prediction encoding The answer prediction encoding h is obtained by running the answer
prediction tokens through a LSTM, and concatenating the last hidden state with the input feature vector

¢

{uz,...,uz } = LSTM(e,,, ..., €2,)
— s
Uy, = LSTM(h 4, _,,€z,)
h, = [uzT ; qbz]
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Parameter Value

Network Maximum node observation length 20 tokens
Maximum observation length 120 tokens
Word embedding dimension 300
Character embedding dimension 20
Convolution filter size 5
BiLSTM and LSTM hidden dimension 300
First feed-forward layer dimension 512
Second feed-forward layer dimension 256
Dropout rate 0.2
RMSprop learning rate 0.0001

Training Batch size 64
Target network period 10K steps
Initial memory size 50K transitions
Maximal memory size 300K transitions
Action sampling € 1.0 = 0.1
Discount factor ~ 0.996
Prioritization usage « 0.6
Prioritization importance sampling 3 0.4 — 1.0

Sampling State sampling € 1.0 - 0.5
Annealing steps for e 1.2M steps
Sampling repetitions K 5
Maximum navigation length T (train) 30 steps
Maximum navigation length 7" (test) 100 steps
Interpolation coefficient for fr 4 g 0.5

Table 8: DOCQN hyper-parameters

State representation The final state representation is formed by concatenating the encoded question
hgq with the encoded observation h,,. Concretely:

hs = [hq§ ho ; hz]

The input node features ¢, are concatenated to an upper layer, as we describe next , to increase their
weights in the final predictions. We have found that incorporation of these features in this way accelerates
the navigation learning process.

Q-values prediction We implement a Dueling DQN architecture, where the final Q-values are com-
posed of a state value V' (s) prediction and advantage predictions A(s, a) for every possible action a.
Denoting by FFNN a single-layer feed-forward neural network, predictions are derived as follows:

vo = FFNN(h)
v} = FFNN(v) ; v{* = FFNN(uv)
vy =FFNN([o" ; ¢ul) ; v5' = FENN([of'; ¢n])

Where v) € R, v§' € R, and ¢ are the navigation features. The final Q-values prediction is obtained

by averaging:
[Al
Q_,V A i=1 U§4¢
v —'1)2 + 'UQ — T

A.2 Hyper Parameters

Table 8 summarizes the hyper-parameters used for building and training the DOCQN models.

A.3 Navigation Examples

Figures 9,10,11,12,13 show sample navigations, performed by the DOCQN model. In each example,
q, a,n denote the question, answer aliases and answer node numbers. The observation tokens are high-
lighted according to the self-attention weights, given by the model. By choosing the action ANS, the
agent executes the RC model to obtain an answer prediction, which is part of the observation in the next
step.
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q: How many legs does a ladybird have?

a:  ['six','6']

n: [2,12, 14,22, 46, 51, 60, 72, 74, 102, 150, 159, 163, 200]

Step |Node Observation Tokens Answer | Action
0 0 |['Insect] DOWN
1 1| T el DO q: Justine Thornton is the fiancee of which politician?
['Insect’, 'Etymology", "The', 'word’, ", ‘insect’, '\\" a: ['ed milliband', 'red ed', 'tom baldwin journalist', 'ed miliband', 'edward
’ o R T miliband']
2 2 |'comes, 'from, 'the, 'Latin’, 'word', \",',', 'meaning’, UPR n: [21]
o il Tl e ieily oy Gl Tawi] Step |Node Observation Tokens Answer Action
3 5 |['Insect’, 'Phylogeny’, 'and', 'evolution'] DOWN 0 0 |[Justine’, Thornton'] DOWN
['Insect’, Phylogeny’, 'and', 'evolution’, The', 1 1 |[Justine', Thornton', 'Early’, 'life’, 'and', 'education'] DOWN
4 6 |'evolutionary’, relationship’, 'of’, 'insects’, 'to’, UPR [Justine’, Thornton', Early’, 'life!, and’, 'education,
‘other’, 'animal’, 'groups, 'remains’, 'unclear’, '] . . "Thornton', 'was', 'born’, 'in', 'Manchester’, 'to', ", AT
5 45 |['Insect!, 'Diversity'] DOWN ‘professionals’, ', 'Margaret', 'and’, 'Dr', 'Stewart',
) ) 'Thornton', "."]
['Insect’, 'Diversity', 'Though', 'the’, 'true’,
‘dimensions’, 'of', 'species’, 'diversity’, 'remain’, [Justine', Thornten', 'Early’, 'life’, 'and, 'education’,
6 46 |, P o P CmE UPR 'Thernton', 'was', 'born’, "in’, 'Manchester', 'to’, ",
uncertain', '), 'estimates', range’, 'from’, 2.6, '--, 3 2 ) Dr Stewart UPR
oy, EE——— — Wy, W, ‘professionals’, ',', 'Margaret', 'and’, 'Dr’, 'Stewart',
7.8', 'million’, 'species’, 'with', 'a']
'"Thornton', "."]
7 49 [['Insect', 'Morphology', 'and’, 'physiology” DOWN
INineeet; DIy, o, pIstia] 4 10 |[Justine’, Thornton', 'Career’] DOWN
8 50 Mg, Wy baler ol fr eiial oy DOWN [Justine', Thornten', 'Career', "Thornton', 'practises’,
External’] 3 11 |'in', Environmental', 'Law’, ', 'now’, 'at’, '39', ANS
['Insect’, 'Morphology', 'and’, 'physiology’, 'Essex', 'Street’, ']
g 51 ‘External’, 'Insects', 'have', 'segmented’, 'bodies’, ANS ['Justine', Thornton', 'Career’, Thornton', 'practises’, o -
. [ Teced 7 o 00 o © 5 . . nvironmental
supported', 'by’, ‘exoskeletons’, ,', 'the’, 'hard’, 6 | 11 |'in, Environmental, Law’, ,, now’, 'at,, 39, o UPR
aw
‘outer’, 'covering', 'made’, 'mostly’, 'of', 'chitin’, '] 'Essex’, 'Street, ']
['Insect’, "Morphology', 'and', 'physiology’, 7 | 20 |[Justine', Thornten', 'Personal', 'life'] DOWN
10 51 ‘External’, 'Insects’, 'have', 'segmented’, 'bodies’, o STOP [Justine', Thornton', 'Personal’, 'life’, "Thornton',
‘supported', 'by’, 'exoskeletons', ',", 'the’, 'hard’, 8 | 21 |s, husband', 'is, 'former, '"Labour’, 'Party’, STOP
‘outer’, 'covering', 'made’, 'mostly’, 'of', 'chitin’, '."] 'Leader, 'Ed, 'Miliband', 'MP', '."]

Figure 9: Navigation example 1. Although the document
is more general than the question subject and the answer
appears multiple times across the document, the agent
finds the correct context for answering the question.

q:  What was the French sounding winner of the 2011 Epsom Derby?
a: ['pour moi']
n:  [15,40]

Step |Node Observation Tokens Answer | Action
0 0 |['2011', 'Epsom', 'Derby'] DOWN
1 1 |['2011', 'Epsom', 'Derby’, 'Race', 'details’] DOWN
['2011', 'Epsom’, 'Derby’, Race', 'details’, ',

2 2 UPR
'Sponsor’, ', "]

3 9 |['2011", 'Epsom’, 'Derby’, 'Full', "result’] DOWN
['2011', 'Epsom’, 'Derby’, 'Full', result, "*', "The',

4 10 |'distances', 'between’, 'the’, 'horses', 'are’, 'shown', UPR
'in', 'lengths', 'or', 'shorter’, ';', "]

5 14 |['2011', 'Epsom’, 'Derby’, 'Winner', 'details'] DOWN
['2011', 'Epsom’, 'Derby’, 'Winner', 'details’,

6 15 |'Further', 'details', 'of’, 'the', 'winner', ',’, "Pour’, 'Moi', STOP
B

Figure 10: Navigation example 2. The agent explores
several sections before reaching the most relevant one.

g:  What nationality was the pointillist artist MONDRIAN?
a: [‘autochtoon', 'people of holland', 'etnic dutch’, 'dutch person’, 'dutch’, 'dutch
people', 'dutch ethnic group', "ethnic dutch’, 'dutch ethnic group and nation',
'netherlandians’, 'autochtones', "dutchmen', 'autochtonen’, 'netherlanders',

‘netherlander']
n: [3,9,53]
Step [Node Observation Tokens Answer | Action
0 0 |['Piet', 'Mondrian'] DOWN
['Piet, 'Mondrian', "The', 'Netherlands', '(’, '1872', -
1 1 DOWN
LY
['Piet, 'Mondrian', "The', 'Netherlands', '(’, '1872', -~
','1911", '), 'Mondrian', 'was', 'born’, 'in’, ", 'in’, 'the’,
2 2 . ANS
'Netherlands', ',', 'the', 'second', 'of, 'his', "parents',
"\", 'children’, '."]
['Piet', 'Mondrian', 'The', 'Netherlands', (', '1872', "
','1911", 'y, 'Mondrian', 'was', 'born’, 'in’, ", 'in’, 'the’,
3 2 ) Netherlands | RIGHT
"Netherlands', ',', 'the’, 'second’, ‘of, 'his', "parents',
"\", ‘children’, "."]
['Piet’, 'Mondrian', "The', 'Netherlands', '(’, '1872', -
','1911', '), 'After!, '), 'strictly’, 'Protestant’,
4 3 |'upbringing’, '), 'in', '1892', "', 'Mondrian', 'entered’, ANS
'the’, 'Academy’, 'for', 'Fine', 'Art, 'in’, 'Amsterdam’,
i
['Piet, 'Mondrian', "The', 'Netherlands', '(’, '1872', -
', '1911, ), 'After', 'a, 'strictly’, 'Protestant’,
5] 3 |'upbringing', ', 'in', '1892', "', "Mondrian', 'entered', Dutch STOP
'the’, 'Academy’, 'for', 'Fine', 'Art, 'in’', 'Amsterdam’,
|

Figure 11: Navigation example 3. The agent quickly nav-
igates to the answer, without running the RC model.

175

Figure 12: Navigation example 4. The agent leverages
the RC model and decides to stop after observing enough
information to answer.




q:  Who created Rumpole of the Bailey?
a: ['john mortimer qc', 'john mortimer', 'john clifford mortimer', 'sir john

mortimer']
n: [31, 46, 56, 144, 154, 168, 178, 188, 198, 208, 245, 258, 274, 282, 290, 306,
341, 345, 466, 475]
Step |[Node Observation Tokens Answer | Action
0 0 [['Rumpole, 'of', 'the', Bailey'] DOWN
1 1 |['Rumpole’, 'of, 'the', ‘Bailey’, Horace', Rumpole'] RIGHT
2 44 (['Rumpole’, 'of, 'the', 'Bailey’, 'Production’] RIGHT
['Rumpole’, 'of', 'the', Bailey', 'Television',

3| 127 |, . , DOWN
episodes']
['Rumpole’, 'of', 'the’, Bailey', 'Television',

4 | 128 |'episodes’, 'There', ‘were’, 'a', 'grand, 'total’, 'of', '44', RIGHT
‘episodes’, "."]
['Rumpole’, 'of', 'the', Bailey', 'Television',

5 | 129 |'episodes’, 'All', 'listed, 'dates’, 'indicate’, 'first, 'UK/, RIGHT
'transmission’, 'date']
['Rumpole’, 'of', 'the’, Bailey', 'Television',

6 | 130 |'episodes’, ", 'Film', 'for', 'BBC', 'TV', '\'s,, 'Play’, RIGHT
'for', "Today', 'Series', '(, '1975', ')']
['Rumpole’, 'of', 'the', Bailey', 'Television',

7 | 131 |'episodes’, ¥, "', 'Rumpole’, 'of', 'the’, 'Bailey’, "\\", RIGHT
'(", '16', 'December’, '1975', "), 'T', 'Set', 'in’, '1974', T
['Rumpole’, 'of', 'the’, Bailey', 'Television',
‘episodes’, **','(", ", """, 'Rumpole’, 'and', 'the’,

8 | 132 . i i RIGHT
'Confession', 'of, 'Guilt, V\", 'for’, 'radio’,
‘adaptation’, 'in', '1980, 'and’, 'for’, 'DVD', 'release']
['Rumpole’, 'of', 'the', Bailey', 'Television',
‘episodes’, *', 'This', 'was, 'a’, 'stand-alone’,

9 | 133 . : RIGHT
‘production’, 'in’, '1975', 'for', ' BBC, 'TV', \'s',
‘anthology’, 'series', "', "Play’, 'for', "Today’, \\", ."]
['Rumpole’, 'of', 'the’, Bailey', 'Television',

10 | 134 i UPL
‘episodes’, "TV', 'Season’, 'One’, (', '1978",")']

11 | 44 (['Rumpole, 'of, 'the', 'Bailey’, "Production’] DOWN
['Rumpole’, 'of', 'the’, Bailey', 'Production’,

12 | 45 . DOWN
'Origins']
['Rumpole’, 'of', 'the’, Bailey', 'Production’,
'Origins', 'The', 'origins', 'of', 'Rumpole’, 'of, 'the’,

13 | 46 : o, ANS
‘Bailey', 'lie’, 'in', "™, ", "Took', 'Place’, \\", "', 'a,
‘one-off’, 'filmed’, 'television’, 'play']
['Rumpole’, 'of', 'the’, Bailey', 'Production’,
'Origins', 'The', 'origins', 'of', "Rumpole’, 'of, 'the’, John

14 | 46 i L i STOP
‘Bailey’, 'lie’, in, "', ", "Took’, 'Place’, \\", ', "a', Mortimer
‘one-off', 'filmed’, 'television', 'play']

Figure 13: Navigation example 5. After reading through the
”Television episodes” section, the agent goes back to the “’Pro-
duction” section to find the answer.
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Abstract

Event relation recognition is a challenging language processing task. It is required to determine
the relation class of a pair of query events, such as causality, under the condition that there isn’t
any reliable clue for use. We follow the traditional statistical approach in this paper, speculat-
ing the relation class of the target events based on the relation-class distributions on the similar
events. There is minimal supervision used during the speculation process. In particular, we incor-
porate image processing into the acquisition of similar event instances, including the utilization
of images for visually representing event scenes, and the use of the neural network based image
matching for approximate calculation between events. We test our method on the ACE-R2 corpus
and compare it with the fully-supervised neural network models. Experimental results show that
we achieve a comparable performance to CNN while slightly better than LSTM.

1 Introduction

Event relation recognition aims to predict the relationship between the query events. Here, an event is
defined as a text span (sentence or clause) which describes the occurrence of a genuine event, such as
“The 2" industrial revolution”. An event-oriented relation recogntion system is required to assign a
relation type tag to a pair of query events, such as those defined in Hong et al (2016)’s natural event
relation scheme, including causality, temporality, conditionality, etc. Listed below are a pair of related
query events, along with the relation need to be predicted:

(1) Event Instance 1 — The 2"% industrial revolution <Cause>
Event Instance 2 — The killer fog that blanketed London <Result>
Relation — Causality <Need to be predicted>

Recognizing event relations in an automatic way is a challenging task. It is because the query events
are selected from different paragraphs in a document or even different documents, so that there is lack of
explicit clue and shared context can be used for semantic relation analysis.

Statistics based inference is one of the promising solutions. It performs in a straight-forward manner:
1) seeking for the similar events to the query events, ii) surveying the probability distribution of different
types of relations over the similar events, and iii) assigning the most widely distributed relation to the
query events. In order to fully implement the inference process, we need to address two crucial issues.
One is to collect a large set of pairwise event instances whose relations are either previously known
or explicitly signaled, such as the ones in (2). The other is to develop effective similarity measurement
approaches, so as to retrieve the event instances similar to the query events.

(2) Query Event 1 — China’s industrial development in the 21st century <Cause>
Query Event 2 — Heavy smog alerts issued for Beijing and other cities <Result>
Relation — Causality <Previously Known>

* Corresponding author
It is noteworthy that this work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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With regard to the first issue, we employ a connective based approach to collect explicitly related
events. Current connective-based explicit relation recognition techniques (Pitler and Nenkova, 2009; Wu
et al., 2017) have been proven effective in determining the explicit relations, with no less than 93%
accuracy, for the sequential text structures connected by a connective. For example, a pair of clauses
connected by the connective “because” can be determined to have a causal relation with a high level of
confidence. This allows us to acquire numerous explicitly-related events from texts using a few carefully-
selected connectives and simple patterns. Accordingly, we build a large-scale Textual Event Relation
Bank (TERB) to support the relation inference.

We focus on the second issue in this paper, measuring the
similarity between events. Recently, neural network has been =~ Query Event1 - Bventinstance 3
successfully used in event-oriented semantic encoding to some
extent (Nguyen and Grishman, 2016; Ghaeini et al., 2016;
Feng et al., 2016; Peng et al., 2016; Liu et al., 2017; Chen
et al., 2017), yielding substantial performance gains in the re-
lated information extraction tasks, such as event extraction
(Doddington et al., 2004; Ahn, 2006) and nugget detection
(Ellis et al., 2015). Semantic encoding enables the generation
of a high-dimensional distributed representation for character-
izing an event. So that it prompts semantic learning, comput-
ing and understanding at a very deep level. Undoubtedly, this Figure 1: Similar visual scenes
can facilitate the acquisition of the “semantically-similar but
pragmatically-different” event instances for the query events, such as those in (2).

However, in our recent research on utilizing semantic similarity calculation, we fail to pass through a
bottleneck that, for some query events, there doesn’t exist any semantically-similar event instance in a
finite dataset (e.g., TERB). It causes that the performance of the state-of-the-art approaches is actually
far from what it should be. In order to overcome the problem, we propose to use visual scenes of events
for similarity calculation. It is motivated by the fact that some semantically-dissimilar event instances
may possess similar visual scenes with the query events. Figure 1 exhibits the scenes of the query events
in (1) and that of the event instances in 3), where the visual scenes are similar (compared between the
left and the right images), although the textual descriptions of the events are semantically different.

(3) Event Instance 3 — Pollution from steel mills blows over residential buildings <Cause>
Event Instance 4 — Mask wearing is in fashion <Result>
Relation — Causality <Previously known>

In our experiments, images are taken as the visual scenes. On the basis, we introduce image captions
into cross-media semantic matching, with the purpose of mining possible visual scenes by similarity
measurement between query events and image captions. In addition, the Convolutional Neural Network
(CNN) based image representation is utilized in visual scene matching. Over the ACE-R2, we compare
our model with two fully-supervised discourse relation classification models, including Qin et al. (2016)’s
CNN and Chen et al. (2016)’s Long-Short Term Memory (LSTM) based Recurrent Neural Network.
Experimental results show that our minimally-supervised model slightly outperforms LSTM and obtain
comparable performance with CNN.

In the rest of the paper, we overview the related work in section 2. And then we present the method-
ological framework in section 3, the caption based cross-media semantic matching in section 4 and image
matching in section 5. Section 6 will give the TERB establishment method. In section 7, we evaluate the
proposed method and analyze the experimental results. We conclude the paper in section 8.

2 Related Work

2.1 Causal and Temporal Event Relation Identification

So far, the study of event relation parsing mainly concentrates on identifying two kinds of relationships,
causality and temporality respectively. The early work on causality identification can be traced back to
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the use of lexical-syntactic patterns (Girju et al., 2002; Girju, 2003). Soon thereafter, Chang and Choi
(2004) revise Girju et al. (2002)’s patterns using lexical pairs (LP) and cue phrases (e.g., due to). Besides
they generalize the model for binary relation classification using the Bayes theorem. Abe et al. (2008)
further use co-occurrence probability as the novel feature. Recently, scholars have made a great effort to
model fine-grained causal relations (Inui et al., 2005), exploit the features for classification (Blanco et
al., 2008), refine the patterns by syntactic and discourse parsing (Ittoo and Bouma, 2011; Do et al., 2011)
and predict relations by semantic network (Radinsky et al., 2012).

Mani et al. (2006) and Lapata and Lascarides (2006) presented the first study on the temporal relation
parsing. Both focus on the machine learning approaches. In the past decade, the SemEval (Verhagen et
al., 2007; Pustejovsky and Verhagen, 2009) has promoted a great deal of experimental study, including
on the grammatical, syntactic, semantic and ordering features (Bethard and Martin, 2007; Hepple et
al., 2007; Puscasu, 2007; Bethard, 2013; Mirza and Minard, 2015; Caselli et al., 2015; Hashimoto et al.,
2015). Meanwhile, temporal relation modeling has been implemented in different ways, such as sequence
labeling, Markov logic networks and hybrid systems (Cheng et al., 2007; Min et al., 2007; Yoshikawa et
al., 2009; UzZaman and Allen, 2010; Llorens et al., 2010; Velupillai et al., 2015).

2.2 Multi-class Discourse Relation Classification

In April 2006 (Prasad et al., 2007), the Penn Discourse Tree Bank (PDTB) was released as a corpus of
discourse-level arguments as well as annotations of explicit and implicit relations. The PDTB relation
scheme consists of 4 main relation classes and 16 sub-classes. Since it is released together with the
corpus, a great deal of research has focused on the methodologies for multi-class relation classification.

Motivated by Marcu and Echihabi (2002)’s work, in the earlier study, both feature engineering and
sophisticated machine learning dominated the field in a large region (Pitler and Nenkova, 2009; Lin et
al., 2009; Louis et al., 2010; Park and Cardie, 2012; Rutherford and Xue, 2014).

Recently, it becomes increasingly popular to use neural networks for learning to classify discourse
relations (Zhang et al., 2015; Qin et al., 2016; Chen et al., 2016; Qin et al., 2017; Liu and Li, 2016).
Typically, Zhang et al (2015) propose a Shallow Convolutional Neural Network (SCNN) model, which
is used by Ponti and Korhonen (2017) to identify contingent relation. Qin et al (2016) utilize CNN with a
collaborative gated neural network (CGNN) for recognizing implicit relations. Chen et al (2016) develop
a Gated Relevance Network (GRN) based on Bidirectional Long-Short Term Memory (Bi-LSTM) frame-
work, combining bilinear model and single layer network for relevance measurement between arguments.
Besides, the current work improves the classification performance of implicit relations by expanding the
training data with connectives (Rutherford and Xue, 2015; Braud and Denis, 2016; Wu et al., 2017) or
combining multiple corpora via multi-task learning (Liu et al., 2016).

3 Relation Inference Engine

In our statistical inference process, TERB is an indispensable knowledge base and needed to be build first.
But in this section, we suppose that TERB has been established successfully, and focus on presenting the
inference approach. TERB building will be treated as a separate work and presented in section 6.

3.1 Framework and Terminology

The input of the relation inference engine is a pair of query events, while the output is a relation type
tag. The inference engine is constituted of three components, including Cross-Media Semantic Matching
(CMSM), image matching and inference model (see the framework in Figure 2). In order to facilitate
understanding of the following discussion, we first define the terminologies used as below.

Caption is the textual annotation of an image.

Mention is the textual description of an event.

Visual Scene is an image that best describes how an event happens as well as the surroundings. There
is no regard to any concrete element or fact (such as who the participants are ).

CMSM verifies whether an event mention has the consistent meaning with a scene, or in other word,
the mention evokes the perception of the scene. In our method, CMSM plays an important role because

179



it helps transform the textual representation (i.e., mention) of an event to a visual version (scene), or
vice versa. There are two CMSMs of different directions included in the inference process: forward
CMSM and backward CMSM. They are methodologically the same, both measuring similarity between
captions and mentions. The difference lies in the use of CMSM. The forward CMSM is used to transform
mentions into scenes, while the backward CMSM is applied in a scene-to-mention direction.

Image Matching is put forth for calculating scene similarity.
It is conducted between the scenes of the query events and that of
the events in TERB. The events in TERB which have the similar
scenes with the queries will be adopted, along with their explicit

Images

Y

. Queries = - TERB
relations. They are used as the reference samples.
Scenes of the Image Matching Scenes of the
. . o el query events events in TERB
3.2 Pipeline for Reference Sample Acquisition !
We acquire the reference samples by a three-stage information m
. . . . Methodological Framework
retrieval system, which consists of three successive one-to-many s
. o age-
retrieval stages (see the pipeline in Figure 2): Stage-2  Backward
. . Image CMS! TERB
Stage 1: Mention-to-Scene transformation plage-1 MatchingK Ob. \\\\\ 0,O \
The forward CMSM is performed. It is used to retrieve top- % ~—
n1 most possible scenes of the query event in a large-scale im- g, O

age database. The images whose captions are most similar to the
query event mention will be adopted. The image database (D) we L e
use includes about 5 million images crawled from Wikipedia. gz I:I<'d O\:;xf/ 0

O -
Stage 2: Scene-Scene matching \ o

Each scene obtained in the first stage is used as a query of @ queryevent [ image O event mention

. . . . mention in TERB
image search, where image matching is used. There are 1o most Pipeline of knowledge acquisition
similar images adopted from the image database D, and used as

the similar scenes to that of the query event. Figure 2: Framework and workflow

Stage 3: Scene-to-Mention transformation

The similar scenes are then used as queries. For each of them,
the backward CMSM is performed, so as to acquire n3 semantically-similar mentions in TERB.

By the knowledge acquisition, for a query event, we can obtain N (N=n; x ns x n3) reference samples
in TERB. Thus, given a pair of query events ¢; and g2, we obtain a collection S of pairs of reference
samples (in the size of N x N). Most of the pairs have gone out of use in practice because they are
irrelevant and fail to hold a relation. The rest will be reserved as the available reference samples. Their
relations are named as reference relations (see 7; and r; in Figure 2).

3.3 Statistical Inference

Given the set S of reference relations, we use the maximum likelihood estimation to speculate the
relation r* between the query events:

r* =argmax p(r) 3Ir )= (w)" G _plr)
g p( ) dreR p( ) ( 7‘) X ZrGRC(T)

ey

where, R denotes all kinds of predefined relation types. We follow Hong et al. (2016)’s relation scheme
to discrminate among different relation types. The function C'(r) computes the occurrence frequency of
the relation 7 in S. The coefficient w,. is prodced with a penalty factor A, and the prior probability p(r) of
r. The penalty \,s of different relation types are inconsistent and need to be fine-tuned on a development
set. The prior probability p(r) of every considered relation type need to be obtained on the training set
beforehand. In this paper, we calculate p(r) using the distribution of r in TERB.

4 Cross-Media Semantic Matching (CMSM)

We implement CMSM between a scene (image) and a mention as the semantic approximation calculation
between the caption of the image and the mention. Thus it can be boiled down to a text matching problem.
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Activation Function Loss Function Activation Function Loss Function
iTe_oTa Rel —in(1+¢" *) | L==3 y-log(se(x))
tanhg(x) = &——¢— | L = — el - elug(z) = In e = ~Yr-log(se(x)r
o() W Totel 22, yr-log(so(x)r) Batch size: 256 Epoch: 74
Batch size: 256 Epoch: 5 Momentum: 0.9 Padding: 1 pixel
Optimizer: Adadelta Dropout ratio: 0.5 (FC) Optimizer: Adadelta | Dropout ratio: 0.5 (FCI)
Learning rate: 10> Learning rate: 10~° Dropout ratio: 0.5 (FC2)
Table 1: Hyper-parameter settings for CMSM Table 2: Hyper-parameter settings for ConvNet

(Note: 6 represents all the parameters and s(x) is the ground truth (Vadapalli and Gangashetty, 2016))

For a caption and a mention, we encode each of them as a sentence-level embedding (Sen2vec). We
calcualte the cosine similarity of the Sen2vecs and use it as the caption-mention approximation. CNN
is utilized for generating the Sen2vecs. As usual, it produces the convolutional features on the concate-
nated word embeddings of the words in the input short text. There is only 1 hidden layer included in
the network. Thus it fails to possess very deep-level perceptions of semantics. Undoubtedly, it can be
enhanced by either adding more hidden layers to the network, or instead, using other state-of-the-art
network models, such as attention based bidirectional LSTM (Zhou et al., 2016) or gated recurrent unit
(Vadapalli and Gangashetty, 2016). In this paper, we choose to use a relatively simple model because we
are more willing to verify the validity of the methodological framework.

The configuration of the employed CNN is presented as below: in the input layer, a short text (caption
or mention) is represented as a fixed-size sequence of real numbers, involving 30 256-dimensional word
embeddings. Zero padding is performed when the text length is smaller than 40, otherwise tail clipping.
We follow Mikolov et al. (2013) to use skip-gram based word2vec to compute embeddings, and conduct
training on the English articles in the latest 2015 Wikipedia dump (Dos Santos and Gatti, 2014). In the
hidden layer, there are 128 (3x256) filters used for the convolutional computation with a stride of 1.
This yields 28 128-dimensional feature vectors. Max pooling is then used to produce a lower dimensional
(1x128) vector. As usual, we apply a dense layer to slightly increase the depth. And further, a dropout
layer (rate=0.5) is used to produce a 64-dimensional vector. The vector produced in this way is specified
as the semantic representation of the text. In the output layer, a fully-connected (FC) layer is used,
followed by a 18-way softmax classification layer. We train the model on about 50 thousand short texts
of 18 domains. Table 1 shows the parameter settings.

It is noteworthy that the domain classification has nothing to do with the task mentioned in this paper.
What we really need in the training process is just the well-trained network. The network can be practi-
cally used to generate the sentence embeddings (i.e., the ones in FC layer) for captions and mentions.

S Image Matching

Image matching is used to recognize similar visual scenes and thus enables the events of similar scenes
to be acquired. Similarly, we apply the cosine similarity between image embeddings to align images.
Simonyan and Zisserman (2014)’s ConvNet is employed to generate the image embeddings.

ConvNet provides an architecture
for learning visual features. Each fea-
ture indicates a spatial concept of an
image patch (only in the input layer)
or a multiple-cell receptive field (in
hidden layers), preserving the local
information about the notions of left,
right, top, down and center.

In this paper, we follow Simonyan Figure 3: Structure of ImageNet (Plan-A)
and Zisserman (2014)’s Plan-A, in
which a relatively shallower ConvNet is established. The deeper versions in their other plans weren’t
taken into consideration. It is for the same reason that we mentioned earlier, evaluating the feasibility of
our methodological framework when the models we use are weaker than the state of the art.

Input (224x224 RGB)
Conv. Layer 64@3x3
Max Pooling
Conv. Layer 128@3x3
Max Pooling
Conv. Layer 256 @3x3
Conv. Layer 256@3x3
Max Pooling
Conv. Layer 512@3x3
Conv. Layer 512@3x3
Max Pooling
Conv. Layer 512@3x3
Conv. Layer 512@3x3
Max Pooling
FC1-4096
FC2-4096
FC3-1000
Soft-max

181



The ConvNet structure is presented as below and the parameter settings are listed in Table 2. In the
input layer, a fixed-size 224 x224 RGB image is input to the network. The preprocessing we do includes
two aspects. One is to normalize images in batches by limiting the size of each to be uniformly 224 x 224
pixels. The other is to subtract the mean RGB value from each pixel. The mean RGB is computed on the
training set. In the hidden layers, there are totally 8 convolutional layers deployed, along with 5 max-
pooling layers. The number of filters in the convolutional layers is gradually increased (from 64 to 512)
with depth. See the layout in Figure 3. In the output layers, there are 3 fully-connected (FC.) layers.
The first two have 4,096 dimensions each. The third (FC3) is required to perform 1,000-way ILSVRC
(Witten et al., 2016) classification during the training procedure and thus contains 1,000 dimensions. A
non-linear softmax layer is deployed behind the FCs.

We train the network on ILSVRC-2012. There are about 5 million images used. In our experiments,
we pass an image through the well-trained network and employ the FC3 layer as the image embedding.
Instead of reproducing the network, we recommend the potential users to use the open source toolkit!.

6 Textual Event Relation Bank (TERB)

TERB is an event and relation databank we build. There are about 0.74 million pairs of event mentions
included in TERB. The mentions are automatically extracted in pairs from Gigaword corpus (Graff and
Cieri, 2003). Each pair of events has been exclusively assigned with an exact relation. Below is a stan-
dard sample in TERB: <Event Instance 1: “pollution emission level keeps rising”> -+ causal relation
+ <Event Instance 2: “mask wearing is in fashion”>.

We only take clause-level event mentions into consideration during the process of building TERB.
And the eligible clauses for use are limited to the ones that contain a predicate. Syntactic parsing is used
for clause segmentation and predicate identification (Bjorkelund et al., 2010).

There are three patterns used for pairwise mention extraction, including CEE, ECE and EEC, which
are distinguishable by means of the position of a connective (C) relative to the neighbor event mentions
(E). Below are the examples, where the words in bold font are connectives: {CEE — Although < Clausel >
,< Clause2 >}; {ECE— < Clausel >, but < Clause2 >}; {EEC— < Clausel >, < Clause2 >, though}.

The connectives are the words that structurally link sentence

constituents. They have been widely used as the reliable clues Relational Types Num
for explicit semantic relation resolution between text spans. For Expansion.Conjunctive (Cnj.) 74
example, the connective “because” frankly signals a causal rela- Contingency.Conditional (Cnd.) | 180
tion. Nowadays, the utilization of connectives contributes to the Comparison.Concessive (Cnc.) | 1
high accuracy of explicit relation recognition, reaching a score Temporality.before/after (Baf.) | 919

more than 93% (Pitler and Nenkova, 2009; Wu et al., 2017).
Thus, for a pair of event mentions extracted by the patterns, we
determine their explicit relation by the one-to-one correspon-
dence between connectives and relation types.

We employ 50 connectives which are elaborately collected
from the PDTB corpus (Prasad et al., 2007). The relations they
signal have been manually annotated beforehand and double-
checked. We filter some ambiguous connectives before use be- Table 3: Relation scheme
cause they generally signal different types of relations. For ex-
ample, “since” may signal a causal relation with the meaning of “because”, while in some cases, it signals
a temporal relation with the meaning of “from then on”.

Temporality.during (Dur.) 129

Expansion.Confirming (Cnf.) 19

Contingency.Causal (Cus.) 505

Comparison.Contrastive (Cnt.) 60

Temporality.Equal (Equ.) 107
Coreferential (Cre.) 277

7 Experimentation

7.1 Corpus, Settings and Evaluation

Corpus— We use Hong et al. (2016)’s ACE-R2 corpus in our experiments. Table 3 shows the relation
scheme, which consists of 5 main types and 10 subtypes. ACE-R2 contains 2,271 pairs of news events.

"https://github.com/BVLC/caffe
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Each is annotated with a sole relation. The mentions are selected from the Automatic Content Extraction
(ACE) corpus (Doddington et al., 2004).

Settings— Both the CNN models and the captioning model that we use in the experiment have been
pretrained with external data. What we need to fine-tune is the number of the reference samples (section
3.2), i.e., N, which is produced by the parameters n1, ng and n3 (N=n; X na X ns) in the three-stage
knowledge acquisition process. A larger value of NV will introduce many noises in our inference process.
By contrast, a smaller value causes the lack of reference samples and thus the statistical uncertainty.

Evaluation— The methods we concern are evaluated by the metrics of macro-average Precision (Mac-
P), Recall (Mac-R) and F-score (Mac-F). For a particular type ¢, the positive examples are defined as the
event pairs that hold the relation ¢. Thus for ¢, the precision score is calculated as the ratio of the positive
examples in all the output examples of type ¢. The recall is defined as the ratio of the output positive
examples in all the ground-truth ones.

7.2 Compared Methods

Based on the framework mentioned in section 3, we implement an event relation predictor, named as
Holmes. For the purpose of validating statistically non-random effect, Holmes is compared with the
weighted random sampling (Baseline 1). By the baseline method, a test sample is most probably de-
termined to hold one of the widely-distributed relations (such as Temporality). The distribution is com-
puted over the development set. Second, Holmes is required to compete with a pure text based approach
(Baseline 2). In this approach, the statistical inference (section 3.3) is still followed, and similarly to
Holmes, the CNN based Sen2vec (section 3) is involved, and devoted to representing the query event
mentions and those in TERB. But unlike Holmes, it skips the steps of CMSM and image matching, and
instead, directly acquires ny,s similar events from TERB by sentence-level embedding similarity.

In addition, we compare Holmes with two discourse classification models, which are based on more
general models and trained in a fully supervised fashion. One is Qin et al. (2016)’s CNN model. The
other is Chen et al. (2016)’s bidirectional LSTM (Bi-LSTM) based recurrent model. There are two kinds
of performance of the competitors are reported. One is achieved by training the competitors over the
standard PDTB corpus (sections 1-20), which is consisted of no more than 6,234 handmade sentence-
level argument pairs and relations. The other is achieved by training the competitors over the TERB
corpus, a large-scale set of automatically-extracted mentions and explicit relations.

Most of the relation types in PDTB are compatible with those in ACE-R2 and TERB. For example,
the Temporality has been divided in two subtypes, Synchronous and Asynchronous, which
are compatible with the Temproality.Equal&During and Temporality.Before&After.
However PDTB fails to include the Coreference relation. Therefore, it isn’t considered in the ex-
periments. Besides, in ACE-R2, the numbers of available instances of the subtypes Confirming and
Concessive are far from large (see Table 3). This makes it difficult to develop Holmes with a high-
level confidence. Therefore, the two types aren’t taken into consideration too. Thus the total number of
available instances in ACE-R2 is 1,974. We use 1,579 as the development set, occupying about 80 per-
cent of all, while the rest (395) for test. We run 5-fold cross validation and report the best performance,
while the performance in every validation experiment will be presented in the discussion subsection.

7.3 Experimental Results

Knowledge Acquisition Performance — In the development process, we fine-tune the parameters n1,
ng and ng for Holmes, and the parameter ny,s for the Baseline 2. The NDCG@ N metric is used to
access the quality of the obtained reference samples (i.e., the retrieved similar events). For the image
based retrieval approach in Holmes, [V is the product of n1, no and n3, while for the text based approach
in Baseline 2, N equals to ny,s. The high value of NDCG@ N implies that most of the IV references
highly ranked by similarity scores are reliable, holding the ground-truth relation of the query events.
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Figure 4: Partial development stages for Holmes-«

Type Mac-P | Mac-R | Mac-F
Expansion 0.17 0.08 0.11
Contingency 0.82 0.80 0.81
Comparison 0.04 0.07 0.05

Table 4: Best Performance of Holmes for the three main relation types

Subtypes Mac-P | Mac-R | Mac-F Subtypes Mac-P | Mac-R | Mac-F
Contingency.Cus | 0.79 0.64 0.71 Temporality.Baf 0.79 0.97 0.87
Contingency.Cnd | 0.35 0.53 0.42 Temporality. Equ&Dur | 0.25 0.04 0.07

Table 5: Results on subtypes of Contingency Table 6: Results on subtypes of Temporality

Figure 4 illustrates partial stages in the development process before the performance remains steady.
For example, the subgraph 2 shows the changing tendency of NDCG when ny is gradually adjusted,
and n; and ng are kept unchanged. It can be observed from the NDCG curves that the image based
approach performs better than the text based (i.e., Baseline 2), obtaining more reliable reference samples.
Using such samples, as presented below, we enable Holmes to achieve comparable performance to the
sophisticated supervised learning models. It proves that the image based approach performs better than
the text based approach in acquiring reference samples. Using such samples, as presented below, we
enable the simple statistical inference to outperform some sophisticated supervised learning models.

On the basis, we fine-tune the penalty factor A\ for different types of relations. In each-fold cross
validation, the penalty factor of a particular relation type will be adopted if it effectively cooperates with
the penalty factors of other relation types. The effectiveness is ensured by verifying whether the factors
enable the recognizer to achieve the best performance on the development set. We have made the source
codes, penalty factors and datasets publicly available?, so as to enable the reproduction of the whole
experiments.

Relation Recognition Performance — We test Holmes by setting the parameters n1, ns and nj as 10,
85 and 10. Table 4 shows the performance for the three main relations Cont ingency, Expansion
and Comparison. Itis the best performance Holmes achieves in the 5-fold cross validations. Note that
the performance for the Temporal relation type is evaluated separately and only a 2-way classification
is conducted for its subtypes. It is because that every event pair can be regarded to be related temporally,
although some of relations fail to be annotated in ACE-R2. The lack of annotations on Temporality
definitely causes biased assertions on the performance of automated relation prediction.

Zhttps://github.com/HuiBinR/VSRB
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Method Training | 3-way | Temp | Cont Method Training | 3-way | Temp | Cont
Baselinel PDTB 0.11 N/A N/A Baselinel PDTB 0.11 N/A N/A
Baseline2 N/A 0.12 N/A N/A Baseline2 N/A 0.12 N/A N/A
CNN PDTB 0.38 0.17 N/A CNN PDTB 0.36 0.17 N/A
CNN TERB 0.41 0.54 | 0.60 CNN TERB 0.32 048 | 0.56
Bi-LSTM PDTB 0.39 0.17 N/A Bi-LSTM PDTB 0.34 0.17 N/A
Bi-LSTM TERB 0.42 0.48 0.63 Bi-LSTM TERB 0.40 0.45 0.58
Holmes N/A 0.33 0.51 | 0.63 Holmes N/A 0.31 0.47 | 0.56
Table 7: Evaluated by General Macro-F Table 8: Evaluated by Average Macro-F

It is observed that Holmes precisely predicts the Cont ingency relation. Most of the contingently-
related instances have been successfully recalled. By contrast, Holmes performs much worse for
Expansion and Comparison. We overview the errors and analyze the reasons as below.

Due to the omission of Expansion.Confirming, the performance of Holmes on Expansion
actually derives from that on Expansion.Conjunctive. In general, Conjunction appears as
a rhetoric method. By Conjunction, a series of similar events can be enumerated, such as earth-
quake, tsunami and storm. Co-occurrence probabilities of such events play important roles for predicting
Conjunction. However, there are few connectives can be used for pursuing the co-occurred events or
they are extraordinarily general. For example, the connective “and” is frequently used to signal the co-
occurred events, but frankly it nearly connects kinds of linguistic units or even acts as a pause from the
perspective of mood. If we use “and” to collect sample events which hold conjunctive relations, TERB
will be full of pseudo-instances, such as “sunshine and beach”. This will reduce the precision more seri-
ously. By contrast, if we neglect a connective “and”, there will be lack of available sample events. This
inevitably results in the incomplete statistics for the frequently-cooccurred events. We didn’t overcome
the bottleneck in this paper and use no more than 6 uncommon connectives to collect the sample events.
Both the diversity and scale of the events are far from expectation. This makes it difficult to effectively
recognize the Con junct ive relationship using a statistical approach.

We encounter a similar problem when treating with Comparison. A connective like “than” is effec-
tive to signal a pair of Contrastive events. However, due to the limitation of literal expression, in
general, such event mentions aren’t directly connected by “than”, but instead the concrete elements in
the events are. For example, in a story about economic competition, the contrastive events are introduced
respectively in different sentences, on the contrary the profit forecasts in the events are connected by than
in a sentence. The neglect of commonly-used connectives (e.g., “than’) during TERB building causes the
lack of sample events. Similarly, the statistic strategy we use fails to perform better under this condition.

Table 5 shows the performance of Holmes on the Cont ingent sub-type relations, i.e., Cause and
Condition. It can be observed that Holmes is adept in predicting causal relations. Table 6 exhibits the
performance on the Temporal sub-type relations, i.e., Before&After and Equal&During. Itisil-
lustrated that Holmes effectively predicts the synchronous events, though fails to infer the asynchronous.

7.4 Discussion

We carefully evaluate Holmes and the competitors with the general Macro F and average Macro F scores
respectively. The former is calculated with the average Macro P and Macro R on the concerned relation
types, while the latter is the average value of Macro F on the types. The average Macro F score plays
a role of assistance because it is able to reveal the unbalance problem. If a system shows significantly
different performance on different types of relations. the average Macro F will be substantially lower than
the general. Tables 7 and 8 respectively exhibit the performance of the entrants for the 3 main relation
types (3-way), Temporal subtypes (Temp) and Cont ingent subtypes (Cont). The tables only exhibit
the best performance the competitors achieves through the 5-fold cross validations. The performance in
every validation experiment is shown in Figure 5 and 6.

It can be observed that Holmes performs worse than CNN and LSTM for the 3-way main relation
classification. Nevertheless, Holmes obtains a smaller gap between general and average Macro F scores.
Besides, it achieves a comparable performance to the well-trained CNN and LSTM for the fine-grained
sub-type relations. For the case of Cont ingency, Holmes reaches the top together with LSTM. Note
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Figure 5: Cross validation for main relation types (Cont ingency, Comparison and Expansion)
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Figure 6: Cross validation for the subtypes in Temporality and Contingency

that CNN and LSTM fail to be trained on PDTB for classifying the Cont ingent sub-type relations.
It is because PDTB contains only one implicit conditionally-related argument pair. The scale of training
data and domain adaptation impose great influences on the performance. For example, for the subtypes,
CNN and LSTM perform significantly worse than Holmes when trained on PDTB. In addition, Holmes
outperforms Baseline 2. It demonstrates that, in TERB, there is lack of semantically-consistent events
to the queries. Holmes bypasses the bottleneck, using CMSM and image matching to acquire visually-
similar events. This contributes to the reference sample based statistical inference.

When we look through the 5-fold cross validation, we find that Holmes actually performs better than
expectation. As shown in Figures 5 and 6, Holmes seldom shows an exceptionally high or an unusually
low Marcro F score. And the mean level of Macro F scores of Holmes appears to be no less than that of
LSTM for the subtypes of both Temporality and Contingency.

8 Conclusion

We demonstrate that the use of images also contributes to knowledge acquisition in the field of linguistic
computing. By image matching, we open up a new perspective for the identification of similar events,
i.e., measuring the similarity of visual scenes. On the basis, we have successfully acquired a variety
of events which have comparable scenes with the queries. Using the obtained events and their explicit
relations, we enable a simple statistical inference model to achieve competitive performance for event
relation recognition. In the future we will introduce active learning into the refinement of the collected
event instances, and expand the existing training data to strengthen the supervised classification models.
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Abstract

In this paper, we describe TextEnt, a neural network model that learns distributed representations
of entities and documents directly from a knowledge base (KB). Given a document in a KB
consisting of words and entity annotations, we train our model to predict the entity that the
document describes and map the document and its target entity close to each other in a continuous
vector space. Our model is trained using a large number of documents extracted from Wikipedia.
The performance of the proposed model is evaluated using two tasks, namely fine-grained entity
typing and multiclass text classification. The results demonstrate that our model achieves state-
of-the-art performance on both tasks. The code and the trained representations are made available
online for further academic research.

1 Introduction

The problem of learning distributed representations (or embeddings) from a knowledge base (KB) has
recently attracted considerable attention. These representations enable us to use the large-scale, human-
edited information of a KB in machine learning models, and can be applied in various natural language
tasks such as entity linking (Hu et al., 2015; Yamada et al., 2016; Yamada et al., 2017), entity search (Hu
et al., 2015), and link prediction (Bordes et al., 2013; Wang et al., 2014).

In this paper, we describe TextEnt, a simple neural network model that learns distributed representa-
tions of entities and documents from a KB. Specifically, given a document in a KB consisting of words
and contextual entities (i.e., entities referred from entity annotations in the document), our model predicts
the rarget entity explained by the document (see Figure 1), and maps the document and its target entity
close to each other in a continuous vector space. Here, words, contextual entities, and target entities
are mapped into continuous vectors that are updated throughout the training. In this study, we train the
model using documents retrieved from Wikipedia.

One key characteristic of our model is that it enables us to combine the semantic signals obtained from
both words and entities in a straightforward manner. The main motivation for using entities in addition
to words is to address the problems of ambiguity (i.e., the same words or phrases may have different
meanings) and variety (i.e., the same meaning may be expressed using different words or phrases) in
natural language. For example, the word Washington is ambiguous because it can refer to a US state, or
the capital city of the US, or the first US president George Washington, and so on. Further, New York
is sometimes referred to as NY or by its nickname, the Big Apple. Obviously, entities do not have these
problems, because they are uniquely identified in the KB.

To evaluate our model, we address two important tasks using the proposed representations. Firstly,
we consider a fine-grained entity typing task (Yaghoobzadeh and Schutze, 2015) to evaluate the quality
of the learned entity representations. In this task, the aim is to infer one or more types of each entity
(e.g., athlete, airport, sports_team) from a predefined type set. We perform this task using the simple
multilayer perceptron (MLP) classifier with the learned entity representations as features. The results
show that our method outperforms the state-of-the-art methods by a wide margin.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Saturn is the sixth planet from the Sun and the second-largest in the Solar System,
after Jupiter. It is a gas giant with an average radius about nine times that of Earth.

Contextual entities: Planet, Sun, Solar System, Jupiter, Gas giant, Earth
Target entity: Saturn

Figure 1: Example of a KB document with entity annotations.

Secondly, we consider a multiclass text classification task, which aims to classify documents into a
set of predefined classes. This task examines the ability of our model as a generic encoder of arbitrary
documents. One important approach adopted here is that we automatically annotate entities appear-
ing in the target documents using a publicly available entity linking system and encode the documents
to the document representations in the same manner as the documents in the KB. For this task, the
logistic regression classifier is applied to the document representations. Because of the quality of seman-
tic signals obtained from the entities, our method outperforms strong state-of-the-art methods on two
popular datasets (i.e., the 20 newsgroups dataset (Lang, 1995) and R8 dataset (Debole and Sebastiani,
2005)). To facilitate further research, our code and the trained representations are available online at
https://github.com/studio-ousia/textent/.

Our contributions can be summarized as follows:

e We propose TextEnt, a simple neural network model that learns distributed representations of entities
and documents from a KB. Given a document in a KB consisting of words and contextual entities,
our model learns the representations by predicting the target entity explained by the document (see
Figure 1). We train our model using large-scale documents extracted from Wikipedia.

e Our proposed model allows us to effectively combine the semantic signals retrieved from both
words and entities in a straightforward manner. We demonstrate the effectiveness of this feature
by addressing two important tasks: fine-grained entity typing and text classification. Despite the
simplicity of our approach, we achieve state-of-the-art results in both tasks.

e We have published our code and the trained representations online to facilitate further academic
research.

2  Our Method

In this section, we describe our approach of learning distributed representations of entities and documents
from a KB.

2.1 Model

Given a document D in a KB consisting of a set of words wy, ..., wxn and a set of contextual entities
e1,...,ex, we train our model to predict the target entity that the document is explaining. We first
derive two vector representations of document D: the word-based representation v p,, and the contextual
entity-based representation vp_. For simplicity, we compute vp, and vp_ by averaging the vector
representations of words and those of contextual entities, respectively.

1 Y 1 &
va—NnZ:awn, vDe—KnZ:ben, (1)

where a,, € R? and b, € R? are the vector representations of words and contextual entities, respectively.
We define a probability that represents the likelihood of entity e; being the target entity of document
D as the following softmax function:
exp(ce, vp)
> erehyy €XP(Cce VD)’
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Figure 2: Model architecture of TextEnt.

where E p is a set of all entities in the KB, ¢, € R? denotes the vector representation of target entity e,
and vp € R? is the vector representation of document D.
Here, vp is computed using a fully connected hidden layer with vp,, and vp_ as inputs:

VD :W[VDw,VDe] (3)

where W € R?*24 is a weight matrix, and [v;, v;] is the concatenation of v; and v;. This layer projects
the input vector ([vp,,, vp,]) down to d dimensions, and captures the interactions between vp,, and vp,.
We use the categorical cross-entropy loss to train the model:

L=— Y logP(e]D), )
(D,et)eF

where I represents a set of pairs consisting of a document D and its target entity e; in the KB.

When training our model, the denominator in Eq. (2) is computationally expensive because it involves
summation over all KB entities. To address this, we use negative sampling (Mikolov et al., 2013b);
specifically, we replace Exp in Eq. (2) with a set consisting of the target entity e; and k randomly
chosen negative entities. Furthermore, to avoid overfitting, we use word dropout (lyyer et al., 2015),
which randomly excludes words and contextual entities with a probability p during the training.

We also test models trained using only words (denoted by 7extEnt-word) and only contextual enti-
ties (denoted by TextEnt-entity) in our experiments. These variants are created by replacing vp in Eq.
(2) with vp, (TextEnt-word) and vp_ (TextEnt-entity). Hereafter, our original model is referred to as
TextEnt-full.

2.2 Dataset

We trained our model using documents obtained from the April 2016 version of the DBpedia NIF abstract
dataset!, which contains the texts and entity annotations in the first introductory sections of Wikipedia
articles.

For computational efficiency, we limited the size of our dataset. In particular, we excluded documents
with fewer than five incoming links from other documents if the corresponding entity of the document is
not contained in the dataset used in our fine-grained entity typing experiments, presented in Section 3.1.
As a result, the number of target documents was 702,388.

We also modified all words to lowercase, and excluded words that make fewer than five appearances
and contextual entities that make fewer than three appearances in the documents. Thus, the final dataset
contained 242,771 unique words and 327,263 unique contextual entities.

"http://wiki.dbpedia.org
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2.3 Parameters

The parameters to be trained in our model are the weight matrix W in the fully connected layer and
the vector representations of the words, contextual entities, and target entities. The weight matrix was
initialized at random and the vector representations were initialized using pre-trained representations.
The pre-trained representations of words and entities were learned jointly using the skip-gram model
(Mikolov et al., 2013a; Mikolov et al., 2013b) with negative sampling”. The corpus was automatically
generated by replacing the name of each entity annotation in the Wikipedia documents with a unique
identifier of the entity corresponding to that annotation. Note that we used the same pre-trained entity
representations to initialize the representations of the contextual entities and the target entities. Addition-
ally, we used all Wikipedia documents obtained from the July 2016 version of Wikipedia dump? to build
the corpus.

2.4 Implementation Details

The proposed model was implemented using PyTorch* and trained with mini-batch stochastic gradient
descent (SGD). The mini-batch size was fixed at 100 and the learning rate was automatically controlled
by Adadelta (Zeiler, 2012). We trained the model by iterating over the documents in the KB in random
order for 50 epochs’. For computational efficiency, we used only the first 2,000 words and first 300
entities in the documents. The training took approximately 25 h on an NVIDIA GTX 1080 Ti GPU.
Regarding the other hyper-parameters, the representations were set to have d = 300 dimensions, the size
of the negative entities was k = 100, and the dropout probability was set to p = 0.5, as recommended in
Srivastava et al. (2014)

3 Experiments

To evaluate the models described in the previous section, we conducted fine-grained entity typing and
text classification tasks using the learned representations. A description of each task is given in the
following subsections. Finally, we qualitatively analyze the learned representations.

3.1 Fine-grained Entity Typing

This section describes the task of fine-grained entity typing (Yaghoobzadeh and Schutze, 2015; Nee-
lakantan and Chang, 2015; Yaghoobzadeh and Schiitze, 2017) using the entity representations learned
by our proposed models. The aim of this task is to assign each entity with one or more fine-grained
types such as musician and film. Because an entity typing model is capable of predicting the entity
types that are missing from the KB, this can be seen as a knowledge base completion problem. The task
is important because entity type information is often missing from KBs, but is known to be beneficial
for various downstream natural language tasks such as entity linking (Ling et al., 2015), coreference
resolution (Hajishirzi et al., 2013), and semantic parsing (Liu et al., 2015).

Setup

Our experimental setup follows that of Yaghoobzadeh and Schutze (2015). In particular, we use their
entity dataset of 201,933 Freebase® entities mapped to 102 entity types based on the FIGER type set (Ling
and Weld, 2012). The dataset consists of a training set (50%), development set (20%), and test set (30%).
Because the dataset is constructed based on Freebase, we preprocessed the data by mapping each entity
to the corresponding entry in Wikipedia and excluded those entities that did not exist in Wikipedia.” As
a result, we successfully mapped approximately 92% of the entities to Wikipedia, and obtained training,

>We used the skip-gram model implemented in the open-source Gensim library with size = 300, window = 10,
negative = 15, min_count = 3, and iter = 5. Default values were used for other parameters.

3We obtained the Wikipedia dump from Wikimedia Downloads: https://dumps.wikimedia.org/

*nttp://pytorch.org

>We experimented using 10, 20, 30, and 50 epochs. All numbers achieved similar performance in our experiments. We used
the model trained for 50 epochs because it achieved the best P@1 performance in our fine-grained entity typing task.

*https://developers.google.com/freebase/

"We used the wikipedia.en_title property contained in the Freebase dump to create the mapping.
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development, and test sets containing 93,350, 37,036, and 55,715 entities, respectively. We publicized
the dataset and the code used to generate the dataset at https://github.com/studio-ousia/
textent/.

Following Yaghoobzadeh and Schutze (2015), we evaluated the models using ranking and classifica-
tion measures. The ranking measures test how well a model ranks entity types. In particular, we ranked
the entity types based on the probabilities assigned by the model and evaluated the ranked list using the
precision at 1 (P@1) and breakeven point (BEP)®.

The classification measures evaluate the quality of the thresholded assignment decisions of a model.
The assignment decisions are based on thresholding the probability assigned to each type. The threshold
is selected per type by maximizing the F1 score of entities assigned to the type in the development set.
We used the accuracy (an entity is correct if all its types and no incorrect types are assigned to it), micro-
average F1 (F1 score of all type—entity assignment decisions), and macro-average F1 (F1 score of types
assigned to an entity, averaged over entities). These ranking and classification measures are exactly the
same as those used in Yaghoobzadeh and Schutze (2015).

Method

We used an MLP classifier with the entity representations as inputs to predict the probability of entity
e being a member of type ¢ in the set of possible types T'. In particular, we used an MLP with a single
hidden layer and the tanh activation function, and an output layer that contains, for each possible type
t € T, alogistic regression classifier that predicts the probability of ¢:

[P(tl €), oy P(ty7) |e)] = O'(WO tanh (the)), 3)
where ¢, € R? is the vector representation of entity e, o is the sigmoid function, and W;, € R"*d
and W, € RITI*" are the weight matrices corresponding to the hidden layer and the output layer,

respectively. The model was trained to minimize the binary cross-entropy loss summed over all entities
and types:

=3 (verlogpes + (1 = yer)log(l — pey)), 6)
e t

where y.; € {0,1} and p.; denote the ground-truth label and predicted probability, respectively, of
entity e being type ¢. The parameters in W, and W, are updated in the training stage. Note that the
model described here is equivalent to that proposed in Yaghoobzadeh and Schutze (2015).

The model was trained using mini-batch SGD, with the learning rate controlled by Adam (Kingma and
Ba, 2014) and the mini-batch size set to 32. The model was trained using the training set and evaluated
using the test set. Following Yaghoobzadeh and Schutze (2015), the number of hidden units was set to
200. We also measured P@1 on the development set to locate the best epoch for testing.

Baselines

The performance of our models is compared with that of the following three entity representation models.

e Figment-GM (Yaghoobzadeh and Schutze, 2015) is based on the skip-gram model (Mikolov et
al., 2013a; Mikolov et al., 2013b) trained using a large corpus with automatically generated en-
tity annotations (i.e., FACC1 (Gabrilovich et al., 2013)). In this experiment, we used the entity
representations publicized by the authors®.

e Skip-Gram-Wiki is equivalent to Figment-GM, except that Wikipedia is used as the entity-
annotated corpus. This model is also the same as our pre-trained representations described in Sec-
tion 2.3.

o Wikipedia2Vec (Yamada et al., 2016) extends the skip-gram model to learn entity representa-
tions based on the contextual words of link anchors in Wikipedia and the internal link structure

8BEP is the F1 score at the point in the ranked list at which the precision and recall have the same value.
‘https://github.com/yyaghoobzadeh/figment
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P@1 BEP | Acc. Mic. Mac.
TextEnt-full 932 948 | .626 .857 .842
TextEnt-word 909 933 | .611 .838 .820
TextEnt-entity 882 912 | 560 .702 .770
Figment-GM 813 858 | 421 719 .683
Wikipedia2 Vec 925 943 | .600 .844 822
Wikipedia2 Vec (all) 897 917 | 554 798 787
Skip-Gram-Wiki 900 927 | 576 831 .804
Skip-Gram-Wiki (all) | .852 .881 | .510 .764 .740

Table 1: Results of the entity typing task.

of Wikipedia entities. We used the entity representations trained using the code publicized by the
authors!? and the Wikipedia dump used to train the Skip-Gram-Wiki model.'!

We used the entity typing method presented above with the entity representations of each baseline
model as inputs. Note that, because the Wikipedia2Vec and Skip-Gram-Wiki models were trained using
the link anchors in Wikipedia, they do not contain entities that do not appear or are very rare as the
link anchor destinations in Wikipedia. To address this, we evaluated these models in the following two
settings: (1) using only the entities that exist in the model, and (2) using all entities, including non-
existent ones. In the latter setting, we used the zero vector as the representation of non-existent entities.
Similar to the latter setting, the former is not a fair comparison because it is typically more difficult
to learn good entity representations of rare entities than those of popular entities (Yaghoobzadeh and
Schutze, 2015).

Results

Table 1 compares the results of our models with those of the baseline models. Our TextEnt-full model
outperforms the baseline models in all measures. In particular, the TextEnt-full model achieves a strong
P@1 score of 93.2%, which clearly shows the effectiveness of our entity typing model for many down-
stream NLP tasks. Moreover, the TextEnt-full model generally performs better than both the TextEnt-
word and TextEnt-entity models. This demonstrates the effectiveness of combining the semantic signals
obtained from words and entities.

3.2 Multiclass Text Classification

This section describes the multiclass text classification task, which tests the ability of our proposed
representations to encode arbitrary documents. Our key assumption here is that, because our proposed
representations are trained to predict the corresponding entity of a given document in the KB, they can
also classify non-KB documents into classes that are much more coarse-grained than entities.

Setup

Following Jin et al. (2016), we used two standard text classification datasets: the 20 newsgroups dataset'?
(denoted by 20NG) (Lang, 1995) and the R8 dataset (Debole and Sebastiani, 2005). The 20NG dataset
consists of 11,314 training documents and 7,532 test documents retrieved from 20 different newsgroups.
The documents are partitioned nearly equally across the classes. The R8 dataset contains documents from
the eight most frequent classes of the Reuters-21578 corpus (Lewis, 1992), which consists of labeled
news articles from the 1987 Reuters newswire. The R8 dataset contains 5,485 documents for training
and 2,189 documents for testing. Unlike the 20NG dataset, the R8 dataset is imbalanced; the largest class

contains 3,923 documents and the smallest class contains 51 documents. For both datasets, we report the

Yhttps://github.com/wikipedia2vec/wikipedia2vec

'We trained the representations with dim_size = 300, window = 10, negative = 15, min_entity_count = 3, and
iteration = 5. Default values were used for other parameters.

12We used the by-date version of the dataset obtained from http://qwone.com/~jason/20Newsgroups/.
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accuracy and macro-average F1 score. Furthermore, the development set was formed by selecting 10%
of the documents in the training set at random for both datasets.

As preprocessing, we lowercased all words and removed words and entities appearing fewer than five
times. Furthermore, we automatically annotated entity mentions in the documents using an entity linking
system. In particular, we used TAGME!? (Ferragina and Scaiella, 2010), a state-of-the-art entity linking
system that is freely available and has been frequently used in recent studies (Xiong et al., 2016; Hasibi
et al., 2016). However, TAGME returned many irrelevant entity mentions that would act as noise (e.g., [
like refers to an entity I Like (Keri Hilson song)). Thus, we excluded mentions having relevance scores'
of less than 0.05'3.

Method

For this task, we simply stacked a logistic regression layer onto our TextEnt model to classify documents
into the predefined classes. First, we encoded each document (words with entity annotations) and used
the resulting document representation (i.e., vp in the TextEnt-full model, vp, in the TextEnt-word
model, and vp, in the TextEnt-entity model) as the feature of the logistic regression classifier.

We trained the classifier using the training set of each dataset, and evaluated the classification per-
formance using the corresponding test set. The classifier was trained using mini-batch SGD, with the
learning rate controlled by Adam (Kingma and Ba, 2014) and the mini-batch size set to 32. The accuracy
on the development set of each dataset was used to locate the best epoch for testing.

Baselines

We adopted the following state-of-the-art models as our baselines.

e BoW-SVM is based on a linear support vector machine (SVM) classifier with bag-of-words (BoW)
features as inputs. This model outperforms the conventional naive Bayes model (Jin et al., 2016).

e BoE (Jin et al., 2016) is an extension of the skip-gram model that learns different word represen-
tations per target class. A linear model based on learned word representations was used to classify
documents. This model achieves state-of-the-art results on both the 20NG and R8 datasets.

We also used the Wikipedia2Vec and Skip-Gram-Wiki models described in Section 3.1 as baselines.
For this experiment, we simply input the representations of words and entities in these models to our text
classification model described in the previous section.

Results

Table 2 compares the results of our proposed models with those of the baseline models. We obtained the
BoW-SVM and BoE results from Jin et al. (2016). Our TextEnt-full model outperforms the state-of-the-
art models in terms of accuracy and macro F1 score on both the 20NG and RS datasets. Furthermore,
similar to the results of our previous experiment, the TextEnt-full model generally performs better than
both the TextEnt-word and TextEnt-entity models. This shows that combining semantic signals obtained
from words and entities is also beneficial for text classification tasks.

Furthermore, we conducted a detailed comparison of the BoW-SVM model, BoE model, and TextEnt-
full model using the class-level F1 scores on the 20NG dataset (Table 3) and the RS dataset (Table 4).
On the 20NG dataset, our model achieves the best scores in more than half of the classes and provides
comparable performance in the other classes. Moreover, our model achieves strong performance in
classes with relatively few documents on the R8 dataset. This is because our model successfully captures
the strong semantic signals that can only be obtained from entities.
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20NG RS

Acc. Fl1 | Acc. Fl

TextEnt-full 845 839 | 967 910
TextEnt-word 836 .828 | 965 .860
TextEnt-entity 831 .824 | 957 878
BoW-SVM 790 783 | 947 851
BoE 831 .827 | 965 .886
Wikipedia2Vec .829 .823 | 965 .881
Skip-Gram-Wiki | .822 .815 | 963 .879

Table 2: Results of the text classification task.

Class SVM BoE TextEnt
alt.atheism .699 712 .783
comp.graphics 702 724 773
comp.os.ms-windows.misc | .714 .724 742
comp.sys.ibm.pc.hardware | .673 .706 721
comp.sys.mac.hardware Ja78 792 840
comp.windows.x 79 853 .846
misc.forsale .846  .852 .829
rec.autos 817 910 909
rec.motorcycles 900 .942 943
rec.sport.baseball 895 .947 941
rec.sport.hockey 935  .967 .960
sci.crypt .890 .926 934
sci.electronics Jg21 0 737 57
sci.med 803  .869 891
sci.space .892  .885 900
soc.religion.christian 823 877 904
talk.politics.guns 781  .833 .810
talk.politics.mideast 837 920 944
talk.politics.misc 699 687 .678
talk.religion.misc 590  .676 .672

Table 3: Class-level F1 scores in each class on the 20NG dataset.

4 Qualitative Analysis

To investigate how our model encodes documents and entities into the same continuous vector space, we
extracted five example sentences from the 20NG dataset and encoded each sentence into a vector using
our model. The closest entities to this vector based on the cosine similarity are presented in Table 5. We
automatically annotated the entity mentions using TAGME!®, and fed the words and detected entities into
the TextEnt-full model. Table 5 presents the sentences, nearest entities, and their corresponding classes
in the 20NG dataset. Our model successfully encodes the sentences into vectors that are close to their
relevant entities. For example, all nearest entities of the first sentence “Af one time there was speculation
that the first spacewalk (Alexei Leonov?) was a staged fake” are strongly related to the historic Soviet
space program. Similar results can be observed in the other four examples.

3We used the public Web API service available at https://services.d4science.org/.

4We used the p scores assigned by TAGME.

SExcluding entity mentions using the relevance scores is the recommended practice described in the documentation:
https://services.d4science.org/web/tagme/documentation

'®We used the same configuration as described in Section 3.2.
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Class Count | SVM  BoE TextEnt
grain 51 .824 818 889
ship 144 781 783 829
interest 271 745 832 873
money-fx | 293 .687 853 876

trade 326 .897 .879 918
crude 374 929 958 .929
acq 2,292 | 956 978 977
earn 3,923 | 986 .990 .988

Table 4: Class-level F1 scores with the number of documents in each class on the R8 dataset.

Class Sentence Nearest entities

sci.space At one time there was specula- | Sputnik 1 (0.39), Soviet space program
tion that the first spacewalk (Alexei | (0.38), Soyuz 5 (0.38), Vostok 1 (0.37)
Leonov?) was a staged fake.
rec.autos I prefer a manual to an automatic as | Manual transmission (0.45), Automatic trans-
it should be. mission (0.45), Dual-clutch transmission
(0.43), Semi-automatic transmission (0.41)
sci.crypt I change login passwords every cou- | Password (0.49), Login (0.46), Privilege

ple of months. (computing) (0.44), Privilege escalation
(0.43)
soc.religion. | Which version of the Bible do you | Bible translations (0.37), King James Only
christian consider to be the most accurate | movement (0.37), Biblical poetry (0.36), The
translation? Living Bible (0.36)
sci.med The blood tests have shown that I | Blood (0.38), Introduction to genetics (0.38),

have a little too much Hemoglobin | Hemoglobin (0.37), Blood transfusion (0.35)

Table 5: Five example sentences with their top nearest entities using the TextEnt model.

5 Related Work

In recent years, various models for computing distributed representations of text (e.g., sentences and
documents) have been proposed (Le and Mikolov, 2014; Kiros et al., 2015; Wieting et al., 2016; Hill et
al., 2016). These models typically use large, unstructured corpora for training; however, certain models
attempt to learn text representations from structured data. For instance, Hill et al. (2016) proposed a
neural network model that learns text representations from online public dictionaries by predicting each
dictionary word from its description. Further, Wieting et al. (2016) used a large set of paraphrase pairs
obtained from the Paraphrase Database (Ganitkevitch et al., 2013) to learn text representations.

A number of recent models have attempted to learn distributed representations of entities from a KB.
For example, Hu et al. (2015) extended the skip-gram model (Mikolov et al., 2013a) to learn entity
representations using the hierarchical structure of the KB, and Li et al. (2016) modified the model by Hu
et al. to learn both the category representations and entity representations using the category information
of the KB. Additionally, relational embedding models (Bordes et al., 2013; Wang et al., 2014; Lin et al.,
2015) learn the entity representations for link prediction tasks.

Furthermore, some models learn the representations of both words and entities from the KB. A simple
method reported in the literature (Yaghoobzadeh and Schutze, 2015; Yamada et al., 2017) is used to
derive the pre-trained representations in this study (i.e., preprocessing an entity-annotated corpus by
replacing the name of each annotation with the unique identifier of the entity and feeding the corpus
into a word embedding model (e.g., skip-gram)). Yamada et al. (2016) proposed Wikipedia2Vec, which
extends this idea by using neighboring entities in the internal link graph of the KB as additional contexts
for training the model. Note that we used Wikipedia2Vec as a baseline method in the two experiments
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conducted in this study. Similarly, in their subsequent work (Yamada et al., 2017), they proposed a
neural network model that takes entity-annotated text as input and learns word and entity representations
by predicting the annotated entities contained in each text. Furthermore, Mancini et al. (2017) proposed a
model that maps words and entities in a lexical dictionary (i.e., BabelNet (Navigli and Ponzetto, 2012)) to
a single vector space by extending the CBOW model. Unlike our proposed model, these models require
users to design a composition function (e.g., vector averaging) to model the semantics of a document
using words and entities in it. Moreover, we showed that our approach is highly effective for the two
important tasks of fine-grained entity typing and multiclass text classification.

6 Conclusions

In this paper, we described TextEnt, a simple neural network model that learns distributed representa-
tions of entities and documents from large-scale KB descriptions. We evaluated the performance of the
proposed model on fine-grained entity typing and text classification tasks, and achieved state-of-the-art
results in both cases, which clearly demonstrates the effectiveness of our approach. In future work, we
will explore the applicability of our model to broader NLP tasks such as entity search and KB-based
question answering.
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Abstract

We present domain independent models to date documents based only on neologism usage pat-
terns. Our models capture patterns of neologism usage over time to date texts, provide insights
into temporal locality of word usage over a span of 150 years, and generalize to various domains
like News, Fiction, and Non-Fiction with competitive performance. Quite intriguingly, we show
that by modeling only the distribution of usage counts over neologisms (the model being agnostic
of the particular words themselves), we achieve competitive performance using several orders of
magnitude fewer features (only 200 input features) compared to state of the art models some of
which use 200K features.

1 Introduction

Determining when a document is written is an important task in historical linguistics and temporal infor-
mation retrieval. For instance, several works attempt to date historical biblical texts like the The Book of
Isiah (Rooker, 1996; Ehrensvard, 1997; Hurvitz, 2000; Young and Rezetko, 2016) or ancient texts like
Beowoulf (Chase, 1997). Likewise, in the field of information retrieval, establishing the dates of docu-
ments is an important pre-requisite to returning temporally relevant documents and provides important
information for a large number of search tasks (Ostroumova Prokhorenkova et al., 2016; Efron, 2013).

Most efforts to automatically date texts adopt a learning based approach and rely on several linguis-
tic features that are time-relevant (Garcia-Fernandez et al., 2011; Jatowt and Tanaka, 2012; Zampieri
et al., 2015; Ostroumova Prokhorenkova et al., 2016). Such time-relevant features include neolo-
gisms/archaisms, political events, spelling variations, and the presence of named entities as well as ex-
ternal knowledge bases. In addition to the large input feature dimensionality (of the order of the input
vocabulary), these approaches all focus on particular domains (for example, primarily News articles).
While such feature rich models which are arguably domain specific perform very well, these features are
rarely generalizable across domains (for example. models that use political events can perform very well
when evaluated in the News domain, but do not necessarily generalize to Fiction). Developing models
that generalize across domains without further fine tuning generally entails modeling linguistic cues that
are stable across domains.!

Consequently, in this work, we propose the first set of models that effectively generalize across do-
mains by leveraging insights into the temporal usage of language. Our models rely on a key insight
which we term the temporal locality of neologisms: Documents written at time t tend to use neologisms
invented shortly before t. By effectively modeling this usage of neologisms (as a feature class cumula-
tively) we propose models that not only reduce our input feature dimensionality by at-least an order of
magnitude, but also effectively generalize across a variety of domains (Fiction, Non-Fiction, and News)

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

't is worth noting that ultimately most domain adaptation techniques attempt to find such a general feature set by either
attempting to map source domain features to the target domain or learning a more abstract feature set.
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s Finally, if we are to win the battle that is now going on around the world between freedom z
E and tyranny, the dramatic achievements in space which occurred in recent weeks should :
1 have made clear to us all, as did the Sputnik in 1957, the impact of this adventure on the I
! minds of men everywhere, who are attempting to make a determination of which road they

] should take. Since early in my term, our efforts in space have been under review. With the

: advice of the Vice President, who is Chairman of the National Space Council, we have

1 examined where we are strong and where we are not, where we may succeed and where we
E may not. Now it is time to take longer strides--time for a great new American enterprise--

1 time for this nation to take a clearly leading role in space achievement, which in many ways

: may hold the key to our future on earth.
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Figure 1: Sample output predictions of a Naive Bayes model (NB) on a portion of a speech given by
President John F.Kennedy in 1961. Note that this model outputs a probability distribution over years with
a MAP estimate of year 1968. Note also that the model was trained only using Google Book Ngrams and
not on the domain it is evaluated on. Finally, observe that words like 1957, Sputnik, tyranny
and space were most influential in this prediction thus providing insight into linguistic patterns the
model has captured only from Google Book Ngrams. Moreover, the model is generic and can be applied
to multiple domains like Fiction, News or Non Fiction. This motivates our hypothesis that neologisms
can be effectively used to date documents across multiple domains.

without further tuning and perform competitively with more complex models that capture fine-grained
linguistic cues. Intriguingly, we demonstrate that neologism-based models that use only ~ 200 features
achieve a performance within 5 units of mean absolute error (21.58 on NonFiction) over the best Naive
Bayes model (18.25 on NonFiction) which uses more than 200K features.

In a nutshell, we make the following contributions:

e We propose domain independent models for the task of dating documents. We emphasize that our
goal is not to necessarily outperform the state of the art domain specific models, but to demonstrate
the effectiveness of simple models drawing on linguistic insights that generalize across domains.

e We leverage cumulative usage patterns of neologisms over time to propose the first set of simple
generalizable models for this task while revealing insights into the cumulative usage patterns of
neologisms over time.

e We empirically evaluate our models against several competing methods including neural models
like LSTMs on three different domains (News, Fiction and Non Fiction).

2 Datasets

Here, we describe data-sets which we use for learning and evaluating our models.

Training Dataset We train all of our models using only the Google Book Ngrams dataset spanning
the time 1850 — 2005. Since the Google Book Ngrams spans multiple domains, we can capture domain
agnostic linguistic cues to learn generalizable models for our task. Since our neologism models need
only the frequency of occurrences, the Google Book Ngrams is an ideal dataset providing not only a
large sample size for robust parameter estimation but also inherently spanning multiple domains.
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Evaluation Datasets To evaluate our models, we consider the following datasets:

e NYTimes: We consider a random sample of 10000 leading paragraphs of NEW YORK TIMES
articles from the range 1850 — 2005 constructed by scraping the New York Times website. Note
that this dataset is primarily from the NEWS domain.

e Corpus of Historical American English (COHA): We consider a random sample of 10000 articles
from each genre, namely FICTION, NONFICTION, and NEWS from the COHA corpus (Davies,
2002). The COHA corpus is an ideal dataset to evaluate our models since it spans a wide time
range, with multiple domains where the dates have been validated by human experts and is easily

available for research purposes>.

We emphasize that all of our models only use the Google Book Ngrams data to learn parameters. The
models are then evaluated on the evaluation datasets which span multiple domains without any further
fine-tuning.

3 Baselines

Before we describe our proposed models, we introduce two baseline methods to evaluate against on our
task.

BOOKPROP We estimate the probability of a document written in a given year y, by computing the
fraction of books written in year y over all books written in the time period under consideration. Formally,
we estimate the following probability:

_ #(books, y)
22, #(books, y)

We estimate the number of books in English written in year y, as the number of distinct books the word
the was mentioned in a given year y as per Google Book Ngrams (Michel and others, 2011) data. As
expected, the distribution is skewed towards the right with more books written in the 20" century than in
the 18" century (see Figure 2). Given a document to date, a random sample drawn from this distribution
is then taken as the predicted estimate of the date of the document. A limitation of BOOKPROP is that it
does not model language.

P(Y =y)
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0.020 B
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0.005f E

0.000 I . . .
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Figure 2: Estimate of the probability of English books being from a given year using the Google Book
Ngrams data. As expected, the distribution is skewed towards the right with more books written in the
20" century than in the 18" century.

2While there has been work on dating documents (Zampieri et al., 2016; Kumar et al., 2012; Gralifiski et al., 2017), there
are no standard publicly available evaluation datasets in the community for this task especially spanning multiple domains in
English.

3We note that another option to construct such a dataset spanning multiple domains would be to use books from the
HathiTrust. However, accessing a large clean dataset required institutional access unavailable to us at this point in time.
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WORD | Estimated Year | Actual First Usage WORD | Estimated Year | Actual First Usage

HIV 1987 1986 Sputnik 1958 1957
Hitler 1933 1934

electron 1905 1891

LSD 1955 1950 .
radio 1904 1907

Obama 2007 2006 .
television 1931 1907
SARS 2003 2003 transistor 1950 1948
: : . walkman 1993 1979

Table 1: Example cases of estimated year of popular usage (MR) and actual year of first use (FU)
obtained from http://www.etymonline.com/ for different words from Google Book Ngrams
data. Note that in the majority of these words, our estimated year is close to the year of first usage and
shows a small lag from the year of first use as expected.

0 ' ' ' ' -300 . . . . :
] _a00)- NEOProbBayes (1965)
200} True (1970)
=500F
8 600
@ 150 8
S NEO (1992) 5 —700}
s True (1970) 2 g0l
F loop ;
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50} —1000}
-1100}
T WP i S -1200 .
1800 1850 1900 1950 2000 1950 1960 1970 1980 1990 2000 2010
Year Year
(a) NEO (b) NEOProbBayes

Figure 3: Figure illustrating NEO and NEOPROBBAYES on the same document which was written in
1970. NEO is easily misled by outlier words and predicts the date to be 1992 ignoring other evidence
like counts of other words. NEOPROBBAYES, in contrast incorporates all observed evidence to estimate
more accurately that the document was written in 1965.

NEO A more sophisticated approach to assigning dates to documents is based on the following obser-
vation: If we observe a word which first came into popular usage in a year y, then the document is very
likely written after year y. A simple model based on this hypothesis is to output the year of the most
recent word found in the document. For example, in Figure 1, NEO estimates the date of a document to
be 1958, since it is clear that Sputnik, the most recent word used in the document, sprung into popular
use in 1958.

We estimate the year in which a word came into popular usage MR(w) from Google Book Ngrams
as follows: (a) Compute the cumulative usage of a word w through every year in the Google Book
Ngrams. (b) Compute the first year in which the cumulative usage of the word w exceeds a small fraction
« (empirically set to 1/250.0) of the total cumulative usage. As an example, our method estimates
MR(Obama) = 2007 while the year of actual first usage is 2006. We validate our approach on a small
set of manually curated words which we show in Table 1.

Observe that for the majority of these words, our estimated year is close to the year of first usage and
shows a small lag, which is expected since we seek to estimate the year in which the word came into
popular usage and not its year of first usage.

While NEO serves as a strong baseline, there are two limitations of this method: (a) The document
could be written long after the time period corresponding to the most recent word observed in the docu-
ment. (b) It ignores evidence of other words seen in the document and bases its decision on the occurrence
of a single word.

Figure 3a illustrates these drawbacks. First, note that only one word vinaya with an MR(w) in
the 1990’s was observed in this document. NEO is easily misled by this single erroneous estimation
of MR(vinaya) and estimates the date of this document to be 1992. It ignores other evidence that
suggests that the document was written after 1940, but is unlikely to be written in the 1990’s since words
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with MR(w) a few decades before 1990’s are not observed at all.

4 Proposed Neologism Based Model

We now describe a probabilistic model that effectively uses new words incorporated into popular usage to
estimate when the document was written. In particular, our model computes the likelihood of observing
a set of words that came into popular usage after year = given the document was written in year y to
estimate when the document was written. Our method has two key steps:

1. Ensemble Model Construction: We construct an ensemble of probabilistic models where model
M; outputs P(y|X;) and Xj is a discrete random variable counting the words observed in a docu-
ment which came into popular usage after year 1.

2. Combining Ensemble Predictions: Each model M; outputs P(y|X;), so we investigate multiple
methods to combine predictions from individual models.

Ensemble Model Construction Let F(o,n) be the probability of observing a word that came into
popular usage after year o in year n, where n > o. For every year pair (o, n), we estimate F(o, n) from
the Google Books Ngrams Corpus by computing the fraction of words with MR(w) > o in the Google
Book Ngrams of year n.

Given a text T of length N, let N'(7) denote a realization of X; in T". Each model M; models the
probability of T" written in year y based on X; as follows:

P(Xily)P(y), ifi<y

, otherwise

P(y|X;) o {

P(X;|y) follows a binomial distribution with success probability F(7, ) which can be computed know-
ing the length of the document N and N'(7) a realization of X;. We assume the prior P(y) to be uniform.

Combining Ensemble Predictions Each model M; computes a probability distribution over years,
namely P(y|X;). We now describe three methods to combine these individual model predictions to
output a final prediction:

1. NEOProbMean: We output the mean of individual MAP predictions as the predicted year of au-
thorship.

2. NEOProbMedian: We output the median of individual MAP predictions as the predicted year of
authorship.

3. NEOProbBayes: We use a Bayesian scheme to incorporate all the observed evidence as follows:
Let X = {X; for each year i}. Specifically we compute the following:

P(y|X) < P(X|y)P(y)

= <H P(Xiy)> P(y)

where we make the Naive Bayes assumption that each X; is independent of any other X;, when
conditioned on the year y. We output the MAP estimate of P(y|X) as the final prediction.

Figure 3b shows this approach for a document and also contrasts it with the baseline NEO. Observe
how NEOPROBBAYES enables a more accurate prediction by incorporating observed evidence ignored
by NEO.

As we will show empirically, performance of each of the above methods is a function of the length
of the document it is evaluated on since the accuracy of the individual probability estimates depends
on the length. * While NEOPROBBAYES is better for large documents, it is quite sensitive to errors
in estimates for small documents. Therefore, NEOPROBMEDIAN and NEOPROBMEAN which are less
sensitive in the presence of outliers are better than NEOPROBBAYES for short documents (100 tokens)
but are outperformed by NEOPROBBAYES for larger documents (2000 tokens) when individual model
estimates are much more accurate.

“The larger the length, the more accurate the individual estimates.
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5 Comparison to more Feature Rich Models

To place our models in the context of prior work which use a large set of linguistic features, we consider
two linguistically feature rich models. Specifically, we consider a bag-of-words based Naive Bayes’
model as well as a neural network based model NEURALDATE for this task.

5.1 NAIVEBAYES

We consider a simple, standard Multinomial Naive Bayes classifier learned using Google Book Ngrams
to date the year a document was written. We use unigram bag-of-words (we restrict our vocabulary to
200K tokens and discard out-of-vocabulary words) features and Laplace smoothing. It is worth noting
that Naive Bayes uses 200K features which is orders of magnitude higher than NEO-Prob approaches.

5.2 NEURALDATE

We propose a neural model NEURALDATE, to date texts. NEURALDATE operates on short sequences
of words (n-grams), and outputs a probability distribution over years, P(y|x;) for each ngram «; in the
document D,

Our model consists of a bi-directional LSTM with an embedding layer, two hidden layers and an
output layer’. The embedding layer maps the input (one hot encoding of the word) to a dense embedding
of size 200 dimensions. The implementation of the LSTM hidden layers are as described in (Graves and
others, 2012) and therefore not described in this paper. The output layer is a soft-max layer over the years
within the time-range considered. We use ADAM optimizer (Kingma and Ba, 2014) with a learning rate
of n = 0.001.5

In order to date a document D, we use the model to compute P(y|x;) for each n-gram (we use n=5)
in D. We then compute P(y|D) to be the mean of these individual probability distributions. Finally, we
use the MAP estimate of P(y|D) as our point estimate of the year.

Autocorrelation Regularizer The model described above does not explicitly leverage structure of
the label space, namely temporal structure (linear sequential structure). Observe the high variance in
probability scores around the mode in Figure 4. Therefore, for a given n-gram «; it would be preferable
to learn model parameters such that P(y|x;) is “smooth” around any given label. This captures the
insight that classes (years) in the neighborhood of a label [ should be assigned probabilities similar to
that assigned to 1.

We can formalize this notion of smoothness as follows: Let p; be the probability assigned to label .
Given a neighborhood £, let d be the vector of first order differences: p; — pi41 fori € [ — k---1 + kJ.
We define the distribution to be L-smooth at [ around neighborhood k if w(d) = ﬁa&l)
small constant L > 0, where smaller values of L indicate smoother distributions.

We therefore propose to add the following cost to the original cost function:

Q6: X) = 3w (d;) |

< L, for some

where d; are differences between predicted probabilities for neighboring years for example j.

In summary, the final loss function including this regularization is J(@; X®ain qtrain) 4
af)(@; X 7a8in) where J(@; X train qtrain) jq the standard cross-entropy loss and « is a hyper-parameter
weighing the regularization.

Figure 4 shows the effect of incorporating label smoothness constraints in the cost function for a
sample n-gram. Note that incorporating the temporal structure of labels in the cost function produces
markedly smoother and realistic distributions than a model not exploiting label structure.To investigate

SWhile more sophisticated and complex sequence models are being developed even as we write this paper, our goal here
is only to place the performance of our proposed neologism models in context of other sophisticated methods. Therefore,
Bidirectional LSTMs serve as a good lower bound for complex models.

SHyper-parameter settings were chosen based on a validation set.

"We initially also experimented with using mean square loss and modeling this as a regression problem, but the resulting
model did not perform well empirically.
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0.08 Sample Ngram: "Administration 's crop curtailment program"
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Figure 4: Predicted distribution over years for a given 5-gram (shown above the figure), motivating the
need for the auto-correlation regularizer. Note that when o« = 0, the regularizer is disabled and the
output probability distribution is very noisy and neighboring values have large variance. In contrast,
when the regularizer is properly enabled (o« = 0.16), observe how the output probability distribution is
much smoother and neighboring probability values are more similar.
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Figure 5: MAE from cross validation for candidates of o which controls the strength of the auto-
correlation regularizer. The means and the standard deviations over 20 independent runs are shown.
When the model is properly regularized (o« = 0.16), observe the improvements over model without reg-
ularization (o = 0). Also, note that when the model is over-regularized (a > 0.25), the performance is
worse and demonstrates larger variance.

the effect of o, we measure the MAE (Mean Absolute Error) over n-grams and use cross-validation by
selecting « from a set of candidates in [0, 0.8] (see Figure 5). Based on these observations, we set « at
0.16 empirically for training our model.

6 Experiments

We evaluate all of our methods against several baselines on diverse data sets spanning multiple domains.
We consider the time period of 1850 — 2005 for the purpose of dating documents and evaluate our models
on the evaluation data-sets described in Section 2. Since the tasks should get easier on long documents,
we measure the performance of our models as a function of the length. Since the NYTIMES dataset only
consists of the first paragraph of articles (about 100 tokens on average) we use the entire paragraph for
evaluation on this dataset. Tables 2 and 3 show the Mean Absolute Error (MAE) over the NYTIMES and
COHA datasets, from which we make the following observations:

e Neologism Methods need relatively large documents to perform competitively: Overall, the ne-
ologism based models perform competitively with Naive Bayes using 1000 times fewer features (see
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Table 2: Mean Absolute Error on New York Times data. Note that neologism based methods (high-
lighted) whose feature set size is much smaller, perform competitively with NATVEBAYES with a feature
space of dimension of 200K. NEURALDATE uses a 200 dimension embedding for each word in a 5-gram
and so has an effective feature input size of 1000. It is worth noting that our neologism based models do
not directly rely on the actual words themselves but on the number of neologisms used at a given time

#(Tokens) | #(Features) | MAE
BOOKPROP - 43.46
NEO < 200 58.77
NEOPROBMEAN < 200 27.55
NEOPROBMEDIAN < 200 28.22
NEOPROBBAYES < 200 67.14
NATVEBAYES ~ 200K 23.69
NEURALDATE (w/o reg.) | 1000 22.80
NEURALDATE 1000 20.54

thus drastically reducing the feature size while yielding competitive performance.

Dataset | #(Tokens) | 100 | 500 | 1000 | 2000
BOOKPROP 44.57 | 44.54 | 43.95 | 44.21
NEO 66.99 | 34.74 | 27.39 | 24.80
NEOPROBMEAN 32.40 | 30.76 | 31.45 | 31.13
COHA-Fiction NEOPROBMEDIAN 36.90 | 32.96 | 32.03 | 31.73
NEOPROBBAYES 78.99 | 41.90 | 33.77 | 27.92
NAIVEBAYES 26.61 | 23.98 | 22.62 | 21.93
NEURALDATE (w/oreg.) | 37.56 | 30.71 | 28.96 | 27.97
NEURALDATE 35.66 | 30.02 | 27.81 | 26.96
BOOKPROP 45.19 | 45.07 | 45.04 | 45.51
NEO 57.99 | 30.75 | 24.84 | 22.86
NEOPROBMEAN 31.13 | 26.90 | 26.02 | 25.39
COHA-NonFiction | NEOPROBMEDIAN 30.68 | 26.60 | 25.73 | 25.13
NEOPROBBAYES 56.58 | 30.73 | 25.46 | 21.58
NAIVEBAYES 24.28 | 19.83 | 18.36 | 18.25
NEURALDATE (w/oreg.) | 27.91 | 23.57 | 22.29 | 21.60
NEURALDATE 25.21 | 20.07 | 20.38 | 20.09
BoOOKPROP 44.97 | 45.34 | 44.99 | 45.02
NEO 39.86 | 20.39 | 19.80 | 20.26
NEOPROBMEAN 24.36 | 23.40 | 23.30 | 23.31
COHA-News NEOPROBMEDIAN 25.22 | 22.88 | 22.45 | 22.39
NEOPROBBAYES 48.30 | 22.79 | 20.97 | 20.82
NAIVEBAYES 21.35 | 17.21 | 16.64 | 16.60
NEURALDATE (w/oreg.) | 20.40 | 16.04 | 15.43 | 15.34
NEURALDATE 19.30 | 15.33 | 14.72 | 14.59

Table 3: Mean Absolute Error of different models on COHA datasets as a function of number of tokens
used for evaluation in each document. Note that our proposed neologism based methods (highlighted) use
a much smaller feature set, generalize across domains without any further fine-tuning, and perform com-
petitively with feature rich models like NATVEBAYES and NEURALDATE for long documents (greater

than 500 tokens).

Table 2) suggesting that effective usage of neologism usage patterns can serve as strong baselines.

Furthermore, from Table 3, the baseline NEO generally performs very poorly on short documents
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(of length 100 tokens). For example, on the COHA-FICTION dataset using 100 tokens, the MAE
is 66.99 compared to BOOKPROP which yields an MAE of 44.57. On short documents NEO is
easily misled due to lack of effective sample size. In contrast, observe that as the length of the
document increases NEO’s error reduces significantly (note Table 3 that for 2000 word documents
on COHA-FICTION the mean absolute error is now 24.80).

Finally, the probabilistic models we propose extending NEO also perform better than NEO espe-
cially on short documents (for example, on COHA-FICTION for documents with 100 tokens the
MAE for NEOPROBMEAN is 32.40 compared to 66.99 for NEO). Similarly, NEOPROBMEAN and
NEOPROBMEDIAN outperform NEOPROBBAYES on documents of up to 1000 tokens but NEO-
PROBBAYES almost always outperforms all of these on documents of length 2000, suggesting that
NEOPROBBAYES needs a larger sample size to make effective predictions.

e Deeper linguistic features boost performance: We finally observe that including linguistic fea-
tures like the words used in a simple Naive Bayes classifier consistently outperforms methods rely-
ing solely on neologisms. Further, observe that the NEURALDATE with the auto-correlation regu-
larizer demonstrates superior performance over NEURALDATE without regularization. Finally, note
that NEURALDATE also performs competitively and sometimes out-performs Naive Bayes.

Altogether, our proposed neologism based models generalize well across domains, reduce the input
feature size significantly while performing competitively with more complex feature rich models.

7 Related Work

A large body of related work on the task of automatically dating texts exists in the field of temporal
information retrieval (De Jong et al., 2005; Popescu and Strapparava, 2015; Kanhabua and Ngrvag,
2009; Garcia-Fernandez et al., 2011; Niculae et al., 2014; Zampieri et al., 2015; Zampieri et al., 2016;
Bamman et al., 2017; Jatowt and others, 2017; Kumar et al., 2012; Kumar, 2013; Gralinski et al.,
2017). The community also has two shared tasks (Popescu and Strapparava, 2015) and (Gralifiski et al.,
2017). However, both of these shared tasks differ from our setting. Popescu and Strapparava (2015) is a
shared task for diachronic text evaluation but only focuses on the Newspaper domain in contrast to our
work which focuses on generalizable models across domains. Gralifiski et al. (2017) is the most recent
challenge on dating texts but it focuses on Polish texts. De Jong et al. (2005) proposed using temporal
language models based on unigrams to date texts on Dutch newspaper articles. Several works incorporate
additional features like lexical features, part-of-speech tagging, extraction of concepts and word sense
disambiguation and use external knowledge bases (Kanhabua and Ngrvag, 2009; Garcia-Fernandez et
al., 2011; Niculae et al., 2014; Zampieri et al., 2015; Zampieri et al., 2016). Recently Jatowt and others
(2017) propose an interactive system to estimate the age of document using moment statistics of n-grams
focusing on only a qualitative analysis.

Our work is most closely related to the works of (Kumar et al., 2012), (Garcia-Fernandez et al.,
2011),(Zampieri et al., 2015) and (Bamman et al., 2017). Kumar et al. (2012) propose a model for
predicting the dates of documents without explicit temporal cues. This model essentially learns tempo-
ral language models on the temporal corpus where explicit temporal expressions are removed. It then
assesses the likelihood of a given document under each time point to make a prediction. It thus relies
on implicit temporal cues and words and typically has an input feature dimensionality of the order of
the vocabulary (in this case 300K words). Furthermore, this model has only been evaluated in differ-
ent settings (like predicting the mid-point of an individual’s lifetime using their Wikipedia biography).
Garcia-Fernandez et al. (2011) develop a model to date documents using both chronological methods
with external knowledge and classification methods like using an SVM to date documents on a French
Newspaper corpus while Zampieri et al. (2015) propose a ranking based approach to temporal text clas-
sification. These methods learn models on the respective domains they are evaluated on. Bamman et al.
(2017) proposed bag-of words based models (using Ridge Regression as well as Naive Bayes) to predict
the date of first publication over books obtained from the Hathi Trust.
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Differing from these works, our proposed method seeks to learn a global model that can be applied
across multiple domains without further tuning. We propose new probabilistic models to date texts
by analyzing statistical patterns of the introduction of neologisms over time. Our models are simple,
domain-independent, use several orders of magnitude fewer features and yet achieve competitive perfor-
mance.

8 Conclusion

In this paper, we investigated the task of dating books on a large fine-grained time scale (spanning
150 years) through the lens of neologisms introduced over time. We propose probabilistic models that
effectively analyze the usage of neologisms. We demonstrate that our methods perform competitively
with models that use deeper linguistic cues (which could use a feature space of more than thousands
of features). Furthermore, our models are learned using only the Google Book Ngrams, do not need
any further tuning when evaluated on other domains and potentially enable researchers to obtain literary
insights into the language of authors over time.
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Abstract

Sequence-to-sequence model has been applied to solve math word problems. The model takes
math problem descriptions as input and generates equations as output. The advantage of
sequence-to-sequence model requires no feature engineering and can generate equations that
do not exist in training data. However, our experimental analysis reveals that this model suffers
from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong posi-
tions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-
to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply
reinforcement learning to directly optimize the solution accuracy. It overcomes the “train-test
discrepancy” issue of maximum likelihood estimation, which uses the surrogate objective of
maximizing equation likelihood during training while the evaluation metric is solution accuracy
(non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model,
we use our model output as a feature and incorporate it into the feature-based model. Experi-
mental results show that (1) The copy and alignment mechanism is effective to address the two
issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this
task; (3) Our neural model is complementary to the feature-based model and their combination
significantly outperforms the state-of-the-art results.

1 Introduction

The task of math word problem solving aims to automatically solve a math problem by reading the text
description of the problem and generating the answer. This task requires the machine to have the ability
of natural language understanding and reasoning.

In the past years, most of the proposed methods heavily rely on predefined rules or feature engineering.
On one hand, the rule-based approaches (Bakman, 2007; Liguda and Pfeiffer, 2012; Shi et al., 2015)
predefine a structured representation and maps the problem description into the structure by rules. These
approaches usually accept only well-formed input and are difficult to scale to other problem types. On the
other hand, the feature-based statistical learning approaches (Kushman et al., 2014; Roy and Roth, 2018)
generate equation candidates and find the most probable equation by using predefined features. These
approaches have two major drawbacks: (1) Their ability of equation generation is weak. An equation
is generated by either replacing the numbers of existing equations in the training data, or enumerating
possible combinations of math operators, numbers and variables, which leads to intractably huge search
space. (2) They need manually designed features that are specific to math word problems.

Recent attempts (Ling et al., 2017; Wang et al., 2017) use sequence-to-sequence (seq2seq) model for
math word problem solving and they have shown promising results. Wang et al. (2017) apply a standard
seq2seq model to generate equations. They have shown that seq2seq models have the power to generate
equations of which the problem types do not exist in the training data.

Work was done at Microsoft Research.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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However, we have observed two major shortcomings of the existing seq2seq model with attention
mechanism. First, the model may generate spurious numbers, which are detrimental for math problem
solving. As shown in Figure 1, the model generates a number “424” in the equation for Problem I,
which does not exist in the problem description. Since some of the numbers are unavoidably rare or do
not appear in the training data, the existing models have difficulty generalizing to the long tail numbers.
Second, the model is prone to generate numbers at wrong positions. In Problem 2, although the equation
template is correctly generated by the model, the last token in the equation should be aligned to “1170”
instead of “30” in the problem description. These two behaviors mentioned above are undesirable and
will lead to wrong solutions.

In this paper, we focus on addressing the above
twq 1SSucs 1n t.he existing model (Wang etal., 20.17) Problem 1: Two busses leave Pleasant Grove High School at the same time
by incorporating Copy and Alignment mechanism going in opposite directions. One bus travels 43 mi/h and the other travels 57
to the Seqzseq model (namely CASS). (1) Copy mi/h. In how many hours will they be 350 miles apart?

. . . Equation: (57 +43 ) * x =350

means d.lrectly copying the numbers. in the problem Baseline Seq2Seq + Attention: (424 +43 ) * x = 350
des?rlptlon tO' the equ.atlons' In this way, we Ca.m Problem 2: A mortgage payment is $30 less than 3 times the property tax
avoid generating spurious numbers that are not in payment. The sum of the mortgage paymentand the property tax payment is
the problem description. (2) Alignment means that $1170. How much is the mortgage payment.

L . . | Equation: x=3 7y =30, x¥y=1170
there. is ahgnmept information betwee.n the num Baseline Seq2Seq + Attention: x= 3* y-30; x +y =30
bers in the equations and the numbers in the prob-

lem description. The model could learn the align-  Fjgure 1: The baseline model generates a spuri-

ment in a supervised way. ous number “424” in problem 1 and align num-
When training the model, we adopt the rein-  pers wrongly in problem 2.

forcement learning technique, specifically policy

gradient. Because maximum likelihood estimation (MLE) suffers from the issue of “train-test discrep-
ancy”. It means that MLE uses a surrogate objective of maximizing equation likelihood during training,
while the evaluation metric of the task is solution accuracy, which is non-differentiable. Therefore we
use policy gradient to directly optimize the solution accuracy, which is more capable for this task.

Furthermore, we observe that the neural model and the traditional feature-based model are comple-
mentary. To take the advantage of both approaches, we add the result of our neural model as a simple
feature to the feature-based model (Huang et al., 2017) to create a combined model.

We test our model on three publicly available datasets. The experimental results show that the copy
and alignment mechanism is effective. Reinforcement learning leads to better performance than MLE.
When combining our neural model with the feature-based model, we achieve the state-of-the-art results
on all publicly available datasets.

The contributions of this paper are as follows:

1) We incorporate copy and alignment mechanism that augment the standard seq2seq model to address
two types of errors: generating spurious numbers and generating numbers in wrong positions.

2) We adopt the reinforcement learning to optimize the solution accuracy, which is more capable for
this task and leads to better performance.

3) We propose a simple but effective way to combine the neural model with a traditional feature-based
model. The combined model outperforms the state-of-the-art models.

2 Problem Statement and Datasets

Given a math word problem P, the goal is to predict its answer A,. In the training phase, we have
annotations of both equation system £, and answer A,, for each problem. In the testing phase, we obtain
the final answer by generating equation and executing it with a math solver. We evaluate the task using
solution accuracy.

Equation template is a unique form of an equation system. For example, given an equation system
{2xx+4xy =34,z +4 =y}, we replace the numbers with four number tokens {71, n2, n3,n4} and
generalize the equations as the following equation template {n] * x + ng *xy = n3g,x + ng = y}.

We can see that an equation system includes one or more equations and it is a solution for a specific

214



math word problems. In contrast, an equation template can correspond to several math problems. The
number of templates in a dataset reflects the diversity of problem types. Specifically, we have a subset
setting 7'6, which represents problems for which the associated template appeared equal to or more than
six times in the subset. Note that T6 is a soft constraint of previous feature-based models.

We evaluate different models on three publicly available math word problem datasets!.

o Algebra 514 (Alg514) is created by Kushman et al. (2014). It contains 514 algebra word problems
from Algebra.com. In the dataset, each template corresponds to at least 6 problems (T6 setting). It
only contains 28 templates in total.

o Number Word Problem (NumWord) is created by Shi et al. (2015). It contains 2,871 number word
problems (i.e., verbally expressed number problems) with 1,183 templates. The T6 subset contains
348 problems. One example problem is “The sum of two numbers is 10. Their difference is 4. What
are the two numbers?”. We use its linear subset, which contains 986 problems. The vocabulary of
this dataset is the smallest among the three, but contains more templates than Alg514.

e Dolphin18K (Dophinl8K) is created by Huang et al. (2016). It contains 18,711 math word problems
from Yahoo! Answers with 5,738 templates. It has much more problem types than the previous
two datasets. This dataset is the most challenging of the three. We use its subset with equation
annotation, which contains 10,644 problems. The T6 subset contains 6,827 problems.

3 Modeling

Math word problem solving can be formulated as a sequence prediction problem. We set x as the se-
quence of words in a math word problem description and we want to generate ¥, the sequence of tokens
in an equation system. In this section, we describe (1) the baseline seq2seq model, (2) our two number-
related mechanisms to address the issues in existing model.

3.1 Basic Sequence-to-Sequence Model

Following Wang et al. (2017), we first map numbers in the problem description to a list of number tokens
{n1,....,nm } and replace the corresponding numbers in the equation system with the number tokens. As
shown in Figure 1, the problem description of Problem I will be as follows after number mapping:

Two buses leave Pleasant Grove High School at the same time going in opposite directions. One bus
travels ni mi/h and the other travels no mi/h. In how many hours will they be ns miles apart?

And the equation system is normalized to: ( ng + ny ) * x = ns.

The baseline model of seq2seq with attention is based on the work by Bahdanau et al. (2015). It can
be viewed as an encoder-decoder model. Basically, the encoder (that is implemented as a single-layer
bidirectional GRU) reads the source tokens in problem description one-by-one and produces a sequence
of hidden states h; = [hf", hP] with:

17"

hi” = GRU(¢™ (i), hi"y) (1)
h = GRU(¢™ (x1), hiy) 2)

where ¢ maps each token z; to a fixed-dimensional vector.
At each decoding step j, the decoder receives the embedding of the previous generated token, the cur-

rent decoder hidden state and the context vector to produce the target vocabulary distribution as described
in the following equation:

t
Procab(wj) = softmax(U[¢™ (yj-1), ¢j, 55] + D) 3)
! (Wang et al., 2017) create a dataset containing 23,161 Chinese algebra math problems which has not been public yet.
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where s; is the decoder state and ¢°“(y;_1) is the previous output embedding. ¢; is the context vector
and we calculate it as follows:

eji = thanh(Whhi + Wesj + batn) 4)
exp(ej;)
Gji = =m )
i exp(ejir)
cj = Z ajih; (6)
i=1

Intuitively, a;; defines the probability distribution over the input tokens. They are computed from the
unnormalized attention scores e;;. c; is the weighted sum of the encoder hidden states. Specifically, W,
Ws, U, battn, and b are parameters of the model.

Once we obtain the decoding result, a post-processing step recovers all tokens n; to their corresponding
numbers in the problem description.

3.2 Copy Numbers

In the basic model, the output token y; is chosen via a softmax over all words in the output vocabulary.
However, this model has the problem of generating spurious number tokens. For example, Problem I in
Figure 1 only contains three numbers, replaced with tokens {n1, ne,ng}. Since the output vocabulary
contains other tokens, the model may generate a token “n,”, which cannot be recovered and results in
generating wrong equations.

To address this problem, we incorporate an attention-based copy mechanism into the basic model
similar to Jia and Liang (2016). In our case, we only copy numbers from the source problem.

At each decoding step j, the model has to decide whether to generate a token from target vocabulary
or copy a number from the problem description. The generation probability pge,, is modeled by:

Pgen = U(WCC]‘ + WSISj + Wyyj_1 + bgen) @)

where W, W/, Wy, and by, are parameters of the model and o is the sigmoid function.
Then the output candidates are extended to the concatenation of the target vocabulary and the numbers
in the math problem. We can obtain the output probability distribution:

Zi:wi =w a’ji
Zk:wn Ajk
wy, is the set of numbers in the problem description. In this way, the model is capable of eliminating the

spurious word error.

P('LU]‘ - ’LU) = Pgen * oncab(wj) + (1 - pgen) * (8)

3.3 Align Numbers

In the decoding phase, the model often generates equations with numbers in wrong positions. Problem
2 in Figure 1 is an example. The output equation structure is correct by the basic model. However, the
numbers are aligned wrongly. When decoding the last token, the model should pay more attention to the
source token “1170”. Instead, the model wrongly aligned to the source token “30”.

One characteristic of math word problems is that they have explicit alignment information between
numbers in the problems and numbers in the equations. To improve the alignment in math problems, we
use a supervised align mechanism to guide the training of our seq2seq model. Similar to Mi et al. (2016),
the basic idea is minimize the cost of distance between the “true” alignment and the model predicted
attention. We use the cross entropy loss function in the following:

S(a',a’) = =" ak,, x loga,, )
m n

Please note that the disagreement only exists in numbers. The actual distribution &in’n will be 1 if the
mth token in the source is a number and equals to the nth tokens in the target sequence, otherwise it is 0.
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4 Reinforcement Learning

As previously mentioned, MLE optimizes the surrogate objective of maximizing equation likelihood,
while the evaluation metric of the task is solution accuracy. Besides, MLE assumes ground truth is
provided at each timestep to predict the next token during training, which is not the case at test time.
To remedy the discrepancy, we adopt the reinforcement learning technique, which directly optimizes the
solution accuracy.

4.1 Policy Learning

The goal of the REINFORCE (Williams, 1992) is to find an agent that maximizes the task-level expected
reward. We view our seq2seq model as a RL agent, which takes math problem description as input and
then at each step, outputs a token y; either by generating from the vocabulary or by copying numbers
from the input problem. The agent follows a policy 7(y;|-), which we define as Equ 8.

The loss function and the gradient in the reinforcement learning are:

Lrr =— ZEpg(yﬂxi)[R(Xiv yz)] (10)

VoLrr == By i [R(X, ¥) Vo log po(y'[x')] (11

~ =D po(y'X)R(X,y') Vg log py(y'|x') (12)
iyt

where R(x’,y") is the reward function. We define it as +1 if y* yields to the correct solution, and -1 if y°*
is not a valid equation or yields to a wrong solution.

Gradient Approximation It is often intractable to compute the gradient (Equ 11) because it involves
taking an expectation over all possible equations. Therefore we sample from the model by using the top-
k equations in the beam to approximate the gradient (Equ 12). Note that the gradient weights pg(y*|x’)
of our sampling equations are renormalized to be summed up to 1.

In practice, the REINFORCE algorithm is unstable and converges slowly when the search space is
large. Thus we pre-train our model based on maximum-likelihood for a few iterations before starting
reinforcement learning.

4.2 Mixed Objective Function
To consider the alignment loss in Section 3.3, we define a mixed learning objective function:
L= Lgp+ Ax6(a’,a) (13)

where )\ is a hyper-parameter that controls the magnitude of number alignment disagreement in the loss.
In the pre-training step based on MLE, we replace the loss Lr with the negative log likelihood:

Lyre =~ logp(y'|x';0) (14)

5 Model Ensemble

In this section, we observe and discuss that the neural model and the traditional feature-based model are
complementary. To explore the advantage of both approaches, we combine two models by adding the
result of our neural model as a feature to the feature-based model.

5.1 Feature-based Model

We use the state-of-the-art feature-based model (Huang et al., 2017) in our experiments. It contains two
stages:

(1) Template retrieval. Candidate templates are derived from the training data. Given a problem p;,
they create a feature vector f(p;, ¢;) for each candidate template ¢;, and learn to rank the templates. They
retrieve the top N templates.
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(2) Equation ranking. Given the top N templates, they generate candidate equations with all possible
number alignments. For example, there are two candidate equations given the template x = n; — n9 and
the numbers {3,5}: z = 3 — 5 and z = 5 — 3. Similar to the previous stage, they create a feature vector
f(ps, er,) for each candidate equation ey, and learn to rank the equations.

5.2 Generalization Ability of Neural Model

In Figure 2 we show the statistic of problems solved by our neural model and the feature-based model
on Dolphin18K. 10.4% of problems can be solved correctly by both models, 18.0% can only be solved
correctly by the feature-based model and 5.5% can only be solved correctly by our neural model.
To explore the generalization ability of our neu-
ral model, we further look into the 5.5% of prob- c61%
lems that can only be solved correctly by our neural (7041)
model (blue area in Figure 2). They can be sum-
marized into two categories (examples are shown

. Huang et. al 2017 Our model
in Table 1): 18.0% (1101'13") 5.5%
(1) Ability to generate new equation tem- (1911) (580)

plates. Among the 5.5% of problems, there are
32.3% for which the template does not exist in the
training data. Note that the feature-based model
can only retrieve candidate templates from the  Figure 2: Statistic of problems solved by our neu-
training data. It means that the neural model has  ral model and feature-based model.

the ability to generate new equation templates, sim-

ilar to the observation in Wang et al. (2017).

(2) Ability to capture novel features. For the remaining 67.7% of problems that can only be solved
correctly by our neural model, their templates exist at least one time in the training data. The feature-
based model should be able to retrieve the correct template and get the correct ranking for the equation,
but it fails. This indicates that the neural model can capture novel features that the feature-based model
is missing.

(1) Problem: Find 2 consecutive even integer such that 5 time the small integer be 10 more than 3
time the large integer.

Equation: 5 % (2% x) =3 % (2x2x 4+ 2)+ 10

(Our model generates the equation of which template does not exist in the training data)

(2) Problem: The area of a rectangular garden is 4472 ft2. If the length of the garden is 86 feet,
what is its width?

Equation: 86 x x = 4472 (its template exists in the training data)

Table 1: Example problems that are only solved correctly by our neural model.

5.3 Model Ensemble

In previous section, we observe that neural model is complementary to the feature-based approach when
the templates are sparse or do not exist in the training data. Hence, it is intuitive to combine the neural
model and feature-based approach to obtain better performance. To ensemble both models, We incorpo-
rate the neural model output in the two stages of the feature-based approach by (Huang et al., 2017):

(1) In the template retrieval stage, we add a feature of neural template. Given a problem, we derive the
template Z., of our neural output equation. For each candidate template ¢;, if it is equivalent to #5.4, we
set the value of the neural template feature to 1, otherwise set to 0.

(2) In the equation ranking stage, we add a feature of neural answer. Given a problem, we calculate
the answer of our output equation a.4. For each candidate equation e, if its answer a; is equal to aeq,
we set the value of the neural answer feature to 1, otherwise set to 0.
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6 Experiments

In this section, we test the performance of our model on three datasets. Furthermore, we conduct exper-
iments to examine the effectiveness of our neural model as a feature in the hybrid model.

6.1 Implementation Details

Experiments are done in 5-fold cross-validation: in each run, 70% is used for training, 10% for validation,
and 20% for testing. We report answer accuracy. The dimension of encoder hidden state, decoder hidden
state and embeddings are 100 in NumWord and Alg514, 512 in Dolphin18K. All model parameters
are initialized randomly with Gaussian distribution. The hyper-parameter A for supervised attention of
alignment is set to 1.0. We use SGD optimizer with decaying learning rate initialized as 0.5. Dropout
rate is set to 0.5. The criterion for learning to stop is answer accuracy in validation set. The vocabulary
consists of words observed in the training data more than or equal to NV times. We set N = 1 for
NumWord and N = 5 for the other two datasets. The beam size is set to 20 in the decoding stage. For
reinforcement learning, we utilize a pre-training with maximum likelihood for 50 iterations. We set the
beam size for sampling to 10. We tune all the hyper-parameters using a separate dev set.

6.2 Results

We implement the approach in Wang et al. (2017) as the baseline (Seq2SeqAttn). Its performance on
Alg514 is 19.4%, versus 17.2% they reported.

Models Alg514 | NumWordT6 NumWordT1 | Dolphinl8KT6 Dolphin18KT1
Seq2SegAttn (MLE) | 19.4% 19.7% 11.0% 13.0% 10.2%
+Copy (MLE) | 41.4% 59.9% 23.0% 20.2% 12.9%
+Copy+Align (MLE) | 41.8% 60.4% 26.8% 21.0% 13.1%
+Copy+Align (RL) | 44.5% 64.0% 29.2% 23.3% 15.9%
Huang et al. 2017) | 81.6% 42.0% 20.8% 30.6% 28.4%
+ CASSEL (hybrid) | 82.5% 65.8% 29.7% 33.2% 29.0%

Table 2: Performances on three datasets. “CASS” means Seq2SeqAttn + Copy + Align.

From Table 2, we can see that our approach significantly improves the performance over the baseline.
Especially on NumWord dataset, our model greatly exceeds the baseline with 44.3% increase on 7'6 and
18.2% increase on 1’1, and is already better than current state-of-the-art model (Huang et al., 2017).

Copy impact The copy mechanism contributes greatly on all three datasets as shown in Table 2. It
achieves a 40.2% accuracy on NumWordT6, even outperforms the feature-based models. In the most
challenging dataset Dolphin18K among the three, with more diverse problems and larger problem size,
our model still gets a 7.2% increase on Dolphin18KT6 and 2.7% increase on Dolphin18KT1.

Align impact From Table 2, we can see our model achieves a consistent improvements over all
three datasets using number alignment. In the math problem in Figure 3a, for the target number “30”,
Seq2SeqAttn + Copy model has a higher attention weight of the source number “0.75” than the source
number “30”. Thus the model wrongly aligned the target number “30” to the source number “0.75”.
After incorporating the alignment mechanism, the target number “30” is now aligned correctly as shown
in Figure 3b.

Reinforcement learning We can see RL performs substantially better than MLE. As the objective
of RL is to optimize the solution accuracy, we further investigate the model’s capability of considering
multiple admissible equations. We compare the annotated equations with the equations generated by
our model on Dolphin18KT1. Using RL training, there are 7.1% of problems of which the predicted
equations are different from the annotated ones but still yield to correct solutions, compared to 4.4%
using MLE.
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(a) Seq2SeqAttn+Copy (b) Seq2SeqAttn+Copy+Align

Figure 3: Example alignments of (a) Seq2SeqAttn + Copy, (b) Seq2SeqAttn + Copy + Align.

6.3 Model Ensemble

We further test the performance of the hybrid model that combines our neural model into the feature-
based model.

From Table 2, we can see that when our neural model is incorporated into the feature-based model, we
achieve the state of the art. This indicates that the two models are complementary and the hybrid model
takes advantages of both models.

Furthermore, we show detailed results when our neural model is incorporated in each of the two stages:

(1) Template retrieval. Same as Huang et al. (2017), we report Hit@ N accuracy, which means the
correct template for a problem is included in the top N list returned by the model. Table 3 shows the
Hit@1/Hit@3 accuracy.

We can see that incorporating neural model

helps increase template Hit@ N accuracy, which

. . Dataset Huang et al. (2017) | +Neural
means it can retrieve accurate templates for more
problems. Except for Alg514, adding the neu- Alg514 62.8/80.9 60.3/79.6
ral feature drops Hit@3 by 1.3%. On Alg514, | NumWordT6 38.6/70.0 38.9/72.9
the feature-based model already outperforms our NumWordTl 20.0/35.1 20.4/35.1
neural model. In addition, its data size is the Dolph¥n18KT6 27.3139.7 27.3/41.1
smallest among the three datasets, which might Dolphin18KT1 17.5/26.3 18.2/27.1

be challenging for neural model to learn from.

Therefore, adding neural feature on this dataset ~ Table 3: Accuracy (%) of template retrieval with top
might bring much noise that leads to perfor- 1/top 3 templates retrieved.

mance decrease.

(2) Equation ranking (final accuracy). After retrieving the top N templates from the previous stage,
we align numbers with template slots to generate candidate equations for ranking. The final results are
shown in the last row of Table 2.

From the table, we can see that the neural feature is effective, achieving the state of the art on all three
datasets. Especially, on NumWord dataset, incorporating neural model contributes to 23.8% accuracy
increase on T6 and 8.9% increase on T1. Surprisingly, the performance on Alg514 is still improved,
though the template retrieval accuracy in previous stage decreased. This indicates that the feature-based
model has included some errors that caused by wrong number alignment in the second stage, and our
neural feature eliminates this type of errors.

7 Related Work

Our work is related to three research areas: math word problem solving, the seq2seq model, and rein-
forcement learning for sequence generation.
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7.1 Math Word Problem Solving

The approaches to solve math word problems can be divided into three categories: rule-based approach,
feature-based approach, and neural-based approach.

Rule-based approaches (Bobrow, 1964a; Bobrow, 1964b; Bakman, 2007; Liguda and Pfeiffer, 2012;
Shi et al., 2015) accept only well formed input sentences and map them into predefined structures by
rules. These methods require strict constraints on both input text and math problem types.

Feature-based approaches design features and learn rankers to rank equation candidates to the math
problems. Hosseini et al. (2014) design features to classify verbs to addition or subtraction. Kushman et
al. (2014), Zhou et al. (2015), Upadhyay et al. (2016) use features such as dependency path between two
numbers. Koncel-Kedziorski et al. (2015), Roy and Roth (2015) extract quantity information as features.
Wang et al. (2018) extract features for quantity pairs and uses a reinforcement framework to construct
an equation tree with the constraint of one unknown variable. Roy and Roth (2015), Roy et al. (2016)
leverage the tree structure of equations. Mitra and Baral (2016), Roy and Roth (2018) design features for
a few math concepts (e.g. Part-Whole, Comparison). Huang et al. (2017), Roy and Roth (2017) focus on
the use of fine-grained expression and number units. These approaches requires manual feature design
and it is difficult to generalizing the features to other problem types.

Recently, researchers try to build end-to-end neural models to solve math word problems. Ling et
al. (2017) focus on multiple-choice problems. It takes a problem description as input and outputs the
rationale and the final choice. Wang et al. (2017) apply a standard seq2seq model to generate equations
under the constraint of one variable. However, the model is prone to generate numbers that do not exist
in the problem or in wrong positions. Our model addresses these issues by incorporating copy and align.

7.2 Sequence-to-Sequence Models

Recent applications of seq2seq model in many areas have shown promising results.

Copy mechanism is proved effective in dealing with rare or unknown words. The main idea is to
decide when and what to copy from the source words in the decoding phase. Jia and Liang (2016) use an
attention-based copy mechanism to copy arguments from natural language query to logical form for the
task of semantic parsing. Gulcehre et al. (2016) design a pointer network to select tokens in the input.
Different from previous work, we consider copying only numbers from the problem description.

Some recent work have been proposed to improve the alignment for neural machine translation (Liu et
al., 2016; Mi et al., 2016). They introduced a supervised attention mechanism to utilize the word align-
ment information between sentence pairs in the training data. They first obtain soft word alignments from
conventional alignment models. Then they try minimize the distance between the soft word alignments
and the word alignments based on model attention in the training procedure. In our math problems, the
alignment information is explicit and can be directly obtained.

7.3 Reinforcement Learning for Sequence Generation

The classic REINFORCE algorithm (Williams, 1992) has been applied to solve a wide variety of tasks:
machine translation (Norouzi et al., 2016), image captioning (Rennie et al., 2017), semantic pars-
ing (Liang et al., 2017; Guu et al., 2017) and summarization (Paulus et al., 2018). Reinforcement learning
is applied usually when the evaluation metric is non-differentiable, or there are multiple candidates that
yields to the ground truth despite of token orders in target sequence. It trains an agent with a given envi-
ronment to directly optimize the task evaluation metric (e.g., BLEU or ROUGE). We apply reinforcement
learning in math problem solving for two reasons: (1) we evaluate our task with solution accuracy which
is not directly optimized in maximum likelihood estimation; (2) there are multiple equations that yield
to the correct solution which maximum likelihood estimation would ignore.

8 Conclusion

In this paper, we follow previous work that applies seq2seq model to solve math word problems. We
augment the model with two mechanisms: copy and align. When training the model, we adopt the
reinforcement learning to directly optimize the solution accuracy. Our model significantly improves the
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performance. To further explore the effectiveness of both neural approach and feature-based approach,
we add our model output as a feature into the feature-based model. The combined model leverages
advantages of both approaches and achieves the-state-of-the-art result.

In the future work, we will design more methods to combine the two models to better leverage each
approach. Furthermore, for math problems, several modules are important, such as mathematical concept
and commonsense knowledge, which we plan to incorporate into our model in the future.
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Abstract

Given an input text from the user, a lexical simplification (LS) system makes the text easier to
understand by substituting difficult words with simpler words. The best substitution may vary
from one user to another, given individual differences in vocabulary proficiency level. Most
current systems, however, do not consider these variations, and are instead trained to find one
optimal substitution or list of substitutions for all users. This paper measures the benefits of
using complex word identification (CWI) models to personalize an LS system. Experimental
results show that even a simple CWI model, based on graded vocabulary lists, can help reduce the
number of unnecessary simplifications and complex words in the output for learners of English
at different proficiency levels.

1 Introduction

Lexical simplification (LS) is the task of replacing difficult words with simple words in a text, while
preserving its meaning and grammaticality. It aims to produce output text that is easier to understand
for readers with special needs, such as language learners, children (Kajiwara et al., 2013), and those
with language disabilities (Devlin and Tait, 1998; Carroll et al., 1999). Table 1 shows an example input
sentence to an LS system, and the ranked list of possible substitutions for the target word, i.e., the word
that should be simplified. Most LS systems first perform complex word identification (CWI) to detect
target words (i.e., “avoid” in this case), and then find appropriate substitutions for them (i.e., “prevent”,
“stop”, etc., in order of preference).

CWI is thus an important first step in the LS pipeline. On the one hand, an overly conservative CWI
model would fail to detect many complex words, leaving them unsimplified and limiting the utility of
the LS system. On the other hand, an overly aggressive CWI model would be prone to misidentify
simple words as complex, leading to unnecessary simplifications and increasing the risk of substitution
errors. In an error analysis on LS systems, CWI-related error categories turned out to be among the
most frequent (Shardlow, 2014). CWI has been receiving increasing attention in recent years, including
a recent SemEval shared task (Paetzold and Specia, 2016b). Since the test set was annotated by a single
learner, however, CWI performance on language learners at different levels of vocabulary proficiency
continues to be under-explored.

Indeed, most LS evaluations assume one best substitution or one fixed ranked list of substitutions (cf.
Table 1), and do not take into account variations in vocabulary knowledge among users. This “one-
size-fits-all” approach is suboptimal since word complexity is in the eye of the beholder: a word that
is complex for a low-proficiency user may be perfectly familiar to a high-proficiency user, or even to a
low-proficiency user whose native language has a cognate word. As a case in point, consider the dataset
in the SemEval 2016 CWI shared task. The Krippendorft’s Alpha agreement was 0.244 among the 20
annotators. Further, suppose one builds an oracle CWI system on the test set in the shared task, and
apply it on the Japanese learners of English in the dataset constructed by Ehara et al. (2010). For the

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Input sentence Gold ranked list of substitutions
Typically, a fast shutter speed will require a 1. prevent

larger aperture to ensure sufficient light exposure, | 2. stop

and a slow shutter speed will require a 3. {dodge, miss, evade, escape}
smaller aperture to avoid excessive exposure. 4. {elude, limit, avert, bypass, deter}

Table 1: An input sentence to a lexical simplification system, and the gold ranked list of substitutions for
the target word, “avoid”. This example is taken from the BenchLS dataset (Paetzold and Specia, 2016a).

least proficient learner in this dataset, the oracle would fail to identify 35.30% of the complex words; for
the most proficient learner, it would cause false alarm for 93.67% of the non-complex words.

To address “the expected heterogeneity among non-native speakers with different language back-
grounds and proficiency levels” (Paetzold and Specia, 2016b), this paper argues for the use of personal-
ized CWI models to improve LS performance. We present the first quantitative evaluation of personal-
ized LS on learners at varying levels of English proficiency. Further, we demonstrate that even a simple
CWI model, based on graded vocabulary lists, can reduce the number of unnecessary simplifications and
complex words in the output text.

The rest of the paper is organized as follows. The next section summarizes previous LS research,
focusing on CWI and Substitution Ranking, where we will attempt personalization. Section 3 gives
details on our data. Section 4 describes our approach and baselines. Section 5 defines the evaluation
metrics. Section 6 presents experimental results and discusses the extent to which LS systems can benefit
from personalized CWI. Finally, Section 7 concludes.

2 Previous work

Most lexical simplification (LS) systems adopt a pipeline architecture (Shardlow, 2014; Paetzold and
Specia, 2016b). The pipeline typically begins with Complex Word Identification (CWI) to find target
words to be simplified. A Substitution Generation component then generates candidate replacements
for these complex words. These substitutions can be learned, for example, from standard Wikipedia
and Simple Wikipedia (Horn et al., 2014), or with word embedding models (Glava$ and Stajner, 2015;
Paetzold and Specia, 2016¢). The Substitution Selection step then discards candidates that may distort
the meaning of the text or affect its grammaticality, and retains those that best fits the context. Lastly,
Substitution Ranking determines the best output by ranking the remaining candidates by simplicity.

LS research has mostly adopted the user-independent approach. We now review previous work in
two components of the pipeline to which we will attempt to add personalization: CWI (Section 2.1) and
Substitution Ranking (Section 2.2).

2.1 Complex word identification

The complex word identification (CWI) task classifies words in a text as either “complex” or “non-
complex”. Complex words are those that are difficult for a non-native speaker to understand; non-
complex words are those that are not (Paetzold and Specia, 2016b; Yimam et al., 2017). In the 2016
SemEval CWI shared task, the best team, which combined various lexicon-based, threshold-based and
machine learning voter sub-systems, achieved a precision of 0.147 and recall of 0.769 (Paetzold and
Specia, 2016b). Overall, word frequencies were found to give the most reliable prediction for word
complexity. The shared task was not designed to test performance on users at different proficiency
levels, since the test set was annotated by a single learner.

To date, most CWI research has taken the user-independent approach, with only a few published stud-
ies on personalized CWI. Zeng et al. (2005) showed that demographic features can help improve CWI
performance for individual users in the medical domain. Laufer and Nation (1999) proposed the “word
sampling” method. Using a ten-level proficiency scale, with 1000 words at each level, this method sam-
ples a fixed number of words from the learner as the training set, and then labels unseen words based on
their proximity to these words. Ehara et al. (2012; 2014) described a two-step algorithm, mainly using
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word frequency statistics as features. In the first step, all words are organized as a multiple complete
graph. The k£ most informative nodes, or words, are selected by a graph-based active learning approach.
The learner then rates his/her knowledge of these k words on a five-point scale (see Section 3.1). Lee and
Yeung (2018) followed the same procedure to create a training set for Chinese CWI. In the second step,
a personal CWI classifier is trained for each learner. Using a 50-word training set, Ehara et al. (2014)
achieve 76.44% accuracy in English CWI with Local and Global Consistency, a label propagation algo-
rithm. Lee and Yeung (2018) reported 78.0% accuracy for Chinese CWI with an SVM classifier.

An alternative approach is to build only a fixed number of CWI models. After soliciting annotation
of vocabulary knowledge on a small number of sample words from the user, the system predicts the
most suitable model. These models can correspond to graded vocabulary lists, such as the New General
Service Lists (http://www.newgeneralservicelist.org), or they may potentially be trained on graded text
corpora, such as the Newsela corpus (Xu et al., 2015). This approach thus offers more coarse-grained
personalization, akin to graded readers, and not every user necessarily fits neatly into one of the pre-
determined levels.

2.2 Substitution ranking

Given a set of candidates from the Substitution Selection step, the Substitution Ranking step chooses
the simplest candidate. Most current approaches impose the same notion of simplicity on all users.
Recent systems have applied machine learning approaches, such as the SVM (Horn et al., 2014) and
neural models (Paetzold and Specia, 2017), on a range of features including word frequencies in large
corpora and human rankings in LS datasets. This step can potentially be enhanced with CWI to filter out
candidates that are complex words.

3 Data

In this section, we first describe our dataset of language learners (Section 3.1), and then explain how we
used it to create personalized versions of an existing, user-independent dataset of lexical simplification
(Section 3.2).

3.1 User dataset

Our user dataset was annotated by 15 learners of English as a foreign language who were native speakers
of Japanese (Ehara et al., 2010). Each learner rated their knowledge of 12,000 English words on a five-
point scale: (1) Never seen the word before; (2) Probably seen the word before; (3) Absolutely seen
the word before but do not know its meaning, or tried to learn the word before but forgot its meaning;
(4) Probably know, or able to guess, the words meaning; and (5) Absolutely know the words meaning.
Following Ehara et al. (2014), we collapsed these five categories into either “complex” (score 1 through
4) or “non-complex” (score 5). Table 2 shows some example annotations.

These 15 learners covered a wide range of proficiency levels. The least proficient learner rated only
17.97% of the words as “non-complex”, while the most proficient one rated 94.26% of the words as
“non-complex”. To help analyze the effect of personalized LS at different proficiency levels, we define
two subsets of learners based on vocabulary proficiency:

o Low Proficiency. The four least proficient learners, all of whom knew less than 41% of the words,
constitute the “Low” proficiency subset.

e High Proficiency. The four most proficient learners, all of whom knew more than 75% of the
words, constitute the “High” proficiency subset.

3.2 Personalized lexical simplification dataset

The BenchLS dataset contains 929 instances of target words and their gold simple words, annotated by
English speakers from the U.S. (Paetzold and Specia, 2016a). For the 15 users (Section 3.1), we created
15 personalized versions of BenchLS with the following steps:
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Word | User A | User B | User C | User D
avert
avoid
bypass v v v
deter
dodge
elude
escape
evade

limit
miss
prevent
stop vV

& =

SN A A A

U =<

A

Table 2: Annotations on 12 example words by four users in the user dataset (Section 3.1). Non-complex
words are indicated with a checkmark (+/); all other words are complex.

User A User B User C User D
1. stop 1. prevent 1. stop null
2. {miss, escape} | 2. stop 2. {limit, bypass}

3. {limit, bypass} | 3. {miss, escape}
4. {limit, bypass}

Table 3: Personalized gold ranked list of substitutions for the target word “avoid” in Table 1, based on
annotations in the user dataset shown in Table 2.

e When the target word is non-complex for the user, we set the gold answer to null. Since the user al-
ready understands the word, in the interest of meaning preservation, the system should not simplify
it. Consider the target word “avoid” in Table 1. Since it is non-complex for User D (Table 2), the
gold answer for this target word should be null for User D (Table 3).

e When the target word is complex for the user, the system should attempt simplification on it. We
retrieve the gold ranked list of substitutions in BenchLS, and remove all complex words from the
list, since they would not be helpful for the user. If the list becomes empty, we exclude this instance
from our evaluation. Consider again the target word and its gold list of substitutions in Table 1.
When editing this list for Users A, B, and C, we keep only those words that are non-complex for
them, according to their annotations in Table 2. Notably, the first-ranked substitution is no longer
“prevent” for Users A and C, since they do not know this word. The resulting personal gold lists are
shown in Table 3.

After filtering, our evaluation dataset contained 883 instances.

4 Approach

We propose a lexical simplification (LS) algorithm that aims to turn complex words in a text into non-
complex ones for the user, while keeping intact the non-complex words in the text. This algorithm applies
a personalized complex word identification (CWI) model in two steps in the LS pipeline:

o CWI for detection: Most current approaches deploy a user-independent CWI model as the first
step in their pipeline to detect words that should be simplified (Section 2.1). In contrast, we train a
personalized CWI model for this purpose, such that the choice of target words can vary from one
user to another. For example, given the input sentence in Table 1, the system is expected to simplify
“avoid” for Users A, B, and C, but not for User D (Table 3).
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Level | # Words | Content of vocabulary List

1 1,000 First 1,000 words in the New General Service List (NGSL)

2,000 First 2,000 words in the NGSL

2,800 All words in the NGSL

6,777 All words in the NGSL, the TOEIC Service List (TSL), the New
Academic Word List (NAWL), and the Business Service List (BSL)

&~ LW

Table 4: Vocabulary lists corresponding to the four CWI models used in the Graded Vocabulary List
approach (Section 4).

e CWI for ranking: The Substitution Ranking step of the pipeline ranks the substitution candidates
according to their simplicity (Section 2.2). In addition, we apply the personalized CWI model
to filter out candidates that are complex for the user. For example, given the list of candidate
substitutions in Table 1, the system is expected to reject the word “prevent” for Users A and C,
since they do not know it. If the model predicts all candidates to be complex, it still returns the
first-ranked candidate as the suggested substitution.

Our experiments apply various configurations of the following three models' to perform CWI for
detection and CWI for ranking, respectively:

e Baseline (nil): When used as CWI for detection, this baseline always predicts a word to be com-
plex regardless of the user, so the system always attempts simplification. When used as CWI for
ranking, it always predicts a word to be non-complex, so the system never removes any word from
the user-independent list of substitutions.

e Oracle (gold): The oracle performs perfect CWI on each user, according to his/her annotation in
the user dataset (Section 3.1). When the oracle is used as CWI for detection, the system attempts
simplification if and only if the word is complex. When it is used as CWI for ranking, the system
returns the highest-ranked substitution that is non-complex for the user.

e Graded Vocabulary List (auto): This model automatically predicts a word as complex or non-
complex, based on graded vocabulary lists. As shown in Table 4, we define four vocabulary pro-
ficiency levels, based on 6,777 words covered by a number of vocabulary lists. We then construct
four CWI models corresponding to these four levels; each model predicts all words in its vocabulary
list to be “non-complex”, and all other words to be “complex”.

Next, we select n out of the 6,777 words in the dataset as the training set, with the n words divided
evenly among the four levels. For each user, based on his/her annotation in the user dataset (Sec-
tion 3.1), we calculate the precision and recall of each of the four CWI models. We then assign the
user to the model with the highest F-score. In our evaluation, we set n = 40, meaning that each
user would have to annotate 40 words as “complex” or “non-complex” in order to personalize the
LS system.?

5 Evaluation metrics

We report two metrics used in previous LS research (Horn et al., 2014; Glavas and Stajner, 2015):
e Precision is the ratio of correct simplifications out of all simplifications made by the system.

e Accuracy is the ratio of correct simplifications out of all target words that should be simplified, i.e.,
in our context, out of all complex target words.

"'We did not evaluate the model proposed by Ehara et al. (2014) since we were not able to get access to its system output.
2Users who do not know any of the 40 words are assigned to the level-1 model.
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CWI for | CWI for Precision Accuracy Readability
detection | ranking
nil nil 21.39% 89.95% 91.47%
43.14% (low only) | 76.31% (1ow only) | 80.02% (1ow only)
4.25% (high only) | 100% (high only) | 99.01% (high only)

auto nil 31.97% 76.19% 89.40%
nil auto 23.36% 94.19% 94.57 %
auto auto 34.81% 80.36% 91.67%
gold nil 89.95% 89.95% 95.55%
nil gold 26.31% 100% 100%
gold gold 100% 100% 100%

Table 5: Performance on the personalized LS dataset (Section 3.2), based on gold substitution lists in
BenchLS (Paetzold and Specia, 2016b) and on three methods for CWI for detection and CWI for ranking:
nil predicts all target words to be complex, and all candidate substitutions to be non-complex; gold
returns the annotation in the user dataset (Section 3.1); auto is the automatic CWI model based on
graded vocabulary lists. Low and high refer to proficiency level (Section 3.1).

Correctness of a simplification is based on the personalized LS dataset (Section 3.2) rather than the
BenchLS dataset (Paetzold and Specia, 2016a). For instance, in the sentence in Table 1, it is correct
to substitute “avoid” with “prevent” for User B, but incorrect to do so for User A and C. Further, it is
deemed incorrect to make any substitution for User D (Table 3).

Note that precision penalizes simplifications of non-complex words, even if the substitution is also a
non-complex word in the gold list in BenchLS. For some users, this penalty may be reasonable since
few substitutions fully preserve the meaning and intent of the original text. For others, unnecessary
simplifications may be perfectly acceptable, given the overriding goal of minimizing the number of
unknown words in the output text.

To represent the latter perspective, we also report the readability metric, which computes the propor-
tion of words in the output text that can be understood by the user and do not distort the original meaning.
More precisely, a word in the output text is readable if it satisfies two conditions: (1) it is non-complex
for the user; and (2) it is either included in the original gold substitution list in BenchLS, or it is un-
simplified. Since this metric does not consider whether the original word is complex or non-complex, it
allows unnecessary simplification as long as it is appropriate.

6 Experiments

We conducted two experiments to evaluate the effect of adding personalization to a lexical simplification
(LS) system. In both experiments, the baseline is a user-independent ranked list of substitutions. We ma-
nipulate the list with various combinations of CWI for detection and/or CWI for ranking (see Section 4),
and then measure any gain in LS performance. All results are averaged among the 15 users in the dataset
(Section 3.1).

6.1 Experiment 1: Personalization with gold substitutions

To better isolate the performance gain as a result of personalization, the first experiment used the gold
substitution lists in BenchLS. This design ensures that the performance gain would not be influenced by
the extent and nature of the particular substitution errors made by the LS system chosen as baseline.

Table 5 reports performance on the personalized LS dataset (Section 3.2). Because of the use of gold
substitutions in BenchLS, the absolute level of performance is overestimated. We will focus on the
difference between the baseline and the personalized systems, and will verify if the difference holds in
realistic conditions in the second experiment.

Precision. The oracle (detect=gold, rank=go1d), by definition, achieved the perfect score in all
metrics. In contrast, the user-independent approach (detect=nil, rank=ni1l), even with perfect substi-
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CWI for | CWI for Precision Accuracy Readability

detection | ranking
nil nil 8.09% 39.17% 37.94%

(Low only) 14.87% | (low only) 27.06% (low only) 27.53%

(high only) 1.96% | (high only) 51.25% | (high only) 45.94%

auto nil 12.03% 32.59% 61.27%
nil auto 12.37% 50.91% 53.45%
auto auto 18.01% 42.25% 69.39 %
gold nil 39.28% 39.17% 83.38%
nil gold 14.57% 52.52% 56.01%
gold gold 58.57% 52.52% 87.44%

Table 6: Performance on the personalized LS dataset (Section 3.2), based on output from a user-
independent LS system (Paetzold and Specia, 2017), and on three methods for CWI for detection and
CWI for ranking: nil predicts all target words to be complex, and all candidate substitutions to be
non-complex; gold returns the annotation in the user dataset (Section 3.1); auto is the automatic CWI
model based on graded vocabulary lists. Low and high refer to proficiency level (Section 3.1).

tutions, hit a ceiling at 21.39% precision. One source of error for precision was the simplification of
non-complex words in the input text, since the system always attempted simplification. Naturally, this
was especially problematic for high-proficiency users, as reflected in the lower precision (4.25%), but
had less impact on low-proficiency users (43.14% precision). Personalized CWI reduced these unneces-
sary simplifications, raising precision to as high as 89.95% with oracle CWI for detection (detect=go1d,
rank=nil). The automatic CWI approach (detect=auto, rank=nil), based on vocabulary lists, also
succeeded in reducing them and attained 31.97% precision, a 10% absolute improvement over the base-
line.

Accuracy. Another source of error for the user-independent approach was the fact that some gold
substitutions were complex; in other words, while these substitutions were considered simpler than the
target words, they were still too difficult for the user. This phenomenon resulted in the 89.95% accuracy
rate for the user-independent approach (detect=nil, rank=nil). As expected, the phenomenon was
magnified among low-proficiency users, as shown by the lower accuracy (76.31%), but it barely affected
the high-proficiency users (100% accuracy). Personalized CWI helped steer the system to choose non-
complex words as output. Oracle CWI for ranking (detect=nil, rank=go1d), by definition, achieved
100% accuracy. The automatic CWI approach (detect=nil, rank=auto) yielded smaller improvement
but, at 94.19% accuracy, still outperformed the baseline by over 4% absolute.

Readability. With respect to the readability measure, which accepts unnecessary simplifications, per-
sonalized approaches still produced better output than the user-independent baseline. Among configura-
tions that did not involve go1d, the highest readability score (94.57%) was achieved by the system that
always attempted simplification but used automatic CWI for ranking (detect=nil, rank=auto); this
represented a 3% improvement over the baseline. It also achieved the highest accuracy (94.19%). Using
automatic CWI for both detection and ranking (detect=aut o, rank=aut o) produced the best precision
(34.81%), an absolute improvement of over 13% over the baseline. However, its accuracy and readability
were suboptimal because, by making fewer simplifications, it left more complex words in the input text
unsimplified.

6.2 Experiment 2: Personalization with automatically generated substitutions

Results from the first experiment, which assumed perfect substitutions, showed consistent performance
gains as a result of personalization. The second experiment investigated whether these gains would hold
under more realistic conditions. Instead of gold substitutions from BenchLS, we used the output of a
state-of-the-art, user-independent LS system (Paetzold and Specia, 2017). Table 6 shows the performance
on the personalized LS dataset (Section 3.2). In this setting, the oracle (detect=gold, rank=gol1d)
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attained only 58.57% precision and 52.52% accuracy. As will be discussed below, the gap between the
baseline and the personalized systems persisted.

Precision. The user-independent approach (detect=nil, rank=nil) achieved only 8.09% precision.
A major source of error for precision, as observed in the first experiment, was the simplification of
non-complex words in the input text. Oracle CWI for detection (detect=gold, rank=nil) raised the
precision to 39.28%. Automatic CWI for detection (detect=aut o, rank=n1i1) yielded 12.03% precision,
improving the baseline by almost 4% absolute.

Accuracy. The ability of personalization to reduce the other major source of error — selection of
complex words as substitutions — was also observed in this experiment. While the accuracy of the
user-independent approach (detect=nil, rank=ni1l) was only 39.17%, automatic CWI for ranking (de-
tect=nil, rank=auto) improved it by over 11% to reach 50.91%. This level of performance was
very close to the upper bound of 52.52% accuracy suggested by oracle CWI for ranking (detect=nil,
rank=go1d).

Readability. In terms of readability, after excluding configurations that involve gold, the best
readability score (69.39%) was achieved by using automatic CWI for both detection and ranking (de-
tect=aut o, rank=auto). This represented an absolute improvement of over 31% in comparison to the
user-independent baseline. Unlike in the first experiment, the system’s conservativeness in making sim-
plifications worked in its favor because of the presence of substitution errors. This configuration also
yielded the highest precision (18.01%), outperforming the baseline by almost 10%. However, the high-
est accuracy (50.91%), similar to the first experiment, was obtained by using automatic CWI for ranking
only (detect=nil, rank=auto).

7 Conclusion

Most current approaches to lexical simplification (LS) are user-independent. This paper proposed the
use of personalized models of complex word identification (CWI) to tailor LS systems to the vocabulary
proficiency of the user. We presented the first study on the effect of personalized CWI in two steps of the
LS pipeline: to detect which words require simplification, and to reject substitution candidates that are
still too difficult for the user. We measured both the upper bounds of performance gains with an oracle
CWI model, as well as the actual gains of a simple automatic CWI model that required only a 40-word
training set per user, based on graded vocabulary lists.

Experimental results with oracle CWI demonstrated much room for improving LS systems through
personalization. Further, systems that used the automatic CWI model consistently outperformed the
user-independent baseline, by reducing both the number of unnecessary simplifications and the number
of complex words in the output. The performance gains persisted regardless of whether the substitutions
were gold or automatically generated, yielding improvement in precision and accuracy ranging from 4%
to 13%. As CWI research produces higher-performing models, future LS systems can expect to derive
even greater benefits from personalization.
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Abstract

Distributional word representations (often referred to as word embeddings) are omnipresent in
modern NLP. Early work has focused on building representations for word types, and recent studies
show that lemmatization and part of speech (POS) disambiguation of targets in isolation improve
the performance of word embeddings on a range of downstream tasks. However, the reasons behind
these improvements, the qualitative effects of these operations and the combined performance of
lemmatized and POS disambiguated targets are less studied. This work aims to close this gap and
puts previous findings into a general perspective. We examine the effect of lemmatization and POS
typing on word embedding performance in a novel resource-based evaluation scenario, as well
as on standard similarity benchmarks. We show that these two operations have complementary
qualitative and vocabulary-level effects and are best used in combination. We find that the
improvement is more pronounced for verbs and show how lemmatization and POS typing implicitly
target some of the verb-specific issues. We claim that the observed improvement is a result of
better conceptual alignment between word embeddings and lexical resources, stressing the need
for conceptually plausible modeling of word embedding targets.

1 Introduction

Word embeddings learned from unlabeled corpora are one of the cornerstones of modern natural language
processing. They offer important advantages over their sparse counterparts, allowing efficient computation
and capturing a surprising amount of lexical information about words based solely on usage data.

Since precise word-related terminology is important for this paper, we introduce it early on. A token is
a unique word occurrence within context. Tokens that are represented by the same sequence of characters
belong to the same word type. A type signifies one or — in case of morphological ambiguity — several
word forms. Word forms encode the grammatical information carried by the word and are therefore
POS-specific. One of the word forms is considered the base form - or lemma of the word. All possible
word forms of a word represent the lexeme of this word. From a semantic perspective, a word is assigned
to a minimal sense-bearing lexical unit (LU). In general, multi-word and sub-word lexical units are
possible, but in this paper we focus on single-word units. LUs are the reference point to the semantics of
the word and might be used to describe further properties of the words within a specific lexicon, e.g. get
assigned one or several senses, related to other LUs via lexical relations etc. Figure 1 illustrates these
concepts and positions some of the relevant approaches w.r.t. the level they operate on.

In general, the training objective in the unsupervised word embedding setup (e.g. (Mikolov et al.,
2013)) is to induce vector representations for targets based on their occurrences in an unlabeled reference
corpus. For each occurrence of the target, context representation is extracted. The goal is to encode
targets so that targets appearing in similar contexts are close in the resulting vector space model (VSM).
We further refer to the set of targets in a given VSM as target vocabulary of this VSM.

The applications of word embeddings can be roughly grouped in two categories, occurrence-based and
vocabulary-based: the former aims to classify tokens (e.g. parsing, tagging, coreference resolution), the

This work is licenced under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/
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Figure 1: Hierarchy of word-related concepts for emails, with VerbNet as lexicon example.

latter aims to classify lexemes (e.g. word clustering, thesaurus construction, lexicon completion). Lexical
resources mostly operate on lexeme or lexical unit level. This includes most of the similarity benchmarks
(Finkelstein et al., 2001; Bruni et al., 2014; Hill et al., 2015; Gerz et al., 2016) that implicitly provide
similarity scores for lexemes and not word types. Traditional word embeddings approaches (Mikolov et
al., 2013; Pennington et al., 2014) induce representations on word type level. As our example in Figure 1
shows, this leads to a conceptual gap between the lexicon and the VSM, which has practical consequences.
Consider the standard scenario when a type-based VSM is evaluated against a lexeme-based benchmark.
One of the types contained in the VSM vocabulary corresponds to the base form (lemma), and the
vector for the base word form is used for evaluation. This particular form, however, is selected based
on grammatical considerations and, as we later demonstrate, is neither the most frequent nor the most
representative in terms of contexts, nor the most unambiguous. As a result, (1) the contexts for a given
lexical unit are under-represented, ignoring other word forms than the base form; (2) in case of ambiguity
the same context-based representation is learned for several different lexemes sharing the same word type.

Recent studies demonstrate that even partially addressing these problems leads to improved performance.
Ebert et al. (2016) introduce the lemma-based LAMB embeddings and show that lemmatization of
the targets improves the results cross-linguistically on similarity benchmarks and in a WordNet-based
evaluation scenario. In our scheme this represents a step up in the conceptual hierarchy but still leaves
room for ambiguity on the LU level. Trask et al. (2015) experiment with POS-disambiguated targets, and
also report improved performance on a variety of tasks.

While prior work shows that lemmatization and POS-typing of targets in isolation are beneficial for
downstream tasks, it does not provide a detailed investigation on why it is the case and does not study the
effects of combining the two preprocessing techniques. This paper aims to close this gap. We evaluate the
effects of lemmatization and POS disambiguation separately and combined on similarity benchmarks, and
further refine our results using a novel resource-based word class suggestion scenario which measures
how well a VSM represents VerbNet (Schuler, 2005) and WordNet supersense (Ciaramita and Johnson,
2003) class membership. We find that POS-typing and lemmatization have complementary qualitative
and vocabulary-level effects and are best used in combination. We observe that English verb similarity is
harder to model and show that using lemmatized and disambiguated embeddings implicitly targets some
of the verb-specific issues. In summary, the contributions of this paper are as follows:

e We suggest using lemmatized and POS disambiguated targets as a conceptually plausible alternative
to type, word form and lemma-based VSMs;

e We introduce the suggestion-based evaluation scenario applicable to a wide range of lexical resources;

e We show that lemmatization and POS disambiguation improve both benchmark and resource-based
performance by implicitly targeting some of the grammar-level issues.
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2 Related work

The starting point for our study are the results from the lemma-based word embedding approach by Ebert
et al. (2016), the POS-disambiguated sense2vec embeddings by Trask et al. (2015) and the dependency-
based contexts by Levy and Goldberg (2014). Our primary focus is the effect of word embedding targets
on vocabulary-based task performance. However, to put our work in context, we provide an extended
overview of the issues related to traditional type-based approaches to VSM construction, along with
relevant solutions.

Type-based VSMs (Mikolov et al., 2013; Pennington et al., 2014) have several limitations that have
been extensively studied. They have restricted vocabularies and hence lack the ability to represent
out-of-vocabulary words. Several recent approaches treat this issue by learning vector representations for
sub-word units, e.g. fastText (Bojanowski et al., 2016) and charagram (Wieting et al., 2016).

Type-based VSMs do not abstract away from word inflection: different forms of the same word
are assigned different representations in the VSM. Ebert et al. (2016) introduces lemmatized LAMB
embeddings as a way to address this issue and shows that lemmatization is highly beneficial for word
similarity and lexical modeling tasks even for morphologically poor English, while using stems doesn’t
lead to significant improvements. Their approach is similar to our 1emma-w2 setup (Section 3). Another
recent attempt to address this problem is the study by Vuli¢ et al. (2017b), which uses a small set of
morphological rules to specialize the vector space bringing the forms of the same word closer together
while setting the derivational antonyms further apart. We relate to this approach in Section 4.

Finally, type-based VSMs neglect the problem of polysemy: all senses of a word are encoded as a
single entry in the VSM. This issue has been recently approached by multi-modal word embeddings
(Athiwaratkun and Wilson, 2017) and Gaussian embeddings (Vilnis and McCallum, 2014). Partially
disambiguating the source data via POS tagging has been employed in (Trask et al., 2015). Here, instead
of constructing vectors for word forms, POS information is integrated into the vector space as well. This
is similar to our type . POS—w2 setup (Section 3) which, as we show, introduces additional sparsity and
ignores morphological inflection.

An alternative line of research aims to learn embeddings for lexical units by using an external WSD
tool to preprocess the corpus and applying standard word embedding machinery to induce distributed
representations for lexical units, e.g. (Iacobacci et al., 2015; Flekova and Gurevych, 2016). Such
approaches require an external WSD tool which introduces additional bias and might not be available for
lower-resourced languages. Moreover, to query such VSMs it is necessary to either apply WSD to the
input, or to align the inputs with the senses in some other way, which is not always feasible.

From the evaluation perspective, a popular method to assess the performance of a particular vector
space model is similarity benchmarking. A similarity benchmark consists of word pairs along with
human-assessed similarity scores, which are compared to cosine similarities returned by VSMs via rank
correlation. Some common examples include WordSim-353 (Finkelstein et al., 2001) and MEN (Bruni et
al., 2014). The recent SimLex-999 (Hill et al., 2015) and SimVerb-3500 (Gerz et al., 2016) particularly
focus on word similarity as opposed to word relatedness (e.g. bank and money would be related, but not
similar) and have been shown difficult for word embedding models to tackle.

Being attractive from the practical perspective, similarity benchmarks are expensive to create and do
not provide detailed insights about the lexical properties encoded by the word embeddings. Motivated
by that, resource-based benchmarking strategies have been suggested. (Ebert et al., 2016) represents
WordNet as a graph and measures the correspondence of similarity ranking to the distances between query
words in the graph via mean reciprocal rank. Vuli¢ et al. (2017a) and Sun et al. (2008) apply a clustering
algorithm to the input words and measure how well the clusters correspond to the word groupings in
VerbNet via purity and collocation. Both methods have certain limitations, which we discuss and attempt
to resolve via a novel general suggestion-based approach in Section 5.

3 General setup

Distributional word representations aim to encode word targets based on the context words they co-occur
with. One popular general-purpose model for inducing such representations is skip-gram with negative
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sampling (SGNS), exemplified by word2vec (Mikolov et al., 2013).

In the original SGNS targets and contexts belong to the same type-based vocabulary, but this is not
required by the model. In this study we experiment with the following targets: t ype (going), 1emma (go),
type.POS! (going.V) and 1emma .POS (go.V). Word embeddings demonstrate qualitative differences
depending on context definition (Levy and Goldberg, 2014), and we additionally report the results on
2-word window-based (w2) and dependency-based (dep-W) contexts. To keep the evaluation setup
simple, we only experiment with word type-based contexts.

We train 300-dimensional VSMs on a recent English Wikipedia dump, preprocessed using the Stanford
Core NLP pipeline (Manning et al., 2014) with Universal Dependencies 1.0. The text is extracted using
the wikiextractor module® with minor additional cleanup routines. Training the VSM is performed with
the skip-gram based word2vecf implementation from (Levy and Goldberg, 2014) with default algorithm
parameters.

4 Similarity Benchmarks

Following previous work, we first evaluate the effect of lemmatization and POS-typing on similarity
benchmarks SimLex-999 (Hill et al., 2015) and SimVerb-3500 (Gerz et al., 2016). Both benchmarks
provide POS information, which is required by POS-enriched VSMs. SimLex-999 contains nouns (60%),
verbs (30%) and adjectives (10%); SimVerb-3500 is verbs-only. Table 1 summarizes the performance of
the VSMs in question on similarity benchmarks.

Context: w2
SimLex SimVerb
target N v A all \"
type 334 | 336 | 518 | .348 .307
+ POS 342 | 323 | 513 | .350 279
lemma 362 | 333 | 497 | 351 400
+ POS 354 | 336 | .504 | .345 406
* type - - - 339 2717
* type MFit-A - - - .385 -
* type MFit-AR | - - - 439 381
Context: dep-W
type 366 | 365 | .489 | .362 314
+ POS 364 | 351 | .482 | .359 287
lemma 391 | 380 | 522 | .379 401
+ POS 384 | 388 | .480 | .366 431
* type - - - 376 313
* type MFit-AR - - - 434 418

Table 1: Benchmark performance, Spearman’s p. SGNS results with * taken from (Vuli€ et al., 2017b).
Best results per column (benchmark) annotated for our setup only.

Several observations can be made. Lemmatized targets generally perform better, with the boost being
more pronounced on SimVerb. English verbs have richer morphology than other parts of speech and
benefit more from lemmatization. Adding POS information benefits the SimVerb and SimLex verb
performance, which can be attributed to the coarse disambiguation of verb-noun and verb-adjective
homonyms. However, the t ype . POS targets show a considerable performance drop on SimVerb and
SimLex verbs. This is due to vocabulary fragmentation, when the same word type is split into several
entries based on the POS, e.g. acts (110) — acts.V (80) + acts.N (30). As a result, some word types
do not exceed the frequency threshold and are not included into the final VSM. Another way to see it

"'We use coarse POS classes obtained by selecting the first character in the Penn POS tags assigned by the tagger
https://github.com/attardi/wikiextractor
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is that POS disambiguation increases the sparsity, which lemmatization, in turn, aims to reduce. Using
dep—W contexts proves beneficial for both datasets since modeling the context via syntactic dependencies
results in more similarity-driven (as opposed to relatedness-driven) word embeddings (Levy and Goldberg,
2014).

We provide the Morph-Fitting scores (Vuli¢ et al., 2017b) as a state-of-the-art reference; a direct
comparison is not possible due to the differences in the training data and information available to the
models. This approach uses word type-based VSMs specialized via Morph-Fitting (MF1it), which can
be seen as an alternative to lemmatization. Morph-Fitting consists of two stages: the Attract (2) stage
brings word forms of the same word closer in the VSM, while the Repel (R) stage sets the derivational
antonyms further apart. Lemma grouping is similar to the Attract stage. However, as the comparison of
MFit-A and —AR shows, a major part of the Morph-Fitting performance gain on SimLex comes from the
derivational Repel stage?, which is out of the scope of this paper.

While some properties of lemmatized and POS disambiguated embeddings are visible on the similarity
benchmarks, the results are still inconclusive, and we proceed to a more detailed evaluation scenario.

S Word Class Suggestion

5.1 Background

Similarity benchmarks serve as a standard evaluation tool for word embeddings, but provide little insights
into the nature of relationships encoded by the word representations. A more fine-grained context-free
evaluation strategy is to assess how well the relationships in a certain lexical resource are represented by
the given VSM. Two recent approaches to achieve this are rank-based and clustering-based evaluation.

Rank-based evaluation treats the lexical resource as a graph with entries as nodes and lexical relations
as edges, and estimates how well the similarities between the VSM targets represent the distances in this
graph via mean reciprocal rank (MRR), e.g. Ebert et al. (2016) use WordNet (Miller, 1995). It requires
the target lexical resource to have a dense linked structure which might be not present.

Clustering-based evaluation, e.g. Vuli¢ et al. (2017a) utilize the VSM to produce target clusters
which are compared to the groupings from the lexical resource via collocation and purity. This approach
only requires lexical entries to be grouped into classes. However, it doesn’t model word ambiguity: a
word can only be assigned to a single cluster. Moreover, it introduces an additional level of complexity
(clustering algorithm and its parameters) which might obscure the VSM performance details.

In this paper we propose an alternative, suggestion-based evaluation approach: we use the source
VSM directly to generate word class suggestions (WCS) for a given input term. Many lexical resources
group words into intersecting word classes, providing a compact way to describe word properties on
the class level. For example, in VerbNet (Schuler, 2005) verbs can belong to one or more Levin classes
(Levin, 1993) based on their syntactic behavior, FrameNet (Baker et al., 1998) groups its entries by
the semantic frames they can evoke, and WordNet (Miller, 1995) provides coarse-grained supersense
groupings. Suggestion-based evaluation can be seen as flexible alternative to clustering-based evaluation,
which intrinsically takes ambiguity into account and does not require an additional clustering layer. The
following section describes the suggestion-based evaluation in more detail*.

5.2 Task formulation

Abstracting away from the resource specifics, a lexicon L defines a mapping from a set of members
mi,ma,...m; € M to aset of word classes c1, c2...c; € C. We further denote the set of classes available
for a member m as L(m) and the set of members for a given class ¢ as L'(c). Given a query ¢, our task is
to provide a set of word class suggestions WCSL(q) = {ca, c...} € C. Note that we aim to predict all
potential classes for a member given its vector representation on vocabulary level, independent of context.

?See also (Vuli¢ et al., 2017b), Table 5.
*Our implementation is available at https://github.com/UKPLab/coling2018-wcs
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5.3 Suggestion strategies

Given an input target w, the source vector space V.S M provides its vector representation V.S M (w). We
use cosine similarity between targets sim(w;, w;) to rank the word classes.

A lexical resource might already contain a substantial number of members, and a natural solution for
word class suggestion is to find the prototype member 1., closest to the query ¢ in the VSM, and use
its classes as suggestions. This scenario mimics human interaction with the lexicon. If ¢ € M, this is
equivalent to a lexicon lookup. More formally,

) 1, ifce€ L(mproto)
Myproto = ATGMAT ¢ 1 rSTM(q, M) SCOTeproto(q, ¢, L) = _
0, otherwise
The prototype strategy per se is sensitive to the coverage gaps in the lexicon and inconsistencies in the
VSM. We generalize it by ranking each word class ¢ € C' using the similarity between the query ¢ and its
closest member in c:

scoreiop(q, ¢, L) = maz,e () stm(q, m)

This is equivalent to performing the prototype search on each word class, and scoring each class by
the closest prototype among its members, given the query. We use this generalized strategy for our WCS
experiments throughout this paper. The output of the model WC'S.(q, V.SM) is a set of classes ranked
using the input VSM, as illustrated by Table 2.

query top classes / prototypes query top classes / prototypes
dog— animal (cat), food (rabbit) ... idea— | cognition (concept), artifact (notion) ...
crane— | artifact (derrick), animal (skimmer) ... || bug— animal (worm), state (flaw) ...

Table 2: WCS output for WordNet supersenses

5.4 Evaluation procedure

For each member m in the lexicon in turn, we remove it from the lexicon, resulting in a reduced lexicon
L_,,. We aim to reconstruct its classes using the suggestion algorithm and the remaining mappings.

The performance is measured via precision (P) and recall (R) at rank k£ with the list of original
classes for a given lexical unit serving as gold reference. Formally, given m we compute the ranking
WCSy,_, (m,VSM). Let Sj, be the set of classes suggested by the system up to the rank %, and 7" be
the true set of classes for a given member in the original lexicon. Then

|Sk N T
—BeDZl Ry = 20
|kl T

To get a single score, we average individual members’ Pgqy and Raqy for each value of k, resulting in
scores Pqj and Rqj. F-measure might be then calculated using the standard formula

[ 2PaiRak,
@k —_ =
Pai + Rak

Upper bound Since the number of gold classes is not known in advance, the evaluation is always
performed on k ranks, which leads to a resource-specific upper bound on P. For example, if a member
only has one class, the ranked list of 10 suggestions will inevitably show lower precision. When the
member set is not fully covered by the VSM target vocabulary, additional upper bound on R applies.
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6 Experiment

6.1 Resources

We use two lexical resources for suggestion-based evaluation: VerbNet 3.3 (Schuler, 2005) and WordNet
3.1 (Miller, 1995). VerbNet groups verbs into classes’ so that verbs in the same class share syntactic
behavior, predicate semantics, semantic roles and restrictions imposed on these roles. For example, the
verb buy belongs to the class get-13.5.1. The class specifies a set of available roles, e.g. an animate Agent
(buyer), an Asset (price paid) and a Theme (thing bought), and lists available syntactic constructions,
e.g. the Asset V Theme construction (“$50 won’t buy a dress*). A verb might appear in several
classes, indicating different verb senses. For example, the verb hit allows several readings: as hurt (John
hit his leg), as throw (John hit Mary the ball) and as bump (The cart hit against the wall). VerbNet has
been successfully used to support semantic role labeling (Giuglea and Moschitti, 2006), information
extraction (Mausam et al., 2012) and semantic parsing (Shi and Mihalcea, 2005).

WordNet, besides providing a dense network of lexical relations, groups its entries into coarse-
grained supersense classes, e.g. noun.animal (aardvark, koala), noun.location (park, senegal),
noun.time (forties, nanosecond). WordNet supersense tags have been applied to a range of downstream
tasks, e.g. metaphor identification and sentiment polarity classification (Flekova and Gurevych, 2016).
WordNet differs from VerbNet in terms of granularity, member-class distribution and part of speech
coverage, and allows us to estimate VSM performance on nominal as well as verbal supersenses, which
we evaluate separately. Table 3 provides the statistics for the resources. We henceforth denote VerbNet as
VN, WordNet nominal supersense lexicon as WN-N and WordNet verbal supersense lexicon as WN—V.

classes | members | ambig | %ambig
VN 329 4569 1366 30%
WN-V 15 8702 3326 38%
WN-N 26 57616 | 9907 17%

Table 3: Lexicon statistics, single-word members

6.2 Results

We use the suggestion-based evaluation to examine the effect of lemmatization and POS-disambiguation.
We first analyze the coverage of the VSMs in question with respect to the lexica at hand, see Table 4. For
brevity we only report coverage on w2 contexts®.

target | VN | WN-V | WN-N
type 81 66 47
+POS | 54 39 43
lemma | 88 76 53
+POS | 79 63 50
shared | 54 39 41

Table 4: Lexicon member coverage (%)

Coverage analysis on lexica confirms our previous observations: lemmatization allows more targets to
exceed the SGNS frequency threshold, which results in consistently better coverage. POS-disambiguation,
in turn, fragments the vocabulary and consistently reduces the coverage with the effect being less
pronounced for lemmatized targets. WN—N shows low coverage containing many low-frequency members.
Due to significant discrepancies in VSM coverage, we conduct our experiments on shared vocabulary,
only including members found in all VSMs to analyze the qualitative differences between VSMs.

>For simplicity in this study we ignore subclass divisions.

5We have observed slight coverage differences for dep contexts, and attribute this to the context vocabulary fragmentation
caused by dependency typing of the contexts, similar to the POS fragmentation effect described earlier.
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Figure 2: WCS PR-curve, shared vocabulary, w2 contexts.

We treat the cutoff rank %k as a parameter that specifies the Precision-Recall trade-off. As Figure 2
demonstrates, lemmatized targets consistently outperform their word form-based counterparts on the
WCS task. The magnitude of improvements varies between resources: verb-based WN—-V and VN benefit
more from lemmatization, and VN gains most from POS-disambiguation. This aligns with the similarity
benchmarking results where the verb-based SimVerb benefits more from addition of lemma and POS
information.

WN-N WN-V VN
P]IR|[F|P[RJ]F|]P]|]R]JTF
Context: w2

type 700 | .654 | .676 || .535 | 474 | .503 || .327 | .309 | .318
+POS | .699 | .651 | .674 || .544 | 472 | .505 || .339 | .312 | .325
lemma | .706 | .660 | .682 || .576 | .520 | .547 | .384 | .360 | .371
+POS | .710 | .662 | .685 || .589 | .529 | .557 || .410 | .389 | .399
Context: dep
type 12 | 661 | .686 || .545 | 457 | 497 || .324 | .296 | .310
+POS | .715 | .659 | .686 || .560 | .464 | .508 || .349 | .320 | .334
lemma | .725 | .668 | .696 || .591 | 512 | .548 || .408 | .371 | .388
+POS | .722 | .666 | .693 || .609 | .527 | .565 || .412 | .381 | .396

Table 5: WCS performance, shared vocabulary, k = 1. Best results across VSMs in bold.

Table 5 provides exact scores for reference. Note that the shared vocabulary setup puts the type
and type .POS VSMs at advantage since it eliminates the effect of low coverage. Still, 1emma-based
targets significantly’ (p < .005) outperform t ype-based targets in terms of F-measure in all cases. For
window-based w2 contexts POS disambiguation yields significantly better F' scores on lemmatized targets
for VN (p < .005) with borderline significance for WN-N and WN-V (p ~ .05). When dependency-
based dep contexts are used, the effect of POS disambiguation is only statistically significant on type
targets for VN (p < .005) and on lemma-based targets for WN-V (p < .005). We attribute this to the
fact that dependency relations used by dep contexts are highly POS-specific, reducing the effect of
explicit disambiguation. Lemma-based targets without POS disambiguation perform best on WN—N when
dependency-based contexts are used; however, the difference to lemmatized and disambiguated targets is
not statistically significant (p > .1).

Our results are in line with the previous observations (Gerz et al., 2016) in that the verb similarity is

"Wilcoxon signed-rank test over individual lexicon members’ F' scores
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SimLex SimVerb || WN-N | WN-V | VN

N \Y% A \Y% N \Y% v

base 80 | 26 | 1.0 24 .86 21 22
avg #POS | 1.08 | 1.01 | 1.39 1.50 1.15 1.37 | 1.42
single POS | 93 | 99 | .62 51 .85 .65 59

Table 6: Base form ratio and available POS averaged over members; % members with single POS.

hard to capture with standard VSMs. To investigate why verbs benefit most from lemmatization and POS
disambiguation, we analyze some relevant statistics based on our Wikipedia data. Table 6 shows the ratio
of base form to total occurrences in our corpus®. As we can see, the base form (lemma) is by far not
the dominating form for verbs. Practically this means that for our resources verbal t ype targets have
direct access to only 20-25% of the corpus occurrence data on average. Individual verbs and nouns also
differ in terms of preferred word forms, which introduces additional bias into the evaluation. This effect is
countered by lemmatization.

The second important difference between the noun- and verb-based lexica is the number of POS
available for the lexicon members’ lemmas. As Table 6 further demonstrates, nouns are less ambiguous in
terms of POS: for example, VN member lemmas appear with 1.42 distinct POS categories on average,
compared to 1.15 categories for WN-N. Individual members might differ in terms of POS frequency
distribution, again biasing the evaluation. One regular phenomenon accountable for this is the verbification
of nouns and adjectives, when a verbal form is constructed without adding any derivational markers. While
these derivations might to some extent preserve the similarities between words (e.g. e-mail. N—e-mail.V
is similar to fax.N—fax.V), many cases are less transparent and benefit from POS separation (e.g. the
meaning shift in air N—airV is different from water N—water.V). One exception is the verb subset of
SimLex which has a particularly low POS ambiguity.

7 Future work

Lexical unit-based modeling. In this work we have shown that lemmatization and subsequent POS
disambiguation benefit both benchmark- and resource-based performance of word embeddings. While
verb semantics is notoriously hard to pinpoint per se, we show that modeling verbs via type-based
distributed representations also meets grammar-related challenges which can be partially addressed with
lemmatization and POS-disambiguation of the inputs. From the conceptual perspective, lemmatized and
POS-tagged targets can be seen as another step towards conceptually plausible lexical unit-based modeling
of word usage. In this work we focused on single-word entities, and analyzing the effect of including
multi-word expressions into the VSM vocabulary is an important direction for future studies.

Word embedding methods. To ensure fair comparison and to keep our evaluation setup compact, we
have consciously restricted the scope of the study to a single word embedding model (SGNS), single
context size (w2) and a single parameter set (word2vecf SGNS default). Our results could be further
validated by experimenting with alternative context definitions and word embedding models, e.g. GloVe
(Pennington et al., 2014) and CBOW (Mikolov et al., 2013). Experiments on character-based models,
e.g. fasttext (Bojanowski et al., 2016) or charagram (Wieting et al., 2016) could be another interesting
extension to our work. However, it is not clear how to integrate lemma and POS information with
character-based representations in an elegant way.

Cross-linguistic studies. POS tagging and lemmatization are general and well-defined language-
independent operations. We have focused on English and have shown that POS-typing and lemmatization
implicitly target several grammar-level issues in the context of word embeddings. (Ebert et al., 2016)
demonstrate that the improvements from lemmatization hold in a cross-lingual setup. While we believe
our results to generally hold cross-linguistically, the relative contribution of POS disambiguation and

8We use all lemmas that appear more than 100 times in the corpus; to smooth the effect of tagging errors we only count POS
that appear with the target lemma in more than 10% of total lemma occurrences. All statistics averaged over individual lemmas.
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lemmatization will inevitably depend on the grammatical properties of the language, constituting another
topic for further research.

Suggestion-based evaluation. Our evaluation procedure has clear advantages: it is word class-based,
polysemy-aware, does not introduce additional complexity and does not require an annotated corpus. It
is resource-agnostic and only requires the target lexical resource to group words into classes. However,
several issues must be addressed before it can be used on large scale. Our leave-one-out scenario excludes
singleton classes, i.e. classes that only have one member. This issue will become less severe with resource
coverage increasing over time. The evaluation depends on resource and VSM vocabulary coverage, and
for qualitative comparison between VSMs vocabulary intersection should always be taken into account.
Alternative suggestion strategies might be explored, e.g. averaging among class members instead of
selecting the closest prototype.

Application scenarios. We have introduced word class suggestion as an evaluation benchmark for word
embeddings. However, the WCS output might be used in vocabulary-based application scenarios, e.g. as
annotation study support in cases when the lexicon is available, but the usage corpora are scarce; as a
lexicographer tool for finding the gaps in existing lexica; and as a source for context-independent unknown
word class candidates in a word sense disambiguation setup.

8 Conclusion

This paper has investigated the effect of lemmatized and POS-disambiguated targets on vector space
model performance. We have shown that these preprocessing operations lead to improved performance
on the standard benchmarks as well as in a novel word class suggestion scenario. Our results stress the
need for more conceptually sound distributional models which align better to lexical resources. This
would help to abstract away from the grammar-level issues and allow to further focus on bridging the gap
between distributional models and lexical resources on the semantic level.
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