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Preface

The Second International Workshop on Ancient Language Processing (ALP 2025), co-located with
the 2025 Annual Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL 2025), was held on May 4, 2025, in Albuquerque, New Mexico, USA. This
workshop built on the success of its inaugural edition (ALP 2023 at Varna, Bulgaria) and the workshop
on Ancient Language Translation (ALT 2023 at Macao, China). ALP 2025 further consolidated the
global platform for scholars and practitioners exploring the intersection of natural language processing
(NLP) and ancient languages—a domain rich with historical, cultural, and linguistic significance.

Ancient languages, spanning from Sumerian cuneiform (c. 3,400 BCE) to Ancient Greek, Latin, Ancient
Chinese and Mayan glyphs, encapsulate humanity’s earliest intellectual and cultural achievements. The
ALP 2025 workshop sought to advance the application of modern NLP techniques to these languages,
addressing challenges such as non-Latin scripts, transliteration variability, fragmented texts, and dialectal
diversity. By fostering interdisciplinary collaboration, the workshop aimed to accelerate progress in
digitizing and analyzing ancient linguistic resources, thereby unlocking new insights into human history
and culture.

ALP 2025 received a diverse array of submissions covering the earliest phases of writing (proto-
cuneiform), to the first languages of Mesopotamia (Sumerian and Akkadian), Egypt and Sudan
(Egyptian, Demotic, and Meroitic), Anatolia (Hittite), the Mediterranean (Hebrew, Linear B, Ancient
Greek, Latin), Iran (Old Persian), India (Sanskrit), East Asia (Classical Chinese, Old Tibetan, Old
Japanese), and Mesoamerica (Mayan). Notable themes included: Resource development and Innovations
in corpus construction, in Unicode input methods, and linguistically linked data for underrepresented
scripts, and the application of Large Language Models (LLMs) in various ancient languages.

The workshop hosted two shared tasks — EvaCun 2025 (cuneiform lemmatization and text restoration
using LLMs) and EvaHan 2025 (classical Chinese named entity recognition) — designed to benchmark
progress on unique challenges.

The workshop received 43 submissions in total. After rigorous double-blind review, the program
committee accepted 33 papers: 10 long papers, 7 short papers, 2 overview papers of shared tasks, and 14
technical reports of shared tasks.

The broad participation in the ALP workshops reflects a rapidly expanding research community, driven
by increased digitization of ancient texts and interdisciplinary interest from computational linguists,
archaeologists, and philologists. This year’s workshop features keynote addressed by Dr. Patrick J.
Burns (ISAW, New York University, US), a pioneer in digital philology and developer of the Classical
Language Toolkit (CLTK), and Dr. Donald Sturgeon (Durham University, UK), founder of the Classical
Chinese Text Project. Their work exemplifies the synergy between traditional scholarship and cutting-
edge NLP.

We extend our gratitude to the ALP 2025 Program Committee for their thorough reviews, the NAACL
2025 organizers for their invaluable logistical support, and the student committee members and
volunteers whose dedication ensured a smooth process. Special thanks to the shared task coordinators
of EvaCun 2025 and EvaHan 2025 for designing evaluation tasks that push the boundaries of ancient
language processing.

The ALP 2025 workshop provided an opportunity for all participants to engage in dynamic discussions,
share novel ideas, and contribute to a future in which ancient languages are not only preserved, but
actively integrated into the global landscape of natural language processing and cultural computation.
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Abstract

Ancient texts often lack punctuation marks,
making it challenging to determine sentence
boundaries and clause boundaries. Texts may
contain sequences of hundreds of words with-
out any period or indication of a full stop. De-
termining such boundaries is a crucial step
in various NLP pipelines, especially regard-
ing language models such as BERT that have
context window constraints and regarding ma-
chine translation models which may become
far less accurate when fed too much text at
a time. In this paper, we consider several
novel approaches to automatic segmentation
of unpunctuated ancient texts into grammati-
cally complete or semi-complete units. Our
work here focuses on ancient and historical
Hebrew and Aramaic texts, but the tools de-
veloped can be applied equally to similar lan-
guages. We explore several approaches to
addressing this task: masked language mod-
els (MLM) to predict the next token; few-
shot completions via an open-source foun-
dational LLM; and the "Segment-Any-Text"
(SaT) tool by Frohmann et al. (Frohmann et al.,
2024). These are then compared to instruct-
based flows using commercial (closed, man-
aged) LLMs, to be used as a benchmark. To
evaluate these approaches, we also introduce
a new ground truth (GT) dataset of manually
segmented texts. We explore the performance
of our different approaches on this dataset. We
release both our segmentation tools and the
dataset to support further research into compu-
tational processing and analysis of ancient texts,
which can be found here https://github.
com/ERC-Midrash/rabbinic_chunker.

1 Introduction

Ancient languages lack many of the classic features
that modern languages use to clarify and disam-
biguate how to read them. These include spaces
between words, diacritics, punctuation and more.
This makes it challenging to determine sentence

and clause boundaries. Determining these bound-
aries is a crucial step in any attempt to decipher,
analyze and process ancient texts. In the past this
would be needed simply as a way to enable hu-
mans to read these texts, while in the modern era
this need has expanded as more and more NLP
tools are coming out, some of which require such
sentence segmentation as a prerequisite.

The issue of segmenting text into smaller chunks
is a well-known challenge, with a wide range of
use-cases and applications. Humans are many
times the direct beneficiaries of such a segmen-
tation, in the form of subtitles (Alvarez et al.,
2017; Ponce et al., 2023), Easy Read text (Calleja
et al., 2024), or text summaries created on a per-
segment basis (Cho et al., 2022; Aumiller et al.,
2021; Hazem et al., 2020). Furthermore, in recent
years we see more and more NLP tools that, while
powerful, are limited in the size of text they can
accept as input. Accordingly, for each of these
tools there arises a need to segment a large text into
smaller chunks. These include (but are not limited
to) BERT models (Gong et al., 2020) and LLM
context windows (Shi et al., 2024).

Although segmenting a text does not change the
text itself, the segmentation strategy one selects
will impact the quality of downstream tasks that
take the segmented text as input. Possible neg-
ative impacts include: cutting sentences in half;
reduced readability (e.g., in the case of subtitles);
loss of information and critical context (e.g. in the
case of LLM context and translation), etc. For this
reason, different domains and segmentation chal-
lenges also require different policies. A sentence
segmentation tool, such as discussed in Frohmann
et al. (2024), will not be sufficient for handling the
needs of chunking large texts for feeding BERTs,
where punctuation is assumed to be stable but topic
consistency and coherence is a concern. Different
tools might be needed for the same task but with
changes in the source text properties, such as lan-
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guage and genre (Homburg and Chiarcos, 2016;
Aumiller et al., 2021; Hazem et al., 2020).

In this paper, we explore several approaches to
the segmentation of ancient and historic Hebrew, as
a necessary prerequisite for effective training and
running of fine-tuned BERT models for punctua-
tion, morphological tagging, syntactic parsing, and
more. The segmented chunks are critical both for
creating training samples with which to fine-tune
BERT models for the aforementioned tasks, and
also at inference time, to ensure accurate results
from the models.

As such, our goal is to minimize damage at the
sentence level while bounding the length of these
segments, which we will refer to as "chunks". A
chunk can sometimes be composed of several sen-
tences or, conversely, it may be a syntactically inde-
pendent part of a single sentence. We are not aware
of any work done trying to address this specific
challenge w.r.t. ancient and historic Hebrew, and
thus draw upon related work from other (similar)
domains instead.

Another deficiency in this domain is a lack of
ground truth (GT) datasets by which to evaluate
these approaches. To this end, our work here
also provides the first GT dataset of manually seg-
mented texts for ancient and historical Hebrew, as
far as we are aware. We explore the performance of
our different approaches on this dataset. We release
both our segmentation tools and the dataset to sup-
port further research into computational processing
and analysis of ancient texts.

The structure of this paper is as follows. In Sec-
tion 2 we discuss related work, followed by Sec-
tion 3 where we discuss our GT test set and our
approach to curating it, and Section 4 that outlines
the metrics we used in this paper. With the back-
ground out of the way, we progress to Section 5 to
review the various segmentation tools we put to use
in this paper. Section 6 presents our results, demon-
strating the effectiveness of each of the tools we
explore here. We conclude with Section 7 where
we discuss the takeaways from this work.

2 Related Work

Several approaches have been used in the past for
sentence-level segmentation. One approach is to
segment the text using masked language models
(e.g., BERT models) to predict punctuation marks.
This has been done in various contexts. The ba-
sic idea is to use the punctuation marks as natu-

ral locations in which to segment the text. These
ideas worked well for segmenting Easy Read texts
(Calleja et al., 2024) and subtitle generation (Ponce
et al., 2023), yet it is not clear a-priori that they
would work well for other use-cases. Specifically,
it is unclear how the various BERT models would
behave when facing ancient and historic Hebrew.
Some Hebrew models, which we tested here, were
trained only on more modern texts, while others
were trained on texts where the punctuation is
inconsistent and unreliable. Thus, the degree to
which this approach can be useful is an open ques-
tion, which we explore here.

Then there are the approaches that use Genera-
tive AI, specifically instruct and few-shot flows. In
both of these, the flow prompts the GenAI tool to
reproduce the original text with added markers that
indicate where to segment it. These are state-of-
the-art approaches and very commonly used in the
literature for many tasks, well beyond segmenta-
tion. One challenge which these approaches have
had in the past is that, when asked to reproduce
the original text, the GenAI tool does not return a
perfect reproduction of the text. Instead, it adds,
subtracts or rephrases some of the original text. To
manage this issue at scale researchers have pro-
posed auxiliary scoring methods that provide an
approximate evaluation of the segmentation quality
(Calleja et al., 2024). This issue was also experi-
enced by us in this work. We make note of how it
impacted the overall viability of such approaches
in Section 6.

In addition to all the above, it is important to note
that ancient and historic Hebrew do not always con-
form to current grammar rules and conventions.
Specifically, sentences can formally come out to be
hundreds of words long, making a perfect segmen-
tation an impossible goal at times. See more on this
in Section 3, where we discuss how this impacts
the construction of a GT dataset.

Finally, it is worth noting here how our work re-
lates to existing notation works in ancient Hebrew,
specifically the ETCBC project (Eep Talstra Cen-
tre for Bible and Computer, 2023). The ETCBC
project provides linguistically annotated texts of the
Hebrew Bible, offering researchers a comprehen-
sive database with morphological, syntactic, and
semantic features encoded in a hierarchical text
model that facilitates computational analysis of bib-
lical Hebrew texts. Our work here tackles Rabbinic
texts which have a different set of challenges than
that of the Bible. Whereas the bible is already pre-
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versified into relatively short verses, the texts we
tackle are much longer, and can reach hundreds of
words. We hope that our work here will enable us
in the future to use auto-segmented ancient texts
and move to the next level of developing features
along the same line as done in ETCBC.

3 Methodology - Ground Truth Dataset

3.1 Approach

The idea of a ground truth for text segmentation
is a fuzzy concept, for several major and distinct
reasons.

First, there can be a clash between the natural
dynamics of the language and our segmentation
goals. On the one hand, for segmentation to be
useful, each segment must be capped in length. On
the other hand, language in general, and ancient
languages in particular, do not have a theoretical
bound on sentence length. In Rabbinic texts, for ex-
ample, it is very common to embed lengthy quotes
within a sentence, such that any break between
what comes before the quote and what comes af-
ter is detrimental to the grammatical structure of
the sentence. As such, it is not always possible
to segment the text in a manner that both meets
the hard length constraints required and simultane-
ously does no "harm" to the sentence. This, in turn,
complicates the process of generating a GT.

Second, to add to the previous point, ancient
languages often do not abide by a clear set of gram-
mar rules. As such, it is not always clear where the
correct place is to segment the texts, even in cases
where length constraints are not an issue.

In light of these two challenges, what is needed
is a gradient on which to scale the quality of a
segmentation technique. Specifically, we define
three levels of segmentation markers:

• Break (B) - Positions that are clear segmenta-
tion points. These correspond roughly to ends
of sentences, marked in modern Hebrew by a
period, a question mark or exclamation point.

• Partial (P) - Positions which reflect a natu-
ral pause in the sentence or a completion of
an idea. These correspond roughly to semi-
colons, colons before a list or a lengthy quote,
etc.

• Maybe (M) - Positions which should not be
used for segmentation in general, but are
clearly superior segmentation positions than

one word prior or subsequent to them. Many
times these can correspond to where a comma
would be placed, but not limited to such cases.

For example, taking a statement from the 3nd
century Hebrew treatise Mishnah, Tractate Avot,
Chapter 1, Unit 2:

היה הוא הגדולה כנסת משירי היה הצדיק Nשמעו
ועל התורה על עומד Mהעול Mדברי שלשה על אומר
!Mחסדי גמילות ועל העבודה ("Simeon the Just was
one of the last men of the Great Assembly. He
used to say: the world stands upon three things: the
Torah, the Temple service, and the practice of acts
of piety.")

One (possible, legitimate) segmentation would
be as follows:

הצדיק! Nשמעו [M] (Simeon the Just)
הגדולה! כנסת משירי היה [B] (was one of the last

men of the Great Assembly.)
אומר! היה הוא [P] (He used to say:)
עומד! Mהעול M Mדברי שלשה על [P] (the world

stands upon three things:)
התורה! על [M] (the Torah)
העבודה! ועל [M] (the Temple service)
!Mחסדי גמילות ועל [B] (and the practice of acts of

piety.)
Note, especially, the usage of "M" markups. An

ideal text segmentation would not segment the text
at these positions, as they break up the sentence
and "destroy meaning" in the process. However,
it is clearly worse to break up the sentences in a
position one word earlier or later. Therefore, we
consider a segmentation tool which would segment
at these positions as less than ideal, but which is
picking up on language semantics and thus better
than a random segmentation tool.

3.2 Text Selection

For the work we did in this paper, we completed
the annotation of 25 texts, each 200–400 words in
length. Table 1 presents the breakdown into dif-
ferent periods, as well as some high-level statistics
on the number of words and different markers in
our dataset. The core dataset consists of over 4000
words of Hebrew/Aramaic sources from the period
of the "Geonim", dated 8th-10th century. To this
we add an additional 3177 words of "Rishonim"
texts from the High Middle Ages, in order to test
whether the extent to which our results are valid for
later medieval Hebrew texts as well. This dataset
was annotated by a single annotater, with ten years
of study in a rabbinic seminary and highly skilled
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in parsing rabbinic texts. While this is a small test-
set and with only a single annotator, it is the first of
its kind to the best of our knowledge. In the future,
we plan on expanding the coverage of the dataset,
as well as gathering annotations from additional
annotators to allow for evaluation of interannotator
agreement. The latest version of the ground truth
dataset can be found here https://github.com/
ERC-Midrash/rabbinic_chunker.

Geonim Rishonim Total
# Texts 11 14 25
# Words 4088 3177 7265
#B 109 132 241
#P 198 178 376
#M 1086 775 1861

Table 1: Ground Truth Test Set - Breakdown

4 Analysis Metrics

4.1 Approach

In order to analyze the performance of a given text
segmentation tool, when comparing it with a GT
segmentation, we would naturally want both high
precision and high recall. Segmentation with high
precision would imply we segment only where ap-
propriate, and high recall would imply we capture
most meaningful segmentation positions. An im-
portant thing to note here is that high recall, after a
certain stage, provides diminishing returns, since
the downstream NLP tasks that the segmentation
will support are met once we do not exceed some
upper length limit of segment length. Thus, in this
paper we focus on precision, constrained by the
requirement that the produced chunks that are rea-
sonably sized. In our experience, having run fine-
tuned Hebrew BERT models across many ancient
Hebrew texts, we have found that input chunks of
up to 50 words work far better than longer chunks.
After the 50-word point, accuracy starts to drop
precipitously. Thus, our goal is an upper bound of
≈ 50 words per chunk.

When measuring performance, the question
arises: which segmentation markings in the GT
should we consider for purposes of evaluation?
The reasonable options, using the markup scheme
described in Section 3.1, are {B}, {B,P}, or all
three {B,P,M}. These represent progressively
more permissive/flexible segmentation of the same
text. Naturally, the performance scores of any tool

will be directly impacted by this decision, with pre-
cision monotonically growing and recall decreasing
as we move from strict to permissive segmentation.
We discuss this impact in the analysis section below
(Section 6).

4.2 Notation

Let L be the set of all layer combos we are in-
terested in evaluating. As just discussed, L =
{B, {B,P}, {B,P,M}}. For any l ∈ L we de-
fine Precisionαl to be the precision of segmenta-
tion algorithm α over the GT when considering
only segmentation markers in l. The same goes for
Recallαl .

5 Automatic Text Segmentation Tools

Our research explores several distinct approaches
to automatic segmentation of unpunctuated (an-
cient) texts, each leveraging capabilities of dif-
ferent language models and neural architectures.
Each of these approaches offers different advan-
tages in terms of accuracy, computational require-
ments, and generalizability across different types of
texts1. Our implementation of the tools described
here are publicly available in our repohttps://
github.com/ERC-Midrash/rabbinic_chunker.

5.1 Few-Shot Learning with DictaLM2.0

The first approach uses DictaLM2.0, an open-
source LLM specifically trained on Hebrew texts
(Shmidman et al., 2024a). We use the base model,
rather than the instruct-tuned model, in order to
leverage the full raw strength of the model. Thus, in
order to elicit desired output from the model, we im-
plement a few-shot learning protocol (Brown et al.,
2020). The model is presented with several exam-
ples of input texts and correctly segmented versions
of these texts. This is then followed by the target
text requiring segmentation, after which the model
proceeds with a completion. This method takes ad-
vantage of DictaLM2.0’s specialized knowledge of
Hebrew language patterns, while requiring minimal
fine-tuning or additional training.

In this paper we provided the LLM four ex-
amples (shots). Each "shot" was comprised of a
JSON object with two entries - "raw" to reflect

1Our approach in this paper was to explore the type of
segmentation information already embedded among various
existing models. An alternative approach would be to train
models from scratch aimed at chunking, which would enable
us to take a variety of approaches, e.g., hierarchical chunking.
As explained, this is outside the scope of this work.
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the input text, and "chunked" to reflect the ex-
pected segmented text, which was the same text
but with double-slash ("//") markings as indication
for where we would expect a segmentation point.
See Appendix A.1 for the full specification of the
shots used.

5.2 Next-Token Prediction using Masked
Language Models (MLMs)

Our second approach follows a similar structure to
other works (e.g., Calleja et al. (2024)), leverag-
ing the masked language modeling (MLM) head of
pre-trained BERT models. Given a long text, we
use a sliding window fitted to the model context
window. Within that window, taking each word
in turn, we mask the word, and predict the sub-
sequent token. When delimiter tokens (periods
and/or colons, depending on the configuration we
test) appear among the top predictions, we mark
these positions as potential segment boundaries.
Once a delimiter appears in the top K (K = 5, 15
for different runs) options, we select the earliest
point to cut and move the window. This continues
until the text is fully processed.

In this paper, we use the following BERT mod-
els:

• HeBERT (Chriqui and Yahav, 2021) - The
first dedicated Hebrew BERT model, trained
with a 30K-token vocabulary

• AlephBERT (Seker et al., 2021) - An ex-
panded dedicated Hebrew BERT model,
trained with a 52K-token vocabulary, and a
much larger corpus.

• DictaBERT (Shmidman et al., 2023) - Cur-
rently the highest-performing BERT for mod-
ern Hebrew (Shmidman et al., 2024b), trained
with a 128K-token vocabulary.

• BEREL (Shmidman et al., 2022) - A BERT
model specifically trained for Historic He-
brew/Aramaic texts (128K-token vocabu-
lary)2.

5.3 Segment Any Text (SaT)

Frohmann et al. (2024) trained models with the ex-
press goal of providing a "universal approach for

2Note that while BEREL might have seen the GT texts in
its training data, the texts BEREL was trained on were almost
exclusively without punctuation marks. Thus, it will not have
had prior hints to the correct segmentation of the GT dataset.

robust, efficient and adaptable sentence segmenta-
tion", referred to as SaT. They specifically aim to
improve over the previous tool, WtP ("Where’s the
Point"), which was presented in (Minixhofer et al.,
2023). Improvements include handling of short
sentences and code-switching, as well as speeding
up the model by moving from character-based to
token-based processing.

The authors provided a working github project
containing their models and code for running their
tool (segment-any text, 2025). For our experiments
here, we selected their sat-12l-sm model, a 12-layer
multilingual model which the authors report had the
best multilingual performance (96.0 macro-average
F1 score, as reported at the time of writing this
paper).

5.4 Benchmark: Instruction-Based
Segmentation using Closed LLMs

All the methods mentioned thus far are open and
free for use. Our final approach utilizes state-of-the-
art closed-source language models (GPT-4o and
Claude Sonnet) in an instruct flow. One of the main
challenges in instruct-based flows is Prompt Engi-
neering (PE), which is notoriously brittle (Errica
et al., 2024). However, in our case we utilize the
likely fact that these models have seen plenty of
punctuated texts during training and are familiar
with punctuation tasks. Our approach is therefore
a 2-step flow: (a) prompt the LLM to punctuate
a given unpunctuated text (see Appendix A.2 for
prompt details) and then (b) segment the punc-
tuated text at major punctuation marks (periods,
colons, semicolons, and question marks).

Using these commercial models is helpful as an
evaluation tool. However, we do not investigate
these models in depth, for two reasons. First, these
require access to paid services, and also lack trans-
parency (e.g., model weights, open to fine-tuning
etc.), thus making them less appropriate for broader
use in the research community. Second, as we shall
discuss in the analysis section, they have proper-
ties that make them unstable and less suitable to
building reliable segmentation flows.

6 Performance Analysis

6.1 The Trouble with Generative LLMs

Generative models are known to be difficult to con-
trol via prompts when very precise output is re-
quired. In the case of segmentation, we find (as
others have commented as well) that using gen-
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erative models is fraught with instability, as the
LLMs at times inject or delete parts of the text they
are asked to segment. While these issues can be
handled with further work (modified instructions,
modified examples in few-shot, guided decoding,
and additional techniques), they are for the most
part heuristic improvements that cannot be ensured
with total certainty. Table 2 lists the number of
texts, out of 25, for which the flow did not add or
remove any text. All performance analysis in the
rest of Section 6 relates only to this subset of texts.

Genre Count
Total 25
AlephBERT 25
heBERT 25
Dictabert 25
BEREL 25
DictaLM2.0 17
SaT-12L-sm 25
gpt4o 22
claude-sonnet-3.5 v1 (20240620) 20
claude-sonnet-3.5 v2 (20241022) 12

Table 2: List of segmentation tools and the num-
ber of GT texts that they segment correctly, i.e., w/o
adding/removing text to the input text. Generative mod-
els demonstrate instability in this flow, making them
less suitable to be used as part of a streamlined flow.

Figure 1

6.2 Segmentation Evaluation: Chunk Size
In our problem formulation, we want to have seg-
mentation occur at reasonable places while ensur-
ing that segments are not too long. Let us begin
by reviewing the distribution of segment lengths as
output by the different tools.

Figure 2

Figure 3

Fig. 1-4 show the performance of BEREL,
DictaBERT, AlephBERT and HeBERT respec-
tively, w.r.t. meeting chunk length constraints. In
these, we collect all the chunks from across all 25
test samples and plot chunk length histograms. As
we can see, all BERT-based models maintain our
upper-limit of 50 words, with a small number of
outliers. Going deeper in the search for candidate
delimiters (K=15) seems to reduce those outliers
as well. Note that this is not a straightforward re-
sult, as earlier segmentation choices could, at times,
cause later segmentation opportunities to be fewer,
thus lengthening future chunks.

Finally, we compare this performance to that of
the Generative LLMs and SaT (Fig. 6). We can see
that they too abide by the limits we were aiming for,
though it is clear that the LLMs are concentrating
the segment lengths on the shorter side. This might
be due to the fact that they start by fully punctuating
the text using modern standards, which could result
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Figure 4

in shorter sentences and therefore shorter chunks.

6.3 Segmentation Evaluation: Precision
Satisfied that our segmentation tools are bound by
length as required, let us now turn and check how
good they are at finding good positions to segment
the text. We focus first on the performance re-
garding Geonic texts of the first millennium and
then consider whether to what degree this perfor-
mance is maintained when the same methods are
run slightly later medieval Hebrew texts of the Ris-
honim period.

Figure 5 shows how precision of segmentation
behaves for Geonic texts, as a function of tool and
segmentation strictness in GT. Moving from left
to right, we see the results for the closed-model
LLMs, then the few-shot flow over DictaLM2.0.
After that we have SaT-12L-sm, and then finally
we review our three Hebrew BERT models. For
each of the three BERT models we present here,
there are four results, corresponding to the four
variations of using them: whether we use periods
or also colons to predict a segmentation point, and
how deep in the options-stack we look in search
of these delimiters (K = 5 or 15). Figure 7 shows
the same plot, but this time for the entire dataset,
combining Genoim and Rishonim.

General Trends. As expected, as we move from
top to bottom and restrict segmentation to more
obvious markers, we see a decrease in precision.
From a birds-eye view, we can see that most models
have similar median performance, and experience
the same trends as we move from top to bottom.
Specifically, it seems from this that the open models
compete well with the closed-model LLMs, at least
for the current instruct prompts we used here. Note

also that, as mentioned in Section 6.1 and shown
in Table 2, the generative models results are not for
the full dataset, but rather limited to those where
the model did not modify or corrupt the text.

Best MLM. The best performance among the
MLM solutions was seen with BEREL, the BERT
model trained on Historical Hebrew. Especially
for the most relaxed mode (BPM) it has near-
perfect precision, and outperforms all other so-
lutions. (Note once more that claude-sonnet-v2,
which also seems to do well for BPM, is scored on
only half of the texts, which makes it difficult to
draw conclusions from that performance).

Performance of SaT. The model provided by
Frohmann et al. (2024) seems to do as well and
even better than all MLMs, with the exception of
BEREL. This holds for all three marker-selection
options. As this is a universal model, compared
to the other tools which were all trained specifi-
cally on some variation of Hebrew language, this
is quite impressive and satisfying, considering that
the competition has an "unfair advantage".

The above points hold both when limiting our
view to the earlier Geonic texts, as well as when
expanding our view to include the Rishonim. This
is encouraging, as it means our method will serve
us well not only for ancient Hebrew, but for broader
sections of historic Hebrew as well.

7 Conclusion

In conclusion, we have identified a practical and
high-performing method of segmenting historic He-
brew texts, using the MLM-based method with the
BEREL BERT model for historic Hebrew. We
have shown that it far outperforms SaT, and that
its performance rivals that of the LLMs, without
the instability of the LLMs, and without having
to rely on the commercial/closed nature of the big
LLMs. Furthermore, we release our code so that
this method can be easily run by the NLP commu-
nity any other Hebrew text, plugging in any desired
Hebrew BERT model as desired. Finally, we re-
lease the test dataset, the first of its kind, so that
future segmentation models developed by the NLP
community can be evaluated and compared to the
benchmarks that we report here.
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Figure 5: Precision of each method, as dependent on the GT labels we use, for the 8th-10th century Geonic texts.
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2023. "Where’s the Point? Self-Supervised Multilin-
gual Punctuation-Agnostic Sentence Segmentation".
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7215–7235, Toronto, Canada.
Association for Computational Linguistics.

David Ponce, Thierry Etchegoyhen, and Victor Ruiz.
2023. Unsupervised Subtitle Segmentation with
Masked Language Models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
771–781.

segment-any text. 2025. wtpsplit: Toolkit to segment
text into sentences or other semantic units in a robust,
efficient and adaptable way. https://github.com/
segment-any-text/wtpsplit. Accessed: 2025-
01-22.

Amit Seker, Elron Bandel, Dan Bareket, Idan
Brusilovsky, Refael Shaked Greenfeld, and Reut Tsar-
faty. 2021. Alephbert:a hebrew large pre-trained lan-
guage model to start-off your hebrew nlp application
with. Preprint, arXiv:2104.04052.

Wei Shi, Shuang Li, Kerun Yu, Jinglei Chen, Zujie
Liang, Xinhui Wu, Yuxi Qian, Feng Wei, Bo Zheng,
Jiaqing Liang, et al. 2024. SEGMENT+: Long Text
Processing with Short-Context Language Models.
arXiv preprint arXiv:2410.06519.

Avi Shmidman, Joshua Guedalia, Shaltiel Shmidman,
Cheyn Shmuel Shmidman, Eli Handel, and Moshe
Koppel. 2022. Introducing BEREL: BERT Embed-
dings for Rabbinic-Encoded Language. Preprint,
arXiv:2208.01875.

Shaltiel Shmidman, Avi Shmidman, Amir DN Co-
hen, and Moshe Koppel. 2024a. Adapting LLMs
to Hebrew: Unveiling DictaLM 2.0 with Enhanced
Vocabulary and Instruction Capabilities. Preprint,
arXiv:2407.07080.

Shaltiel Shmidman, Avi Shmidman, and Moshe Koppel.
2023. Dictabert: A state-of-the-art bert suite for
modern hebrew. Preprint, arXiv:2308.16687.

Shaltiel Shmidman, Avi Shmidman, Moshe Koppel, and
Reut Tsarfaty. 2024b. MRL parsing without tears:
The case of Hebrew. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
4537–4550, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

A Appendix: LLM Prompts

In this appendix, we share the prompts used when
using Generative AI LLMs for segmentation, to
allow full reproducibility.

A.1 DictaLM2.0 Few-shot prompt
Figure 8 provides the shots we used for the few-
shot flow with DictaLM2.0 (Shmidman et al.,
2024a). For each shot we provided the raw text
(using the "raw" key) and the segmented text (us-
ing the "chunked" key"). Segmentation points were
marked using double-slash ("//"). Few-shot flows
work by providing the LLM the shots as context,
and then the input text as a new input, and then
allowing the LLM to continue by completing the
output. LLMs have been found to pick up on pat-
terns in the "shots" and then apply them directly to
the new input text.

It is important to note that few-shot flows are
very brittle. Specifically, they will react differently
even when the order of the shots is changed, or the
key names (in our case - "raw" and "chunked") are
changed. Thus, for reproducing the results shown
in our paper, please make sure to use the exact
setup we used, as can be found in our github repo.

A.2 Closed LLMs Instruct prompt
For the closed LLMs, we used the following
prompt template:

"please take the following unpunctuated
text, and punctuate it. Punctuation
includes periods, commas, question
marks, semicolons and colons. Other than
punctuating, keep the text exactly as
it is. If a word is clipped at the end,
like , leave it like that. Return the
punctuated text between <punctuation>
tags: $text Punctuated text:"

During runtime, the $text variable is assigned the
value of the inputted text. The "Punctuated text"
text is the prefix of the reply, which for models
such as Claude is a "hint" to nudge the model into
following the instructions.
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(a) shot #1 (b) shot #2

(c) shot #3 (d) shot #4

Figure 8: Shots used in few-shot segmentation flow using DictaLM2.0. Note how we varied the type of input, and
specifically ensured that some cases had segmentation points at the end of the text and some not, so as to encourage
the model away from simplistic segmentation rules such as "end of line".
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Abstract

We present a novel framework for authorial
classification and clustering of the Qumran
Dead Sea Scrolls (DSS). Our approach com-
bines modern Hebrew BERT embeddings with
traditional natural language processing features
in a graph neural network (GNN) architecture.
Our results outperform baseline methods on
both the Dead Sea Scrolls and a validation
dataset of the Hebrew Bible. In particular,
we leverage our model to provide significant
insights into long-standing debates, including
the classification of sectarian and non-sectarian
texts and the division of the Hodayot collection
of hymns.

1 Introduction

The discovery of the Dead Sea Scrolls in the mid-
20th century represented a turning point in bib-
lical studies and Jewish history, providing a new
view into the religious and cultural world of early
Judaism and into the theological background of
Christianity (VanderKam and Flint, 2005). We dis-
cuss the scrolls found in the caves from Qumran,
on the shore of the Dead Sea. This is a large col-
lection of approximately 900 scrolls representing a
large variety of compositions (i.e. literary entities,
books or treatises), each of them featuring its own
development history. A large part of the scrolls
represents the writings of a community (Collins,
2010) while many other scrolls potentially origi-
nate with wider circles of contemporary Judaism.
These distinctions, in particular questions of author-
ship, classification, and origins remain unresolved,
fueling scholarly debates for decades. The present
study focuses on two such questions.

The first question is the inner division and com-
position of the collection of Hodayot hymns, par-
ticularly the well-preserved copy 1QHa from Qum-
ran Cave 1. While earlier research distinguished
a class of "Teacher Hymns" from the "Commu-
nity Hymns" in the rest of the collection (Douglas,

1999), this division is now contested or modified
(Newsom, 2021; Johnson, 2022). The second ques-
tion is the distinction between sectarian and non-
sectarian scrolls; While this distinction was once
considered consensus (Dimant, 2014), it is now
debated (Martínez, 2010).

Compounding these challenges is the fragmen-
tary nature of the scrolls. The title "scrolls" may be
misleading, since most of the corpus is preserved
in fragments except for a handful of more com-
plete scrolls. Many texts are incomplete, with re-
constructed or uncertain words, making traditional
manual analysis both laborious and subjective.

Recent advances in Natural Language Process-
ing offer new possibilities for analyzing ancient
texts like the DSS. However, applying compu-
tational techniques to ancient Hebrew presents
unique difficulties. Hebrew is a highly inflected
and morphologically rich language with ambigu-
ous word boundaries, inconsistent orthography, and
the absence of vowels in many texts. Even mod-
ern Hebrew NLP tools face accuracy issues (Tsar-
faty et al., 2019). These challenges increase when
dealing with ancient forms of the language. This
complexity, combined with the fragmentary and
noisy nature of the DSS, necessitates robust and
innovative computational approaches.

To our knowledge, computational approaches to
the DSS are limited. Traditional stylometry meth-
ods have been applied, as demonstrated by Starr
(Starr, 2019), and classifiers for biblical texts have
been explored in the Dicta-Tiberias project1. Ad-
ditionally, Yoffee et al. (Bühler et al., 2024) inves-
tigated text partitioning in the Bible, highlighting
the potential for structural analysis using computa-
tional techniques. Van Hecke’s (Van Hecke, 2018)
work represents one of the only applications of
NLP methods to the DSS, using basic computa-
tional linguistics techniques like tri-grams. While

1https://tiberias.dicta.org.il/
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Figure 1: A sketch of the research outline. (a and b) Data collection and chunking. (c) Converting the text to
numerical embeddings with BERT semantic model. (d) Graph generation based on statistical features. (e+f) Graph
neural network training and extraction of integrated embeddings. (g) Application to clustering and classification
questions.

tri-grams can effectively capture local orthographic
and morphological patterns (Kulmizev et al., 2017),
they are limited in their ability to encode deeper
semantic relationships. In our study, we build upon
this foundational work by incorporating tf-idf (see
definition below) and trigram features, which pro-
vide a more nuanced representation of word im-
portance across the corpus. We additionally ap-
ply modern semantic embeddings from BEREL
(Shmidman et al., 2022), a pre-trained BERT model
trained on rabbinic Hebrew literature. This hybrid
approach allows us to integrate statistical and se-
mantic features, addressing both the fragmentary
nature of the DSS and the inherent challenges of
processing ancient Hebrew.

Graph Neural Networks (GNNs) have emerged
as powerful tools for representing textual data, par-
ticularly for tasks involving relationships between
textual entities. Models such as TextGCN (Yao
et al., 2018) and BertGCN (Lin et al., 2021) have
demonstrated success in text classification by lever-
aging graph structures, where nodes represent doc-
uments or words, and edges capture co-occurrence
or semantic relationships. Other works (Yang et al.,
2021; Huang et al., 2019), explore alternative GNN
architectures, showcasing the versatility of graph-
based approaches in text-related tasks.

Unsupervised clustering for text data, particu-
larly ancient and fragmentary texts like our corpus,
presents substantial difficulties.

(Kipf and Welling, 2016) have shown good results
in unsupervised learning by leveraging graph neu-
ral networks to generate latent representations that
can be used for clustering. However, their appli-
cation to textual datasets, particularly ancient and

Hebrew corpora, has been limited (some related
research exists, such as clustering in the Akkadian
language (Stekel et al., 2021)). Our work inte-
grates semantic and statistical features of the DSS
within a graph neural network architecture to ad-
dress the challenges posed by the unique charac-
teristics of this corpus. The resulting embeddings
of text chunks are used for clustering and classifi-
cation of the scrolls, providing significant insights
into their structure and content.

2 Methods

We developed a novel model for representing the
DSS corpus. Below, we describe the data collection
and preprocessing, the representation model, hyper-
parameter tuning and performance evaluation.

2.1 Data Collection
We used transcriptions of the DSS based on the data
files prepared by Martin Abegg2. This data pow-
ers popular biblical software like Accordance and
DSS Electronic Library. We used the Text-Fabric
(Roorda, 2019) package, enabling the extraction of
both textual content and morphological features for
each word.

The corpus was filtered using several criteria.
Paratextual elements such as document name, frag-
ment, column, and line numbers were removed,
along with all reconstructed text. Letters marked as
probable or possible by the editors were retained,
while textual gaps were excluded to prevent their
analysis as inherent characteristics of the docu-
ments. Additionally, doubt marks, non-Hebrew
characters, and redundant spaces were eliminated.

2https://github.com/ETCBC/dss
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We focused exclusively on Hebrew scrolls, exclud-
ing Aramaic and Greek. Biblical scrolls were not
included in the analysis but rewritten biblical texts
like 4Q364 were studied since those texts are com-
parable to other Qumranic material. Finally, the
analysis was restricted to Hebrew scrolls contain-
ing a minimum of 300 words.

The texts of each composition were divided
into fixed-size chunks; after evaluating various
chunk sizes and overlapping ratios (details in Ap-
pendix A), a chunk size of 100 words with an over-
lap of 15 words was chosen. This configuration
ensures sufficient representation of smaller scrolls,
many of which contain fewer than 500 words, while
maintaining granularity for within-scroll analyses.
This configuration yielded a dataset with 978 text
chunks.

In addition, we curated a set of labels for valida-
tion purposes: sectarian / non-sectarian classifica-
tion and composition name labels, e.g. War Scroll,
Instruction, etc (Appendix B).

2.2 Document Representation
We represented each text chunk using both seman-
tic and statistical features. For the semantic compo-
nent, we rely on two Hebrew BERT-based models:
BEREL, which is trained on rabbinic texts (closer
to DSS Hebrew than modern Hebrew), and Aleph-
BERT (Seker et al., 2022), which is more general
for Hebrew tasks. Each text chunk is encoded as
a 768-dimensional vector by extracting the final
hidden representation of the [CLS] token from the
model’s last layer.

For the statistical component, we use term fre-
quency–inverse document frequency (tf-idf). Given
a term t in a document d, tf-idf is defined as:

tf-idf(t, d) = tf(t, d) · log
(

N
df(t)

)
,

where tf(t, d) is the frequency of t in d, N is the
total number of documents, and df(t) is the num-
ber of documents containing t. Additionally, we
include tri-grams: sequences of three consecutive
characters, to capture local orthographic and mor-
phological features.

2.3 Graph Construction
We use a graph neural network (GNN) framework
where adjacency matrices are derived from co-
sine similarity between text chunk embeddings
(tf-idf and trigram). For each embedding type,
we first create a matrix A⋆ ∈ Rnchunk×nchunk

where A⋆
ij = cosine_similarity(chunki, chunkj)

if cosine_similarity(chunki, chunkj) > t, and
A⋆

ij = 0 otherwise.
Let D⋆ be the degree matrix of A⋆. We then

apply symmetric normalization to obtain the matrix
Ã⋆ ∈ Rnchunk×nchunk :

Ã⋆ = (D⋆)−
1
2 A⋆ (D⋆)−

1
2 .

We perform this procedure separately for both em-
bedding types (i.e., tf-idf and trigram), resulting
in Ã⋆

tfidf and Ã⋆
trigram. Next, we combine these nor-

malized matrices via element-wise addition:

Mij = Ã⋆
tfidf,ij + Ã⋆

trigram,ij .

We then apply a threshold h to M to form our ad-
jacency matrix A, and normalize it using the same
symmetric normalization procedure, yielding our
final adjacency matrix Ã. This adjacency matrix
represents edges between text chunks whose com-
bined similarity (over tf-idf and trigram) exceeds
the threshold h.

2.4 Model
For generating refined text embeddings, we use
a Graph Auto Encoder model (Kipf and Welling,
2017). Our model uses a two-layer GNN to en-
code graph structure and node features into a low-
dimensional latent space.

The graph is represented by a normalized ad-
jacency matrix Ã ∈ RN×N . Node features are
represented as a matrix X ∈ RN×D, where each
node is initialized with a BERT-based embedding
vector. The latent space representation is given by
Z ∈ RN×F . The GNN layers propagate informa-
tion through the graph, defined as:

GNN(X,A) = ÃReLU(ÃXW0)W1, (1)

where W0 and W1 are trainable weight matrices.
The decoder reconstructs the adjacency matrix A

using the inner product of the latent representations.
For a given edge Aij , the decoder predicts the edge
probability as:

Âij = σ(Zi · ZT
j ), (2)

where σ(·) is the sigmoid function, and Zi and Zj

are the latent representations of nodes i and j. The
reconstruction loss is computed as:

L = − 1

|E + |
∑

(i,j)∈E+
log Âij

− 1

|E − |
∑

(i,j)∈E−
log(1− Âij),

(3)
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Figure 2: Unsupervised scroll clustering results using different feature extraction methods. Red bars correspond to
classical NLP features, blue bars to Hebrew BERT embeddings).

where E+ and E− are the sets of positive and neg-
ative edges, respectively. Negative edges are sam-
pled using negative sampling (Veličković et al.,
2018), which is a technique that randomly selects
non-existing edges to serve as negative examples in
the training. We specifically ensure that the number
of negative edges matches the number of positive
edges.

During training, we apply a dropout rate of 0.2
along with batch normalization to prevent overfit-
ting.

2.5 Clustering and evaluation

We used two clustering algorithms: agglomerative
clustering with Ward’s linkage (Jr., 1963) for hi-
erarchical clustering, and k-means clustering for
flat clustering. Both Ward’s linkage and k-means
clustering optimize the same objective: minimiz-
ing within-cluster variance, expressed as squared
Euclidean distances. The number of clusters is
set to the number of compositions in the corpus,
reflecting the basic distribution of our dataset.

To assess the clustering performance, we used
the Jaccard measure (Rousseeuw, 1987) for ex-
ternal evaluation, where the labels correspond to
the compositions. We also used the Dasgupta ob-
jective (Dasgupta, 2015), which is a custom cost
function for evaluating hierarchical clustering mod-
els. This method calculates the cost function over
a hierarchy of points, given pairwise similarities
between those points. In our approach, these sim-
ilarities are determined by the adjacency of text
chunks: for any two consecutive chunks, we assign
a similarity score of 1.

2.6 Baselines

We compared our method against several baseline
embedding models, including character trigrams,
tf-idf and BERT. For each baseline, we applied
the same clustering procedure as in our proposed
method, using k-means on the text chunk embed-
dings, with k set to the number of scrolls or com-
positions.

2.7 Parameter Tuning

To determine the optimal hyper-parameter config-
uration, we performed a grid search over a range
of values for the number of edges (derived from
t and h), graph construction methods, hidden di-
mensions, and learning rates. The optimization
criterion was based on minimizing the training
loss, with early stopping applied when the loss
improvement was less than epsilon. For each set
of hyper-parameters, we used 10-fold nested cross-
validation to evaluate the embedding performance,
measured as the average over all folds. The models
were trained using the Adam optimizer (Kingma
and Ba, 2017) with a weight decay regularization
term of 5e-4.

2.8 Code and data availability

The code developed for this paper has been made
publicly available 3, and the resulting dataset has
been uploaded to the Hugging Face Hub 4 to facili-
tate future research efforts. All of our algorithms
were implemented in Python 3.10 and executed on

3https://github.com/yonatanlou/QumranNLP
4https://huggingface.co/datasets/yonatanlou/

QumranDataset
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a personal MacBook Pro (M2, 2022, 16 GB RAM,
512 GB SSD).

3 Results

We developed a new method that applies a GNN
architecture to integrate semantic and linguistic fea-
tures for clustering of the Qumran Scrolls. First,
we identified the optimal parameters by tuning the
unsupervised model on the entire Qumran corpus,
demonstrating that our algorithm outperforms base-
line methods. We then validated the algorithm on
the Hebrew Bible dataset, achieving similar per-
formance and confirming its robustness. Finally,
we used the trained model to extract improved text
embeddings, which were applied to address vari-
ous well-known research questions. We used the
BEREL model which yields the best results across
our experiments.

3.1 Model evaluation

We evaluated our model based on its performance
on the entire Qumran corpus, yielding a GNN with
978 nodes and 9,391 edges. This evaluation ex-
plored different initial BERT embeddings and com-
pared them to our baseline methods (see Figure 2).
Interestingly, classical methods like tri-grams and
tf-idf demonstrated competitive results compared
to the BERT embeddings, likely due to the unique
characteristics of our corpus. The GNN-based
methods in these experiments were based on tf-
idf and trigram based similarities, yielding the best
overall performance.

3.2 Text clustering

The present section will address two research ques-
tions about the homogeneity and coherency of the
Qumran corpus, both on a large and a smaller scale.
It was apparent earlier on that some scrolls reflect
the vocabulary, style and theology of a separate
community with its ideas and institutions. The core
texts of that group were found as well preserved
scrolls in Qumran Cave 1 and were published in
the 1950s. It was also clear that some compositions
did not belong to the Yahad community but were
rather a heritage of wider circles. The dividing line
between the categories seemed clear at first (New-
som, 1990; Dimant, 2014), but in recent decades it
has been debated. Many new fragmentary compo-
sitions were found in Cave 4 whose social identity
is uncertain, and in addition the definition of a
"sect" and the outright connection between it and

its literary product was problematized. We there-
fore venture to test whether these categories could
be achieved using advanced clustering techniques.
A first research question pertains to the composi-
tion and inner-variety of the collection of Hodayot
hymns.

Clustering within the Hodayot. We examine
one of the large scrolls from Cave 1, the Hodayot
scroll 1QHa containing religious hymns on the life
of the community. These hymns have parallels
in fragmentary copies from Cave 4, but they will
not be examined here as the problem is clearest
on the largest copy. A prevalent theory distin-
guished two types of hymns: Teacher Hymns and
Community Hymns, as defined in (Douglas, 1999;
Johnson, 2022) based on earlier studies. While
the hymns are quite similar, experts detected in
them different vocabulary and themes. The exact
extent of the Teacher Hymns within 1QHa is de-
bated. Douglas saw them as a block of material
concentrated in columns 10-17, and the Commu-
nity Hymns in columns 2-8, 18-24. Douglas con-
siders Columns 9 and 18-20 as transition material
enveloping the Teacher Hymns, that can therefore
belong to each of the groups. Other studies saw the
Teacher Hymns as a dispersed group through the
entire scroll. The existence and extent of Teacher
Hymns are examined here. We applied our GNN
model to the Hodayot composition. Using these
embeddings, we applied hierarchical clustering to
perform unsupervised clustering. Our analysis (Fig-
ure 3) identified the following clusters:

• Cluster 1 (Purple) and cluster 2 (Red) contain
Teacher Hymns from columns 10-16, with two
chunks from the enveloping material (columns
18-19).

• Cluster 3 (orange) and cluster 4 (green)
contain primarily Community Hymns from
columns 1-9, 18-23, with several transitional
chunks from column 9 and two hymns from
columns 14 and 15. Three chunks from
columns 11, 12, 15 stand at the edge of the
cluster.

The results overwhelmingly confirm the exis-
tence of a distinct category of Teacher Hymns.
Moreover, the results confirm that Teacher Hymns
are clustered at the center of 1QHa, with only a
few outliers. These outliers will be discussed in a
dedicated article intended for the Qumran research
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Figure 3: Dendrogram of the Hodayot composition clus-
tering using the best-performing GNN model.

community. Notable is the identity of 3:33–4:26,
which received a cluster of its own, as well as the
presence of 14:10–18 and 15:32–41 within the clus-
ter of Community Hymns. The blurred identity of
the transition passages, as well as some outliers,
may be attributed to a unifying “Maskil” redaction
(Johnson, 2022).

Classification of sectarian scrolls. The cluster-
ing of sectarian compositions produced less defini-
tive results although it did point out two main
clusters of sectarian compositions. The cluster-

ing depends on three categories: 1) core texts of
the yahad community based on their vocabulary
and content: War Scroll, Community Rule, Rule of
the Congregation, Hodayot, CD (Damascus Docu-
ment), Pesharim and similar documents (Dimant,
2014). 2) texts that do not display sectarian fea-
tures (such as Apocryphom Jeremiah), 3) Other
compositions which, while displaying some similar
features, are not fully consistent and their identity
remains debated (for example Shir Shabbat - the
Songs of the Sabbath Sacrifice). In this section
we clustered compositions rather than chunks. To
this end, we averaged each composition’s chunk
embeddings to obtain one vector per composition.
Then we performed hierarchical clustering on these
composition-level embeddings. The resulting den-
drogram is provided in Figure 4. The labeling in
this diagram is based on the composition level (e.g.,
Hodayot), with some labels representing groups of
related compositions, such as Pesharim, Rewritten
Pentateuch, and Calendrical Texts. The classifi-
cation as sectarian or non-sectarian is provided in
Appendix B. It is important to note that the clus-
tering process was entirely unsupervised and only
later compared with predefined labels.

Our expectation was that sectarian and non-
sectarian texts would cluster separately. The Cal-
endrical Texts and the Copper Scroll served as test
cases, as their distinct linguistic profiles should
stand out in an unsupervised clustering scheme.
The dendrogram shows two main clusters of sectar-
ian compositions, with text marked in black. Some
appear close to texts of uncertain identity, whose
sectarian status is now further supported. The yel-
low cluster includes seven clearly sectarian texts,
such as the Pesharim, MMT, the War Scroll, and
the Community Rule, making it strongly indica-
tive of sectarian content. The Apocryphal Psalms
(11Q11) also appear here, but the composition’s
small size and the wide dispersion of its embed-
dings limit the reliability of its clustering, espe-
cially after averaging those embeddings. At the
edge of the green cluster is CD, a prominent sectar-
ian text. Its proximity to the main sectarian cluster
reflects its sectarian character, whereas its literary
diversity in terms of genre and content accounts for
its location outside the core sectarian cluster.

The gray cluster at the top of the dendrogram
contains core sectarian texts such as Hodayot and
The Rule of the Blessings, next to the two wis-
dom texts Instruction and Mysteries. It also in-
cludes poetic compositions such as the Collections
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of Psalms, Barkhi Nafshi, Songs of Maskil, Shir
Shabbat, and Daily Prayers, alongside the prayers
in Dibre Hameorot. This grouping highlights a set
of poetic and prayer texts whose sectarian identity
has been debated, now shown to align closely with
core sectarian compositions.

The Calendrical Texts and the Copper Scroll
cluster separately as expected, forming a distinct
group with high distance between other composi-
tions.

Analysis of the embeddings for each composi-
tion revealed that the dendrogram representation
might be misleading for compositions with high
dispersion across text chunks, such as the Apoc-
ryphal Psalms, Para Kings, Festival Prayers, and
the Book of Tobit. Their average representation
in the dendrogram does not fully reflect their true
properties. For instance, the entire red cluster con-
sists of such compositions. Upon analyzing these
text chunks, we found that most are highly fragmen-
tary, while the Book of Tobit exhibits significant
stylistic differences between its text chunks.

The green cluster at the bottom of the dendro-
gram highlights the model’s ability to capture the
stylistic characteristics of rewritten Bible texts.
This cluster includes the Temple Scroll, Rewrit-
ten Pentateuch texts, Dibre Moshe, Books of Tobit,
and the Book of Jubilees. This generic grouping
overrides the sectarian/non-sectarian division, gen-
erally placing the compositions in this cluster in
the non-sectarian group and instead aligns them
based on genre. While this clustering does not
directly address the sectarian question, it demon-
strates the model’s ability to identify main genres.
In summary, the model successfully confirms the
grouping of core organizational texts and aligns
Dibre Hameorot and Instruction with them. It ac-
curately identifies clear non-sectarian texts such
as The Book of Tobit and The Book of Jubilees.
These categorizations align with common labels
and highlight some unexpected groupings. How-
ever, the model does not produce distinct results for
the Rewritten Bible and prayer genres, reflecting
the complexity of these categories.

4 Conclusions

Our research introduces a novel GNN-based
method that effectively integrates semantic and lin-
guistic features for clustering Qumran texts. By
training an unsupervised model on the entire cor-
pus, we identified optimal parameters and demon-
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Figure 4: Dendrogram of compositions with sectarian
or non sectarian label.

strated that our approach outperforms baseline
methods.

The model’s ability to capture complex relation-
ships between text fragments and represent the text
with improved embeddings, allowed us to address
significant research questions related to authorship
and sectarian classification within the DSS corpus.
Our clustering results demonstrate that the cluster-
ing aligns closely with traditional divisions estab-
lished in the literature.

While our model provided promising results,
some of its aspects could be improved in future
work. Sentence-transformer models are particu-
larly effective for processing chunks of text and of-
fer the potential for greater precision. While there
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is currently no pre-trained Hebrew model available,
these models could be fine-tuned on non-debatable
text chunks to create a robust embedding space
specifically tailored to the DSS corpus.

5 Limitations

While our study demonstrates promising results
in clustering and classifying the Dead Sea Scrolls,
it has several limitations that warrant considera-
tion. Specifically, the fragmentary nature of the
DSS corpus poses inherent challenges. The pre-
processing steps in this work could be improved,
and a comprehensive study dedicated to this topic
alone would be beneficial. Moreover, the corpus is
continually refined through ongoing manual work,
which means that the data used in this study may
differ slightly from future versions. The present
text of the scrolls is essentially that of the Discov-
eries in the Judaean Desert (DJD) series, as further
refined editions lack a comprehensive electronic
repository.

While our clustering results align with traditional
scholarly divisions, the evaluation relies on prede-
fined labels that may be subjective. The ground
truth for sectarian classification and text authorship
is not absolute, thus limiting the objectivity of the
performance metrics.
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A Pre-processing parameter evaluation

A.1 Chunk Size Evaluation
When dividing the DSS texts into chunks, a critical
factor was selecting an appropriate chunk size to
balance representation and analytical granularity.
Chunk sizes between 25 and 150 words were eval-
uated, with overlapping ratios of 5%, 10%, and
15%. Smaller chunk sizes increase the granular-
ity of the analysis but risk fragmenting the text
excessively, while larger chunk sizes reduce gran-
ularity and limit the number of chunks for shorter
scrolls. This limitation is particularly problem-
atic for scrolls containing fewer than 500 words,
as larger chunks may result in only one or two
chunks per scroll, hindering within-scroll cluster-
ing. While more advanced chunking techniques
exist (Qu et al., 2024), we chose to use a fixed-size
chunking method with overlap due to the highly
fragmentary and unordered nature of our corpus,
which lack the clear structural organization seen in
the Bible.

The evaluation showed that chunk sizes of 100
and 150 words yielded the best performance across
intrinsic and extrinsic clustering metrics. While
150-word chunks slightly outperformed in some
cases, 100-word chunks were ultimately chosen
to allow for better representation of shorter scrolls
and greater flexibility in downstream tasks. An
overlap of 15 words was selected as it provided a
good balance between minimizing information loss
and computational efficiency.

B Labeling details

We categorized the compositions into sectarian,
non-sectarian, and texts with undetermined identity
as follows:

• Sectarian texts: Calendrical Texts, Catena
and Florilegium, CD, Community Rule, Daily
Prayers (4Q503), Festival Prayers (4Q509),
Hodayot, Instruction (Musar Lamevin),
Melchizedek, Mysteries, Pesharim, Rule of
Blessings, Rule of the Congregation, Songs of
Maskil, Tanhumim, War Scroll, and 4QMMT.

• Non-sectarian texts: Book of Jubilees, Book
of Tobit, and Copper Scroll (3Q15).

• Texts with undetermined identity: Apoc-
ryphal Psalms, Apocryphon Jeremiah, Apoc-
ryphon Joshua, Barkhi Nafshi, Collections
of Psalms (4Q380-381), Dibre Hameorot,

20



Dibre Moshe (1Q22), Para Kings (4Q382),
Prophecy Joshua, Pseudo-Ezekiel, Rewritten
Pentateuch, Ritual of Marriage (4Q512), Shir
Olat Hashabbat, Temple Scroll, and Purity
Ritual (4Q274).

The full list of labels, including labels for sectarian,
composition, and genre, is available online.5

5https://github.com/yonatanlou/QumranNLP/blob/
main/Data/Qumran_labels.csv
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Abstract

We investigate the use of machine learning
for classifying proto-cuneiform economic texts
(3,500-3,000 BCE), leveraging Multi-Class
Support Vector Machines (MSVM) to assign
text type based on content. Proto-cuneiform
presents unique challenges, as it does not en-
code spoken language, yet is transcribed into
linear formats that obscure original structural
elements. We address this by reformatting tran-
scriptions, experimenting with different tok-
enization strategies, and optimizing feature ex-
traction. Our workflow achieves high label-
ing reliability and enables significant metadata
enrichment. In addition to improving digital
corpus organization, our approach opens the
chance to identify economic institutions in an-
cient Mesopotamian archives, providing a new
tool for Assyriological research.

1 Introduction

Proto-cuneiform is a writing system which
emerged in southern Mesopotamia at the end of
the 4th millennium BCE.1 It consisted of over 800
signs representing numbers, goods, and adminis-
trative procedures, which were impressed on small
clay tablets using a reed stylus. The entire corpus
consists of almost 7,000 texts, about 5,500 of which
are economic accounts, used alongside other tools,
such as small clay "tokens", bullae, and cylinder
seals, to control the operations of early cities (Fig.
1).

The majority (ca. 80%) of proto-cuneiform ar-
tifacts originate from the large Eanna area in the
city Uruk (modern-day Warka, Iraq). Excavations
at the site since the 1920s by the Deutsche Orient-
Gesselschaft (DOG), unearthed more than 5,000

1The debate whether proto-cuneiform is genuine "writing"
or just a mnemotechnical tool similar to other used at the time
in the Ancient Near East is open. It is rooted in an exclusive
definition of writing, which only allows glottographic systems
(like later cuneiform), and not semasiographic ones (like proto-
cuneiform).

Figure 1: MS 4631. A clay envelope with a seal im-
pression (right) and an array of tokens kept inside it.
Artifacts of this kind were the predecessors of writing,
and continued to be used by the accountants after writ-
ing was invented as well.

texts. The focus of the Eanna excavators was, how-
ever, architecture, which determined the choice of
a less-than-optimal approach towards other finds
(Nissen, 2024).

Today, our understanding of those accounts’ orig-
inal use context is limited. On the one hand, this
is due to the excavation documentation, where in-
formation is constrained to a square coordinate in
a 20x20 m excavation grid, and occasional com-
ments. On the other hand, it does not help that
the tablets were already discarded in antiquity, and
used as construction material within Eanna, so their
deposition location is not the one in which they
were written or stored. As one may expect in such
a situation, they are often severely damaged.

Nevertheless, already Englund suggested that
the distribution of tablets across the site echoes the
original institutions from where they were taken
(Englund, 1998). He observed that despite the sec-
ondary character of their deposition, accounts doc-
umenting the operations of the same sector of the
archaic economy tend to be found together. In
recent years, scholarly efforts into learning more
about this site and the origins of writing, allowed us
to gain a better understanding of the archaeological
record of Uruk (Nissen, 2024; Naccaro, 2025).

In this article, we offer a machine learning
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approach to automatic labeling of those archaic
tablets according to the economic sectors they deal
with — the account type. Once a trustworthy
method of doing this is established, we can mea-
sure the accounts’ similarity to each other and try
to cluster them on that ground to determine local
environments — or even offices — they were origi-
nally written in. In the future, we may as well try
to artificially complete, or at least expand, the dam-
aged artifacts using a model of similar accounts as
a template. Those tasks are not innovative on their
own — in fact, they are what cuneiform experts tra-
ditionally do — however, considering the amount
of material to work with, we think that developing
an automatic solution is the best approach for mea-
surable results at scale that are also reproducible.

Most importantly, however, automatically gen-
erated account labels are an additional metadata
point which, together with a method of identifying
similar texts in terms of content, allows other re-
searchers to navigate the archaic corpus in a more
informed way. As of now, information about ac-
count types is dispersed across different publica-
tions, which makes exploring the otherwise com-
pletely digitized corpus difficult. Account type
metadata, either with original citations or an "au-
tomated" tag, is available through 4ky (Zadworny,
2023), an open-source web application.

2 Data

To achieve the goal of trustworthy automatic ac-
count type classification, we used an existing edi-
tion of a comparable (even if much smaller) col-
lection of archaic tablets by Monaco (2007, 2014,
2016) as the main part of the training dataset. Im-
portantly, the texts edited by Monaco come from
the antiquities market, and their archaeological ori-
gin is unknown. It is accepted as unlikely that they
originate from the Eanna area of Uruk (Lecompte,
2023). This set of accounts was extended with
some tablets from Uruk and other smaller collec-
tions which were discussed by Englund (1998), and
few additional texts which we classified ourselves.2

The transcriptions of all the accounts used in
this study were sourced from the Cuneiform Digital
Library Initiative (contributors, 2025). The account
type tags assigned by the aforementioned authors
to the training dataset were extracted and assigned
to the transcriptions manually.

Total number of transcriptions used for training

2The accounts labeled by us have a "manual" tag in 4ky.

was 596. They were divided into seven account
types: animal husbandry, cereal, and dairy texts,
accounts of fields, fish, and humans, as well as
documents concerning textiles. Given that some
accounts contain a mix of items from multiple eco-
nomic sectors, we occasionally assigned more than
one tag to one text. This influenced the algorithm
design, as explained later.

The composition of the training dataset reflects
the archaic corpus as a whole. Most of the accounts
are cereal texts (323 in the training set), followed
by animal husbandry texts (125). Together, these
two types dominate the corpus, making the devel-
opment of automatic labeling for these accounts
particularly useful.

Automatic labeling of dairy texts (23), as well
as fish (22) and textile accounts (24) is an interest-
ing task: although they are easily identifiable for
human scholars thanks to well-understood seman-
tic sets of signs, they are relatively rare, making
training data scarce.

Field texts (42) are not as common either, and
some of them are entirely mathematical in nature,
only identifiable as such if we closely follow the
accountant’s calculations.

Human accounts (58) are challenging for an-
other reason: they usually contain lists of entries
understood as individual names and composed of
semantically unrelated signs, which may confuse
the model. Texts usually assigned to other types,
such as grain distributions (a cereal text) or assign-
ments of animal herds (an animal husbandry text)
exhibit the same characteristics, adding to the diffi-
culty.

As an additional limitation, we excluded ac-
counts with fewer than 6 signs from the training
set, as our experiments showed this led to an im-
provement of our model’s accuracy.

3 Method

The main requirements for the model were its trust-
worthiness and the ability to assign multiple labels
to a single text. Additionally, since we intend for
scholars to use our tools online, we aimed for a
lightweight implementation.

3.1 Model architecture

Due to the small and unbalanced training dataset,
using a neural network was not the optimal solution.
Instead, we decided to use support vector machines
(SVMs), which are known to perform better in such
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situations.
To allow for assigning multiple labels to each

account, we chose a specific type of SVM: a multi-
class support vector machine (Wang and Xue, 2014;
Zhang et al., 2021). A standard SVM seeks to op-
timally divide the dataset into exclusive groups,
assigning only one account type per text. In con-
trast, a multi-class SVM treats each account type
as a separate ’true or false’ question. This allows
one account to appear in the ’true’ section of mul-
tiple account types, and therefore to have multiple
labels assigned to it. This approach also allows
the accounts to remain unlabeled when they do not
meet the criteria of any of the account types. To-
gether with the ability to assess the certainty of
each assignment, this improves the quality of the
model.

3.2 Approaches to feature extraction

When working with proto-cuneiform accounts, sev-
eral additional challenges arise that are unique
to this writing system. First, the language of
those documents is unknown. As the accounts
were mainly accounting tools, the writing does
not reflect speech. Instead, meaning is en-
coded through non-linear arrangements of sign
sets within cases—meaningful subdivisions of the
writing surface, similar to text fields in modern
forms—making traditional language-oriented meth-
ods not applicable.

The second challenge is the non-linearity of the
script itself. In Assyriological transcriptions, each
proto-cuneiform sign is represented by its sign
name in Latin script, typically derived from its
meaning in later Sumerian cuneiform. The text is
also linearized according to the transcriber’s intu-
ition, resulting in the loss of information about the
original arrangement of the signs (Fig. 2).

As solving the issue of transcriptions’ linear-
ity is beyond the scope of this paper, we chose to
ignore the arrangements of signs within cases al-
together. Instead, we alphabetized the order of the
signs within each case to ensure that cases contain-
ing the same sets of signs are always represented
in the same way.

Aware of those challenges, to feed the account
transcriptions into our SVMs, we had to choose
a way of tokenizing the texts. To our knowledge,
no studies have yet determined the optimal way
of doing this in the case of archaic Mesopotamian
accounts. Thus, we decided to experiment using a

TF-IDF tokenizer3 with two approaches and com-
pare their accuracy: case-by-case, treating the en-
tire group of signs within one case of the document
as one unit, and sign-by-sign, treating each sign
separately.

3.3 Adjustments for accuracy

In the course of the study we experimented with
other aspects of the dataset as well: we tried to
assess the importance of number signs and sign
variants.

The number signs were the key that allowed the
scholars from the Berlin-based Archaische Texte
aus Uruk (ATU) project to decipher the archaic ac-
counts in the first place. Through computer-aided
statistical analysis, they could show that number
signs come in distinct sets depending on what is
accounted for, even if some signs are shared across
different sets (Green and Nissen, 1987). This ob-
servation allowed them to connect the accounts to
specific economic sectors, as well as describe sets
of semantically similar item signs each sector used.

We were curious if other (non-number) signs
alone are enough to make such distinctions. To test
this, we prepared for each account an alternative
transcription without any numbers, which we then
used to train another set of models, and we included
the results in the comparison.

Otherwise, when including numbers, we only
used the type of the sign, and not its value. For
example, the expressions 2N1 and 6N1 repeat the
same sign type — N1 — to express different val-
ues, so we treat them both as just N1. Our early
tests showed preserving the values decreased the
accuracy in the preliminary testing phase. This
may have to do with the model giving weight to
rare tokens. For instance the rare value 5N14 may
appear unique—and thus significant—to some ac-
count types, when in fact this is entirely coinciden-
tal, and the sign N14 is otherwise common.

The sign variants are a palaeographic feature
of CDLI transcriptions. They are represented us-
ing lowercase letters after the tilde sign (Fig. 2).
Although in most cases the variants seem not to
indicate semantic differences, there is at least one
important example to the contrary: the sign DUGa
usually represents beer, whereas DUGb and DUGc
stand for dairy fats — each a distinctive entry in
different types of accounts. Experiments with ex-
cluding them invariably led to dips in model qual-

3Part of Scikit-learn TfidfVectorizer.
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Figure 2: Reverse of MSVO 3, 64 — metadata section of a cereal account. Here, all signs are inscribed within a
single case, delineated with a horizontal line.

Transcription in CDLI:
3(N34) 1(N45) 2(N14) 1(N01), SZE∼a KU∼b2 SZIM∼a SI4∼f BA NI∼a SA∼c

ity.
Although it did not make much sense from a

methodological point of view to allow the tokenizer
to use n-grams (sequences of n-number of signs),
since the signs in the transcriptions were reordered
in an arbitrary way, we tested this aspect as well.
Surprisingly, allowing for n-grams improved the
model’s accuracy, which made us choose to keep
this feature. However, it did not matter whether we
set the limit of n to 2 or more, so again we opted
for the lowest value (2) to reduce its complexity.

3.4 Method summary

To summarize, we transformed the original dataset
in two ways: through alphabetizing the order of
signs within each case, and creating alternative
versions of transcriptions without number signs.

Then, we trained four MSVMs to determine
which is the most accurate. The variants of tok-
enization and transcription used were: 1) line-by-
line with numbers; 2) line-by-line without numbers;
3) sign-by-sign with numbers; and 4) sign-by-sign
without numbers.

70% of the dataset was used for training, and
30% for testing the model. The split was ran-

dom and done once per each model. The models
were trained for 10 iterations to see if the outcome
changes, and in all cases the results were similar. In
the next section, we present the final set of results.

4 Results

For convenience, the results of testing the models
will be discussed separately for each account type.

4.1 Animals

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.87 1.00 0.93 0.81 1.00 0.94 148
yes 1.00 0.26 0.41 1.00 0.35 0.52 31
accuracy 0.87 0.89 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.93 1.00 0.96 0.93 1.00 0.96 148
yes 1.00 0.61 0.76 1.00 0.61 0.76 31
accuracy 0.93 0.93 179

Table 1: Animal accounts classification

All the values are in the range of 0 to 1, so 0.90
is equal to 90%. The precision value shows how
many times the model was correct in assigning the
label type. So, in the first example, 87% of the
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negative answers (“the account is not an account
of animals”) were correct. The recall value shows
how many matching examples were found—so, to-
gether with 87% precision, the 100% value means
that although the model assigned the ’not animal’
label to too many texts, it caught 100% of the true
non-animal texts. The support value (last column)
is the real number of non-animal and animal ac-
counts in the test set, and it is used as a weight
to calculate the F1 score — the realistic accuracy
measure of the model.

Knowing that, we can see that line-by-line to-
kenization did not work very well in the case of
animal accounts: the positive recall scores of 26%
(with numbers) and 35% (without numbers) show
that the models failed to catch many animal texts in
the testing dataset. The performance of the sign-by-
sign models was slightly better (61% in both). Im-
portantly, neither produced any false positives (the
precision score of yes is 100%), which is a good
sign from the point of view of reliability. Also, it is
interesting to see that in this case it did not matter if
the numbers were included or not, as the outcome
scores were the same.

An additional method of examining the mod-
els’ performance at this stage is studying feature
importance. Our models, as they were trained, as-
signed coefficients (positive and negative) to each
token they encountered, to determine how likely
each token is to appear in a specific account type.
After training, we extracted those coefficients to see
what signs or sign combinations models considered
as particularly telling for each account type.

In terms of animal accounts, for the sign-by-sign,
with numbers model, the most positively important
tokens were KIŠ (an equid sign), UD5a ("ram"),
U8 ("ewe"), and N2 — a numerical sign used to
account for dead animals (Englund, 1998).

Among the negatively important tokens we find
signs like N19 (a quantity sign for emmer, ca.
150 liters), KISIMb ("sheep’s milk butter"), or
SAL.KURa (metadata sign used for totals of work-
ers). Those findings suggest that the model cor-
rectly identifies which signs belong to the semantic
set of animal signs, and used them to label the
accounts.

4.2 Cereals
The performance of the model on cereal accounts
was significantly better, and we assume it is due to
the dominance of those texts in the training dataset.
Here, unlike in the animal texts, line-by-line mod-

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.88 0.72 0.79 0.71 0.79 0.75 78
yes 0.81 0.92 0.86 0.83 0.75 0.79 101
accuracy 0.83 0.77 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.89 0.97 0.93 0.81 0.92 0.86 94
yes 0.98 0.91 0.94 0.93 0.83 0.88 85
accuracy 0.94 0.91 179

Table 2: Cereals classification

els achieved more success, although they were still
worse than those using the sign-by-sign approach.
With those, we see scores similar to the ones above,
with the model with numbers performing slightly
better than the one without. Unfortunately, every
model produced false positives, with the sign-by-
sign, with numbers model making the fewest mis-
takes.

Feature importance analysis shows the signif-
icance of number signs in this account type: al-
though the top-scoring signs are ŠEa ("barley"; also
metadata sign for totals of grain) and DUGa (most
often "beer"), among the top ten positively impor-
tant signs we have N39a (a quantity of ca. 5 liters
of barley), N19 (ca. 150 liters of emmer), N4 (ca.
25 liters of emmer) or N24 (ca. 2.5 liters of barley
or malt). Included are also bigrams N1 ŠEa (ca. 25
liters of barley) and N45 N4 (even larger volumes
of emmer).

The significance of number signs stands out
among the negative features as well: among the
top signs are N1 and N34 (polyvalent number signs;
used in different accounting systems to represent
different quantities) as well as N50 and N22 (used
in field measurements).

Overall, this is not surprising, as the account-
ing systems for cereals were the most varied and
contained the most unique numerical signs. Like
in the case of animal texts, we see that the model
could recognize that and use this feature of proto-
cuneiform.

4.3 Dairy

The dairy texts are among the most underrepre-
sented in the training set, and this is clearly visible
in test scores. In this case, it is difficult to decide
which model performed best: the highest score of
22% (sign-by-sign, without numbers) is equal to 2
catches, and two other models caught 1 text each.
While no model produced false positives, the out-
come seems hardly useful. It is also important to
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with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.95 1.00 0.97 0.96 1.00 0.98 170
yes 0.00 0.00 0.00 1.00 0.11 0.20 9
accuracy 0.96 0.96 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.96 1.00 0.98 0.96 1.00 0.98 170
yes 1.00 0.11 0.20 1.00 0.22 0.36 9
accuracy 0.96 0.96 179

Table 3: Dairy classification

acknowledge that the very high compound accu-
racy scores (96%) are inflated by the overwhelming
proportion of true negatives, a phenomenon which
repeats for other less common account types, and
thus is not a meaningful measure of success.

Despite that, the feature importance analysis
shows that the model was still able to learn the signs
which are characteristic for dairy accounts. Among
positively important signs we have DUGc ("dairy
fat"), KISIMa (butter from sheep’s milk), as well as
bigrams N1 KISIMa ("one vessel of the butter from
sheep’s milk") or N1 KU3a (a compound number
sign representing the quantity of ca. 4 liters of dairy
fats).

Interestingly, the negatively important features
seem to focus on animal signs, which sometimes
do appear in dairy accounts. We find in the report
such bigrams as N1 AB2 ("one cow") or AMAR
U4×1N57 ("one-year-old youngling"), which re-
quire further study. However, this "prejudice"
against animal signs may cause the low score of
the model.

4.4 Fields

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.91 1.00 0.95 0.93 1.00 0.96 163
yes 0.00 0.00 0.00 1.00 0.25 0.40 16
accuracy 0.91 0.93 169

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.95 1.00 0.98 0.93 1.00 0.96 163
yes 1.00 0.50 0.67 1.00 0.25 0.40 16
accuracy 0.96 0.93 169

Table 4: Field texts classification

The outcome here is similar to the one presented
in the previous section. Again, we see overall low
scores, with the sign-by-sign, with numbers model
scoring the highest, with 50% of correctly labeled
accounts. Again, we have no false positives.

Among the positively significant features, we
see GAN2 ("field"), as well as several number signs

from the appropriate accounting system: N50 (an
area of ca. 65ha) and N22 (ca. 2,16ha), along-
side bigrams formed of various combinations of
number signs. This reflects the often mathematical
character of field texts, many of which are area
calculations.

Other than one puzzling bigram, GAN2 APINb
("land for ploughing?" or "ploughed field?"), the
list of negatively important signs consists of seem-
ingly random entries.

4.5 Fish

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.97 1.00 0.98 0.97 1.00 0.99 173
yes 0.00 0.00 0.00 1.00 0.17 0.29 6
accuracy 0.97 0.97 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.98 1.00 0.99 0.98 1.00 0.99 173
yes 1.00 0.50 0.67 1.00 0.33 0.50 6
accuracy 0.98 0.98 179

Table 5: Fish accounts classification

The fish accounts had the lowest support value
out of all the account types, which makes the accu-
racy scores accidental.

Similarly to other rare account types, we see that
the sign-by-sign, with numbers model scored the
highest, though too by a margin of a single account.
The small difference, together with the low support
value makes it difficult to judge the quality of the
models.

Nonetheless, like in the case of dairy tablets, the
model was able to learn some fish-specific signs.
Among the positively important signs we find en-
tries like SUHUR ("dried fish"), ZATU759×KU6a
(a container with fish?), or GA2×KU6a ("basket
with fish"), all typical for this semantic set.

The list of negatively important features consists
mostly of numerals belonging to the cereal system,
however, the highest scoring entry is N8 SUHUR:
a seemingly valid fish qualification.

4.6 Humans

The accounts of humans is an account type where
all models failed entirely and did not catch any
texts.

Despite this — and in line with what we have
seen in the cases of other underrepresented account
types — feature analysis shows that the model
did identify some signs that are indicative of hu-
man accounts. We see the bigram N1 SAL.KURa
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with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.92 1.00 0.96 0.92 1.00 0.96 164
yes 0.00 0.00 0.00 0.00 0.00 0.00 15
accuracy 0.92 0.92 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.92 1.00 0.96 0.92 1.00 0.96 164
yes 0.00 0.00 0.00 0.00 0.00 0.00 15
accuracy 0.92 0.92 179

Table 6: Human accounts classification

as well as just SAL.KURa (metadata sign for to-
tal of male and female workers), accompanied by
SAL ("adult female") and N1 AL, a qualification
describing groups of laborers.

The list of negatively significant entries is co-
incidental, though it is interesting to see BA (an
administrative qualification) there, as it often fea-
tures in assignment texts, and is used in personnel
lists (Johnson, 2014).

4.7 Textiles

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.95 1.00 0.97 0.96 1.00 0.98 170
yes 0.00 0.00 0.00 1.00 0.22 0.36 9
accuracy 0.95 0.96 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.97 1.00 0.99 0.97 1.00 0.98 170
yes 1.00 0.44 0.62 1.00 0.33 0.50 9
accuracy 0.97 0.97 179

Table 7: Textile accounts classification

The results for textiles, as expected, resemble
those for dairy, fish, and human texts. The sign-
by-sign, with numbers model scored the highest,
though with a narrow margin. The models pro-
duced no false positives.

In the same manner as above, the model captured
the signs specific to textiles fairly well: among the
positively significant signs we see TUG2a ("gar-
ment?"), BARA2a (a type of garment), and SIG2b
("wool?"), as well as combinations of those with
number signs.

The negatively important features, again, appear
coincidental.

5 Corpus-wide experiment and discussion

It seems that the only feasible approach to tokeniz-
ing proto-cuneiform is sign-by-sign, with numbers,
as other approaches consistently scored lower or
failed to produce useful results entirely. We see
also that the model is conservative, which is good

for overall reliability: the precision values for yes
are almost always 100%, making false positives ex-
tremely rare. This meets our basic requirements for
experimentally labeling accounts across the entire
corpus.

Additionally, feature analysis showed that the
model managed to learn semantic sets of signs in-
dicative of all the economic domains, including the
underrepresented ones. Despite low scores in the
testing phase, we saw this as an optimistic starting
point.

To try labeling the entire corpus, we used the
sign-by-sign, with numbers MSVM to assign labels
to the entire corpus of archaic accounts. An advan-
tage of the MSVM architecture is the ability to set
a certainty threshold for the model, which allowed
us to set the required threshold to a conservative
90%. We also opted to exclude texts containing
fewer than 6 signs from labeling entirely, similar to
what we did in the training phase. The outcome of
this stage of experiment is presented in Table 8.

animals cereals dairy fields fish humans textiles

training 125 323 23 42 22 58 24
assigned 151 498 68 13 48 31 49
increase (%) +121% +154% +296% +30% +218% +53% +204%

Table 8: Outcome of applying the model to the entire
archaic corpus.

In terms of quantity, the results represent a com-
pound increase of 143% over the training dataset,
and together they correspond to 39% of all texts
longer than 6 signs (1,454 out of 3,737 texts). It is
yet to be determined whether we can decrease the
lower limit of account length without sacrificing
quality.

Moreover, the results show a large disparity in
efficiency: for example, the model found very few
new accounts of fields or humans. We can tenta-
tively explain this through the overall scarcity of
those texts.

On the other hand, we have large amounts of
new dairy, fish, and textile tablets that the model
identified, especially interesting due to its low ef-
ficiency when dealing with such accounts in the
testing phase. To understand the reasons for those
disparities, we performed an error analysis of the
corpus labels.

5.1 Sample error analysis
Analyzing the errors in all automatically labeled
tablets was not feasible, so we opted for a sample-
based analysis instead.
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For each assigned label, we chose 10 random
tablets for evaluation and judged the model’s work
on a three-level scale: yes (the assigned label is
correct), unsure (we were not able to classify the
tablet ourselves), and no (the tablet was classified
incorrectly). The outcome is presented in Table 9.4

animals cereals dairy fields fish humans textiles

yes 9 5 10 5 9 6 9
unsure - 1 - 4 1 4 1
no 1 4 - 1 - - -

Table 9: Evaluation of assigned labels.

This demonstrates the merit of the conservative
approach. Like in the testing phase, we see only
few false positives — which again meets our ex-
pectations. Also, they are almost entirely limited
to one specific type of texts: cereal accounts.

A closer look at the successfully classified texts
shows a distinct limitation of our model. Almost all
of the texts the it managed to find were inventories,
usually containing few signs other than the seman-
tic sets it learned. The few assignments (accounts
of distributions of goods to individuals; see the dis-
cussion of human accounts in the Data section) the
model caught, tellingly, also contained unusually
many signs from those semantic sets.

The model’s focus on limited sets of important
signs is also what helps us understand its failure
when dealing with cereal tablets: this account type
is particularly diverse: in addition to inventories, it
includes assignments of rations, harvest texts, seed
texts, etc., each with new sets of tokens to learn.
It is likely that those different subtypes of cereal
accounts made them less statistically discernible.
Although some degree of diversity exists within
other types of texts as well, we think the "confus-
ing" accounts in those cases were not numerous
enough to have the same effect.

A reflection of the same issue is illustrated by the
misclassified "field" account: the model learned too
often that the sign GAN2 is indicative of field texts
that it classified an entirely different account, quali-
fied with a known, yet undeciphered administrative
term MAŠ GAN2, as a field account too.

6 Conclusions

The original goal of this study was to make the ex-
ploration of the archaic corpus easier by enriching
its metadata and allowing for more detailed statisti-
cal studies of the transcriptions. Using the resulting

4Detailed scores are available in our GitHub repository.

MSVM models trained, we succeeded in more than
doubling the number of labeled accounts, although
the error analysis suggests that some of the labels
assigned (animals, dairy, fish, textiles) are more
reliable than others (cereals).

An open question remains: can we label more
accounts in a more detailed way? When we refine
our typology of tablets and agree on the expected
labels for cereal account subtypes, we may have
enough data to process those as efficiently as oth-
ers. The experiment above showed that the model
managed well even with little input, as long as it
looked at inventories with fixed semantic sets of
signs.

The error check hints at the existence of a more
fundamental split of account types than according
to economic sectors: one according to their admin-
istrative use, dividing the texts into assignments
and inventories. Assignments, usually consisting
of lists of individuals or institutions, are usually
more similar to each other across sectors than to in-
ventories of their own sector, leading to the models’
trouble with identifying them. In those texts, we
can often only understand the account type through
studying the sets of numerals used, or through meta-
data written at the end of the text. A viable method
of approaching assignments in an automated way
is yet to be discovered.

As described in the introduction, understanding
the typology of accounts in greater detail may help
us understand their original institutional environ-
ments better — in the Eanna district of Uruk, as
well as in other sites. The distinction between in-
ventories and assignments is one that we need to
further explore, and having recognized it will help
us refine our tools and methods, both digital and
traditional.

Additionally, we should see expanding the meta-
data as an important aspect of developing the digital
infrastructure. In an effort to make the archaic cor-
pus more accessible, we used the outcomes of this
study to develop a tool which allows scholars to
find similar tablets based on their content using the
sign-by-sign, with numbers tokenizer. This simi-
larity measurement tool is one of the features of
4ky (Zadworny, 2023), and it is freely available for
other researchers interested in using or adapting it
to their needs.

All datasets, code, and models created during
this study are accessible on GitHub.
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Abstract

Sanskrit text processing presents unique com-
putational challenges due to its complex mor-
phology, frequent compound formation, and
the phenomenon of Sandhi. While several ap-
proaches to Sanskrit word segmentation ex-
ist, the field lacks integrated tools that make
texts accessible while maintaining high accu-
racy. We present a hybrid approach combining
rule-based and statistical methods that achieves
reliable Sanskrit text analysis through a cascade
mechanism in which a deterministic matching
using inflection tables is used for simple cases
and statistical approaches are used for the more
complex ones. The goal of the system is to
provide automatic text annotation and inflected
dictionary search, returning for each word root
forms, comprehensive grammatical analysis,
inflection tables, and dictionary entries from
multiple sources. The system is evaluated on
300 randomly selected compounds from the
GRETIL corpus across different length cate-
gories and maintains 90% accuracy regardless
of compound length, with 91% accuracy on the
40+ characters long compounds. The approach
is also tested on the complete text of the Yoga
Sūtra, demonstrating 96% accuracy in the prac-
tical use case. This approach is implemented
both as an open-source Python library and a
web application, making Sanskrit text analysis
accessible to scholars and interested readers
while retaining state of the art accuracy.

1 Introduction

Sanskrit, additionally to the difficulties shared with
other Morphologically Rich Languages (MRL)
(Tsarfaty et al., 2020), presents the unique com-
putationally challenge of Sandhi. Sandhi is defined
in (Matthews, 2014) as the written modification
and fusion of sounds at or across the boundaries of
grammatical units and is used to represent words
exactly as they will be pronounced. While the
Sandhi application rules are deterministic, the pars-
ing rules are sometimes not (Hellwig and Nehrdich,

2018). The Sandhi phenomenon makes Sanskrit in-
herently hard to parse for Large Language Models
(LLM): the same nominative singular "yogah. ", may
appear as: "yogaś", "yoga", or, as "yogā", when
merged with the initial ‘a’ of the next word. In this
last worst case scenario, the word is indistinguish-
able with the nominative plural, and can only be
parsed looking at the context. Without pre-splitting
of Sandhi and compounds, the model has to learn
multiple representations of the same words in an
already scarcely digitalized literature. The ambi-
guity generated by the multiple parsing solutions
of compounds and word blocks agglutinated by
Sandhi were known since antiquity: for teaching
purpose, alongside the Veda we find the Padap-
atha: a didactic version in which the words are
restored to the non morphed grammatical version
(Pillai, 1941). If the challenge of parsing created
such interpretive complexity that multiple versions
of the same poetic text emerged, why was this diffi-
culty deliberately preserved rather than simplified?
Before delving in how current computational ap-
proaches try to handle this difficulty, it is important
to understand the historical reasons for this pecu-
liar phenomenon. Sanskrit, whose name suggests
a ‘well made’ language, is not a naturally arisen
language, but a highly refined one which was for-
malized by the grammarians, starting from Pān. ini’s
seminal As. t.ādhyāyı̄ (Gillon, 2007) (Cardona, 1988).
But what was the ideal leading to keep such a com-
plexity in terms of reading? The reason becomes
clear when reading the motivations for the study
of language provided by Patañjali the grammarian:
“preservation, modification, injunction, brevity and
certainty” (Dasgupta, 1991). Those motivations
are all related to the preservation of the Vedas and
the performance of the sacrifices. From the correct
execution of the sacrifice, soteriological immortal-
ity was believed to be attainable, as is stated in the
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Rigveda(Jamison and Brereton, 2014)1. Patañjali
presents multiple examples on how just a slight pro-
nunciation error is enough to make the entire sacri-
fice backfires: the wrong pronunciation of the word
"helayah. " is imputed as the reason for defeat of the
Asuras (Dasgupta, 1991); again the mispelling of
the word "Indra—śatru" changes is meaning from
‘slayer of Indra’ to ‘slayed by Indra’, resulting in
the death of the son of Tvas.t.r.. From the correct exe-
cution of the sacrifices liberation was expected, and
grammar was a mean, if not the primary mean to
the right execution. It is easy to see how the perfor-
mative aspect of language was prioritized over the
communicative one. In consequence of this early
focus, the language eloquently tells how it should
be pronounced, not what words are underneath the
pronunciation. To tackle this complexity, multiple
approaches to the task of Sanskrit Word Splitting
(SWP, splitting Sandhi and compounds) (Hellwig
and Nehrdich, 2018) have been proposed, started
from the pioneering grammatical based works of
Huet (Huet, 2005, 2009). Several approaches to
sandhi and compound parsing have been proposed,
using both data driven approaches (Nehrdich et al.,
2024) and mixed ones (Krishna et al., 2021). This
development has not yet translated into improved
accessibility to the original texts or the dictionaries.
Without previous knowledge, is hard if not outright
impossible to search in the dictionaries the words
that appears in the texts: most words appear mor-
phed by Sandhi or aggregated in compounds. The
Digital Corpus of Sanskrit (Hellwig, 2010–2021)
provides access on click to the stemmed and parsed
text, with minimal entries derived from the Mon-
nier Williams (MW) dictionary (Monier-Williams,
1899). Yet it works just on a manually annotated
corpus of texts.

To improve the accessibility of the original texts,
we propose an approach to Sanskrit word splitting
that retrieves grammatical information and entries
from multiple dictionaries. This approach allows
for both text annotation and for a dictionary search
allowing words to be queried as they appear in text,
– inflected, compounded and morphed by Sandhi.
This approach has been implemented as an open
source Python library which includes a REST API
built using Flask and a web application, which is ac-
cessible at https://www.sanskritvoyager.com.
As it can be seen in Figure 1a, the application al-

1VIII.48.3: "We have drunk the soma; we have become
immortal; we have gone to the light; we have found the gods"

lows access to the text of the GRETIL2 library.
Words throughout the text become clickable, al-
lowing users to access grammatical analysis and
dictionary entries with a single click. Alternatively,
text can be provided by the user, either by pasting
or typing, receiving the same on demand interactive
analysis.

Alternatively, the web application can be used
as a more accessible engine to query Sanskrit dic-
tionaries, allowing for inflected form search and
multi-dictionary lookup. To check for the capa-
bilities of the current approach to handle complex
compounds and Sandhi-blocks, the underlying sys-
tem has been tested with a random selection of 300
compounds of various length from the GRETIL
corpus, and with a practical use case of annotat-
ing the entire Yoga Sūtra. The system performed
effectively in both tasks, maintaining an accuracy
of 92% for all the compounds categories, which
increases to an accuracy of the 96% for the Yoga
Sūtra task.

2 Previous Literature

Sanskrit word processing has seen considerable
development over the past few decades, moving
from rule-based systems to more data-driven ap-
proaches, though it continues to present unique
challenges due to the language’s complex morphol-
ogy and phonology. Early approaches often com-
bined Pān. ini’s phonetic and morphological rules
with lexical resources, using either formal meth-
ods or statistical approaches(Huet, 2005) (Huet,
2009). Finite state transducers were employed for
automatic segmentation, with the aim of splitting
a Sanskrit string into its constituent words (Mittal,
2010). However, a major hurdle is the availability
of annotated datasets, which are crucial for training
data driven models, particularly when compared to
the resources available for other languages. The
Digital Corpus of Sanskrit (DCS) has been a signif-
icant effort, providing over 650,000 lexically and
morphologically tagged sentences. Datasets for
word segmentation have also been created, though
these often come with their own limitations (Krish-
nan et al., 2024). The central challenge to Sanskrit
computational linguistics remains the handling of
sandhi, which obscures word boundaries due to the
phonetic merging of words (Krishna et al., 2021).
Recent work has explored neural sequence labeling
tasks, using recurrent and convolutional neural net-

2https://gretil.sub.uni-goettingen.de/gretil.html
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(a) Enhanced text reader with parsing capability (b) Dictionary interface for inflected forms

Figure 1: Web interface of the Sanskrit analysis system. (a) shows the dictionary lookup for inflected forms, and (b)
displays the Yoga Sūtra text from GRETIL with commentary and on-demand word parsing.

works, and seq2seq models for word segmentation
(Aralikatte et al., 2018). A graph based frame-
work has been developed for structured prediction
tasks including word segmentation and morpho-
logical parsing (Krishna et al., 2021). The goal
of current computational approaches is develop-
ing an unified models capable of handling multiple
tasks such as word segmentation, lemmatization
and morphological tagging jointly. The approach
proposed in (Nehrdich et al., 2024) promise to be
handle all those tasks at once, and is the most sig-
nificant breakthrough in Sanskrit computational
linguistic in the recent years. In (Nehrdich et al.,
2024) a Byt5 model (Xue et al., 2022) was trained
to handle many downstream Sanskrit analysis tasks
maintaining state of the art performance.

3 Methodology

Our methodology takes a fundamentally different
approach from existing solutions by recognizing
that not all Sanskrit words require complex pro-
cessing. Instead of applying sophisticated anal-
ysis techniques universally, we implement a cas-
cading system that starts with simple, determin-
istic methods and progressively moves to more
complex approaches only when necessary. The
foundation of this approach lies in the observa-
tion that many Sanskrit words can be analyzed
through straightforward methods with complete
certainty. For instance, regular inflected forms like
"es.yāmi" can be directly mapped to their root form
through inflection tables, – in this case identifying
it as the third person future of the verb "i" (to go).
Common Sandhi cases follow predictable patterns:
"yogaś" can be restored to its base form "yogah. "
through simple substitution rules. Additionally,

frequently used inflected forms such as "yogena"
(the instrumental case of "yoga") often appear in
dictionaries as standalone entries, allowing direct
lookup without complex analysis. Our system im-
plements this insight through a three tiered pro-
cessing pipeline, which is shown in the flowchart
at Figure 2. The first tier employs computation-
ally inexpensive methods: dictionary lookup and
basic substitution rules. This provides determin-
istic results for a significant portion of Sanskrit
vocabulary. When these methods fail to produce
a result, the system employs a statistical approach.
The quality of this result is evaluated through a
scoring system. If the confidence score falls below
a predetermined threshold, the system tries again
with a quasi brute force compound splitter that tries
all possible combination using. The system then
retains the highest scoring result from the second
or third approach. Finally, for each recovered entry,
the system retrieves grammatical information and
entries from multiple Sanskrit dictionaries.

3.1 Preprocessing

The transliteration scheme of the input is auto-
matically detected using an adaptation of Indic
Transliteration Detect 3, and transliterated to IAST
through the Indic Transliteration package. The sys-
tem also supports special character handling for
advanced search capabilities. Wildcard searches
can be performed inserting underscore (’_’) charac-
ters, which act as single character wildcards within
words. When a word ends with an asterisk (’*’),
the system switches to exact dictionary matching
mode. If the input is a single word with no diacrit-

3https://github.com/indic-
transliteration/detect.py/blob/master/detect.py
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ics there is first an attempt to match it directly in
the UTF-8 decomposed list of words, and it returns
all the entries for the possible words with diacritics.
This allows for searches without diacritics. For
example the term "śiva" can be matched writing
"śiva", "siva" and "shiva".

3.2 Matching using inflection tables and
dictionaries

The rule-based approach draws from the inflected
form lookup of the University of Koeln 4. Through
this approach are built inflection tables for the non-
indeclinable entries of the Monnier Williams dictio-
naries. The inflection tables are stored in a SQLite
database. Associate to the inflection tables are the
grammatical informations relative to the type of
the word. The code has been rewritten from php to
python, using SQLalchemy as ORM. As was done
in (Nehrdich et al., 2024), the tables have been
converted from SLP1 to IAST for readability, as
it causes minimal storage increase. A multi index
increased drastically the speed of the lookup, and
future version may benefit from the hash indexes
offered by PostgreSQL. The original approach suf-
fers from overgeneration in case of particles (such
as "ca") and curious lack of common words such
as "vr.tti". To handle those case a post processing
cleanup was added.

To match words, the system first tries to match
them using the inflection table. Words with un-
common prefixes were a common cause of failure,
since they are outside the dictionary. To handle
those case, the system looks in a list of prefixes, if
the words has one of them it tries again while re-
moving the prefix. If the word initials and endings
are inside a list of common sandhi rules, it tries to
replace them and to match using again the inflec-
tion table. When all of the previous fails, it tries
to check if the word is directly inside the hashed
list of words of all dictionaries. If a word was
matched during any of those steps, the entry (or
entries) are retrieved and the function ends. In case
the function failed, it means that there are probably
multiple words inside and is sent to the multi word
processing.

3.3 Dictionaries

For the word entries, the digitalized Sanskrit dic-
tionaries from the university of Cologne were em-
ployed (Cologne University, 2024). To provide a

4https://github.com/sanskrit-lexicon/csl-inflect

Figure 2: Flowchart of the cascading system, simple
words are directly matched using inflection tables, more
complex cases are handled with the parser first, then the
compound splitter in case the score if too low.

clean interface, dictionaries were manually selected
to provide non redundant quality output. The Con-
cise Pali Dictionary5 was later added as well since
many terms employed by Vasubandhu could be
found there and not in the Sanskrit dictionaries.
In table 1 there is the list of the dictionaries and
the number of unique entries in each dictionary.
The total number of unique words contained in the
database is 246,955. Since the system is for web
reading and not for print, the majority of the abbre-
viations (both references and in text) were removed
to increase clarity. To increase usability, in the on-
line interface all the Sanskrit words in the entries
were made clickable, returning the clicked entry.
This way, if "rājapurus.a" is searched, it returns the
entries for the word, but also the split version "rāja—
pūrus.a". Selecting one of the splits, the sub-entry
is opened. The dictionary lookup accepts a list of
dictionary abbreviation as argument, and tries to
return the entries from the dictionaries. If the entry
is not present in the selected dictionaries, it tries
to look in the hashed dictionary with entries and
dictionaries that have it, and returns it.

5https://buddhistuniversity.net/content/reference/concise-
pali-dictionary
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Dictionary Name Number of Entries
Monier-Williams 194,068
Grassmann 11,108
Apte Practical 31,703
Buddhist Hybrid 17,777
Concise Pali 23,849
Cappeller 38,484
MacDonnell 20,100
Total Unique Words 246,955

Table 1: Number of unique entry in each dictionary, and
total of unique words

3.4 Sandhi Splitting

For Sandhi and compound splitting the Python li-
brary Sanskrit_parser is used as base 6. The library
places every possible split in a graph and attempts
to find the most probable split. As stated in the
documentation, the first result provided is often not
accurate, but the correct one is usually to be found
in the first ten splits.

The incorrect splits showed patterns that were in-
credibly easy to spot: multiple dual letter fragments
such as "to" and "ta", non grammatical entries, in-
correct sandhi usage. Any application intended for
general public use and also for a non professional
audience should be providing a single split for a
sentence. Recovering the right split amid possi-
ble ones may be easy for someone that knows the
language, but risks alienating further other kind of
interested users.

To select the best split among the offered one, a
simple scoring system was made that evaluates the
splits on three dimensions: length, morphology and
sandhi. The length score tries to predict the num-
ber of split, and rewards a number of splits close
to the expected. Less splits to the expectation are
preferred to more, since errors are usually words
being broken up into multiple places. The morphol-
ogy score punishes multiple very short words that
are not in the list of the indeclinable or of the word
suffixes (like "tva"). The sandhi score monitors
that the sandhi rules were correctly applied. The
split with the best score is then selected. If the
split is under the confidence threshold, the word
is sent to the last cascading fallback. It is to note
that every compound with no presence of Sandhi
returns none at this stage and is processed by the
compound splitter.

6https://github.com/kmadathil/sanskrit_parser

Type Total Errors Err% Acc%
V.Long 654 58 8.87 91.13
Long 377 22 5.84 94.16
Medium 187 13 6.95 93.05
Total 1218 93 7.63 92.37
Y.Sūtra 665 27 4.06 95.94

Table 2: Text Accuracy Analysis. ∗Total excludes
Y.Sūtra

3.5 Compound Splitter

The root compound function takes advantage of a
characteristic of Sanskrit grammar: in compounds,
only the rightmost word is declined. All the words
on the left are then in their root form. Assuming it
is a pure compound with no Sandhi, it’s going to be
possible to reach the first word on the left by simply
erasing the rightmost letter one by one and trying
to match it with the hashed vocabulary with all
the dictionary entries. In the ideal pure compound,
this returns the leftmost word in O(n) operations,
where n is the number of the remainder. Since the
rightmost word is inflected, after removing a word
on the left, it should be checked if the remainder
is in the inflection tables, using replacements in
case there is possible sandhi at the endings. Since
most compounds contain 2–8 roots, and each root
requires O(n) operations to find, with n decreasing
at each step, the practical performance remains
efficient despite the theoretical O(n²) worst case.

The complexity of this operation actually in-
creases since pure compounds are rare, and often
there is the presence of Sandhi either in the initial
position or in the middle. To handle these cases
two dictionaries with replacements for the initial
and ending position are used. This way if a word if
a letter is found that could have been the result of
Sandhi, it is tested with all the grammatical possi-
bilities (usually less than two) before getting erased.
To handle cases like "kleśakarmavipākāśayair", to
avoid it to be split after "kleśaka", which is in
the dictionary, when selected suffixes like "ka" are
meet, the system tries to split again ignoring the
suffix, and measures (in terms of length of words)
the quality of the results and pick the best one.

3.6 The problem with current Sanskrit
Benchmarks

To test the accuracy of the computational ap-
proaches to Sanskrit, the Sandhikosh benchmark
has been proposed (Bhardwaj et al., 2018) (Ara-
likatte et al., 2018) , which includes 13,930 anno-
tated sentence splits. The sentence are split only for
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Sandhi and not for compounds, which remains ag-
glutinated together. Since this system splits sandhi
and compounds in the same pass, the benchmark
is not usable to test the proposed approach. It
should also be mentioned that the corpus used is
extremely unbalanced in favor of Brahmanical text
compared to Buddhist ones, drawing extensively
from the online corpus of the University of Hyder-
abad 7. A more interesting corpus is the Sighum
one, presented in (Krishna et al., 2017). The cor-
pus has been used as a benchmark in the inspiring
(Nehrdich et al., 2024). The Sighum corpus, sim-
ilarly from the Hackaton 8, is derived from the
Digital Corpus of Sanskrit (Hellwig, 2010–2021).
Those corpus provide the roots for all the sandhi
and compound split words in the sentence, similarly
to the approach proposed there.There is however a
important methodological difference which should
be considered. This difference can be explained
with the parsing of the block "dagdhabı̄jakalpān"
which appears in the Yoga Sūtra Bhasya. In the pro-
posed system the block is split in "dagdha", "bı̄ja"
and "kalpa". The word "dagdha" is indicated as
coming from dah in the provided vocabulary entries
(from Apte Practical Sanskrit-English:"dagdha Past
passive participle. [dah-kta] 1 Burnt, consumed by
fire"). In the DCS the word is directly described
as the "PPP" of "dah". While both approaches are
grammatically equivalent, the approach used here
provides a more specific dictionary entry, with the
possibility of accessing the primitive "dah" with an
additional click. The DCS approach returns instead
directly the primitive without an additional action.
Since the current system is built with the explicit
goal of vocabulary entry retrieval in mind, rather
than stemming, for the current goal is preferable
to keep it as it is. For the same reasons common
compounds which are present in the dictionaries,
such as "rājayoga" are not split. "Rājayoga" and
other similarly common compounds have specific
dictionary entries, and the entry offers also the de-
tailed parsing "rāja—yoga". The two split parts
can be accessed with a simple click on the online
interface. This methodological difference makes it
so that simply using the smaller corpus derived by
the DCS would result in countless errors, derived
by the different format of the output. In a bench-
mark of tens of thousands of sentences it would
be impossible to parse manually all those errors.

7https://sanskrit.uohyd.ac.in/Corpus/
8https://sanskritpanini.github.io/

For those reasons is impossible to test the current
approach on any benchmark directly derived from
the DCS. It also highlight the problem with every
current benchmark testing in Sanskrit: each system
employs his own convention. A good benchmark
should be able to return positive for both "dah" or
"dagdha". Since no similar benchmark currently
exist, we manually test the system on a random
selection of the Gretil corpus and on a practical use
case on the Yoga Sūtra text.

3.7 Testing

Owing to the problems with the current Sanskrit
benchmarks highlighted in the last paragraph, an
alternative testing approach was used. Since all the
simple words are deterministically parsed, what
needed to be tested is the capability of the fallback
systems to handle complex compounds and the ap-
plicability on the automatic annotation of a real
text. All the text of the Gretil corpus was extracted
and split in four lists of words in the following cate-
gories: medium 10–20, long 20–40, very long 40+.
To avoid English words mixed in, only words with
diacritics were kept. From each of the four lists
100 random samples were taken. The testing was
made to check if the system is resilient enough to
handle tasks that cannot be handled by the deter-
ministic matching. The system was applied to each
one of those compounds, and manually reviewed.
For the practical use case the system was tested on
the Yoga Sūtra in the transcription by Philip Maas
accessible through Gretil 9. Both tests can be repli-
cated with the testing module inside the python
library.

Undecidable words such as "ālasya" are re-
turned with both possible parsings: the uninflected
"ālasya" and the genitive of "āla". Since the only
way to decide between the two is looking at the con-
text, both words are returned, and is not counted
as an error as long as the correct parsing is there.
Even in presence of those cases, the system tends
to not overgenerate. Figure 3 present the parsing
results from a complex text block from the Yoga
Sūtra: some of the words are presented with two
possible parsing, such as "ālasya" and "āla" for the
"ālasya" in the text. Every non perfect parsing is
counted as an error. Errors are counted on a root by
root basis: if a compound has 10 roots and only one
is incorrect, a single error out of then is counted.

9https://gretil.sub.uni-goettingen.de/gretil/
1_sanskr/6_sastra/3_phil/yoga/patyogbu.htm
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Figure 3: Parsing of one of the Yoga Sūtra verses with
multiple possible roots.

In Table 2 are presented the result of the testing,
maintaining 90%+ accuracy for all categories. The
most surprising result is the high accuracy rate with
long compounds considering that the longest one
was 283 character long. The practical example of
the Yoga Sūtra shows that the accuracy increases
with a normal text in which the inflection tables can
be used to automatically parse single words such
as "atha", "ca" or "iti" or the multiple variations of
"yoga".

3.8 Error discussion

The majority of the errors come from words which
are outside the dictionaries or the inflection tables,
and are then unrecognized. The Monnier-Williams
dictionary is from 1899 and, while being an incred-
ible work, is oddly missing some reasonably com-
mon compounds like "dvandva" (which is instead
present in the Macdonnel dictionary). In partic-
ular, about 20% of the overall errors come from
abstract words produced with the suffix tva, which
are sometimes recorded (such as "śūnyatva", from
"śūnya", emptiness, which is even recorded as the
even rarer "sarvaśūnyatva"), but more often than
not outside the dictionary entries. The system at
the moment returns the root word, the suffix "tva"
and the inflected ending as another word, which is
clearly not optimal. Since the inflection tables are
based entirely on the Monnier Williams entries, all
the inflected forms of words outside the Monnier
Williams that are not listed as entries may provoke
errors. The shape of those errors is typically the
word being rightfully recognized plus the inflec-
tional suffix being marked as another word. Less
common but still present are the cases in which the
word root is morphed. In that case the word is split

in small morphemes. Less common verbal forms,
like causatives, are often not listed in the inflection
tables; the inflection tables are also missing many
irregular forms. A possible solution would be to
use LLMs to generate the missing inflection tables,
and to also use LLMs to search inside the Monnier
Williams and other Dictionaries for mentions of
irregular forms, and to apply them to the tables.

The sandhi splitter is, even with the scoring, the
weakest part of the pipeline. Further versions of
this approach could try replacing it entirely with
the model developed in (Nehrdich et al., 2024) to
increase the accuracy. The other alternative avenue
explored was fine-tuning using a Llora (Hu et al.,
2021) a middle sized LLM. Since the errors pro-
duced by the system are easily identifiable, it is
possible to use the output of this system to train
a transformer that replaces it. This replacement
should be assessed with respect to the increased
computational cost and the scalability of the online
application. In the best case scenario the current
approach resolves annotation with just a few SQL
queries. There is no reason to replace the inflection
table lookup, as it is deterministically correct and
computationally inexpensive.

4 Limitations

The cascading system is highly modular; conse-
quently, most limitations stem from the current
implementation rather than from the architecture
itself.

The system relies heavily on dictionary en-
tries, with the majority derived from the Monier-
Williams dictionary (1899), as illustrated in Table
1. While the Monier-Williams dictionary provides
a comprehensive foundation, it exhibits notable de-
ficiencies regarding abstract words formed with the
"-tva" suffix and numerous compounds of moderate
frequency. Although these dictionary limitations
are partially mitigated through the integration of
multiple dictionaries, the inflection tables are cur-
rently constructed solely from the Monier-Williams
dictionary. Furthermore, certain common terms,
such as "vr.tti" (vortex, mental fluctuation), appear
in the dictionary but are notable absent from the
inflection tables. The next version of the imple-
mentation should take care in reconstructing the
inflection table using the correct list of all words
as a basis. A possible approach for adding all the
irregular forms would be using language models to
extract them from dictionaries and grammar books.
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Even with the scoring improvements, the Sandhi
splitter remains the weakest component in our
pipeline. While it works well for most cases, com-
plex Sandhi patterns can still lead to incorrect
splits. Future versions can replace this component
with neural models such as the one described in
(Nehrdich et al., 2024), although this would in-
crease computational costs. The computational
increase would still be limited for just the complex
cases, since for most words the inflection tables are
going to still be enough.

Finally, our approach prioritizes dictionary en-
try retrieval over stemming, which creates method-
ological differences when compared to existing
benchmarks. This system prioritizes keeping com-
pound and inflected forms intact when the dictio-
nary entry is there: "yogānuśāsanam" (the instruc-
tion on yoga) is matched directly with the entry for
"yogānuśāsana" that contextualizes the term within
Patañjali’s framework, rather than being decom-
posed into the components "yoga" and "anuśāsana".
While this is an advantage for a text annotation tool,
since the results are more context aware and usu-
ally present the split in the dictionary entries, it is
a severe limitation when used as a pure stemming
tool.

5 Conclusions

This work demonstrates that by taking a progres-
sive approach to Sanskrit text processing, starting
with simple, deterministic methods and escalating
to more complex analysis only when necessary, it
is possible to achieve both high accuracy and prac-
tical usability. The system’s 90%+ accuracy on the
long compounds drawn from the GRETIL corpus
and 96% accuracy on the Yoga Sūtra validates this
approach, showing that it performs reliably across
different text types and compound complexities.
The system’s capability lies in the deterministic
lookup for inflected and Sandhi-ed single words,
returning entries from multiple dictionaries with
accurate grammatical information with minimal
computational cost. The approach peculiarity is
in keeping compounds and inflected forms which
have entries in the dictionaries, returning more con-
textualised entries than direct stemming. This ap-
proach has been implemented as an open source
Python library which includes a REST API built
using Flask and a web application, which is accessi-
ble at https://www.sanskritvoyager.com. The
system was designed with practical performance

considerations in mind. The entire backend re-
quires only 2GB of RAM to operate effectively,
making it deployable on modest hardware. Re-
sponse times vary based on word complexity: sim-
ple inflected forms that can be resolved through
table lookups are processed in milliseconds, while
the most complex compound and Sandhi cases re-
quire at most 3 seconds to resolve on a 4GB RAM
virtual machine. This performance profile makes
the system suitable for both interactive web appli-
cations and batch processing of larger texts. The
current approach allows dictionary searches for
Sandhi-ed inflected and compounded words, with-
out specifying the transliteration scheme and re-
trieving entries in multiple dictionaries. Future ver-
sions may employ a ByT5 based model (Nehrdich
et al., 2024) as the last step in the cascading sys-
tem to handle the most complex cases. The hope
of this approach is to open up the treasury of the
original Sanskrit literature to any interested reader,
regardless of their previous linguistic skills.
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Abstract

Solving math word problems, i.e. mathemati-
cal problems stated in natural language, has re-
ceived much attention in the Artificial Intelli-
gence (AI) community over the last years. Un-
surprisingly, research has focused on problems
stated in contemporary languages. In contrast
to this, in this article, we introduce a dataset of
math word problems that is extracted from an-
cient Chinese mathematical texts. The dataset
is made available.1 We report a baseline per-
formance for GPT-4o solving the problems
in the dataset using a Program-of-Thought
paradigm that translates the mathematical pro-
cedures in the original texts into Python code,
giving acceptable performance but showing
that the model often struggles with understand-
ing the pre-modern language. Finally, we de-
scribe how the generated code can be used for
research into the history of mathematics, by of-
fering a way to search the texts by abstract op-
erations instead of specific lexemes.

1 Introduction

In recent years, using techniques such as Chain-
of-Thought (CoT, Wei et al., 2022) or Program-
of-Thought (PoT, Chen et al., 2023) prompting,
Large-Language-Models (LLMs) have achieved
excellent performance in solving mathematical
problems formulated in natural language, spiking
renewed interest in this area of artificial intelli-
gence. However, while datasets of such math
word problems are available inmultiple languages,
to our knowledge, all of them are contemporary.
How do LLMs cope with ancient math problems,
which might both involve terms that are unfamil-
iar to the model, as well as rely on knowledge
about a world that differs significantly from what
the model is familiar with? In order to answer this
question, we will describe in Section 3 the creation

1https://github.com/notiho/ancient-chinese-mat
h-problems.

of a database of mathematical problems extracted
from ancient Chinese texts, using a semi-automatic
approach that utilizes the highly structured nature
of the textual material. Subsequently, in Section 4
the performance of GPT-4o in solving the prob-
lems in the database will be tested, showing that it
is able to derive solutions for around two thirds of
the problems in the database, but often struggles
with unfamiliar expressions in the technical lan-
guage of pre-modern Chinese mathematics. Fig-
ure 1 shows an overview over the setup discussed
in this article.
While solving mathematical problems in mod-

ern settings with LLMs is useful for real world ap-
plications, solving problems in the style of ancient
Chinese mathematical texts in itself is presumably
of no interest to any user. Also, in the texts con-
sidered here, the problems posed are always ac-
companied by numerical solutions. Hence, be-
ing able to automatically compute a solution does
not provide the researcher with any new informa-
tion, aside from being a convenient way of check-
ing for textual errors. However, being able to test
the model’s understanding of the problems lays
the groundwork for confidently applying LLMs for
different downstream research tasks. Since his-
toric Chinese mathematics remains an understud-
ied subject, such assistance is especially valuable.
In particular, in this article, we suggest a way to
use the output of the model for a type of semantic
search. All of the state-of-the-art prompting tech-
niques for solving mathematical problems using
LLMs cause the model to output intermediate re-
sults, either in the form of natural language reason-
ing steps (Wei et al., 2022), program code (Chen
et al., 2023; Gao et al., 2023) or systems of sym-
bolic equations (He-Yueya et al., 2023). In Sec-
tion 5, we will show how such output, in our case
in the form of Python code, that can be aligned to
the original algorithms provided in the texts using
our prompting technique, can be used by histori-
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Corpus

今有黃金一觔直錢一十萬。問：兩直幾何？
術曰：置錢一十萬，以一十六兩除之，即得。
答曰：六千二百五十錢。

今有黃金一觔直錢一十萬。[· · · ]
荅曰：a錢。

Solution a = 126

Use code for semantic search

'''
Suppose there i s 1 j i n o f gold worth
100 ,000 qian .
Question : how much i s 1 l i ang worth?
The procedure says : Place 100 ,000 qian ,
and div ide i t by 16 l iang ,
obta in ing the r e s u l t .
Answer : *a* qian .
'''

# 黃金一觔直錢一十萬
錢 = 100000

# 一觔等於十六兩
兩 = 16

# 以一十六兩除之，即得
a = Fraction (錢 , 兩 )

Extract problems

Hide numerical solutions

LLM

Python

Figure 1: Workflow described in this paper illustrated with problem 18 from chapter 3 of theMaster Sun

ans of mathematics, by providing a way to search
for mathematical contents that abstracts from the
language of the texts.

2 Related Work

Solving math word problems using artificial intel-
ligence has been an active area of research for a
long time, and accordingly, many datasets of prob-
lems with different levels of mathematical diffi-
culty and language have been released (see Ahn
et al., 2024 for an overview). To our knowledge,
none of these contain problems extracted from pre-
modern works.
In solving math word problems with LLMs,

program-of-thought (PoT) prompting, that is, hav-
ing the model emit program code that computes
solutions has been one of the most successful
paradigms (Chen et al., 2023; Gao et al., 2023).
Recent research has shown that for advanced prob-
lems, having the model output symbolic equations
instead is beneficial (He-Yueya et al., 2023). How-
ever, the problems considered here are relatively
simple from the point of view of modern math-
ematics, and can mostly by easily solved using
straightforward arithmetic, although the dataset
also includes e.g. procedures for square and cube
root extractions and solving what is equivalent to a
system of linear equations (Martzloff, 2006: 127-
41). Furthermore, the potential of transforming an-
cient Chinesemathematical procedures into imper-
ative languages has long been recognized by the
eminentmathematician and historian ofmathemat-
ics, WuWen-Tsun (e.g.WuWen-Tsun, 2019: 121).

3 Building a Dataset

As the basis of the dataset, a collection commonly
known as the Computational Canon in Ten Books
(Suanjing shishu算經十書) was chosen, contain-
ing the most important Chinese mathematical texts
up to the Tang dynasty (608-907).2 Having been
compiled from mostly much older sources to serve
educational purposes in 656 (Keller and Volkov,
2014: 59-63), among its nine surviving works,
there are seven that employ a rigid question-
answer-procedure pattern to structure their content
that is as typical of ancient Chinese mathematics as
it is convenient for automatic extraction. The titles
of the seven works as well as dating information
are shown in Table 1. In the following, the works
will be referred to by the shortened translated titles
underlined in the table.
In terms of their structure, these works consist

of series of usually thematically grouped triples
of questions, numerical answers and procedures
(“shu術”) to compute the answers (see Table 2 for
an example).3

2In fact, one of the titles included is a later apocryphal text
that was not included in the original collection (Wu Wenjun
and Shen Kangshen, 2000: 82). However, due to its compa-
rable structure and contents, it was nevertheless included in
the dataset.

3The strict triplet structure is not entirely followed in one
of the works, the Nine Categories, where it is common to
have several pairs of answers and questions followed by a
single procedure that solves them all, and there are a few
general procedures that precede a series of triplets, the pro-
cedures for which are special cases of the general procedure.
In the dataset, these general procedures were not included,
unless they were referenced by a stub-procedure specific to
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Title Date
Chapters

Problems

Punctuated

“Computational Procedures of Nine Categories” (Jiuzhang suanshu九章算術)
early 1st
century 9 253 x

“Computational Treatise [Beginning with a Problem about a] Sea Island”
(Haidao suanjing海島算經) ca 263 1 9 x

“Computational Treatise of Five Departments” (Wucao suanjing五曹算經) after 386 5 67 x
“Computational Treatise of Master Sun” (Sunzi suanjing孫子算經) ca 400 2 61 x
“Computational Treatise of Zhang Qiujian” (Zhang Qiujian suanjing張邱建算
經)

ca 450 3 85

“Computational Treatise on the Continuation [of Tradition] of Ancient [authors]”
(Jigu suanjing緝古算經) ca 600 1 20 x

“Computational Treatise of Xiahou Yang” (Xiahou Yang suanjing夏侯陽算經) 763-779 3 82

Table 1: Date of compilation, number of chapters (limited to those containing problems), problems in each work
and indication whether a punctuated edition was available on Wikisource. Title translations and dating from Keller
and Volkov (2014: 62).

As is the case with many modern day math word
problem datasets, the problems almost always in-
voke a real world context in their setting, for ex-
ample, when asking about the price of purchased
goods, although this does not necessarily imply
that they were practical in nature (Martzloff, 2006:
54-8).
The procedures that are supplied to compute the

solutions can vary in level of detail, but are in gen-
eral expected to be complete in the sense that fol-
lowing them step by step, one is able to compute
the correct answer, although substantial interfer-
ence might be required in some parts. The proce-
dures often mention the specific numbers used in
the problems, and in many cases also contain in-
termediate numerical results.
In order to build a dataset that is useful for test-

ing automatic solving approaches on these prob-
lems, digitized versions were sourced from Wik-
isource4 and the Kanseki repository5 (Wittern,

a problem that is clearly incomplete without the general pro-
cedure. For the two general procedures for which such stub-
procedures exist (the Fangcheng方程 (equivalent to systems
of linear equations) and Yingbuzu盈不足 (double false posi-
tion) procedures from the Nine Categories), the general pro-
cedure was appended to the stub-procedure. Furthermore,
some of the works feature alternative procedures for solving
the same problem. In these cases, only the first procedure
given was included in the dataset.

4https://zh.wikisource.org/wiki/九章算術, https://zh.wiki
source.org/wiki/緝古算經, https://zh.wikisource.org/wiki/
海島算經, https://zh.wikisource.org/wiki/孫子算經, https://
zh.wikisource.org/wiki/五曹算經 (All accessed 22.12.2024).

5https://www.kanripo.org/. The texts used here have
numbers KR3f0038 and KR3f0039 in the database.

2016). Since theWikisource editions have punctu-
ation added to the texts by crowd sourced editors,
they were preferred where available.
Since the division of the works into questions,

answers, and procedures is expressed in the text us-
ing characteristic markers such as “suppose there
is” (jin you今有) in the beginning of questions, as
well as layout of the text into paragraphs, it is easy
to extract triplets in a semi-automated way, tak-
ing care of the occasional deviation which is to be
expected in natural language documents that have
been transmitted over such a long time. Commen-
taries contained in the texts were removed during
the processing.
In total, this process resulted in 577 triplets ex-

tracted from the texts. Table 1 shows the number
of problems in each work. The table also shows
the number of chapters (juan卷), which in mathe-
matical books often correlate with major thematic
subdivisions.
In order to use the dataset in an automatic eval-

uation, the answer strings of each triplet were de-
composed into numerical solutions and textual ele-
ments, by searching for numerals followed option-
ally by a unit ofmeasurement (UoM)with a regular
expression. This step is necessary because the an-
swers often contain additional verbiage aside from
the bare result itself, for which it would be unrea-
sonable to expect the model to correctly predict it.
Cases in which a number in the answer does not
represent a value to be calculated, but rather helps
to structure it textually were manually fixed after-
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Ques-
tion

今
now
有
have

出
out
錢
cash

一萬三千五百
13 500

，
,
買
buy
竹
bamboo

二千三百五十
2350

箇
piece

。
.
問
ask
︰
:
箇
piece

幾何
how much

？
?

Suppose one has paid out 13 500 cash [unit of currency] and purchased 2350 pieces of bamboo.
Question: how much is one piece?

An-
swer

荅
answer

曰
say
：
:
一
1
箇
piece

，
,
五
5
錢
cash

、
,
四十七
47

分
part
錢
cash

之
genitive particle

三十五
35

。
.

The answer says: 1 piece is 5 cash and 35 parts of 47 cash.
Con-
verted

荅
answer

曰
say
：
:
一
1
箇
piece

，
,

270/47
270/47

錢
cash

。
.

Proce-
dure

經
treat

率
ratio

術
procedure

曰
say
：
:
以
with

所
relative pronoun

買
buy
率
ratio

為
make

法
divisor

，
,
所
relative pronoun

出
out
錢
cash

數
number

為
make

實
dividend

，
,
實
dividend

如
match

法
divisor

得
obtain

一
1
錢
cash

。
.

The procedure for treating ratios says: take the ratio of what has been bought as divisor, the
number of cash that has been paid out as dividend, do the division, obtaining one cash each
time the dividend matches the divisor.

Table 2: Example of a problem (number 32 from chapter 2 of the Nine Categories).

wards, as e.g. in cases where after buying a certain
number of goods for an amount of money, the price
of one item is sought after, and the one is repeated
in the answer.
In the texts, most answers are in the form of

quantities with an UoM attached. Often, a quan-
tity is expressed as a compound of integers or frac-
tions of several UoM at different levels of scale,
e.g. “two chi [unit of length] and four cun [unit of
length equivalent to 1

10 chi]” (er chi si cun 二尺
四寸). When extracting the numerical solutions,
such compounds were reduced to a single ratio-
nal number of the largest UoM, in the example,
2 + 1

10 · 4 = 12
5 chi. The intention of this step

is to align the computational steps that need to be
taken to compute the result more closely to the pro-
cedures that are proscribed in the texts themselves,
which inmost cases tacitly assume that appropriate
conversions are done by the mathematician.6 The
ability of the model to understand and potentially
convert pre-modern UoM is still tested, since no
conversion of any form is done for the quantities
stated in the questions.
In a comparable step, mixed fractions in the an-

swers were reduced to a single improper fraction.
In general, fractions which are written in the texts
using the notation “x fen zhi分之 y”, being equiv-
alent to y

x in modern notation, are always consid-
ered as a single term in the extracted answers. This
runs contrary to the intent of some of the prob-

6It should be noted however that there are some problems
the main point of which are unit conversions, which are made
significantly easier due to this conversion.

lems, notably 16 problems identified in early parts
of the works, which explain basic arithmetic op-
erations on fractions, necessitating an understand-
ing of fractions in the answers as consisting of two
numbers to be computed, numerator and denom-
inator.7 In most other procedures, knowledge of
these operations is assumed, so modelling frac-
tions in this way allows us to stay closer to the way
procedures are written in most cases.
As opposed to most modern math word prob-

lem datasets (Kao et al., 2024), the problems ex-
tracted from the ancient Chinese mathematical
texts commonly ask for the computation of several
unknowns, in one extreme case even 27 (mean 2,
sd 2.54). The length of the procedures associated
with the problems also varies considerably, rang-
ing (without punctuation) from 8 characters to 681
(mean 55.7, sd 64.1), indicating varying degrees
of mathematical complexity of the tasks.
During manual spot-checks, some textual errors

in the material were found and corrected. How-
ever, it has to be expected that the dataset is not
completely free of errors.

4 Solving the Problems with a LLM

4.1 Experimental setup
In this section, the performance of a state of the art
LLM, GPT-4o will be tested in solving the prob-
lems in the dataset described in the previous sec-
tion. The main strategy that will be used for this is
PoT (Chen et al., 2023).

7These 16 problems are included in the dataset, but were
excluded for the evaluation in Section 4.
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Formally, let a problem triplet (Qi, Ai, Pi) con-
sist of question Qi, answer Ai, and procedure Pi.
Let Ãi be the result of decomposing Ai into tex-
tual and numerical elements as described in the
previous section, containing numerical solutions
ai,1, . . . , ai,k. We then test the capability of the
model to generate Python code C, such that after
executing C, there are k variables a, b, . . . such
that a has value ai,1, b has value ai,2 and so on.
In order to understand the impact of differ-

ent factors on the performance, various prompts
were tested. For the purpose of constructing these
prompts in a way that avoids spoiling the result
while still giving the necessary structure to give an
answer, we define Âi as the string that is derived
from Ãi by substituting the numerical values with
letters “a”, “b” and so on.
Following the by now well-known

few-shot-learning approach (Brown et al.,
2020), the model was presented with a series of
sample inputs and expected answers. The five
problems used as exemplars were chosen in a way
that is reasonable for a human researcher, i.e. by
pulling respectively the first problems from the
first five chapters of the most famous work in the
dataset, the Nine Categories. For each example
1 ≤ j ≤ 5, aside from the solution code Cj , an
English translation Ej of the problems, including
the procedure, was written. One of the exemplars
as well as the system prompt SP can be found in
Appendix A. For reference, a zero-shot (Kojima
et al., 2022) approach was also tested, the prompt
for which is also in Appendix A.
Putting the elements together, the full few-shot

input for the model when trying to solve problem
(Qi, Ai, Pi) consists of the sequence

S(SP ),

U(Q1||P1||Â1),M(E1||C1),

. . . ,

U(Q5||P5||Â5),M(E5||C5),

U(Qi||Pi||Âi),

(1)

where || denotes concatenation and S, U and M
system, user and assistant messages respectively.
A solution generated by GPT-4o with this

prompt for the problem in Table 2 is shown in Fig-
ure 2. The accuracy achieved byGPT-4o using this
prompting format is shown in Table 3. The table
also shows the accuracy of the zero-shot strategy,
as well as several formats that are derived by mod-
ifications to (1):

'''Suppose there i s an expenditure o f
13 ,500 qian to buy 2 ,350 bamboo p i e c e s .
Question : how much does each p iece cost ?
The procedure f o r proport iona l ra t e s
says : Take the quantity bought as the
d iv i so r , and the amount o f money spent
as the dividend . Divide the dividend by
the d i v i s o r to obtain the cost per
p i ece .
Answer : one p iece co s t s *a* qian . '''
# 出錢一萬三千五百 [ paid out 13500 cash ]
所出錢數 = 13500
# 買竹二千三百五十箇 [ bought 2350 p i e c e s

o f bamboo ]
所買率 = 2350
# 以所買率為法 [ take the r a t i o o f what

has been bought as d i v i s o r ]
法 = 所買率
# 所出錢數為實 [ the number o f cash that

has been paid out as dividend ]
實 = 所出錢數
# 實如法得一錢 [ do the d i v i s i on ]
a = Fraction (實 , 法 )

Figure 2: Output of the model for problem 32 from
chapter 2 of the Nine Categories, with English trans-
lation in the block comment by the model, and trans-
lations of the single-line comments in square brackets
added manually afterwards. Empty lines before each
single-line comment contained in the original output
have been removed for better display.

Alternative system prompt For reasons that
will be laid out in Section 5, the system prompt
used in (1) stresses that the code should stay as
close as possible to the structure of the original,
and quote appropriate sections from it in com-
ments before each block of code. To test whether
this prevents the model from adopting more di-
rect solutions, an alternative system prompt with-
out these restrictions was tried (see AppendixA for
the prompt).
No punctuation For this configuration, punctu-
ation was removed from all strings in the input. It
is important to test the ability of the model to cope
with text written without punctuation, as this is the
format that the works were transmitted to us, and
modern punctuations are not available for all texts.
The results for the texts from the dataset without
punctuation, for which this was the only configu-
ration tested, are shown in Table 4.
No translation In this format, the English trans-
lationsE1, . . . , E5 were removed from the prompt.
Doing a complete translation first would be reason-
able approach for a human tasked with solving the
problems, so we test whether this also helps the
model achieve higher accuracy.
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All Nine
Categories Sea Island Five

Departments Master Sun Continuation

Method Mean B-o-5 Mean B-o-5 Mean B-o-5 Mean B-o-5 Mean B-o-5 Mean B-o-5
Zero-shot 44.0 60.7 40.8 61.0 4.4 11.1 60.6 70.1 58.9 77.2 0.0 0.0
Few-shot (de-
fault) 51.1 63.0 53.0 66.1 13.3 33.3 52.5 65.7 65.6 73.7 0.0 0.0

Few-shot (alter-
native prompt) 52.3 62.0 54.1 64.8 17.8 33.3 56.4 62.7 64.2 75.4 0.0 0.0

No punctuation 47.8 60.7 46.6 61.0 6.7 33.3 58.2 68.7 63.9 75.4 0.0 0.0
No translation 51.1 59.4 52.6 61.0 13.3 22.2 55.2 64.2 63.5 73.7 0.0 0.0
No procedures 36.7 45.5 33.8 42.8 2.2 11.1 47.2 53.7 54.0 66.7 1.0 5.0
Numerical solu-
tions provided 54.2 67.6 57.7 72.9 4.4 11.1 58.5 68.7 61.1 73.7 2.0 10.0

Table 3: Accuracies of different prompting strategies on the punctuated dataset and by title in percent. Values in the
mean columns are averaged over five runs of the model, and in the best-of-5 (B-o-5) columns a problem is counted
as solved if it was solved in at least one run.

All Xiahou Yang Zhang Qiujian
Mean B-o-5 Mean B-o-5 Mean B-o-5
37.4 49.7 45.6 57.3 29.4 42.4

Table 4: Accuracies in percent for the titles in the
dataset where no punctuation was available

No procedures In order to test whether the in-
formation provided in the question alone is suf-
ficient for the model to derive a solution, the
procedures P1, . . . , P5 and Pi are removed from
the prompt. Furthermore, the Python solutions
C1, . . . , C5 were streamlined to not include steps
described in the procedure but unnecessary in
Python, and comments that quote the procedures
are changed into English comments that explain
the reasoning. The system prompt was also
changed by removing the instruction to quote the
procedure before each block of code. This brings
the format much closer to conventional math word
problem setups, which usually do not contain pro-
cedures for computing results.
Numerical solutions provided In this format,
the solutions Â1, . . . , Â5 and Âi are modified by
adding the values of the unknowns as Arabic nu-
merals, giving the model an opportunity to cheat
by knowing the correct solutions.

4.2 Discussion
As can be seen in Table 3, the performance in
all of the works leaves much room for improve-
ment. Unsurprisingly the setup where the model
has access to the solutions it is supposed to com-
pute shows the best accuracy, although even in

Category Type Count

global
misunderstood procedure 7
misunderstood procedure
(inference required)

5

misunderstood question 4

localized

misunderstood expression 27
unit conversion 17
code error (fractions) 16
math reasoning 4
textual error 3
code error (variable name) 2
code error (syntax) 1
result rounded in the text 1

Table 5: Count of errors by type encountered during the
evaluation of 50 randomly chosen failed solutions

that scenario, mean accuracy is significantly lower
than that reported for the same model on the
MATH dataset, 68.5%8, which was designed to be
challenging for expert humans (Hendrycks et al.,
2021). While removing procedures outright leads
to a large drop in accuracy, telling the model to
focus on staying close to the procedure (default
prompt) or not (alternative prompt) does not cause
a statistically significant difference. Removing
punctuation leads to a small but significant drop
in mean accuracy. Removing translations did not
have a significant effect on mean accuracy.
Looking at the breakdown of the results by ti-

tle, we can observe considerable differences be-

8https://github.com/openai/simple-evals (entry
gpt-4o-2024-11-20, accessed 23.01.2025).
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tween the accuracy values. In particular, the model
was almost unable to solve any problems in the
Sea Island and the Continuation. Inside a single
work, the performance can also vary considerably
by chapter. For example, the mean accuracy us-
ing the default few-shot prompt for the worst per-
forming chapter of the Nine Categories is as low
as 21%.9 Since chapters often group thematically
related problems, this indicates that the model had
more difficulties in solving certain types of prob-
lems.10
Running a logistic regression shows that both

the total textual length of a problem, i.e. the sum
of the lengths in characters without punctuation of
question, answer, and procedure, and the number
of unknowns in it are significant predictors on the
model being able to solve it.11 As a case in point,
both of the two works with the worst performances
each contain problems or procedures that are much
longer than the average of the dataset. The mean
number of characters (not counting punctuation)
per problem is 164 for the Sea Island and 311 for
the Continuation, but only 106 for the Zhang Qiu-
jian, which has the third highest values in this re-
gard. In the Continuation, many problems are fur-
ther complicated by a high number of unknowns to
be computed, 6.95 on average per problem, com-
pared to 1.99 for the text with the second highest
value. At the same time, it can be considered more
advanced in terms of computations involved, as al-
most all of the problems require the extraction of
cubic roots (Lim and Wagner, 2017: 27). Accord-
ingly, in its context as a historic textbook, it was
the only one of the works considered here reserved
for a program for advanced students (Keller and
Volkov, 2014: 61).
In order to gain a deeper understanding of why

the model fails to output correct code, a manual er-
ror analysis was conducted. 50 problems were ran-
domly sampled from among those where the few-

9The complete table showing accuracy for each chapter
can be found in Appendix B.

10As groups of more specifically related problems also tend
to cluster inside each chapter, we would have furthermore ex-
pected to encounter clusters of easier or more difficult prob-
lems when arranging them by their position inside each chap-
ter. However, a runs test only gave a significant result for
one single chapter, number 2 in the Nine Categories, which is
clearly divided into two distinct parts, with the first part con-
taining a family of problems that is much easier than those in
the second part.

11In the few-shot configuration using best-of-5 for evalua-
tion. βtext_len = −0.0046629, SEtext_len = 0.0009004,
ptext_len < 0.001, βn_unknown = −0.3759104,
SEn_unknown = 0.0562560, pn_unknown < 0.001.

shot prompting strategy failed in all five runs. For
each of those, the output for one of these runs was
then annotated, by first determining whether the
code was in general following the structure of a
correct solution and could be fixed by modifying
a few localized sections, or whether it was com-
pletely unusable, because either the model did not
understand the the structure of the procedure pro-
vided, or the intent of the question. Table 5 gives
an overview of the errors encountered.
In the cases where the code was fixable with lo-

calised modifications, the type of error in these lo-
cations was further analysed. Of course, there are
many possibilities for generating incorrect results.
However, a few major categories can be clearly
distinguished.12

First, there were 27 cases where the model mis-
understood an expression in the original text, e.g.
translating the expression “tai ban sheng太半升”
(two-thirds of a sheng) into “half a sheng” in the
English translation and “Fraction(1, 2)” in the
code section of the output.
Second, there were 17 cases where the model

made an error in doing unit conversions, reflecting
either a lack of world knowledge or applied math-
ematical reasoning skill.
Third, there were 19 cases where, judging from

the translation and the code it has produced, it
intended to do the right thing, but failed to pro-
duce working code. 16 of these are related to our
choice to force the model to use fractions in com-
puting results, running counter to the semantics of
Python defaulting to floating point numbers when
doing divisions with “/” or taking square root with
“math.sqrt”. To our surprise, in two of the exam-
ined outputs, the model generated code that was
invalid because of wrong variable names, in both
cases because it had used the same namewith tradi-
tional characters in one place in the code, and then
with simplified characters in another location. In
one case, the syntax of the generated code was in-
correct.
Third, there were four cases where the prob-

lem seems to have been with the mathematical rea-
soning of the model. While the procedures sup-
plied with the problems in most cases give a com-
plete solution strategy, they are often not detailed
to the level that they could simply be mindlessly
followed, and not all mathematics can be left to the

12Examples of the most commonly encountered categories
can be found in Appendix C.
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Python interpreter. For example, there was a case
where the procedure simply stated to add a “dif-
ference”, which in the context could refer to two
quantities, of which the model chose the wrong
one.
Finally, three cases were caused by an error in

the original text, and one by the solution provided
in the original being rounded, with no indication in
the procedure that such a step has to be taken.

5 Further Use of the Generated Code

In the previous section, the dataset was used as
a benchmark to test a model’s ability to output
code to calculate correct solutions for the prob-
lems. However, as mentioned in Section 1, for
the historical problems used here, this may not be
the most relevant task. In this section, it will be
shown that the code that is generated to compute
solutions is interesting in its own right, because it
allows us to explore ancient Chinese mathematics
from a perspective that was much more difficult to
attain before: what were the calculations needed to
solve the problems?
Of course, using the digitized full-text editions

of the texts, it is trivial to search the procedures
for the presence of words that commonly proscribe
certain mathematical operations, e.g. “cheng 乘”
(to multiply). However, this does not necessarily
give us a complete picture: On the one hand, there
are some polysemous lexemes that can signify dif-
ferent operations, such as “chu 除” (to divide, to
subtract), or an operation and something entirely
else, e.g. “cong 從” (length, to accord to, to add).
On the other hand, there can be operations that are
implicit, and not overtly expressed in the text. For
example, as described in Section 3, unit conver-
sions are often left for the practitioner to fill in,
and might, due to the system of UoMs used, re-
quire non-trivial multiplications or divisions.
By including the instruction for the model to

closely follow the structure of the provided proce-
dure, and quote the relevant section of the proce-
dure before each section of code (see Appendix A
for the prompt), we ensure that code can be aligned
to the original text. While this does of course not
ensure a perfect match between the Python im-
plementation and how a practitioner would have
done their calculations, the alignment allows a tar-
geted search for the code equivalents of expres-
sions. Furthermore, by restricting ourselves to
problems where the Python solution computes the

correct answers, without having them spoiled in
the prompt, we can be confident that the model
understood the problem at least to the level that it
could independently solve it.
Among the correct outputs produced by the de-

fault few-shot prompt, 76.1% of code blocks di-
vided by empty lines produced by the model were
started by a comment that could be matched to a
portion of either the question or procedure pro-
vided in the prompt. In order to check how reliable
this alignment is, amanual analysis of 50 randomly
sampled solutions was conducted. In particular, it
was examined whether 1) the mathematical opera-
tions specified in the text quoted as a comment be-
fore each block match the semantics of the code in
the block 2) there are calculations specified in the
procedure missing from the code 3) there are cal-
culations in the code proscribed neither explicitly
nor implicitly (e.g. UoM conversions) in the pro-
cedure. Code blocks that contain no calculations
but just assign variables were not checked.
In 43 of the 50 cases, no problems were discov-

ered according to the three criteria. In two cases,
both from the Fangcheng (equivalent to Gaussian
elimination) section of the Nine Categories, the
procedure given contains specific instructions for
one paradigmatic problem, which need to be gen-
eralized to the problem at hand.13 Hence, it is im-
possible to produce code that aligns perfectly to
the instructions in the procedure. In two cases,
the procedures contained steps needed to deal with
fractions, which were rendered unnecessary by us-
ing the Fraction class and thus not included in
the generated code. In one case each, the com-
ments were translated into English, an algorithm
that completely deviated from the procedure was
adopted by the model, and one of the code blocks
contained code that did not match the quoted sec-
tion from the procedure.
To demonstrate the potential of this alignment

between original text and its translation into code,
blocks were searched for multiplication with the
operator *, and the accompanying comments were
then analysed for the presence of several construc-
tions that commonly denote multiplication. The
results, grouped by title, are displayed in Table 6.
The table also contains a column for UoM conver-
sions, which are often not explicated in the original
text, but for which the model almost always added
a separate comment explaining the step. As can

13See Footnote 3 above.
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Title cheng乘 n zhi之 bei倍 ming命 UoM conversion other
Nine Categories 141 (56%) 29 (12%) 10 (4%) 0 (0%) 54 (21%) 20 (8%)
Five Departments 43 (90%) 0 (0%) 0 (0%) 0 (0%) 4 (8%) 2 (4%)

Master Sun 46 (68%) 1 (1%) 4 (6%) 3 (4%) 13 (19%) 5 (7%)
Sea Island 5 (62%) 0 (0%) 0 (0%) 0 (0%) 3 (38%) 0 (0%)

Table 6: Constructions in sections of the procedures quoted before code blocks containing multiplications (* in
Python). Multiple categories can apply for the same code block.

be seen, “cheng乘” (to multiply), is the most fre-
quently used lexeme to express multiplication. All
of the texts also employ other ways for stating this
operation. However, the popularity of these differs
significantly between the works, with “n zhi 之”
(“to n it”, where n is a natural number) being the
most frequent in the earliest text in the dataset, the
Nine Categories, and seemingly dropping more or
less out of fashion in the later texts.
In the current setup, a major drawback is of

course that it is limited to those problems that the
model has successfully solved. As we have seen,
misunderstanding of the text is one of the main
reasons for errors in the output, and lexemes that
are infrequently used in a certain meaning might
be one of the main causes for misunderstandings.
For example, “ming命” (to command, to name, to
multiply) is used to refer to multiplication in a few
procedures in the Nine Categories (Chemla and
Guo Shuchun, 2004: 963-4), but the model failed
to produce correct solutions for these. Hence, at
the current stage, the setup is mostly suited to dis-
cover larger trends. However, we are confident
that with simple means, the accuracy can be fur-
ther improved. Possible directions for this will be
discussed in the next section.

6 Conclusions

In this article, we have introduced a dataset of
ancient Chinese math word problems, and estab-
lished a baseline performance for an LLM solving
the problems using a PoT approach. While the fact
that around two thirds of the problems could be
solved in this setting shows the general potential of
using LLMs for historic mathematics, it of course
leaves much room to improvement. By releasing
the dataset, we hope to encourage further research
in this direction.
In particular, an obvious first step would be to

explore recent advancements over the basic PoT
prompting used here, by e.g. giving the model
feedback on its solution attempts (Zhou et al.,

2023). Of course, more sophisticated models
which achieve higher scores in modern day math
benchmarks could also be tried. However, as
our error analysis in Section 4.2 has revealed, the
biggest challenge for GPT-4o does not appear to
be in mathematical reasoning, but rather in under-
standing the language of the texts. In this regard,
a fruitful approach to explore could be in using re-
trieval augmented generation, by giving the model
explanations of technical terms contained in the
problem. Resources that could be used for this pur-
pose include both pre-modern commentaries that
accompany several of the texts in the dataset, as
well as modern day glossaries compiled by histo-
rians.

A limitation that might require more fundamen-
tal changes to the setup is the model of compu-
tation used. As outlined in Section 3, the choice
taken here was motivated by the consideration to
have the code output correspond as directly as pos-
sible to the procedures provided in the texts. How-
ever, using Python with rational numbers repre-
sented by the Fraction class is clearly not ideal.
First, it does not align perfectly which what is ex-
plicit and implicit in the procedures. Second, as we
have seen in Section 4.2, GPT-4o sometimes had
considerable problems in producing working code
under these conditions. Overcoming these could
potentially entail designing a simple custom pro-
gramming language as the target for translations,
or at least providing a set of purpose-built library
function that match the semantics of certain com-
pound operations in ancient Chinese mathematics,
e.g. root extraction or operations with mixed frac-
tions.

As the sketch of future applications in Section 5
demonstrates, doing further research in this direc-
tion might prove very fruitful, because it allows
us to approach historical mathematics from a new
perspective, guided by a large scale analysis of the
actual computations performed, without the need
for time-consuming human annotation.
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Limitations

The text in the dataset were not systematically
checked to ensure that they are free from errors.
Only a single model and a single set of exem-

plars was tested.
No comparison wasmade against human perfor-

mance on the dataset.
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A System prompts and exemplar

Default system prompt: “Translate ancient Chi-
nese math problems into Python code, ensuring
that each section of code adheres to the structure
of the procedure (‘術’) provided. Put the part of
the procedure that corresponds to each block of
code as a comment before the block. Ensure that
the complete procedure is encoded. Use the class
‘Fraction’ to represent numbers that might not be
integers and use the appropriate units for each cal-
culation. Don’t use any other external functions.”
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Alternative system prompt: “Translate ancient
Chinese math problems into Python code. Ensure
that the complete procedure is encoded. Use the
class ‘Fraction’ to represent numbers that might
not be integers and use the appropriate units for
each calculation.”
System prompt for scenario without procedures:

“Translate ancient Chinese math problems into
Python code. Use the class ‘Fraction’ to represent
numbers that might not be integers and use the ap-
propriate units for each calculation. Don’t use any
other external functions.”
Zero-shot system prompt: “Translate ancient

Chinesemath problems into Python code that com-
putes the values of the unknowns replaced by let-
ters (‘a’, ...) in the answer (‘荅’ or ‘答’). Write
the solutions into variables that have exactly the
same name as the unknowns. Use the class ‘Frac-
tion’ to represent numbers that might not be inte-
gers and use the appropriate units for each calcu-
lation. Don’t use any other external functions.”
Exemplar for problem 1 from chapter 1 of the

Nine Categories:
User: “今有田廣十五步，從十六步。問：為田
幾何？
方田術曰：廣從步數相乘得積步。以畝法二百
四十步除之，即畝數。百畝為一頃。
荅曰：a畝。”
Assistant:

' ' '
Suppose t h e r e i s a f i e l d wi th a

↪→ wid th o f 15 bu and a l e n g t h
↪→ of 16 bu .

Que s t i on : how l a r g e o f a f i e l d
↪→ does i t make?

The p r o c edu r e f o r r e c t a n g u l a r
↪→ f i e l d s s ay s : The numbers o f
↪→ bu i n wid th and l e n g t h a r e
↪→ mu l t i p l i e d wi th each o t h e r
↪→ , o b t a i n i n g t h e [ number o f ]
↪→ accumu la t ed bu .

When d i v i d i n g i t by t h e mu−
↪→ d i v i s o r , 240 , i t i s t h e
↪→ number o f mu .

100 mu make 1 q ing .

The answer s ay s : *a* mu .
' ' '

#廣十五步

廣步數 = 15

#從十六步
從步數 = 16

#廣從步數相乘得積步
積步 = 廣步數 * 從步數

#畝法二百四十步
畝法 = 240

#以畝法二百四十步除之，即畝數
畝數 = F r a c t i o n (積步 , 畝法 )

a = 畝數

B Results by chapter

Table 7 shows accuracy separately for each chap-
ter.

C Examples of errors

Due to space considerations, only examples of the
most frequent categories of localized errors are re-
produced here. The complete annotated files can
be found at https://github.com/notiho/ancien
t-chinese-math-problems.
Misunderstood expression (Problem 17 from
chapter 1 of the Nine Categories): The relevant
fragment in the original text is “又有三人，三分人
之一，分六錢三分錢之一，四分錢之三” (Again,
there are three and one third of a person, dividing
six cash, one third cash and three fourth cash). The
model translates this as “Suppose there are three
people. Each person is to receive one-third of the
total. The total is 6 qian, plus one-third of a qian,
plus three-fourths of a qian.” and produces the fol-
lowing code:

# 三人
人數 = 3

Expected:

人數 = 3 + F r a c t i o n ( 1 , 3 )

Unit conversion (Problem 21 from chapter 3 of
theMaster Sun): LLM output:

# Conve r t sheng t o hu (10 sheng =
↪→ 1 hu )

a = F r a c t i o n (總食量升 , 10 ) #
↪→ To t a l food i n hu

Expected (100 sheng = 1 hu):
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Title Chap-
ter

Prob-
lems Zero-shot Few-shot

Few-shot
(alt.

prompt)

No
punctu-
ation

No
trans-
lation

No
pro-

cedures

Numerical
solutions
provided

Nine
Categories

1 25 56.0 72.0 83.2 92.0 88.8 92.0 74.4 84.0 92.0 92.0 49.6 56.0 94.4 96.0
2 45 24.4 46.7 52.4 64.4 50.2 57.8 40.9 53.3 57.3 62.2 7.1 8.9 56.0 73.3
3 19 51.6 63.2 65.3 78.9 66.3 78.9 61.1 73.7 64.2 68.4 54.7 57.9 62.1 78.9
4 23 49.6 65.2 59.1 69.6 62.6 82.6 54.8 73.9 52.2 73.9 53.0 56.5 68.7 91.3
5 34 37.6 64.7 58.8 70.6 56.5 64.7 56.5 64.7 49.4 55.9 34.1 41.2 63.5 73.5
6 28 40.7 60.7 41.4 50.0 37.9 46.4 38.6 53.6 45.7 50.0 25.7 39.3 43.6 50.0
7 20 26.0 45.0 21.0 35.0 23.0 35.0 11.0 30.0 16.0 30.0 52.0 60.0 23.0 50.0
8 18 53.3 66.7 40.0 55.6 40.0 61.1 35.6 55.6 46.7 72.2 45.6 72.2 50.0 77.8
9 24 46.7 75.0 48.3 75.0 59.2 70.8 42.5 62.5 41.7 45.8 17.5 37.5 51.7 66.7

Five
Depart-
ments

1 19 68.4 73.7 34.7 63.2 46.3 63.2 49.5 73.7 25.3 36.8 56.8 63.2 34.7 52.6
2 12 68.3 75.0 63.3 66.7 66.7 66.7 65.0 66.7 81.7 91.7 51.7 58.3 65.0 66.7
3 14 84.3 92.9 78.6 85.7 85.7 85.7 81.4 85.7 84.3 85.7 55.7 57.1 87.1 92.9
4 12 21.7 41.7 40.0 50.0 33.3 41.7 36.7 50.0 45.0 58.3 16.7 25.0 38.3 50.0
5 10 50.0 60.0 52.0 60.0 50.0 50.0 60.0 60.0 52.0 60.0 48.0 60.0 80.0 90.0

Master
Sun

2 23 47.0 78.3 60.9 73.9 57.4 73.9 54.8 73.9 56.5 73.9 45.2 56.5 53.0 69.6
3 34 67.1 76.5 68.8 73.5 68.8 76.5 70.0 76.5 68.2 73.5 60.0 73.5 66.5 76.5

Sea
Island 1 9 4.4 11.1 13.3 33.3 17.8 33.3 6.7 33.3 13.3 22.2 2.2 11.1 4.4 11.1

Contin-
uation 1 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 5.0 2.0 10.0

Table 7: Accuracy in percent by chapter

a = F r a c t i o n (總食量升 , 100)

Code error (fractions) (Problem 8 from chapter
1 of the Five Departments): LLM output:

# 以四除之
邊長 = 方周 / 4

Expected (division produces fractional result):

邊長 = F r a c t i o n (方周 , 4 )
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Abstract

Ancient Chinese documents written on bam-
boo slips more than 2000 years ago offer a rich
resource for research in linguistics, paleogra-
phy, and historiography. However, since most
documents are only available in the form of
scans, additional steps of analysis are needed
to turn them into interactive digital editions,
amenable both for manual and computational
exploration. Here, we present a first attempt to
establish a workflow for the annotation of an-
cient bamboo slips. Based on a recently redis-
covered dialogue on warfare, we illustrate how
a digital edition amenable for manual and com-
putational exploration can be created by inte-
grating standards originally designed for cross-
linguistic data collections.

1 Introduction

Most computational approaches on ancient stages
of the Chinese language restrict themselves to the
classical canon of writings that have been handed
down for several thousand years now. These
sources are written in a standardized character sys-
tem called the regular script (楷書 kǎishū). From
the time when it was introduced more than 2000
years ago until now, this system does not seem to
have been modified in any significant form. As
a result, one often thinks of Chinese writing as a
unified endeavor, unlikely to change, and unlikely
to have changed radically throughout most of its
history. When going back deeper in time, how-
ever, this picture changes drastically. Thanks to an
increasing amount of documents written on bam-
boo slips that have been archeologically excavated
in recent times, scholars are now learning more
and more about the immense degree of variation
in writing that was characteristic for China long be-
fore the regular script became adopted as the stan-
dard. In order to understand the history of the Chi-
nese language, it is indispensable to pay attention
to its variety in writing reflected in these sources.

Most bamboo manuscripts date back to the
period from the mid-late Warring States Period
(Zhànguó 戰國, late fourth century to early third
century BCE) up to the Hàn dynasty (Hàn cháo
漢朝, 206 BCE to 220 CE). They represent a true
wealth of new data and evidence for linguistics,
paleography, philology, and historiography. How-
ever, putting this treasure of knowledge to use in
research bears two major challenges that have not
been sufficiently addressed so far. A first chal-
lenge consists in the analysis of the characters ob-
served in bamboo slips. While these follow the
general building structure of Chinese characters,
allowing us to identify phonetic and semantic com-
ponents that usually also find their counterparts in
the regular script, ancient writing shows a much
greater variation with respect to the combinations
that are possible here (see Figure 1 as an example).
As a result, it is often impossible to find themodern
counterparts – along with their Unicode values –
of characters observed on bamboo slips. A second
challenge consists in the digital curation of mod-
ern editions of excavated texts. Given that schol-
ars often lack digital training, the vast majority of
editions is restricted to scans accompanied by com-
ments, while a deeper integration of data is lack-
ing.
Taking one particular text – available in two

different bamboo manuscript versions – as exam-
ple, we illustrate how these problems could be ad-
dressed in the future. Using basic concepts from
corpus linguistics, Natural Language Processing,
and computer science, we show how the original
documents can be annotated, how individual char-
acters can be analyzed with respect to their com-
position, and how an entire digital edition can be
constructed, providing scholars interested in man-
ual data exploration with interactive access to the
original documents, while the data in standardized,
machine-readable form to scholars interested in
computational analysis.
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Original

Kǎishū 𢟪 既

Source GD *LǎozǐA 35 BS *Bǔshì jìdǎo 223 SB *fán wù liú xíng B 3 QH *Yuègōng qí shì 20 QH *Nǎi mìng yī 9 SB Cáo Mò zhī zhèn 46b

Figure 1: Illustration of variation in bamboo script. The table lists variants of the character qì氣 “breath, energy”,
as it can be found across manuscripts, along with projected conversions of the character structure to the modern
regular script.

2 Materials

The text we use to illustrate our workflow is called
Cáo Mò zhī zhèn 曹沫之陳 (Cáo Mò’s Battle
Formations). It is a long-lost Chinese philosoph-
ical dialogue on ethics and warfare between Duke
Zhuāng of Lǔ (Lǔ Zhuāng Gōng 魯莊公, reign
693–662 BCE) and his general Cáo Mò, which
has resurfaced after millennia in the form of two
manuscript copies on bamboo. The Shanghai Mu-
seum manuscript (henceforth SB) was first pub-
lished in print in 2004 in the fourth volume of the
collection (Mǎ, 2001–2012), while the Anhui Uni-
versity copy (henceforth AD) was first published
in print in 2022 in the second volume of the col-
lection, whose publication is still ongoing (Huáng
and Xú, 2019–2022). Though coming from ille-
gal excavations, their authenticity has been proven
through radiocarbon dating of the bamboo slips,
which has confirmed a mid-third century BCE dat-
ing for SB and a late fourth century BCE dating
for AD. SB counts 65 bamboo slips (45 intact and
20 broken, average length 47.4 cm, average width
0.6 cm). The manuscript contains 1778 characters
written in the Chǔ orthography and carries the title
of the text on the back of slip no.2. On the other
hand, AD counts 46 slips (slips 4 and 5 are entirely
missing, average length 48.2 cm, average width
0.6 cm). The manuscript contains a total of 1623
character entries. Unlike SB, AD lacks a clear ti-
tle indication on its back, but some inscriptions as
well as some oblique lines useful for correct or-
dering of the slips are present on the verso. Both
folia were originally held together by three bind-
ing cords (biānshéng 編繩), secured to the bam-
boo slips through binding notches (qìkǒu 契口).
The binding cords, however, have been irrepara-
bly lost. A solid study on some codicological as-
pects, such as scribal hands, manuscripts produc-
tion, and use of punctuation as been recently pub-

lished by Zheng (2024) to whom we redirect the
reader. The high-quality scans of both AD and SB
bamboo slips provided in the the second volume
of the Anhui University manuscripts collection has
served as starting point and preliminary material
for the digital edition.

3 Methods

Our workflow for the digital annotation, curation,
and publication of bamboo script documents con-
sists of four stages. In the first stage, we carry out a
detailed digital annotation of the original data. In
the second stage, we conduct an extensive analy-
sis of the texts by analyzing characters, identifying
words, and glossing sentences semantically. In the
third stage, we model the data according to the for-
mats proposed by the Cross-Linguistic Data For-
mats initiative (CLDF, https://cldf.clld.org, Forkel
et al. 2018). In the fourth stage, finally, we deploy
the data in the form of an interactive CLLD appli-
cation (https://pypi.org/project/clld, Forkel 2014).

3.1 Digital Annotation

In order to allow for a flexible reuse of the analyzed
data, our workflow starts from the digital annota-
tion of the original documents. The core of this
annotation consists in marking individual charac-
ters with boundary boxes and annotating the boxes
in such a way that the characters can be identified
at later stages. For this task, we used Recogito
(https://recogito.pelagios.org/, Barker et al. 2019),
an interactive tool for semantic annotation that
greatly facilitates this task. Other tools could have
been used for this step as well, but we selected
Recogito for its shallow learning curve and its gen-
eral openness. Once finished, Recogito’s bound-
ary boxes can be easily exported to various file
formats and accessed from computer programs, al-
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lowing us to cut individual characters out of the
original scans in order check how much they vary.

3.2 Linguistic Analysis
The linguistic analysis consists in two parts that
may go hand in hand, namely character analysis
and text analysis. During character analysis, all
characters annotated in the previous step of our
workflow must be analyzed carefully, identifying
their external and internal structure, – where pos-
sible – their modern counterparts, as well as estab-
lishing their pronunciation through different stages
of Chinese (regarding the distinction between ex-
ternal and internal structure, see List et al. 2016,
50). Since the identification of words and the
assignment of readings to the characters attested
on the bamboo slips constitute a comprehensive
philological enterprise open to criticism and de-
bate, each character was first reproduced as faith-
fully as possible using ideographic description se-
quences (for details, see Kordek 2013, 62) and
then – where possible – assigned a counterpart in
standard Chinese characters. The assignment of
the modern counterparts was grounded in the ex-
tant scholarly literature on the Cáo Mò zhī zhèn
manuscripts. Aside from the original critical edi-
tions of 2004 and 2022 (Mǎ, 2001–2012; Huáng
andXú, 2019–2022), the editions byYú and Zhāng
(2019) and Sūn (2023) proved essential. In addi-
tion, it turned out that a basic understanding of
word families and language-internal cognates in
Old Chinese phonology (compare Pulini and List,
2024) can be of great help during the analysis. This
two-level analysis of character structures – one
stricter and one broader – ensures transparency and
prevents the loss of information during the annota-
tion process. In identifying ancient readings for the
characters, we followed the tradition of research on
Old Chinese phonology in providing Middle Chi-
nese readings (a language variety documented in
rhyme books published around the 6th century CE)
in the system of Baxter (1992), and Old Chinese
reconstructions, following the system proposed by
Baxter and Sagart (2014).
During text analysis, both manuscripts are uni-

fied to form one coherent text. Given the status
of the sources, the preference is here given to the
AD version of Cáo Mò’s Battle Formations, with
apparent gaps being filled in from the SB version.
The analysis starts from the identification of words
(which may consist of two and more characters
at times) and phrases. Once identified, these are

glossed semantically, using basic techniques for
interlinear morphemic glossing (Lehmann, 2004).
In this stage, we also handle characters that may
be missing entirely from both versions. These are
not only marked specifically but can also be iden-
tified easily, as they have no image data attached
to them. At the end, translations for phrases and
entire passages in English are suggested.
Both character analysis and text analysis are car-

ried out in tabular form, using common spread-
sheet editors. In character analysis, each row in a
table corresponds to a character that is itself linked
to the original scan via the boundary boxes that
were added during digital annotation, with separate
information being placed into different columns
of the table. In text analysis, the basic unit as-
signed to each row is the word, consisting of one
or more characters. Both tasks require a detailed
knowledge of bamboo slips, Chinese paleography,
and Old Chinese etymology, and were therefore
exclusively carried out by the first author of this
study, while the role of the second author con-
sisted in the design of formal tests of annotation
consistency. While this means that tests on inter-
annotator agreement (McDonald et al., 2019) are
lacking, we hope to improve the data in the future
through comments by our colleagues.

3.3 CLDF Integration
The CLDF specification has been developed for
various forms of cross-linguistic data, including
wordlists, dictionaries, and feature collections.
More recently, CLDF has been extended to inte-
grate corpus data, offering additional functional-
ity to handle interlinear-glossed texts (List et al.,
2021). While CLDF has not been specifically
designed to handle Chinese text collections, the
format offers many advantages about alternative
data formats. First, data provided in CLDF can
be easily queried computationally, using the ded-
icated PyCLDF Python package (Forkel et al.,
2025), as well as SQLite (https://sqlite.org, see
Shcherbakova and List 2023 for an example query-
ing lexical data in CLDF, and Blum et al. 2024 for
an example queryin corpus data). Second, data
available in CLDF can be easily imported into
CLLD applications (https://clld.org, Forkel, 2014),
thus offering facilitated ways to deploy data collec-
tions to the web where they can be conveniently in-
spected by interested users (see § 3.4 for details).
With our main data available in tabular form,

it is straightforward to convert the data to CLDF,
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Figure 2: Interlinear-glossing example from the web application of the digital edition.

since the CLDF format specification itself is
mostly based on tabular data. In CLDF, our data
is modeled as a generic dataset, consisting of a
language table (linking only to one language, Old
Chinese), an entry table that stores the words in
the text, and an example table consisting of the
individual phrases in interlinear-glossed form (fol-
lowing the Leipzig Glossing Rules, see Comrie
et al. 2015), where Middle Chinese and Old Chi-
nese reading are offered as additional glossing
layers. An additional table is used to store in-
dividual characters linked to their location in the
scans of the original two editions. The CLDF con-
version was carried out with the help of CLDF-
Bench (https://pypi.org/project/cldfbench, Forkel
and List 2020, a tool that facilitates the conver-
sion to Cross-Linguistic Data Formats. Additional
data handling was conducted with the help of the
SinoPy package (https://pypi.org/project/sinopy,
List 2019).

3.4 Deployment with CLLD

The clld toolkit (Forkel, 2014) is a Python library
that facilitates the deployment of data provided in
the form of Cross-Linguistic Data Formats by pro-
viding researchers with an interactive web frame-
work that can be interactively explored. The clld
application that we created on top of the CLDF
data provides the digital edition of the Cáo Mò
zhī zhèn in the form of an integrated web applica-
tion in which original characters can be explored in
a unique way that integrates the graphemic, pho-
netic, and semantic analysis underlying the edi-
tion.

4 Examples

With the data assembled both in the form of CLDF
and an interactive web application, our digital edi-
tion of the Cáo Mò zhī zhèn allows for both com-
putational and manual exploration. Since we pro-
vide the data in the form of interlinear-glossed text,
standard approaches from corpus linguistics can be
used to query the data in order to investigate the
text. As a first example, Table 1 shows the tenmost
frequently recurringwords in the source. As can be
seen, we do not only find grammatical markers in
this list, but also words like yuē曰 “say” that point
to the fact that the text is written as a dialogue, and
zhàn 戰 “war”, pointing to the major topic of the
text. While the source itself is limited, this exam-
ple shows the potential for extended computational
analysis once more annotated texts become avail-
able.

C G OCH OCC
之 conjunction tə 76
曰 say ɢʷat 57
不 negative adv. pə 56
有 have ɢʷəʔ 52
以 preposition ləʔ 40
而 conjunction nə 30
於 preposition ʔˤa 29
其 poss. pron. gə 27
戰 war tar-s 27
莊公 duke Zhuang tsraŋ C.qˤoŋ 22

Table 1: Most frequent words and particles in the Cáo
Mò zhī zhèn. C refers to the character (in standardized
form), G refers to the gloss (abbreviated for reasons
of visibility), OCH refers to Old Chinese readings, and
OCC provides information on occurrences in the text.
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Figure 3: Comparing individual occurrences of words in the digital edition. The table provides the first 6 out of a
total of 16 entries in the digital edition for為 wéi “do, act” MCH hjwe, allowing scholars to inspect differences in
the writing of the word inside and across editions.

Figure 2 gives a direct example of one
interlinear-glossed phrase in the web application,
showcasing how the original images are integrated
with the two-level analysis of the Chinese char-
acters, the readings in Middle Chinese and Old
Chinese, and the semantic glosses. The example
also shows how we handle those cases in which
the internal character structure that we observe in
bamboo slips cannot be matched with a counter-
part in modern kǎishū writing. Since the compo-
nents of Chinese characters are usually limited and
can be easily detected, we use ideographic descrip-
tion sequences – a system that allows to system-
atically analyze characters into their components
(Skala, 2015) – to display the way in which the in-
dividual components are arranged. Thus, the se-
quence⿵戕口, that we identify with the personal
name zhuāng莊, refers to a character consisting of
qiāng戕 “to kill” with the character radical kǒu口
“mouth” inside.
An additional web view is shown in Figure 3,

allowing users to compare individual variants of
the same word or character, thus offering direct
and convenient ways to assess the variation in writ-
ing. In addition, the example not only illustrates
how the image annotations are directly integrated
with the web application, but also shows how the
different backgrounds going back to the original
publications of the scans, allow us quickly to see
to which of the two sources (AD and SB) the text
parts belong, with AD being based on colored im-
ages, while SB is given in gray scale.
All in all, we hope that these examples illus-

trate the advantage of integrated web applications

in which data are stored separately, providing ac-
cess to computers and humans at the same time.
Complex web applications often deliberately keep
users proficient in computing from accessing the
resources with the help of software tools. Re-
sources that focus on providing data exclusively
for computational analyses, on the other hand, of-
ten underestimate the important role that direct in-
spection can play in spotting potential errors in an-
notations.

5 Conclusion and Outlook

With this study, we have presented a digital edi-
tion of an ancient text on warfare in China that can
be accessed both computationally and manually.
While computational approaches to bamboo script
are still meeting a large number of obstacles, we
think that our example application could offer a so-
lution for future studies, by increasing the amount
of digitally annotated data that could be used in
several kinds of computational studies. Thus, us-
ing the annotated images with the associated char-
acter structures, one could develop initial models
to test the limits of current tools for hand-written
text recognition (Kahle et al., 2017). Using tools
from corpus linguistics, one could analyze the text
in various ways (Hunston, 2022), using it also as
the basis for the creation of corpus-based dictionar-
ies (Bowker, 2010). Finally, by providing textual
data along with reconstructed pronunciations, such
data collections as the one shown here can help to
improve and consolidate our knowledge about the
ancient pronunciation of Chinese throughout dif-
ferent times and places.
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Supplementary Material

All data and code necessary to replicate the
study presented here are freely available for
download. The code for the curation of the data is
hosted with Codeberg (https://codeberg.org/cldf-
datasets/caomozhizhen) and archived with Zenodo
(https://doi.org/10.5281/zenodo.15039078, Ver-
sion 1.0). The application is available online
(https://cmzz.digling.org), and the code underly-
ing the application is also hosted with Codeberg
(https://codeberg.org/digling/cmzz).
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Limitations

The workflow we propose is still preliminary.
While the extension of Cáo Mò zhī zhèn allows
for manual transcription and annotation of the data,
additional challenges may arise when dealing with
longer texts. Moreover, methods for further inte-
grating the critical apparatus into the edition will
need to be developed in the future. There are also
some concrete points that we hope to improve in
the current annotation in the nearer future. Among
these are a much more detailed check of glosses
and translations, as well as a direct reference to the
sources that were employed in the analysis of each
individual character and word.
However, the edition we propose serves as a

proof of concept and a model for the further de-
velopment of digital critical editions of early Chi-
nese manuscripts. We thus hope that despite its
preliminary status, our work may prove useful for
colleagues working on similar research questions
and open a broader discussion on the need for con-
sistent annotation and digitalization workflows for
data on ancient historical languages.
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Abstract 

In this paper we describe our research 
project on dating the language of the Book 
of Jeremiah using a combination of 
traditional biblical scholarship and machine 
learning. Jeremiah is a book with a long 
history of composing and editing, and the 
historical background of many of the 
sections in the book are unclear. Moreover, 
redaction criticism and historical linguistics 
are mostly separate fields within the 
discipline of Biblical Studies. With our 
approach we want to integrate these areas 
of research and make new strides in 
uncovering the compositional history of 
Book of Jeremiah. 

1 Introduction 

In this paper we present an overview of the research 
that we will conduct in the following years. The 
goal of this research is to develop an integrated 
approach to dating the biblical book of Jeremiah 
using a combination of traditional biblical 
scholarship and machine learning. 

Dating texts from the Hebrew Bible is a 
notoriously difficult task. We know that its books 
are the product of the first millennium BCE, but 
their exact date within this time span remains 
debated. 

2 The book of Jeremiah and its 
background 

At almost 30,000 words, the Book of Jeremiah is 
the longest book in the Hebrew Bible by word 
count. It consists of 52 chapters and contains texts 
from a variety of different genres, the historical 
background of which is not always clear. 

The book itself is set in the turbulent final 
decades of the 7th century and the first half of the 
6th century BCE, during which the kingdom of 
Judah came under the control of various regional 
superpowers. 

For most of the 7th century BCE Judah was a 
vassal state of the Neo-Assyrian empire. When the 
Neo-Assyrian empire began to decline in the latter 
half of the 7th century, however, Judah enjoyed a 
brief period of relative independence. Judah’s 
autonomy came to an end in 609 BCE when the 
Egyptian army under Pharaoh Nekau II killed king 
Josiah, and brought Judah under Egyptian 
vassalage. In 605 BCE, control of Judah changed 
hands, when the Babylonians defeated the 
Egyptian army at Carchemish. King Jehoiakim 
stopped paying tribute to king Nebuchadnezzar in 
601 BCE, after the Babylonian king suffered heavy 
losses trying to invade Egypt. Nebuchadnezzar 
subsequently plundered Jerusalem in 597 BCE, and 
deported part of the Judean population to Babylon. 
Zedekiah succeeded Jehoiakim as king, but later 
revolted against Nebuchadnezzar by withholding 
tribute and allying himself with Pharaoh Apries 
sometime in 587 BCE. Nebuchadnezzar then 
returned and destroyed the city of Jerusalem and its 
temple in 586 BCE. Another part of the Judean 
population was deported. The year 586 BCE marks 
the start of the so-called Babylonian exile, which 
lasted until 539 BCE, when the Persian king Cyrus 
conquered Babylon, and allowed the Judean exiles 
to return home (Crouch, 2021). 

The Book of Jeremiah paints a portrait of the 
prophet with the same name, who receives his 
prophecies from God. He has a scribe, Baruch the 
son of Neriah (e.g. Jer. 36:4) who records these 
prophecies. In the book, we read that the prophet is 
imprisoned (ch. 37), but is later released (ch. 39) 
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and travels to Egypt (ch. 43). Despite this apparent 
biographical information, it is difficult to say much 
with certainty about the historical prophet 
Jeremiah, and to what extent events in the Book of 
Jeremiah can be related to phases in his life 
(Leuchter, 2021). 

A comparison of the Hebrew version of 
Jeremiah as preserved in the Masoretic Text (MT) 
with the later Greek translation, called the 
Septuagint, reveals several discrepancies between 
the two text traditions. The Greek text is 
approximately 8% shorter than its Hebrew 
counterpart, and locates some passages in a 
different place in the book. 

According to most researchers, the Greek 
version of Jeremiah reflects an earlier stage in the 
redaction of the book than MT Jeremiah. An 
important piece of evidence for this is that  
the additional material in the MT contains a lot of 
very specific vocabulary that is absent from the 
Greek version (Stipp, 2021). 

There are strongly varying opinions as to when 
the book was composed. According to Holladay 
(1986), the book dates back to the lifetime of the 
historical prophet (7th–6th century BCE) but others 
date the book later. According to Fischer (2005), 
for instance, the book was written in the 4th century 
BCE. 

3 State of the art: Biblical Studies 

3.1 General 

One of the main goals of this research is to combine 
redaction criticism and historical linguistics. In 
Biblical Studies, these modes of inquiry are usually 
kept separate, and their different presuppositions 
and methods often lead to contradicting results. 
Here, we introduce both fields briefly. 

3.2 Linguistics 

Even though the Hebrew Bible was written and 
edited throughout the first millennium BCE, its 
language, Biblical Hebrew is relatively 
homogeneous. But it does exhibit some variation. 
In the literature, the most important explanation 
for this linguistic variation is diachrony—the 
change of the language over time. Biblical 
scholarship distinguishes roughly between 
Classical (or Early) Biblical Hebrew (CBH or 
EBH) and Late Biblical Hebrew (LBH). 

 
1 The Pentateuch or Torah consists of the books Genesis, 
Exodus, Leviticus, Numbers and Deuteronomy, while the 

The CBH corpus consists of the Pentateuch and 
the Former Prophets1, and the core LBH corpus 
contains the books Esther, Daniel, Ezra, 
Nehemiah and Chronicles. Some scholars also 
include the book of Qoheleth among the LBH 
books, but not everyone does so (e.g. Young, 
1993, 140–156). Other texts and books are more 
controversial. For instance, Rendsburg (2012) 
considers the book of Haggai to be written in 
LBH, and Paul (2012) observes that there is a 
concentration of late features in Isaiah 40–66. 

The Babylonian Exile (587/6–539 BCE) serves 
as the dividing line between CBH and LBH with 
CBH reflecting the written variety of Hebrew 
used prior to 587/6 BCE and LBH reflecting that 
used after 539 BCE. LBH differs from CBH in 
terms of phonology, morphology, syntax, lexicon, 
and style (Fassberg, 2016, 8). Some of these 
differences are the result of internal developments 
within the Hebrew language, while others are the 
result of language contact between Hebrew and 
Aramaic, the chancery language of the Persian 
empire. Fassberg (2016, 11–14) mentions various 
Aramaic features in LBH. On page 14 he gives 
some Persian loanwords as well.  

Several scholars working on the linguistic 
dating of Hebrew take it as axiomatic that every 
text written in CBH must have been written at an 
early date (e.g. Joosten, 2016, 336). This is a 
controversial point of view. On the one hand, we 
know that late texts are late because they deal with 
late (political) events. However, CBH texts 
dealing with early events could have been 
composed at a later date. 

Based on the distinction between CBH and 
LBH, scholars have tried to date biblical texts of 
unknown date with the help of their language. A 
prominent scholar who developed a method for 
linguistic dating is Avi Hurvitz. Hurvitz has 
published many papers and books on this topic; 
some of his most important works are Hurvitz 
(1974) and Hurvitz (2014). According to him a 
late linguistic feature can be identified on the basis 
of three criteria. The first is distribution. A late 
feature should occur predominantly or exclusively 
in late texts. The second criterion is contrast. A 
late feature should have a semantic equivalent 
which occurs in early texts. The third criterion is 
extra-biblical attestation. A linguistic feature is 
only a late feature if it is used more broadly than 
in a single text, because then it could be an 
idiosyncrasy. If these three conditions are 

books of Joshua, Judges, Samuel and Kings comprise the 
Former Prophets. 
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satisfied, one can say that a feature is late. Finally, 
for an entire text to be considered late, it must 
contain an accumulation of late features, because 
one or two late features could be just a 
coincidence (e.g. Hurvitz, 2014, 9–10). 

In 2014, Aaron Hornkohl published a 
monograph on the language of the Book of 
Jeremiah from a linguistic dating perspective. 
Hornkohl found clear signs of late language in the 
Book of Jeremiah, but not in such a concentration 
as in the core LBH books. He describes the 
language as Jeremiah as a mix of CBH and LBH 
features that is not found in the early or late books 
(Hornkohl 2014, 59). For some features, Jeremiah 
uses the early variant, but for others, it uses a mix 
of early and late language (Hornkohl, 2014, 59–
62). 

Hornkohl points out that the book of Jeremiah 
has a complex history of composition and editing 
(Hornkohl, 2014, 65), and he observes that some 
parts may contain a higher concentration of late 
features than others. However, none of these parts 
have a concentration that is as high as core LBH 
texts (Hornkohl, 2014, 66). 

Various scholars have contested the idea that it 
is possible to date biblical texts linguistically. 
Cryer argued that there is not enough linguistic 
variation in Biblical Hebrew to conclude that the 
Bible developed over a long period of time. The 
language is simply too homogeneous (Cryer, 
1994). 

Another critique from the 90s comes from 
Philip Davies (1995), who argued that the whole 
Hebrew Bible was a post exilic composition and 
that CBH and LBH co-existed in the post-exilic 
period. 

The most comprehensive critique of linguistic 
dating was given by Young, Rezetko and 
Ehrensvärd (2 volumes, 2008). In 2 volumes, they 
discuss the principles and methods of linguistic 
dating. The authors come to the conclusion that it 
is not possible to date biblical texts using language 
alone. They acknowledge that one can distinguish 
between CBH and LBH, but in their opinion these 
are two styles that co-existed before and after the 
exile (Young, Rezetko and Ehrensvärd, 2008, 
volume 2, chapter 2). In later works they opt for 
an integrated approach (e.g. Rezetko and Young, 
2014). 

3.3 Redaction criticism 

Redaction critical scholarship on Jeremiah owes a 
lot to the work of Bernhard Duhm (1901) and 
Sigmund Mowinckel (1914). Duhm distinguished 
two different categories of prose in the Book of 

Jeremiah: biographical and nonbiographical. The 
biographical prose parts appear in chapters 26–45, 
while the non-biographical parts appear throughout 
the book. According to Duhm, the non-
biographical sections often draw heavily from 
other biblical texts and were added by later editors 
(Wilson, 1999, 414). 

Mowinckel, by contrast, divided the Book of 
Jeremiah into three main sources. He assigned the 
label “A” to the poetic oracles in chapters 1–25, 
which he saw as the original core of the book. He 
labelled the biographical sections and the rhetorical 
prose passage—which he saw as linked with 
Deuteronomistic literature—“B” and “C” 
respectively (Wilson, 1999, 414). Mowinckel’s 
work was very influential, and much subsequent 
work by other researchers was devoted to 
investigating how C was related to A and to 
literature outside of the book, especially 
Deuteronomy. The date of the different sources also 
became a source of debate. 

4 State of the art: Large Language 
Models 

4.1 LLMs 

Recently, Large Langue Models (LLMs), like GPT-
4 (OpenAI, 2023) and LLaMA-3 (Llama team, 
2024) have set benchmarks in various NLP tasks, 
including translation, summarization and 
conversation. Importantly, LLMs do not require 
hand coded features and thus reduce the risk of 
replicating traditional biblical scholarship on the 
segmentation and dating of biblical texts. 

These models are able to achieve such a high 
level of performance by ingesting huge quantities 
of training data—usually billions or even trillions 
of words. Biblical Hebrew, however, is a low-
resource language comprising approximately 
262,934 words. Therefore, it is important to find a 
solution to the problem of the lack of data. 

In recent years, developing LLMs for low-
resource languages has become an active field of 
research. One solution is to reduce the number of 
parameters in the model. Wdowiak, for example, 
successfully built a language model for Sicilian 
using only 266,514 words by reducing BERT’s 12-
layer architecture to just a single a single layer 
(Wdowiak 2021). The size of the Sicilian corpus 
used in this study is similar to that of the Hebrew 
Bible. Other studies opt for alternative solutions for 
low-resource languages (e.g. Alam et al., 2024; 
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Cahyawijaya et al., 2024; Nag et al., 2024 and 
Nguyen et al., 2023). 

Complex models like LLMs are often called 
black-box models, because it is difficult to get an 
impression of how they make predictions. For the 
present project it is important that the models are 
not only capable of segmenting and classifying 
strands within the Book of Jeremiah, but also that 
they do this in an explainable way. The research 
results should be meaningful from the perspective 
of linguists. Explainability of LLMs is an emerging 
and active field of research, and there are various 
ways in which one can attempt to create 
transparency (e.g. Sundararajan, 2017. For a 
survey: Zhao et al., 2023). 

4.2 Initial experiments 

We have done some initial experiments to test 
whether it is possible to distinguish between 
different linguistic phases of Biblical Hebrew using 
Machine Learning. 

Wilson-Wright finetuned a RoBERTa Base 
model with an adapted architecture using the verses 
of the Hebrew Bible as inputs (Wilson-Wright, 
“BERiT”). The model features a single attention 
block with four attention heads, smaller embedding 
and feedforward dimensions (256 and 1024), a 
smaller max input length (128), and an aggressive 
dropout rate (.5) at both the attention and 
feedforward layers. For further details, see the 
respective HuggingFace model cards for the 
architecture, parameters and training data for both 
BERiT and COHeN. Wilson-Wright then trained a 
linear classifier on top of the language model using 
labelled data drawn from CBH and LBH text. 
(Wilson-Wright, “COHeN”). The classifier also 
included data from two other hypothetical stages of 
Biblical Hebrew, Archaic Biblical Hebrew (ABH) 
and Transitional Biblical Hebrew (TBH). ABH is 
thought to precede CBH, while TBH represents the 
transitional phase between CBH and LBH. The 
classifier model achieved 73.4% accuracy on the 
validation dataset. The application of an 
explainability framework in the form of integrated 
gradients revealed that the classifier had 
independently learned at least one feature that 
scholars have argued distinguishes CBH from 
LBH, namely the occasional spelling of the 
personal name David as  דָּוִיד in LBH  (vs.  דָּוִד
everywhere else). 

Another experiment was done by Naaijer (2020, 
149–176). He trained an LSTM-based sequence 

classifier that distinguishes between CBH and LBH 
to find out whether the language of the biblical 
books of Jonah and Ruth shares more 
characteristics with CBH or LBH. Instead of 
training the model with the raw Hebrew text, 
clauses were represented as sequences of parts of 
speech or phrase functions. Models were trained 
for narrative and quoted speech. In general, Naaijer 
found that the language of Jonah and Ruth shares 
more characteristics with CBH than with LBH. 
This is an interesting result, but it is somewhat 
unsatisfying because LSTM models are a black 
box. 

5 How to move forward 
The main data source for this research is the 
ETCBC dataset of the Hebrew Bible (e.g. Roorda 
2018). The first step will be to figure out how best 
to train an LLM for Biblical Hebrew using the 
available data. Questions we will consider include: 
What is the best architecture, what is the best 
representation of the Hebrew text (vocalized or 
unvocalized), and how should the text be 
tokenized? Also relevant is whether it is possible to 
use transfer learning by training the model on texts 
in related languages. 

After training a masked language model for 
Biblical Hebrew, we will finetune the model to be 
a text classifier with the goal of segmenting and 
classifying parts of the Book of Jeremiah. Here, it 
is very important that explainability is one of the 
key ingredients of the research process. 

6 Conclusions 

There are many interpretations of when and how 
the Book of Jeremiah was composed and edited. 
With the newest developments in the field of 
Natural Language Processing we think it is 
possible to take groundbreaking new steps in 
combining redaction criticism and linguistic 
analysis of the Book of Jeremiah. 

Acknowledgments 
We thank the Swiss National Science Foundation 
for funding this research under grant number 
10001381. 

References  
Firoj Alam, Shammur Absar Chowdhury, Sabri 

Boughorbel and Maram Hasanain. 2024. LLMs for 
Low Resource Languages in Multilingual, 
Multimodal and Dialectal Settings. In Proceedings 

62



 
 

of the 18th Conference of the European Chapter of 
the Association for Computational Linguistics: 
Tutorial Abstracts. 27–33.  
https://aclanthology.org/2024.eacl-tutorials.5. 

Samuel Cahyawijaya, Holy Lovenia and Pascale Fung. 
2024. LLMs Are Few-Shot In-Context Low-
Resource Language Learners. In Proceedings of the 
2024 Conference of the North American Chapter of 
the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long 
Papers). 405–433.  
https://aclanthology.org/2024.naacl-long.24. 

Robert Chazan, William W. Hallo, and Lawrence H. 
Schiffman. 1999. Ki Baruch Hu, Ancient Near 
Eastern, Biblical, and Judaic Studies in Honor of 
Baruch A. Levine. Eisenbrauns, Winona Lake. 

Carly L. Crouch. 2021. The Historical Contexts of the 
Books of Jeremiah. In Stulman and Silver, 2021, 
chapter 1. 

Frederick H. Cryer. 1994. The Problem of Dating 
Biblical Hebrew and the Hebrew of Daniel. In Knud 
Jeppesen, Kirsten Nielsen and Bent Rosendal (eds.). 
In the Last Days: On Jewish and Christian 
Apocalyptic and Its Period. Aarhus University 
Press, Aarhus, 185–198. 

Philip R. Davies. 1995. In Search of “Ancient Israel”, 
Sheffield Academic, Sheffield, 2nd edition. 

Bernhard Duhm. 1901. Das Buch Jeremia. Mohr, 
Tübingen and Leipzig. 

Steven E. Fassberg. 2016. What is Late Biblical 
Hebrew, Zeitschrift für die Alttestamentliche 
Wissenschaft, 128(1). 1–15. 

Georg Fischer. 2005. Jeremia 1-25; Jeremia 26-52. 2 
Volumes. Herders Theologischer Kommentar, 
Freiburg. 

William L. Holladay. 1986. Jeremiah 1. Commentary 
on the book of Jeremiah. Chapters 1–25. 
Hermeneia, A Critical and Historical Commentary 
on the Bible, Fortress Press, Philadelphia. 

Aaron Hornkohl. 2014. Ancient Hebrew Periodization 
and the Language of the Book of Jeremiah, The Case 
for a Sixth-Century Date of Composition, Brill, 
Leiden. 

Avi Hurvitz. 1974. The Date of the Prose-Tale of Job 
Linguistically Reconsidered. The Harvard 
Theological Review, 67(1). 17–34. 

Avi Hurvitz. 2014. A Concise Lexicon of Late Biblical 
Hebrew, Linguistic Innovations in the Writings of 
the Second Temple Period. Brill, Leiden. 

Jan Joosten. 2016. Diachronic Linguistics and the Date 
of the Pentateuch. In Jan C. Gertz, Bernard M. 
Levinson, Dalit Rom-Shiloni and Konrad Schmid 

(eds.). The Formation of the Pentateuch. Mohr 
Siebeck, Tübingen. 

Llama team. 2024. The Llama 3 Herd of Models.  
https://ai.meta.com/research/publications/the-
llama-3-herd-of-models. 

Mark Leuchter. 2021. The Historical Jeremiah. In 
Stulman and Silver, 2021, chapter 4. 

Sigmund Mowinckel. 1914. Zur Komposition des 
Buches Jeremia. Dybwad, Kristiania. 

Martijn Naaijer. 2020. Clause Structure Variation in 
Biblical Hebrew: A Quantitative Approach. PhD 
thesis, Vrije Universiteit Amsterdam. 
https://research.vu.nl/en/publications/clause-
structure-variation-in-biblical-hebrew-a-
quantitative-appr. 

Arijit Nag, Soumen Chakrabarti, Animesh Mukherjee 
and Niloy Ganguly. 2024. Efficient Continual Pre-
training of LLMs for Low-resource Languages. 
https://arxiv.org/abs/2412.10244. 

Xuan-Phi Nguyen, Sharifah Mahani Aljunied, Shafiq 
Joty and Lidong Bing. 2023. Democratizing LLMs 
for Low-Resource Languages by Leveraging their 
English Dominant Abilities with Linguistically-
Diverse Prompts.   
https://arxiv.org/abs/2306.11372. 

OpenAI. 2023. Gpt-4 technical report.  
https://arxiv.org/abs/2303.08774v6. 

Shalom Paul. 2012. Signs of Late Biblical Hebrew in 
Isaiah 40–66. In Cynthia Miller-Naudé and Ziony 
Zevit (eds.). Diachrony in Biblical Hebrew. 
Eisenbrauns, Winona Lake. 

Gary A. Rendsburg. 2012. Late Biblical Hebrew in the 
Book of Haggai. In Rebecca Hasselbach and Naama 
Pat-El (eds.). Language and Nature. Papers 
Presented to John Huehnergard on the Occasion of 
his 60th Birthday. Studies in Ancient Oriental 
Civilization. Number 67. The Oriental Institute of 
the University of Chicago, Chicago. 

Robert Rezetko and Ian Young. 2014. Historical 
Linguistics & Biblical Hebrew, Steps Toward an 
Integrated Approach. SBL Press, Atlanta. 

Dirk Roorda. 2018. Coding the Hebrew Bible. In 
Research Data Journal for the Humanities and 
Social Sciences, Volume 3 Issue 1. 27–41. 
https://doi.org/10.1163/24523666-01000011. 

Hermann-Josef Stipp. 2021. Two Ancient Editions of 
the Book of Jeremiah. In Stulman and Silver, 2021, 
93–113. 

Mukund Sundararajan, M., Ankur Taly, and Qiqi Yan. 
2017. Axiomatic Attribution for Deep Networks. In 
Proceedings of the 34th International Conference on 
Machine Learning.  
https://dl.acm.org/doi/10.5555/3305890.3306024. 

63



 
 

 
Louis Stulman and Edward Silver. 2021. The Oxford 

Handbook of Jeremiah, Oxford University Press. 

Eryk Wdowiak. 2021. Sicilian Translator: A Recipe for 
Low-Resource NMT.  
https://arxiv.org/abs/2110.01938. 

Robert R. Wilson. 1999. Poetry and Prose in the Book 
of Jeremiah. In Chazan, Hallo and Schiffman 
(1999). 413–428. 

Aren M. Wilson-Wright. “BERiT.”  
https://huggingface.co/gngpostalsrvc/BERiT. 

Aren M. Wilson-Wright. “COHeN.”  
https://huggingface.co/gngpostalsrvc/COHeN. 

Ian Young. 1993. Diversity in Pre-Exilic Hebrew. 
Mohr, Tübingen. 

Ian Young., Robert Rezetko and Martin Ehrensvärd. 
2008. Linguistic Dating of Biblical Texts, 2 
Volumes, Equinox Publishing, London. 

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, 
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei 
Yin and Mengnan Du. 2023. Explainability for 
Large Language Models: A Survey. 
https://arxiv.org/abs/2309.01029. 

64



Proceedings of the Second Ancient Language Processing Workshop associated with NAACL 2025, pages 65–70
May 4, 2025. ©2025 Association for Computational Linguistics

The Development of Hebrew in Antiquity
– A Computational Linguistic Study*

Hallel Baitner†, Dimid Duchovny‡

Tel Aviv University

Lee-Ad Gottlieb§ Amir Yorav¶

Ariel University Afeka College

Nachum Dershowitz||, Eshbal Ratzon**

Tel Aviv University

Abstract

The linguistic nature of Qumran Hebrew (QH)
remains a central debate in the study of the
Dead Sea Scrolls (DSS). Although some schol-
ars view QH as an artificial imitation of Biblical
Hebrew (BH), others argue that it represents a
spoken dialect of ancient Judea.

The present study employs computational lin-
guistic techniques, clustering, classification,
and machine learning, to analyze the relation-
ship of QH with Biblical and Mishnaic He-
brew. Preliminary findings confirm existing
scholarly conclusions regarding the linguistic
affinity of certain texts. This demonstrates that
our methodology has a fundamental capacity
to identify linguistic relationships. They also
contribute new leads, on which we are now
working to refine and enhance our analytical
methods so as to provide founded insights into
the historical development of Hebrew and the
process of DSS textual composition.

1 Introduction

The study of Qumran Hebrew (QH) has long at-
tracted scholars because of its linguistic complex-
ity. Early analyses revealed QH’s dual nature: It
shares features with Biblical Hebrew (BH), while
also displaying unique traits that align with later
forms such as Mishnaic Hebrew (MH) and Samar-
itan Hebrew. This intricate blend has sparked an
ongoing debate about QH’s origins and its place

*This research was funded in part by the Tel Aviv Uni-
versity Center for AI and Data Science and by the European
Union (ERC, MiDRASH, Project No. 101071829). Views and
opinions expressed are, however, those of the authors only
and do not necessarily reflect those of the European Union or
the European Research Council Executive Agency. Neither
the European Union nor the granting authority can be held
responsible for them.

†hallel.baitner@mail.huji.ac.il
‡dimidd@gmail.com
§leead@ariel.ac.il
¶amiryorav@gmail.com
||nachumd@tauex.tau.ac.il

**eshbal@gmail.com

in the historical development of the Hebrew lan-
guage. This project aims to leverage computational
language tools to deepen our understanding of QH,
clarify its relationship to other Hebrew dialects, and
refine the relative dating of specific scrolls within
the corpus of the Dead Sea Scrolls (DSS).

2 The Nature of Qumran Hebrew

Initial scholarly evaluations of QH highlighted both
its association with BH and its inclusion of linguis-
tic traits found in later Hebrew forms. Scholars
faced the challenge of explaining this duality in a
comprehensive way. The predominant view, led
by scholars such as Yalon (1967), Kutscher (1974),
and Blau (2000), posits that QH represents a liter-
ary attempt to replicate BH. They argue that due to
the cessation of BH as a living language before the
composition of the DSS, this endeavor was only
partially successful, allowing contemporary He-
brew features to penetrate. Some of these features
are also known from MH. These scholars advocate
for focusing on these contemporary linguistic fea-
tures subtly embedded within QH to reconstruct
the historical development of Hebrew during this
period.

In contrast, scholars such as Ben-H. ayyim (1958),
Morag (1988), Rendsburg (2015), and notably Qim-
ron (1992, 2018) propose a different model. They
argue that QH authentically represents a spoken
Hebrew dialect prevalent in ancient Judea. They
position QH as a natural continuation of Late Bibli-
cal Hebrew (LBH), suggesting these are sequential
points along the historical continuum of Hebrew
language development. Qimron challenges the no-
tion of shared morphological features between QH
and MH, emphasizing their differences and propos-
ing that MH originated from an unidentified He-
brew dialect in the Galilee, rather than from the
DSS.

The scholarly debate thus centers on the inter-
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pretation rather than the validity of the evidence.
Scholars generally agree on the affinity between
QH and LBH, as well as the shared lexical features
between QH and MH. This situation underscores
the need to expand and deepen comparative anal-
yses of QH against both LBH and MH to provide
new evidence regarding the relationships between
these dialects. A global quantitative analysis, in
addition to qualitative assessments and specific ex-
amples, will offer a more comprehensive under-
standing of these linguistic relationships. Utilizing
digital analysis tools promises significant contri-
butions to this discussion. In addition, while the
majority of scholarship addresses the language of
the scrolls as a whole, only limited research fo-
cuses on the distinctive language of specific scrolls,
such as Kutcher’s work on the Isaiah Scroll and
Qimron’s on 4QMMT (Miqsat Ma‘ase ha-Torah).
As the composition of the DSS is dated to a period
of several centuries, we find this path of research
to be promising.

3 Computational Linguistics for Hebrew

Before detailing our methodology, it is crucial to re-
view past attempts to use computational linguistic
tools for Hebrew text analysis. Early efforts fo-
cused on natural language processing (NLP) meth-
ods, requiring researchers to create morphologi-
cal or syntactic descriptions for computers. Later,
the field adopted machine-learning techniques, en-
abling computers to learn data descriptions from
large training sets automatically.

Several tools have been adapted for Hebrew
tasks, including automated transliteration, root
identification, and opinion extraction. Notably,
Santacruz (2017) used a bidirectional long-short
term memory (LSTM) network to differentiate be-
tween Hebrew and Aramaic words. Similar tech-
niques were used by HaCohen-Kerner et al. (2010)
to classify Hebrew documents by historical period
and ethnic origin, achieving high success rates.
Liebeskind and Liebeskind (2020) further refined
this approach, using more advanced techniques like
recurrent neural networks and convolutional neural
networks to differentiate between texts from dif-
ferent centuries. Koppel et al. (2011) and Yoffe
et al. (2023) applied NLP methods to computerized
source criticism of Biblical texts, focusing on iden-
tifying and distinguishing between different source
materials within the Bible. Fono et al. (2024) used
transformer-based models to reconstruct ancient

Hebrew and Aramaic inscriptions, trained on the
Hebrew Bible. Additionally, Dicta’s Tiberias tool1

applies modern machine learning to Bible datasets
(though not to the DSS), providing stylistic compar-
isons and classifications based on detailed syntactic
and morphological information.

Van Hecke (2018) and Van Hecke and de Joode
(2021) explore the use of computational stylomet-
ric techniques to analyze BH texts and the DSS,
highlighting the methodological challenges and the
potential to identify distinct authors and textual
variations.

4 Approach, Methods and Goals

The linguistic material we have used is based on
the linguistic analysis provided by Accordance,2

which includes annotated texts from ancient He-
brew works. We have developed a method to orga-
nize the linguistic data from these databases into
standardized tables, facilitating computational anal-
ysis. Many compositions from the Dead Sea Scrolls
have survived only in fragmentary form. We accept
the scholarly decisions made in this dataset regard-
ing doubtful letters, but our data is based solely on
preserved ink, excluding reconstructions.

Our study involves two distinct types of clus-
tering tasks: general clustering based on overall
linguistic features and clustering based on specific
morphological criteria. We began with a general
clustering analysis of the three corpora based on
word frequency. We converted each biblical book,
scroll, and mishnaic tractate into a vocabulary vec-
tor, a mathematical representation of its lexical
profile based on the frequency of word lemmas. To
compare the compositions, we sequentially employ
the following statistical approaches:

• Raw frequency analysis. Each document of
the corpus is represented by a vector: With
each word (or more precisely, lemma) of the
entire corpus, we associate the same unique
coordinate of the document vectors, and so
the vector lengths are precisely the number
of unique lemmas in the corpus. A document
vector v contains in its i-th coordinate the
number of occurrences in the document of the
corresponding lemma.

• TF–IDF (term frequency–inverse document
frequency). The raw vector is then normalized

1https://tiberias.dicta.org.il
2https://www.accordancebible.com
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using this method, which reduces the weight
of common words while emphasizing unique
terms in each book. The TF term for docu-
ment vector v and coordinate i is v(i) divided
by the total number of words in the document
(i.e.

∑
j v(j)). The IDF term for coordinate i

in all document vectors is the logarithm of the
percentage of documents containing the cor-
responding lemma. We normalize the value
v(i) to be its TF value, multiplied by the IDF
value of coordinate i (i.e. TF∗IDF).

• Cosine similarity. Having computed the rep-
resentative normalized vector for each docu-
ment, we can then measure their similarity.
For a pair of document vectors v, w, their sim-
ilarity value is given as

∑
i v(i) ∗ w(i)√∑

i v(i)
2 ∗

√∑
iw(i)

2

For clustering, we use hierarchical clustering
with the Ward method, which groups texts based on
lexical similarity while minimizing variance within
clusters. The results are visualized as dendrograms,
where proximity between texts indicates linguistic
similarity.

In addition to general clustering, we focus on
two specific morphological criteria: (1) the distribu-
tion of verb stems (binyanim), as previous research
has shown shifts in stem usage across different pe-
riods of Hebrew (Fassberg, 2001), and (2) verbal
valency patterns, which capture variations in the
complements verbs can take. To analyze binyanim,
our algorithm calculates the percentage distribu-
tion of each stem relative to the total number of
verbs in each text. We then compute the Euclidean
distance between these distributions across differ-
ent texts, identifying those with the smallest inter-
distribution distances as the most similar in stem
usage. This methodology will be further refined as
the research progresses.

To analyze valency, our algorithm systematically
processes each verb, inspecting up to four subse-
quent words to determine whether it is followed
by a prepositional particle, an object marker, or
a pronominal suffix. Results are stored with de-
tailed morphological attributes, enabling a struc-
tured comparison of valency patterns across texts
and offering insights into syntactic shifts in Hebrew
over time. This method is not yet perfect. In a sam-
ple review of the results, compared to a manual

examination of the occurrences of the given verb,
we observed that some complements were either
not covered or incorrectly identified. However, the
distribution of the various complements provides a
sufficiently accurate representation of their actual
occurrence. We will continue working to improve
this algorithm.

Beyond clustering, our goal is to train machine
learning models on the Hebrew Bible and the Mish-
nah to identify distinct linguistic features of Classi-
cal Biblical Hebrew (CBH), LBH, and MH. Special
attention is given to distinguishing literary genres
within these corpora to enhance the precision of
linguistic classification.

For dialect classification, we aim to leverage re-
cent deep learning models such as ELMo, BERT,
XLNet, and RoBERTa, integrating expert knowl-
edge of Hebrew morphology and syntax into sta-
tistical learning frameworks. These models, pre-
trained on large corpora and fine-tuned for specific
tasks, will be validated against traditional classifi-
cation algorithms using metrics such as accuracy,
precision, recall, F1-score, and clustering coher-
ence measures like silhouette score and adjusted
Rand index. Once the classifier is trained, it will
be applied to the DSS to assess linguistic affinity
with CBH, LBH, or MH. Special considerations
include handling biblical quotations and multiple
manuscript versions, ensuring that linguistic fea-
tures are analyzed independently for each text. To
account for textual transmission variations, we will
compare rewritten or paraphrased biblical texts sep-
arately from non-biblical compositions, assessing
linguistic deviations from the original biblical ma-
terial and applying normalization techniques where
necessary.

Since the data on which we relied to build our
data set was taken from Accordance, it cannot be
published without permission. However, the scripts
we developed for data extraction will be released
at the end of the project, enabling researchers to
replicate our experiments

5 Preliminary Results

The clustering analysis of three major ancient Jew-
ish textual corpora—the Hebrew Bible, the Mish-
nah, and the Dead Sea Scrolls—revealed nuanced
insights into their linguistic and stylistic structures.
The algorithm identified patterns that align with
previously observed textual groups, such as the
grouping of biblical books (e.g., 1 & 2 Samuel,
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1 & 2 Kings, 1 & 2 Chronicles). The Mishnah’s
tractates generally stood out as a separate cluster.
However, in an experiment conducted using the
raw frequency model, the tractates Tamid, Mid-
dot, and Yoma distinctly differed from the rest of
the Mishnah and showed a greater affinity with
Qumranic compositions such as the Temple Scroll
and Pseudo-Jubilees. This finding aligns well with
Mishnah research, which has identified Tamid, Mid-
dot, and Yoma as among the earliest tractates (Ep-
stein, 1957).

Additionally, the fragmentary copies of Miqsat
Ma‘ase ha-Torah exhibited, according to the tf–idf
model, a closer linguistic proximity to Mishnaic
tractates than to any other Qumranic composition
(see Figure 1). This finding is consistent with prior
research on this text, which has highlighted its
distinctive language—deviating from the typical
Qumranic linguistic style and resembling Rabbinic
Hebrew more closely (Mizrahi, 2020).

Regarding the relationships among Qumranic
compositions, further research is required. Prelimi-
nary results indicate, on the one hand, a clear affin-
ity between texts such as the Hodayot and 4Q511
(The Song of the Maskil), as noted in previous stud-
ies (Angel, 2012). At the same time, unexpected
connections emerged, such as the affinity between
the Temple Scroll and a fragment from the Book
of Jubilees (4Q219).

Future research should investigate the extent to
which content and genre influence the clustering
of these texts and strive to develop methodologies
that minimize such biases as much as possible.

The analysis of verb stem distribution is still
in its early stages. As expected, a close linguis-
tic affinity was observed between related biblical
books (e.g., 1 & 2 Samuel). However, other results
indicate unexpected connections between compo-
sitions whose language appears to be significantly
different. These findings require further investiga-
tion, and it may be necessary to integrate verb stem
distribution data with additional types of linguis-
tic analysis to refine the methods for identifying
linguistic affinities between texts.

Valency patterns analysis is also still ongoing.
Initial findings indicate distinct patterns in verb
complement diversity. Some verbs display clear
distributional tendencies, and certain books exhibit
marked preferences for specific valency structures.
For example, the algorithm successfully identified
the various complements of the verb byn (hiphil
stem, “to understand”) and correctly detected the

tendency of certain biblical books—such as Ne-
hemiah, Daniel, and Chronicles—to use the prepo-
sition b- as a complement, in contrast to other bib-
lical texts, such as Psalms and Proverbs, which
regularly use a pronominal suffix, a direct object,
or the preposition l-. Future analyses will compare
the distribution of valency patterns across different
works and corpora, further refining our understand-
ing of verb usage in ancient Hebrew.

Figure 2 presents the normalized distribution
of the complements of the verb byn in the hiphil
stem across different books of the Hebrew Bible.
The y-axis represents the relative distribution of
each complement, while the x-axis lists the bib-
lical books. The various colors indicate different
complements attached to the verb, as shown in the
legend.

We have similar graphs for 810 different verbs
(where “verb” refers to a specific root in a particular
stem), allowing us to quickly map the diversity of
valency patterns for each verb.

6 Conclusion

This study employs an innovative combination of
general clustering, morphological-based clustering,
and machine learning techniques to investigate the
linguistic landscape of the Dead Sea Scrolls. Our
research aims to establish Qumran Hebrew’s po-
sition within the broader development of ancient
Hebrew, while providing new methodologies for
the relative dating of scrolls based on linguistic fea-
tures. By identifying previously unnoticed shared
linguistic patterns among dialects and developing a
chronological scaling of scrolls from the Hellenis-
tic period to 70 CE, we seek to uncover potential
literary connections between scrolls based on lin-
guistic affinity. Our algorithmic approach reveals
clusters of texts that share linguistic features with
pre- and post-Qumranic corpora, suggesting pos-
sible social or chronological commonalities. This
methodological framework not only deepens our
understanding of Hebrew linguistic development
but also contributes significantly to broader dis-
cussions on diachronic and dialectal variations in
ancient Hebrew.
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Abstract

Evaluation metrics are an important driver of
progress in Machine Translation (MT), but they
have been primarily validated on high-resource
modern languages. In this paper, we conduct an
empirical evaluation of metrics commonly used
to evaluate MT from Ancient Chinese into En-
glish. Using LLMs, we construct a contrastive
test set, pairing high-quality MT and purpose-
fully flawed MT of the same Pre-Qin texts. We
then evaluate the ability of each metric to dis-
criminate between accurate and flawed transla-
tions.

1 Introduction

Large Language Models (LLM) make it possible
to translate between languages in a zero-shot fash-
ion. This makes it possible for English readers to
access previously untranslated texts in ancient lan-
guages such as Ancient Chinese (Jin et al., 2023)
or Latin (Volk et al., 2024). However, how can we
determine how good these translations are? For
our language of interest, Ancient Chinese, machine
translation (MT) research has relied on standard
reference-based metrics to assess translation qual-
ity, but these metrics have not been validated specif-
ically for this language.

Ancient Chinese 1 presents a unique challenge in
translation to English due to the language’s laconic
and epigrammatic nature, as well as the relatively
limited resources available compared to other lan-
guages. There are numerous English translations
of the most famous Ancient Chinese texts, includ-
ing Tao Te Ching (Campbell, 2022), Analects (Jin
et al., 2023), and Dream of the Red Chamber (Kong,
2022), but a large majority of texts remain inacces-
sible to English readers (Fordham, 2021). When
translating Ancient Chinese into English, many

1The term Ancient Chinese encapsulates thousands of
years of linguistic development (Chang et al., 2021). Our
experiments use a Pre-Qin dataset from before the establish-
ment of the Qin Dynasty in 221 BCE.

Chinese characters have multiple meanings depend-
ing on their usage in a sentence, requiring disam-
biguation in the translation process (Zou, 2016).
The large amount of idioms and symbolic language
also makes translation difficult, along with a lack
of sentence boundaries or punctuation, explicit plu-
rals, or conjunctions, making it a uniquely difficult
translation problem. (Li et al., 2024). While the
advent of LLMs has led to improvements in MT
quality for Ancient Chinese to English translation,
current models still lag behind human translators.
(Jin et al., 2023).

The complexity of translating from Ancient Chi-
nese to English is reflected in the complexity of
evaluation. Translations may capture the mean-
ing of a sentence very well, while having very dif-
ferent wording from another valid English trans-
lation. This might be problematic when evaluat-
ing with metrics such as BLEU (Papineni et al.,
2002) and ChrF (Popović, 2015), which measure
the word or character n-gram overlap between the
MT output and a human-written reference transla-
tion. Neural metrics based on fine-tuning LLMs
(Guerreiro et al., 2024; Rei et al., 2020; Juraska
et al., 2023) have been found to correlate better
with human ratings of translation quality for mod-
ern language pairs evaluated at the Conference on
Machine Translation, including English-German
and Japanese-Chinese (Freitag et al., 2024), but
they have not been evaluated on translation from
Ancient Chinese to English.

In this paper, we ask how well existing MT met-
rics are able to discriminate between ‘good’ and
‘bad’ English translations of Ancient Chinese texts.
Building on meta-evaluation methods used for mod-
ern languages (Karpinska et al., 2022; Edunov et al.,
2020), we address this question using a contrastive
test set created by prompting an LLM for ‘good’
and ‘bad’ translations of the same Chinese inputs.
After validating that the ‘bad’ translations are rated
as worse than the ‘good’ translations by human
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judges, we use this set to evaluate the ability of
standard MT evaluation metrics to discriminate be-
tween ‘good’ and ‘bad’ translations.

2 Test Set Construction

2.1 Data Collection
The dataset used for this experiment is a collection
of texts from the Pre-Qin period (prior to the estab-
lishment of the Qin Dynasty in 221 BCE) acquired
from Dongbo Wang’s team at Nanjing Agricultural
University (Li et al., 2024). The format of the
Pre-Qin dataset is a collection of Ancient Chinese
source texts paired with single human English ref-
erence translations.

We cleaned the data for this experiment by re-
moving pairs with the following properties:

1. The source text contains English.
2. The source or target length is greater than one

standard deviation from the mean (>61 char-
acters), to simplify human validation.

3. Being a duplicated source text.
4. The text contains portions of the Tao Te Ching,

as the high interpretability of the document
could interfere with this evaluation.2

In total, from the original dataset of 23,686
source-reference pairs 6,794 were deleted in the
data cleaning process, resulting in a set of 16,892
source-reference pairs for analysis. The results
show insights from both the entire cleaned Pre-Qin
dataset, and a 500 entry human validated sample
drawn randomly from the Pre-Qin dataset (Table 1).

2.2 Synthetic Translations Generation
We used OpenAI’s gpt-4o model (Hurst et al., 2024)
to generate a ‘good’ and a ‘bad’ translation for each
of the source texts. We used the following prompts
for the ‘good’ and ‘bad’ outputs, respectively:

• “Translate the Ancient Chinese text into En-
glish. Respond with the translation only.”

• “Translate the Ancient Chinese text into En-
glish incorrectly, deliberately introducing dis-
ambiguation errors, accuracy errors, and tense
errors in the text. Respond with the translation
only.”

The error types listed in the ‘bad’ translation
prompt were chosen based on common errors iden-
tified in Chinese to English translations (Freitag

2Tao Te Ching is one of the most translated texts in the
world, with over 2,052 recognized translations in 92 languages.
(Tadd, 2022)

et al., 2021), and tense error was drawn from the
lack of tense in Ancient Chinese.

Here is a randomly selected example from
the evaluation dataset resulting from this process:

Source:
鮮卑寇酒泉；種眾日多，緣邊莫不被
毒。
Reference translation:
The Xianbi raided Jiuquan. The numbers of
their people increased day by day, and there
was no region of the border country which did
not suffer from them.
‘Good’ translation:
The Xianbei raided Jiuquan; their numbers
grew daily, and the border regions suffered
widespread harm.
‘Bad’ translation:
The Xianbei invaded Qiuquan; the people of-
ten multiply their seeds, along the edges they
refuse to receive poison.

2.3 Human Validation

We asked human judges to validate the LLM-
generated translations. A sample of 500 entries was
randomly selected from the cleaned dataset, and
given to two human evaluators, one being an expert
with extensive experience in Classical Chinese to
English translation, and one being a native Chinese
speaker with an intermediate level of experience
with Classical Chinese. 100 entries were randomly
selected from the sample as a cross-validation set to
ensure coherence between the validators, and each
validator was given 200 unique entries to complete
the 500 entry sample. The composition of the sam-
ple is shown in Table 1.

# Entries # Src Char # Ref Char # Ref Words

Sample 500 9,641 70,902 12,916
Pre-Qin 16,892 332,355 2,463,235 448,386

Table 1: Dataset summary

Each validator was given access to the source
and reference for an entry, and asked to compare
the quality of two unlabelled machine translations
A and B by selecting one of 3 options: “A is better
than B”, “B is better than A”, or “too hard to tell”.
The order in which the ‘good’ and ‘bad’ transla-
tions were provided was randomly assigned. Anno-
tators did not receive explicit guidelines defining
what makes a translation better, and were simply
asked to rate based on their own best judgment
(Vilar et al., 2007).
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The Cohen’s Kappa score was 0.78 on the dou-
bly annotated subset, indicating a high strength
of agreement. The two validators both chose the
‘good’ translation as higher quality in 88/100 en-
tries. In entries where both validators decided
on one of the translations (neither validator chose
the “too hard to tell” option), there was an 88/90
(97.78%) accuracy, and there were no cases where
both validators agreed that the ‘bad’ translation
was better. For the compiled validation dataset
of 500 entries, when differences between the two
evaluators were present, the more expert evaluator
response was chosen. Overall, the human valida-
tors selected the ‘good’ translation as higher quality
in 471/500 entries (94.2%).

3 Metric Selection

When deciding which metrics to test, the first con-
sideration was the metrics used in past papers re-
garding Ancient Chinese MT. The results of an
analysis of 5 recent papers related to Ancient Chi-
nese machine translation is located in Table 2. The
“Other” metrics include Ancient Chinese LLM eval-
uation metrics not related to machine translation in
Zhang and Li (2023) as well as LMS (Levenshtein-
distance-based Morphological Similarity) and ESS
(Embedding Semantic Similarity) for evaluation
as proposed in Wang et al. (2023). With this in
mind, SacreBLEU (Post, 2018) and ChrF++ were
selected for testing.

Previous Works BLEU ChrF++ Neural Other

Jin et al. (2023) Multi ref × × ✓
Wang et al. (2023) Single ref ✓ × ×
Nehrdich et al. (2023) Single ref ✓ × ×
Chang et al. (2021) Single ref × × ×
Zhang and Li (2023) × × × ✓

Table 2: Evaluation metrics for Ancient Chinese MT in
previous literature.

Furthermore, we decided to test the current state-
of-the-art neural metrics for MT evaluation (Fre-
itag et al., 2024) as well, despite them not being
trained specifically on Ancient Chinese. From
Google, metricx-24-hybrid-xl-v2p6 (Juraska et al.,
2024) and metricx-23-xl-v2p0 (Juraska et al., 2023)
were chosen. Both metrics are based on the mT5
encoder-decoder language model (Xue et al., 2021).
MetricX-23 is finetuned using two stages of train-
ing, on direct assessment (DA) followed by MQM
training data, as well as synthetic training data.
MetricX-24 significantly expands the usage of syn-
thetic data, and mixes DA and MQM data in the

second training stage. MetricX-24 Hybrid allows
for reference-based or reference-free evaluation in
a unified model (in this experiment a reference is
given) and had the highest correlation with human
evaluation in WMT-24 with the exception of Meta-
Metrics-MT (Anugraha et al., 2024).

Two COMET metrics were also chosen for anal-
ysis. XCOMET-XL (Guerreiro et al., 2024) is sim-
ilar to MetricX-24 Hybrid in its ability to evalu-
ate with or without a reference. It is based on
the XLM-R XL encoder-decoder model (Conneau
et al., 2020), and trained on DA data, followed by
MQM data, and finally further high-quality MQM
data. It also incorporates error-span detection in
the training process, with the error-span detection
function of the model sharing a common encoder
with the sentence-level score function. COMET-
WMT22 (Rei et al., 2022) is based on the XLM-R
base model. It is trained primarily on DA data,
followed by fine-tuning on z-normalized MQM
scores.

For each of the selected metrics, we evaluated
the two machine-translated hypotheses for each of
the source entries. The provided single human ref-
erence translation was used as a single reference.

4 Results

To analyze the results of our evaluations using the
chosen metrics, a difference score was calculated
for each entry by subtracting the metric’s score on
the ‘bad’ translation from the score on the ‘good’
translation. A difference score of >0 represents a
‘correct’ prediction- that the generated ‘good’ trans-
lation was judged better than the ‘bad’ translation.
A Wilcoxon signed-rank test was also performed
for each metric to determine whether the ability of
the metric to detect differences in scores is statisti-
cally significant. The performance of each metric,
both on the entire 16,892 entry Pre-Qin dataset and
the 500 entry human-validated sample, is described
in Table 3, and Figure 1 compares distributions for
each of the metrics in the human validated sample.

One notable performance from the evaluation
is the following case, where all four neural met-
rics performed particularly poorly. The difference
score for the evaluation fell within the bottom 10%
for each metric, with the ‘bad’ translation being
predicted as being higher quality than the ‘good’
translation by every metric except for MetricX-24
Hybrid despite the error of the direction ‘left’ being
translated as ‘right’ in the ‘bad’ translation:
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Human Validated Sample Pre-Qin Dataset

metric % predicted
correctly mean median stdev Wilcoxon Test

Statistic P-Value % predicted
correctly mean median stdev Wilcoxon Test

Statistic P-Value

SacreBLEU 71.600 0.027 0.011 0.064 94892 9e-28 72.241 0.029 0.012 0.066 110817290 0.0
CHRF++ 79.200 0.062 0.053 0.082 110333 1e-49 80.440 0.064 0.054 0.084 126219585 0.0
XCOMET-XL 88.000 0.175 0.170 0.150 119650 6e-70 88.048 0.168 0.156 0.149 136247392 0.0
COMET-WMT22 93.200 0.111 0.106 0.080 122582 4e-77 93.760 0.109 0.104 0.077 140339475 0.0
MetricX-24-XL 95.800 0.230 0.223 0.139 124586 3e-82 95.803 0.226 0.223 0.136 141675253 0.0
MetricX-23-XL 94.800 0.173 0.158 0.131 123238 9e-79 93.926 0.170 0.157 0.128 140164192 0.0

Table 3: Difference score metrics on validated sample and Pre-Qin dataset with Wilcoxon Test Statistic. For
SacreBLEU and the two MetricX metrics scores were normalized between 0 and 1.

Figure 1: Box plot of difference scores. For SacreBLEU
and the two MetricX metrics scores were normalized
between 0 and 1.

Source:
有杕之杜: 有杕之杜、生于道左。
Reference translation:
You Di Zhi Du: There is a solitary russet pear
tree,Growing on the left of the way.
‘Good’ translation:
A solitary tree in the woods: A solitary tree in
the woods, growing by the roadside.
‘Bad’ translation:
There is a single pine tree: There is a single
pine tree, growing on the right of the road.

Although all of the metrics were shown to have
statistically significant success in the task of de-
termining between the ‘good’ and ‘bad’ transla-
tions, some metrics performed with greater accu-
racy or more consistently. Commonly used metrics
like BLEU and ChrF++ notably showed a lower
standard deviation and therefore more consistency
compared to newer metrics, with the exception
of COMET-WMT22. While XCOMET-XL has
a higher mean than COMET-WMT22, its higher

Figure 2: Correlation of difference scores between nor-
malized metrics.

variability results in a worse performance than the
older model at predicting the ‘good’ translation.
Furthermore, Figure 2 describes the correlation be-
tween metrics, showing that neural metrics tend
to agree with each other more than with surface
metrics, but still hold disagreements, particularly
across families of models.

Overall, these results show that neural metrics
are better able to discern ‘good’ and ‘bad’ transla-
tions than surface metrics, despite not being trained
with translation quality ratings of MT from Ancient
Chinese to English. Supervision from other MT
tasks into English helps identify the problematic
outputs in our test set. These results suggest future
research on MT from Ancient Chinese would bene-
fit from including neural metrics such as XCOMET-
XL or MetricX-24 Hybrid to guide system devel-
opment. At the same time, it would be useful to de-
sign metrics that target error categories known to be
problematic for Ancient Chinese MT: the method
we used here to generate contrastive synthetic trans-
lations could be extended to evaluate each metric’s
ability to detect specific error categories, and to
provide training data for more targeted metrics.
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Abstract

We present updated models for BabyLemma-

tizer for lemmatizing and POS-tagging De-

motic, Late Egyptian and Earlier Egyptian with

a support for using hieroglyphs as an input. In

this paper, we also use data that has not been

cleaned from breakages. We achieve consistent

UPOS tagging accuracy of 94% or higher and

an XPOS tagging accuracy of 93% and higher

for all languages. For lemmatization, which

is challenging in all of our test languages due

to extensive ambiguity, we demonstrate accu-

racies from 77% up to 92% depending on the

language and the input script.

1 Introduction

Since several ancient languages feature complex

morphology and a high degree of spelling variation,

lemmatization is an essential step for making large

text collections of these languages searchable and

usable for further computational analysis.

In this paper we present models for lemmatizing

and part-of-speech tagging Earlier and Late Egyp-

tian, as well as Demotic, which complements our

earlier research on the topic by using larger datasets

with lacunae (breakages), as well as text repre-

sented in Unicode hieroglyphs. Our models are

available on https://huggingface.co/asahala.

2 Egyptian-Coptic

2.1 Diachronic Overview

Egyptian-Coptic was the indigenous language of

the lower Nile valley, attested in written form from

around 3000 BCE to 1400 CE. It belongs to the

Afroasiatic language family and is generally di-

vided into two major phases: Earlier Egyptian,

which includes Old andMiddle Egyptian, and Later

Egyptian, comprising Late Egyptian, Demotic, and

Coptic. The transition from Earlier to Later Egyp-

tian is marked by significant linguistic changes in

morphology and syntax. While Earlier Egyptian

retained a more synthetic structure with root-and-

pattern morphology, Later Egyptian initially ex-

hibits increased analytic tendencies, particularly in

its verbal system. However, this trend is later fol-

lowed by a phase of re-synthetization. Another ma-

jor difference between Earlier and Later Egyptian

is the shift from marking main clauses to marking

subordinate clauses (Kammerzell, 1998; Winand,

2018). Basic information about the Earlier Egyp-

tian and Demotic language stages has been given

elsewhere (Sahala and Lincke, 2024) andwill not be

repeated here. However, this study also addresses

the chronolect Late Egyptian, which was not in-

cluded in previous work and will briefly be intro-

duced in the following section.

The language phases are represented in dis-

tinct corpora and scripts, necessitating different ap-

proaches to transcription, lemmatization, and other

text processing techniques.

2.2 Late Egyptian

The chronolect referred to as ‘Late Egyptian’ (or

French ‘Néo-Egyptien’) surfaces in the written

record in the 14th century BCE although some fea-

tures can be observed in considerably earlier texts

(Kroeber, 1970). Late Egyptian is characterized by

an analytical tendency as compared to Earlier Egyp-

tian (fusional) and the later Demotic and Coptic

(agglutinative) language stages (McLaughlin, 2022;

Stauder, 2020), e.g. by employing periphrastic verb

phrases. The word order pattern (AUX-)S-V-O be-

comes more prominent although it is only fully

fledged in Coptic. With respect to the attested sen-

tence types it can be stated that sentences with an

adjectival predicate are receding and are being re-

placed by alternative constructions following the

adverbial pattern (Winand, 2018).

As with pre-Demotic Egyptian in general, Late

Egyptian texts are recorded in two native Egyp-

tian scripts: monumental hieroglyphs, which were

used for inscriptions on stone and, in cursive form,
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for certain texts on papyrus (e.g., the Book of the

Dead) or wood; and hieratic, a cursive script written

mostly on papyrus and ostraca (pottery and lime-

stone sherds).

3 Datasets

The datasets for all language stages discussed here

were exported andmade available to us by Daniel A.

Werning from the database that feeds the Thesaurus

Linguae Aegyptiae (TLA), corpus v18 (Richter

et al., 2023).1 The export format is JSONL with

each sentence (as defined by the TLA’s data model

and editors) stored as a separate JSON object and

the tokens separated by blanks (Fig. 1). Each sen-

tence is represented both in Unicode hieroglyphs

(without quadrat placement) and in Egyptological

transcription (i.e., Leiden Unified Transliteration),

provided that hieroglyphs have been encoded for

the respective text. It is annotated with TLA lemma

IDs and POS-tagged using the UPOS tag set2 and a

simplified version of the project-specific subclass

tag set of the TLA as the XPOS tag set (Wern-

ing, 2024). This XPOS tag set is fine-grained with

respect to proper nouns, using different tags for

divine names, royal names, personal names, ani-

mal personal names, names of institutions, names

of artifacts, and place names. It also distinguishes

epithets and titles from other types of nouns.

Figure 1: JSON object from the Late Egyptian dataset,

The Teaching of Amenemope 5,13, pBMEA10474, TLA

ID: IBUBd2RAxJagbkako4lYd0WxDc8.

The lemmatization of the Thesaurus Linguae Ae-

gyptiae is fine-grained and tailored to Egyptol-

ogists’ needs, allowing them to distinguish and

search for the individual meanings and functions

of a lemma. Consequently, a single lemma may be

divided into multiple sub-lemmata, each assigned

its own TLA lemma ID, as illustrated in Table 1 for

the preposition m, the most frequent word in Egyp-

tian. Another reason why lemma IDs are necessary

for Egyptian is the high number of homonyms (or

1For detailed information on the datasets, see Section
Sources.

2https://universaldependencies.org/u/pos/

more precisely, homographs) in the Egyptological

transcription (”transliteration”), which we have de-

scribed in more detail in Sahala and Lincke (2024).

Lemma

ID

Meaning / Function

1. 64360 [preposition]

2. 400007 in; to; on; from (spatial)

3. 64365 in; on (temporal)

4. 64362 in (condition, state)

5. 400082 (consisting) of (partitive)

6. 64364 by means of (instrumental)

7. 400080 together with (comitative)

8. 500292 like; as (predication)

9. 854625 [connector of the direct object]

10. 64369 [with infinitive]

11. 64370 when; if [as conjunction]

Table 1: Sub-lemmata of the preposition m in the The-

saurus Linguae Aegyptiae lemma list.

The Earlier Egyptian dataset consists of all sen-

tences that predate the Egyptian New Kingdom (c.

1550–1070 BC). The Demotic dataset comprises

the entire Demotic text corpus in the TLA. Defin-

ing a Late Egyptian dataset is more challenging, as

texts in the TLA are not consistently tagged by lan-

guage phase. Therefore, our Late Egyptian dataset

includes only those texts explicitly labeled as Late

Egyptian in the TLA metadata.3

Other than thematerial used in Sahala and Lincke

(2024), our datasets are not filtered for “premium”

sentences that are “fully intact” and “unambigu-

ously readable” (TLA-Dem 2024, TLA-Egy 2024)4.

The datasets include damaged text, i.e. broken or

destroyed individual hieroglyphs or entire word

forms that could not be reconstructed by the editors.

The respective sizes of the datasets can be found in

Table 2.

Language stage Sentences Tokens

Earlier Egyptian 43,447 ∼286,000
Late Egyptian 9,005 ∼86,100
Demotic 25,822 ∼292,450

Table 2: Sentence and token counts for the Earlier Egyp-

tian, Late Egyptian, and Demotic datasets.

Our aim is to train models that can handle two dif-

ferent types of input: (1) Unicode-encoded hiero-

3TLA ID: J3SNMB4AF5ERPDGE4VPMBZSYRE, Thot
Thesauri & Ontology ID: thot-12.

4https://huggingface.co/datasets/
thesaurus-linguae-aegyptiae
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glyphs (e.g. as the output of a successful future

hieroglyphic OCR) and (2) transcription, which

remains the default digital representation of Egyp-

tian, since many projects still render hieroglyphs

only as images. Depending on the availability in the

database, not all sentences of Earlier and Late Egyp-

tian in our datasets contain hieroglyphic spellings,

some texts were only encoded by means of tran-

scription. Demotic is represented in transcription

only, since there is no encoding for the Demotic

script itself.

Challenges lie in the complexity of the input data.

Currently, not all hieroglyphs are available in Uni-

code. In such cases, they are encoded using the

alphanumerical system known as Gardiner num-

bers enclosed in the tag <g> (Fig. 1, first line, in

purple). We test how well our lemmatizer can pre-

dict the lemma string plus a numerical index (Fig.

1, third line, in red) replacing the arbitrary TLA

lemma IDs (in blue), instead of simply representing

a lemma as a string (see Section 6). Effectively,

this means training the lemmatizer to disambiguate

homonyms caused by the simplified rendering of

Egyptian in transcription and by the subdivision of

lemmata.

4 Previous Work

In their paper on Neural Machine Translation for

Egyptian, using the TLA data dump from 2018,

De Cao et al. (2024) incorporated the prediction

of lemma IDs (lemmatization) and POS tags into

the training of some of their models. Their re-

sults look promising but cannot be directly com-

pared to ours, as they use SacreBLEU and RougeL

as their evaluation metrics, which cannot be con-

verted into accuracy rates, our primary evalua-

tion metric. Díaz Hernández and Carlo Passarotti

(2024) manually annotated a dataset of 14,650 to-

kens from the Old Egyptian Pyramid Texts for

the first Egyptian treebank, including lemmatiza-

tion and POS-tagging. They trained a UDPipe

model and evaluated their results with F1 scores of

89.38 (lemma), 90.30 (UPOS), and 76.01 (XPOS).

However, their lemmatization approach was string-

based and did not account for homonymy by using

lemma IDs, making the task significantly simpler

than ours, which requires the disambiguation be-

tween homonyms and/or multiple sub-lemmata.

Other than that and apart from our own effort (Sa-

hala and Lincke, 2024), models have been created

only to lemmatize and POS-tag Coptic. (Zeldes and

Schroeder, 2016, 2015; Smith and Hulden, 2016;

Dereza et al., 2024).

5 BabyLemmatizer

BabyLemmatizer5 is a lemmatization and POS-

tagging pipeline originally designed for the

cuneiform languages of Mesopotamia, but is also

capable of handling other transliteration and writing

systems (Sahala and Lindén, 2023).

The system is based on the Open Neural Machine

Translation Toolkit (Klein et al., 2017) and han-

dles POS-tagging and lemmatization as machine

translation tasks by mapping character or symbol

sequences to each other. It uses a deep attentional

encoder-decoder network with a two-layer BiL-

STM encoder that reads the input as a character

sequence. The output sequence is produced by a

two-layer unidirectional LSTM decoder with input

feeding attention. We use the default batch size of

64 and start the learning rate decay halfway through

the training process.

The neural lemmatizer is followed by a

dictionary-based post-corrector to verify the in-

vocabulary lemmatizations for better accuracy. The

post-corrector also labels lemmatizations with con-

fidence scores that enable easier location of poten-

tially incorrect lemmata.

6 Preprocessing and Training

We converted the datasets from the original JSONL

format into CoNLL-U to make it usable by

BabyLemmatizer. Our CoNLL-U lacks depen-

dency labels and morphology, and uses a simplified

lemma notation by representing the disambigua-

tion identifiers in a shorter form (r-ḥꜣ.t/2 instead

of 500053|r-ḥꜣ.t, see Fig. 1), since our previous

experiments proved that the long identifiers are

detrimental for OOV word lemmatization.

We use BabyLemmatizer’s alphabetic tokenizer

for all our models that splits the input strings into

character sequences represented as Unicode hiero-

glyphs or transcribed Latin characters. The POS-

tagger input sequence is encoded as a 5-gram of

concatenated word forms. The lemmatizer is run

after the POS-tagging, and its input sequences are

encoded as concatenations of four strings, where the

first one represents the input word form (in translit-

eration or hieroglyphs) and the three following its

5The tool is available at https://github.com/asahala/
BabyLemmatizer
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predicted XPOS tag, as well as the predicted XPOS

tags of the preceding and the following words.

7 Evaluation

We generate a 80/10/10 train/dev/test split of our

datasets and evaluate our models using 10-fold

cross-validation. We estimate the performance

of our models by using accuracy as our evalua-

tion metric, since we only predict one lemma for

each input word (instead of, for example, the most

likely three candidates). Our predicted labels are

LEMMA, XPOS and UPOS. Due to high lemma-

tization ambiguity, we do not predict the lemma

alone, but also its index, which separates it from

other homonymous lemmata. This makes the task

significantly more challenging in comparison to

typical lemmatization tasks, where only the dic-

tionary forms are predicted. Our final results are

summarized in Table 3 with confidence intervals

of the cross-validation shown in parentheses.

Our results for Demotic and transcribed Earlier

Egyptian show a moderate improvement in com-

parison to our previous paper albeit the used data

contain breakages; for instance, the lemmatization

for Earlier Egyptian in transcription improves by

2.04%.

It seems that the hieroglyphic input produces less

accurate results than using the transcription. This

is due to the increased vocabulary size, and hence

a larger number of OOV-vocabulary words, which

result from spelling variation that is normalized in

transcription (for an example see Sahala and Lincke,

2024, p. 89, Fig. 1).

7.1 Data Augmentation and Model Corrector

Experiments

We attempted to improve Egyptian lemmatization

results by augmenting Late Egyptian training data

with Earlier Egyptian data and vice versa, but this

did not yield consistently better results for transcrip-

tion or hieroglyphs.

In addition, we experimented with training a sec-

ondary model for post-correcting the lemma identi-

fiers. This process involved first predicting the

POS tags and simplified lemmata without iden-

tifiers, which can be predicted with an accuracy

of ca. 94% for transcribed Earlier Egyptian. The

post-corrector attempted to map varying length se-

quences of simplified lemmata and their POS-tags

to the lemmata with identifiers, but we were unable

to improve the results.

7.2 Error Analysis

In the test set for Earlier Egyptian, 2,960 tokens

were erroneously lemmatized from the hieroglyphic

input. Of these, 323 (10.91%) correspond to tokens

with the hieroglyphic form 𓅓 (m), and 313 of these

323 specifically are instances of the preposition m

‘in’, which is divided into multiple sub-lemmata in

our corpus (see Table 1). If all these sub-lemmata

were assigned to a single lemma—e.g. the hyper-

nym for the preposition m (TLA lemma ID 64360,

see no. 1 in Table 1)—the total error count could

be reduced by 313 (10.57%) solely by addressing

this one hieroglyphic input form. The same is true

for other frequently used prepositions, such as 𓈖

(n) ‘for, to’ and 𓂋 (r) ‘to, at’.

In an additional 192 errors (7.14%) in Earlier

Egyptian lemmatization with hieroglyphic input,

the tokens contain hieroglyphic characters not rep-

resented as Unicode points, but rather using the <g>

tag and Gardiner numbers (see Fig. 1). This indi-

cates that BabyLemmatizer struggles to effectively

learn these non-Unicode representations from the

given input data.

With an effective token count of 13.8k in the

test set (out of a total size of 28.6k), the 505 in-

stances of two mentioned error types alone account

for 3.66%. This means that the accuracy—specifi-

cally for lemmatization based on hieroglyphic in-

put—could be significantly improved by simplify-

ing the data, e.g. by avoiding lemmatization at the

sub-lemma level and by filtering out tokens with

non-Unicode-compliant hieroglyphs.

8 Conclusions and Future Work

We presented lemmatization and POS-tagging mod-

els for Earlier Egyptian, Late Egyptian, and De-

motic with varying results. Whereas the accuracy

for Demotic is fairly good (tagger 97%, lemma-

tizer 92%), the Earlier and Late Egyptian yielded

adequate results only for POS tagging (93-96%).

Disambiguating the highly ambiguous Egyptian

lemmata is beyond the capabilities of BabyLemma-

tizer’s current model architecture. Therefore, we

plan to tackle this issue in the future using more

context-aware approaches, including transformers

and LLMs, which could perhaps be fine-tuned for

disambiguation tasks. Moreover, additional annota-

tion layers, such as dependency parsing, could pos-

sibly improve the quality of the lemmatization, as

syntactic and morphological labels have previously

been used successfully in lemma disambiguation
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Whole dataset

Demotic EarlierE T EarlierE H LateE T LateE H

XPOS 97.13 (±0.09) 96.20 (±0.08) 92.97 (±0.16) 93.98 (±0.08) 93.13 (±0.26)

UPOS 97.45 (±0.09) 96.62 (±0.15) 93.64 (±0.04) 94.48 (±0.16) 93.52 (±0.23)

LEMMA 92.15 (±0.18) 87.56 (±0.19) 80.15 (±0.20) 79.98 (±0.26) 76.59 (±0.48)

OOV-rate 2.51 2.62 13.54 5.54 16.75

OOV word forms only

Demotic EarlierE T EarlierE H LateE T LateE H

XPOS 82.12 (±1.45) 78.00 (±1.04) 81.39 (±0.69) 76.09 (±2.02) 82.19 (±1.67)

UPOS 85.70 (±1.94) 82.45 (±1.28) 83.89 (±0.48) 78.28 (±1.20) 83.35 (±1.43)

LEMMA 50.96 (±1.25) 53.85 (±1.18) 51.16 (±0.91) 43.63 (±1.80) 50.87 (±1.92)

Table 3: Evaluation results. OOV-rate shows the average percentage of OOV word forms in the test set with respect

to training corpus. H = hieroglyphic input and T = transcription.

(Kanerva et al., 2021). We also plan to organize a

shared task for Egyptian lemmatization, since the

issues are rather unique and are likely to be more

easily solved with input from a larger NLP commu-

nity.
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Abstract

Suzhou numerals, a specialized numerical no-
tation system historically used in Chinese com-
merce and accounting, played a pivotal role in
financial transactions from the Song Dynasty
to the early 20th century. Despite their his-
torical significance, they remain largely absent
from modern OCR benchmarks, limiting com-
putational access to archival trade documents.
This paper presents a curated dataset of 773
expert-annotated Suzhou numeral samples ex-
tracted from late Qing-era trade ledgers. We
provide a statistical analysis of character distri-
butions, offering insights into their real-world
usage in historical bookkeeping. Additionally,
we evaluate baseline performance with hand-
written text recognition (HTR) model, high-
lighting the challenges of recognizing low-
resource brush-written numerals. By introduc-
ing this dataset and initial benchmark results,
we aim to facilitate research in historical doc-
umentation in ancient Chinese characters, ad-
vancing the digitization of early Chinese finan-
cial records. The dataset is publicly available
at our huggingface hub, and our codebase can
be accessed at our github repository.

1 Introduction

Suzhou numerals, a traditional numerical notation
system originating in ancient China, played a cru-
cial role in trade, accounting, and daily transac-
tions in East Asia (Yang and Zhang, 2019). Char-
acterized by their unique brush-based calligraphic
style and distinct structural patterns, Suzhou nu-
merals differ significantly from modern numeri-
cal systems. Despite their historical and cultural
importance, digitization and computational analy-
sis remain underdeveloped (Liu et al., 2021), pos-
ing challenges to both preservation and automatic
recognition.

Digital preservation of Suzhou numeral is im-
perative due to their profound historical and cul-
tural significance, yet their survival is at risk. Ac-

Figure 1: Excerpt from a late Qing-era accounting
ledger (dated the 4th year of Emperor Guangxu’s
reign), preserved in the Hechang Firm in Nagasaki(長
崎和昌號) archives.

cording to Jchi (2011) these numerals evolved
from Song dynasty arithmetic rod methods and
were widely disseminated in Ming China and
Japan via educational. Li et al. (2022) further
reveals that, before Arabic numerals prevailed,
Suzhou numerals were integral to commerce and
measurement. As Suzhou numerals fade from
use—gradually replaced by Arabic digits—their
preservation becomes increasingly urgent to pre-
vent cultural loss and retain a unique part of China’
s mathematical heritage.

In the past decade, HTR has made signifi-
cant progress through the use of deep neural net-
works Doermann and Tombre (2014). Unlike tra-
ditional HTR systems that employ hand-crafted
features, these networks are data-hungry and re-
quire significant amounts of training data to learn,
generalize, and be deployed in real-world scenar-
ios. Suzhou numerals are rarely discussed in cur-
rent studies, which focus primarily on standard
Chinese characters or modern digits. This paper
aims to address the gap by introducing a dataset of
Suzhou numerals for HTR research.

We introduce the first dataset of Suzhou numer-
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Figure 2: Flow chart of Suzhou Numerals dataset creation

als derived from historical trade records preserved
by the Kinmen-based Liang family (1850–1930).
These records, originating from the Hechang Firm
in Nagasaki, illustrate real-world usage in fi-
nancial ledgers, contracts, and transactions (Lin,
2020). Fig 1 shows the archievs of Hechang Firm
in Nagasaki. Our dataset features:

• High-Quality Suzhou Numeral Samples: 773
manually annotated instances that span vari-
ous brush styles and levels of degradation.

• Baseline for hand written Suzhou Numeral
recognition: CRNN-based baseline model
(Shi et al., 2015) for improved recognition of
historical scripts .

By bridging cultural heritage preservation and AI-
driven OCR, we advance handwritten character
recognition for underrepresented scripts, enabling
new lines of digital humanities research.

2 Related Work

2.1 Handwritten Text Recognition

HTR has been extensively studied in computer
vision and pattern recognition. With the ad-
vent of deep learning, convolutional neural net-
works (CNN) (LeCun et al., 1998) (Krizhevsky
et al., 2012) and recurrent neural networks (RNN)
(Graves, 2013) have enabled end-to-end learn-
ing for HTR, achieving state-of-the-art results
on MNIST (Deng, 2012b) and EMNIST (Co-
hen et al., 2017). Shi et al. (2015) proposed
Convolutional Recurrent Neural Network (CRNN)
which integrates CNN-based feature extraction
with LSTM-based (Graves and Graves, 2012) se-
quence modeling, delivering powerful, end-to-end
recognition performance for text recognition.

Although these approaches have shown high
precision for Latin digits and standard Chinese

characters, Suzhou numerals pose unique recogni-
tion challenges due to their stroke-based morphol-
ogy, contextual variations, and historical degrada-
tion. Unlike modern printed numerals, their hand-
written nature introduces stroke ambiguity, where
numerals such as〢 (2) and〣 (3) differ by a sin-
gle stroke, making them susceptible to misclassifi-
cation. Additionally, numerals appear in both hor-
izontal and vertical layouts, requiring flexible lay-
out analysis for proper segmentation. The multi-
ple variants of Suzhou Numerals, along with its
mixed use with Chinese numerals and Manchu
numbers, make its recognition extremely challeng-
ing (Saarela and Xue, 2023).

2.2 Datasets for Handwritten Text
Recognition

Large-scale benchmarks have significantly ad-
vanced HTR research (Deng, 2012a), yet exist-
ing resources primarily target modern digits or
standard Chinese text (Cohen et al., 2017; Le-
Cun et al., 1998). Historical East Asian scripts,
especially those used in commercial documents,
remain notably underrepresented (Zhang et al.,
2019). Saeed et al. (2024) introduces the Muharaf
dataset which collecting over 1,600 historic hand-
written Arabic manuscript images with CRNN-
based baseline (Shi et al., 2015). Koch et al.
(2023) introduces a tailored end-to-end handwrit-
ten text recognition system for Medieval Latin dic-
tionary record cards. Moreover, due to limited
archival access and the idiosyncrasies of brush-
based writing, most publicly available Chinese
OCR corpora do not isolate traditional numeric
forms. In response, we introduce a new dataset of
773 annotated Suzhou numerals drawn from late
Qing-era trade ledgers. Compared to previous Chi-
nese OCR datasets that focus on general charac-
ters, ours specifically highlights the numeric brush
strokes critical for historical accounting. To our
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knowledge, this is the first publicly available cor-
pus dedicated solely to Suzhou numerals, provid-
ing a foundation for future research in historical
OCR and HTR.

Table 1: Suzhou Numerals and Their Unicode Repre-
sentations

Arabic Suzhou numerals Unicode

0 〇 U+3007
1 〡 U+3021
2 〢 U+3022
3 〣 U+3023
4 〤 U+3024
5 〥 U+3025
6 〦 U+3026
7 〧 U+3027
8 〨 U+3028
9 〩 U+3029

3 Data Collection

3.1 Source Material and Archival Records

Our dataset is derived from the Hechang Firm in
Nagasaki archive (Hec) (Zhu, 2016) (Ichikawa,
1983) (Xu, 1988), which documents trade activ-
ities between China, Japan, and Southeast Asia
from 1880 to 1930. The collection includes ac-
counting ledgers, trade contracts, and commer-
cial correspondence, where Suzhou numerals ap-
pear in transaction records, itemized cost lists, and
within handwritten Chinese text (Fig 1). These
materials provide a rich historical context, captur-
ing variations in notation style and document for-
matting over time.

3.2 Digitization and Annotation

As illustrated in the flow chart in Figure 2. First,
all documents have been scanned and digitized
into high-resolution PDF files. Then, the portions
containing the Suzhou numerals (0-9) in these
documents were manually annotated by human
experts. Finally, every portion was individually
cropped into an image with an annotated label.
Ambiguous cases, particularly those affected by
fading or overlapping strokes, were cross-verified
by multiple annotators for consistency.

3.3 Dataset Statistics

The final dataset comprises 773 annotated in-
stances of Suzhou numerals. We divide the
dataset into training, testing, and evaluation sets

with a ratio of 7:1.5:1.5, resulting in 541 samples
for training, 116 for testing, and 116 for evalu-
ation. The dataset captures natural variations in
stroke thickness, numeral alignment, and stylis-
tic nuances, providing a comprehensive represen-
tation of real-world Suzhou numeral usage.

Figure 3 illustrates the frequency distribution
of individual digits (0-9) appearing in filename la-
bels, providing insights into numerical biases or
inconsistencies within the dataset.

Figure 3: Histogram displaying the frequency of indi-
vidual digits (0-9) appearing in the filename labels.

4 Experiments and Baseline HTR
Results

We evaluate our proposed approach using with
CRNN (Shi et al., 2015) to recognize brush-based
Suzhou numerals. This section details the CRNN
pipeline, training procedures, and the effects of ro-
tation, padding, and pretrained checkpoints, for a
baseline of our dataset.

CRNN Pipeline CRNN architecture introduced
by Shi et al. (2015) is adapted as a baseline to ad-
dress the recognition of handwritten Suzhou nu-
meral sequences. The input to our system is a
grayscale image I ∈ RH×W×1 that contains a se-
ries of handwritten Suzhou numerals, where H =
32 and W = 128.

The brief introduction pipeline is as follows.
For more details, please refer to Appendix B. First,
the grayscale image is fed into a CNN (LeCun
et al., 1998) (Krizhevsky et al., 2012) which ex-
tracts high-level feature maps. These feature maps
are then reshaped into a sequential feature repre-
sentation. Subsequently, these features are input
to bidirectional LSTM (Graves and Graves, 2012)
layers. Finally, the sequence features are fed into
MLP and the output sequence is decoded into pre-
dicted Arabic digit sequence.
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Table 2: Baselines of OCR models on Suzhou Numer-
als recognition. The table presents results for classic
OCR and CRNN-based models under different train-
ing configs. The lowest Character Error Rate (CER)
is achieved with a pretrained CRNN model incorporat-
ing both padding and rotation.

Model Pretrained Padding Rotation CER (%)

Tesseract Yes - - 100.00
Tesseract Yes No No 23.22
CRNN No No No 5.450
CRNN No No Yes 5.205
CRNN No Yes Yes 3.645
CRNN No Yes No 5.115
CRNN Yes No Yes 5.150
CRNN Yes Yes Yes 3.570

For the transcription of the sequential output,
we adopt the CTC loss (Jaderberg et al., 2014). It
proves essential for accommodating irregular spac-
ing and partial strokes.

LCTC = − ln p(y | x),

which sums over all valid alignments between the
input numeral sequence (x) and the ground truth
numeral sequence (y).

Training and Data Augmentation Given the
script’s variability in stroke density and ink clarity,
we apply rotations (up to ±20◦), random scaling
(5–15%), and brightness alterations ([0.1, 0.2]).
When performing data augmentation, we expand
the training data by 3 times (1x original train-
ing data and 2x augmented data). We train us-
ing Adam (LR=0.0001), a batch size of 4, for 100
epochs. More training details can be found in Ap-
pendix C).

Rotation and Padding Effects We also investi-
gate how rotation degrees and input padding in-
fluence recognition (Table 2). In cases without
padding, a moderate rotation (10◦) enhances accu-
racy, but larger angles (20◦) start to degrade perfor-
mance, presumably due to excessive numeral dis-
tortion. With padding, the results remain more sta-
ble as rotation increases; however, improvements
largely plateau beyond 10◦. These observations
suggest that retaining contextual spacing around
numerals helps mitigate augmentation artifacts, es-
pecially in heavily degraded scans.

Baseline Comparisons We report the baseline
of our Suzhou numerals in different models. As
shown in Table 2, Tesseract performs poorly

Figure 4: An example of misprediction. The lowest
stroke of second character ’〨’ and the top left stroke
of the third character ’〩’ is almost connected. There-
fore, our model identifies these two strokes as a single
stroke, and mistakenly recognized the second character
as ’〧’. See Fig 5 in Appendix for more examples.

(100% CER) on Suzhou numerals, reflecting the
script’s brush-based style and close integration
with Chinese text. Finetuning CRNN attains sig-
nificantly lower error rates. Once we incorporate
padding and rotations, the CER decreases further
to 3.645%.

Pretrained Checkpoints and Final Results
Leveraging a CRNN checkpoint trained on
Synth90k dataset (Jaderberg et al., 2014) yields
the best outcome. After fine-tuning on Suzhou nu-
merals, we achieve a CER of 3.57% (Table 2), il-
lustrating that transfer learning is particularly ef-
fective in this under-resourced domain. Qualita-
tive inspections reveal that most errors are due to
faint strokes, especially confusing 〢 (2) with 〣
(3) or merging 〤 (4) and 〥 (5) in severely de-
graded regions (Figure 4). Despite these issues,
the results confirm the viability of specialized neu-
ral architectures, even with limited training data,
and highlight the importance of careful augmenta-
tion strategies when tackling historical scripts.

5 Conclusion and Future Work

We introduce the first dataset of Suzhou numer-
als, providing a critical resource for historical
OCR and HTR. Our CRNN baseline, achieving
a CER of 3.57%. Future work includes expand-
ing the dataset with additional scribes and de-
graded samples, integrating attention-based mod-
els like Transformers for improved feature extrac-
tion, recognizing Suzhou numerals in multilingual
documents, and enhancing reproducibility through
code and dataset sharing. By bridging cultural
preservation with machine learning, this work es-
tablishes a foundation for advancing OCR on un-
derrepresented scripts, inviting further research
and applications.
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Appendix

A Examples of Mispredictions

We list some examples (Figure 5) which our model
can’t correctly predict the true labels.

Figure 5: Some examples of mispredictions

B CRNN Model Pipline

We have the same model architecture as Convo-
lutional Recurrent Neural Network (CRNN) (Shi
et al., 2015) because we want to obtain a baseline
for our Suzhou Numerals recognition task. The
following is the detailed model architecture.

• Input: Grayscale image of size 32 × W
(Height × Width), where the height is fixed
and W is variable. We set W = 128 here.

• Conv1:

– Kernel: 3 × 3, Filters: 64, Stride: 1,
Padding: 1.

– Output: 32×W × 64.

• Pool1:

– Max Pooling: 2× 2 with stride 2.
– Output: 16× W

2 × 64.

• Conv2:

– Kernel: 3 × 3, Filters: 128, Stride: 1,
Padding: 1.

– Output: 16× W
2 × 128.

• Pool2:

– Max Pooling: 2× 2 with stride 2.

– Output: 8× W
4 × 128.

• Conv3:

– Kernel: 3 × 3, Filters: 256, Stride: 1,
Padding: 1.

– Output: 8× W
4 × 256.

• Conv4:

– Kernel: 3 × 3, Filters: 256, Stride: 1,
Padding: 1.

– Output: 8× W
4 × 256.

• Pool3:

– Max Pooling with kernel 2× 1 (vertical
pooling only).

– Output: 4× W
4 × 256.

• Conv5:

– Kernel: 3 × 3, Filters: 512, Stride: 1,
Padding: 1.

– Output: 4× W
4 × 512.

• Conv6:

– Kernel: 3 × 3, Filters: 512, Stride: 1,
Padding: 1.

– Output: 4× W
4 × 512.

• Pool4:

– Max Pooling with kernel 2× 1 (horizon-
tal pooling only).

– Output: 2× W
4 × 512.

• Conv7:

– Kernel: 2×2, Filters: 512, Stride: 1, No
padding.

– Output: 1× W
4 × 512.

The final feature map is reshaped into a se-
quence:

x = {x1, x2, . . . , xT }, T =
W

4
, xi ∈ R512.
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RNN Sequence Modeling
The sequential features are modeled by two layers
of Bidirectional Long Short-Term Memory (BiL-
STM):

• BiLSTM Layer 1:

– Hidden Units: 256 in each direction.
– Output per time step: 512-dimensional

feature vector.

• BiLSTM Layer 2:

– Hidden Units: 256 in each direction.
– Output per time step: 512-dimensional

feature vector.

Transcription Layer and CTC Loss
A fully connected layer with softmax activation is
applied to the output of the final BiLSTM to obtain
a probability distribution over the target character
set augmented by a blank label for CTC. Formally,
for each time step:

Output dimension = |A|+ 1,

where A denotes the set of target characters. In
our case, A means a set of numerals from 0-9.

The network is trained using the Connectionist
Temporal Classification (CTC) loss:

LCTC = − ln p(y | x),

which sums over all valid alignments between the
input sequence (x) and the ground truth sequence
(y).

C Training Hyperparameters

Table 3: Hyperparameters

Parameter Value
img_height, img_width 32, 128
epochs 100
batch size 4
learning rate 1× 10−4

augmentation ratio 2x
rotation degree 20
brightness 0.1

D Example of Training and Evaluation
loss

Figure 6 shows an basic example of training and
evaluation loss graph. Hyperparameters are set
same as Appendix C

Figure 6: Basic training and evaluation loss graph
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Abstract

Previous studies suggest that authorship can
be inferred through stylistic features like func-
tion word usage and grammatical patterns, yet
such analyses remain limited for Old Chinese
texts with disputed authorship. Computational
methods enable a more nuanced exploration of
these texts. This study applies stylometric anal-
ysis to examine the authorship controversy be-
tween the Zuo Commentary and the Discourses
of the States. Using PoS 4-grams, Kullback-
Leibler divergence, and multidimensional scal-
ing (MDS), we systematically compare their
stylistic profiles. Results show that the Zuo
Commentary exhibits high internal consistency,
especially in the later eight Dukes chapters,
supporting its integration by a single scholarly
tradition. In contrast, the Discourses of the
States displays greater stylistic diversity, align-
ing with the multiple-source compilation the-
ory. Further analysis reveals partial stylistic
similarities among the Lu, Jin, and Chu-related
chapters, suggesting shared influences. These
findings provide quantitative support for Tong
Shuye’s arguments and extend statistical vali-
dation of Bernhard Karlgren’s assertion on the
textual unity of the Zuo Commentary.

1 Background

Stylometry, which also known as authorship identi-
fication, is the process of analyzing textual features
to determine uncertain authorship (authorship at-
tribution) or verify an author’s identity (authorship
verification). The fundamental premise of stylome-
try is that “authors have an unconscious aspect to
their style, an aspect which cannot consciously be
manipulated but which possesses features that are
quantifiable and may be distinctive.” This study ap-
plies stylometry to old Chinese texts, focusing on
two historical works with contentious authorship:
Zuo zhuan 左傳 (Zuo Commentary) and Guo yu
國語 (Discourses of the States).

The Zuo Commentary is a chronicle-style histor-
ical record documenting events in Central Plains
states during the Spring and Autumn period. Re-
garding its authorship, figures such as Sima Qian
司馬遷 (145-86? BCE), Ban Gu班固 (32-92 AD),
and Du Yu杜預 (233-285 AD), along with early
records from The Analects, identify Zuo Qiu Ming
左丘明, the Tai shi太史 (historian) of the state of
Lu魯, as the author of the work. Relevant sources
include:

The gentleman of Lu (魯君子), Zuo Qiu
Ming, compiled the Zuo Commentary to
the Spring and Autumn Annals. (Sima
Qian, Records of the Grand Historian -
Yearly Chronicle of the Feudal Lords)

However, started in the Tang dynasty (618-907),
historians raised doubts about whether Zuo Qiu
Ming mentioned in Records of the Grand Historian
and The Analects were the same person. In the
late Qing period, New Text scholars argued more
broadly that the Zuo Commentary was a forgery
by Liu Xin 劉歆 (50?-23 BCE). Due to the ab-
sence of further archaeological evidence, contem-
porary views generally accept the reliability of
Sima Qian’s records.

The Discourses of the States is a state-specific
historical record. It primarily focuses on events dur-
ing the Spring and Autumn period, with some con-
tent overlapping with the Zuo Commentary. The
text comprises 21 chapters, each consisting of in-
dependent speeches or dialogues.

Concerning its authorship, Sima Qian, followed
by Ban Gu, attributed it to the same author as the
Zuo Commentary:

Zuo Qiu lost his sight and finished the
Discourses of the States. (Sima Qian,
Records of the Grand Historian - Au-
tobiographical Afterword of the Grand
Historian)
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Confucius composed the Spring and Au-
tumn Annals based on Lu’s historical
records, and Zuo Qiu Ming organized
their accounts as commentary and fur-
ther compiled divergences into the Dis-
courses of the States. (Ban Gu, Book of
Han - Sima Qian)

Karlgren (1968) conducted the earliest stylomet-
ric analysis of the Zuo Commentary and the Dis-
courses of the States. By manually selecting seven
sets of function words from the Zuo Commentary,
Karlgren compared its linguistic style with The
Analects and Mencius, which represent the linguis-
tic style of the Lu region. He reached two signif-
icant conclusions. First, the Zuo Commentary is
either the work of a single author or represents
a specific school, as it exhibits a high degree of
internal consistency. However, it does not reflect
the style of Lu’s “gentlemen of Lu.” Second, the
grammar of the Zuo Commentary is very similar to
that of the Discourses of the States. Hirase (1998)
affirmed Karlgren’s judgment and used subsequent
research on calendar records to demonstrate a con-
nection between the author of the Zuo Commentary
and the court of the State of Han韓.

2 Tools and Corpus

Distinguishing from earlier studies reliant on man-
ual annotation and subjective judgment, since the
1980s, the introduction of digital tools and mathe-
matical methods has made stylometry more feasi-
ble for processing vast corpora, providing repeat-
able experimental procedures and objective metrics.
Building upon the methodology of Karlgren, who
conducted full-text statistics on the Zuo Commen-
tary and Discourses of the States, we expanded
the sample size to uncover linguistic style differ-
ences more comprehensively, which aims to con-
duct a mega-size computational analysis of the Zuo
Commentary and the Discourses of the States, pre-
senting the results visually and intuitively. For
word segmentation (WS) and part-of-speech tag-
ging (POS), Jiayan, a professional Python-based
NLP tool for old Chinese, Jiayan1was utilized for
this step. After statistics and calculation process-
ing, we employed visualization tools to output the
results.

The version of the Zuo Commentary commonly
used today originates from the Western Jin dynasty,

1https://github.com/jiaeyan/Jiayan

where Du Yu reorganized the single spread text
(單篇別行) by integrating it into the Chun Qiu春
秋 (the Spring and Autumn Annals), aligning the
commentary years with the corresponding years in
the Annals, a process described as “attaching the
commentary years to the Annals years” (分經之年
与傳之年相附) (Ma, 1992). This version, referred
to as Chun Qiu Zuo zhuan 春秋左傳 (Zuo Com-
mentary to the Spring and Autumn Annals), serves
as part of the corpus for our study. In order to facil-
itate analysis, we divided the Zuo Commentary into
twelve parts, corresponding to the twelve rulers.
Similarly, the Discourses of the States was divided
into twenty-one parts, based on its chapters.

3 Methodology

3.1 POS n-grams

POS n-grams, defined as sequences of n consec-
utive part-of-speech tags, offer significant advan-
tages as higher-order POS features. They capture
subtle stylistic differences that can be indicative
of authorship. POS n-grams have demonstrated
strong performance in previous studies (Martinc
et al., 2017; Siagian and Aritsugi, 2019). Similar
methods have also been applied to post-Classical
Chinese literature. For example, Liu and Xiao
(2015)provides valuable insights; however, there
are currently no precedents for applying such meth-
ods to Old Chinese.

Compared to analyzing individual POS tags or
simple POS elements, n-grams demonstrate greater
robustness, particularly for short, stylistically di-
verse texts. This makes them highly suitable for
analyzing Old Chinese texts.

After comparing p-values, mean differences, and
contrastive analysis for n = 2, 3, and 4, we found
that 4-grams offer the best overall performance
in terms of statistical significance, contextual cov-
erage, and text differentiation power. Therefore,
we computed POS 4-gram statistics for individual
chapters and constructed cosine similarity matrices.
Retaining only the most frequent n-grams helped
reduce noise and sparsity.

If a text exhibited clear clustering patterns
among chapters, we computed the group cen-
troid of the J set in the original feature space to
represent central stylistic features and identified
outlier chapters based on their Euclidean distance
to this centroid. Subsequently, we applied multidi-
mensional scaling (MDS) to visualize the distance
matrices in low-dimensional space.
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3.2 Kullback-Leibler Divergence

Function words reveal writing style (Pennebaker,
2011). Damerau (1975) was the first to propose
an authorship identification method based on the
frequency of function words. Subsequent studies
(Halvani et al., 2020; Zhao and Zobel, 2007) have
justified the effectiveness of this approach for al-
phabetic languages. This stylistic phenomenon is
also evident in Old Chinese, where function words
are particularly effective in distinguishing writing
styles based on authorship, regional characteristics,
and temporal context.

Based on previous research, we exhaustively
compiled all function words in the two texts and
calculated their unary probabilities. Subsequently,
we introduced the concept of relative entropy for
the same function word across texts and computed
its Kullback-Leibler (KL) divergence using the fol-
lowing formula:

D(p ∥ q) =
∑

x

p(x) log2
p(x)

q(x)
(1)

To assess the disparity between two probability
distributions, relative entropy is zero when p = q
and increases as their difference grows. KL di-
vergence quantifies this disparity by summing the
relative differences across elements. To prevent
invalid operations (e.g., division by zero), we re-
placed zero frequencies with a small constant ϵ for
numerical stability.

Using the computed KL divergence as a distance
metric, we compiled function word statistics for
individual chapters and constructed distance matri-
ces for within-group and between-group compar-
isons of the Zuo Commentary and the Discourses of
the States. To analyze clustering patterns, we first
calculated group centroids in the original feature
space and identified outliers via Euclidean distance
to these centroids. Then, we used MDS to visualize
as well.

4 Results

We calculated and visualized POS 4-grams cosine
similarity matrices for the chapters of the Zuo Com-
mentary and Discourses of the States. The Zuo
Commentary shows high internal similarity, form-
ing distinct clusters (the J set) with minor vari-
ations. In contrast, the Discourses of the States
displays lower internal similarity. MDS provides
us a clear view of internal consistency and diver-
gence.

The Discourses of the States chapters show
wide dispersion in feature patterns, while the Zuo
Commentary exhibits strong clustering, especially
among the last eight dukes recorded in the Zuo
Commentary — Dukes Xi, Wen, Xuan, Cheng, Xi-
ang, Zhao, Ding, and Ai — forming a cohesive
group. In contrast, the first four dukes recorded,
Dukes Yin, Huan, Zhuang, and Min, display more
dispersed patterns (see Figure 1). Comparing inde-
pendent chapters to the Zuo Commentary’s group
centroid (calculated from its coordinate positions
in MDS space) reveals that Discourse of Lu-1, Lu-
2, Chu-1, Jin-4, and Jin-8 exhibit similar stylistic
proximities, suggesting overlaps with the Zuo Com-
mentary (see Figure 2).

Figure 1: Cosine Similarity of PoS 4-grams in the Zuo
Commentary and the Discourses of the States

Figure 2: MDS Projection of 4-grams with Chapter
Distances

KL divergence values near 0 indicate greater
similarity, and its heat-map mirrors the patterns in
the prior heat-map (see Figure 3). MDS projec-
tion based on KL divergence also aligns with POS
4-grams results, showing clustering for the Zuo
Commentary and dispersion for the Discourses of
the States. Notably, the stylistic differences be-
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tween the first four and last eight dukes are also
evident within the Zuo Commentary. Furthermore,
the Discourses of the States chapters with proxim-
ity to the Zuo Commentary’s centroid align with
the previous results (see Figure 4).

Figure 3: KL Divergence between the Zuo Commentary
and the Discourses of the States

Figure 4: MDS Projection of KL Divergence with Chap-
ter Distances

5 Related Work

Revisiting the history of scholarship, Yao Nai was
the first to claim that “(Zuo Commentary) has accu-
mulated additional elements, especially influenced
by followers of Wu Qi (累有附益, 而由吳起之
徒為之者蓋尤多)” Jiao and Shen (2016), but the
evidence remains insufficient. Later, Zhang (1982),
based on the statement in Han Feizi that “Wu Ch’i
was a native of Tso-shih in Wei”（吳起,衛左氏
中人也）(Liao, 1959), inferred that Wu Qi was
the author of Zuo Commentary. Liu (2008) held
a similar view. Subsequently, Tong (2006) listed
four pieces of evidence from the perspective of
national affairs and more clearly delineated the au-
thor’s affiliation as “persons related to the states of

Lu, Jin, and Chu, along with their disciples.” Now,
we should admit that Tong (2006)’s perspective is
well-founded.

6 Conclusions

This study provides a new empirical perspective
on this academic debate through experiments using
part-of-speech 4-grams and KL divergence. First,
the significant stylistic differences between the Zuo
Commentary and the Discourses of the States quan-
titatively refute the most traditional view—that
both texts originated from Zuo Qiu Ming. No-
tably, the internal heterogeneity of the Discourses
of the States aligns with the “multi-source compila-
tion theory" proposed by Zhang (1939) and Wang
(1986), which suggests a layered integration of his-
torical materials from multiple states.

In contrast, while the first four chapters exhibit a
relatively scattered stylistic pattern, the latter eight
chapters of the Zuo Commentary, spanning from
Duke Xi to Duke Ai, demonstrate a high degree of
homogeneity. Overall, the Zuo Commentary main-
tains strong internal consistency, lending support to
Karlgren (1968)’s conclusion that it was authored
by either a single individual or, more precisely, a
cohesive scholarly school. Furthermore, combining
four scattered chapters, we may hypothesize that
the diachronic evolution of authorship followed a
convergent trajectory—namely, the emergence of
this very school likely occurred after the period of
Duke Xi. Notably, Discourse of Lu, Jin, and Chu
exhibit high stylistic similarity to the Zuo Commen-
tary in both experiments. These localized similari-
ties strongly align with Tong (2006)’s proposition
that the text was influenced by scholarly circles
associated with the states of Lu, Jin, and Chu.

In conclusion, computational stylometric not
only validates the intuition of earlier scholars that
the Zuo Commentary was not the work of a single
author or period, but also reveals, through quanti-
tative evidence, that its textual unity is more likely
derived from a school that integrated elements from
Lu, Jin, and Chu. This finding echoes the hypothe-
ses of Zhang (1982) and Liu (2008) regarding Wu
Qi’s involvement in its authorship while also con-
cretizing Tong (2006)’s school-based theory, offer-
ing a new approach to the study of classical text
formation.
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7 Limitations

This study demonstrates the potential of stylomet-
ric methods in analyzing Old Chinese texts and
intuitively presenting abstract linguistic features
but acknowledges certain limitations. Our method-
ology assumes stylistic consistency across an au-
thor’s works regardless of textual content or tempo-
ral variation. This assumption, while foundational
to stylometry, remains theoretically contested. An
author’s style may indeed evolve due to genre adap-
tation or diachronic linguistic changes. Also, the
accuracy of the Jiayan NLP toolkit for old Chinese
POS tagging has been challenged by models based
on BERT(Devlin et al., 2019) and RoBERTa(Liu
et al., 2019) in recent years. We should use newer
tools to improve accuracy and avoid passing errors
to downstream analysis. We believe that future re-
search should explore additional state-level texts
to establish indicators beyond the Discourses of
the States, thereby determining the regional origin
of the Zuo Commentary. Furthermore, developing
benchmark datasets and establishing standardized
evaluation frameworks will advance stylometry as
a robust discipline.
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A Appendix

A.1 Corpus Classification

The Zuo Commentary
Duke Yin 隱, Duke Huan 桓, Duke Zhuang 莊,
Duke Min 閔, Duke Xi 僖, Duke Wen 文, Duke
Xuan宣, Duke Cheng成, Duke Xiang襄, Duke
Zhao昭, Duke Ding定, Duke Ai哀.

The Discourses of the States
the Discourse of Zhou 1 - 3周語, the Discourse
of Lu 1 and 2 魯語, the Discourse of Qi 齊語,
the Discourse of Jin 1 - 9晉語, the Discourse of
Zheng鄭語, the Discourse of Chu 1 and 2楚語,
the Discourse of Wu吳語, the Discourse of Yue 1
and 2越語.

A.2 Selection of n (Example)

Text Pair Statistic p-value

Xi & Ai 1.4920 0.1373
Xi & Ding 7.6496 4.77E-12
Xi & Xuan 7.2402 3.02E-11
Xi & Zhuang 10.0681 2.28E-18
Xi & Cheng 1.4624 0.1452
Xi & Wen 6.7607 3.27E-10

Table 1: Results of 2-grams on Different Chapters

Text Pair Statistic p-value

Xi & Ai 2.7994 0.00565
Xi & Ding 6.2389 4.19E-09
Xi & Xuan 6.4660 1.28E-09
Xi & Zhuang 7.8409 3.39E-13
Xi & Cheng 1.7063 0.0896
Xi & Wen 6.3221 2.60E-09

Table 2: Results of 3-grams on Different Chaptsers

Text Pair Statistic p-value

Xi & Ai 4.3110 2.58E-05
Xi & Ding 7.8073 3.69E-13
Xi & Xuan 8.0324 8.73E-14
Xi & Zhuang 13.6326 4.74E-30
Xi & Cheng 0.2850 0.775972457
Xi & Wen 5.9907 1.06E-08

Table 3: Results of 4-grams on Different Chapters

A.3 POS 4-grams Statistics (Example)

POS 4-grams Count

nt_nt_wp_nh 8
nt_wp_d_v 4
wp_d_v_n 18
d_v_n_wp 24
v_n_wp_v 26
n_wp_v_u 8
wp_v_u_wp 5
v_u_wp_nt 5
u_wp_nt_wp 9
wp_nt_wp_n 18

Table 4: POS 4-grams statistics for Lord Yin

A.4 Function Words Categories

Tag Description Example

a adjective 幽明
b other noun - modifier 男，女
c conjunction 與，而
d adverb 皆
e exclamation 嗚呼
g morpheme 甥
h prefix 非
i idiom 發憤忘食
j abbreviation 五帝
k suffix 者
m number 一，百
n general noun 鬼神，山川
nd direction noun 東，南
nh person name 軒轅
ni organization name 遼隊
nl location noun 城北
ns geographical name 襄平縣
nt temporal noun 春，夏
nz other proper noun 山海經
o onomatopoeia 嗚嗚
p preposition 以，為
q quantity 年，歲
r pronoun 其，斯
u auxiliary 之，所
v verb 賜
wp punctuation ，。！
ws foreign words CPU
x non - lexeme 萄,翱
z descriptive words 默然，區區

Table 5: Function Words Categories
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A.5 Function Words Statistics (Example)

Word PoS Count Unary Probability

之 u 119 0.030861
以 p 97 0.025156
不 d 94 0.024378
之 r 71 0.018413
其 r 69 0.017894
而 c 66 0.017116
也 u 61 0.015820
于 p 53 0.013745

Table 6: Function Words in Chu-1

A.6 KL Divergence Statistics (Example)

Comparison KL Divergence

Yin & Ai 0.4561
Yin & Cheng 0.4393
Yin & Ding 0.5129
Yin & Huan 0.6547
Yin & Min 1.5357
Yin & Wen 0.3379
Yin & Xi 0.2747
Yin & Xiang 0.2994
Yin & Xuan 0.2358
Yin & Zhao 0.3308
Yin & Zhuang 0.5614

Table 7: KL Divergence for Lord Yin
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Abstract
Ancient Chinese books have great values
in history and cultural studies. Named en-
tities like person, location, time are cru-
cial elements, thus automatic Named En-
tity Recognition (NER) is considered a ba-
sic task in ancient Chinese text processing.
This paper introduces EvaHan2025, the
first international ancient Chinese Named
Entity Recognition bake-off. The evalua-
tion introduces a rigorous benchmark for
assessing NER performance across histori-
cal and medical texts, covering 12 named
entity types. A total of 13 teams par-
ticipated in the competition, submitting
77 system runs. In the closed modal-
ity, where participants were restricted to
using only the training data, the high-
est F1 scores were 85.04% on TestA and
90.28% on TestB, both derived from his-
torical texts, compared to 84.49% on med-
ical texts (TestC). The results indicate
that text genre significantly impacts model
performance, with historical texts gener-
ally yielding higher scores. Additionally,
the intrinsic characteristics of named enti-
ties also influence recognition performance.
It remains challenging to further enhance
model recognition performance and to ef-
fectively integrate entities from different
annotation schemes into a unified system.

1 Introduction
The EvaHan series represents an international
endeavor focusing on the advancement of infor-
mation processing for ancient Chinese texts.
In 2022, EvaHan was convened in Marseille,
France, where it conducted evaluations on
word segmentation and part-of-speech tagging

in ancient Chinese, contributing to the field’
s fundamental tasks (Li et al., 2022). The fol-
lowing year, the series moved to Macao, China,
extending its scope to include evaluations on
ancient Chinese machine translation, a signif-
icant step in computational linguistics for his-
torical languages (Wang et al., 2023). The fol-
lowing year 2024, the series moved to Turin,
Italy, extending its scope to include evalua-
tions on ancient Chinese sentence segmenta-
tion and punctuation, aiming to address a crit-
ical and yet under-explored area in the pro-
cessing of classical texts (Li et al., 2024). In
2025, EvaHan is set to pioneer a new frontier
with its first campaign specifically devoted to
the evaluation of ancient Chinese named en-
tity recognition, aiming to enhance the iden-
tification and categorization of proper names,
places, and temporal expressions in historical
and medical texts, thereby fostering deeper in-
sights into ancient Chinese text analysis.

Named Entity Recognition (NER) is a fun-
damental task in natural language processing
that involves identifying and classifying enti-
ties (Rau, 1991). NER plays a crucial role in
ancient Chinese natural language processing
(NLP), facilitating the structuring and anal-
ysis of historical texts (Zhang and Yang, 2018;
Li Dongmei et al., 2022). Consequently, ac-
curate named entity recognition is essential
for various downstream applications, including
historical knowledge extraction, document re-
trieval, and the construction of large-scale his-
torical knowledge graphs (Goyal et al., 2018;
Liu Liu and Wang Dongbo, 2018). However,
unlike English, ancient Chinese texts lack ex-
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plicit word boundaries. Different from modern
Chinese, ancient Chinese texts use traditional
characters with a significantly larger set of
characters. Additionally, the vocabulary and
grammar of ancient Chinese differ from those
of modern Chinese, further complicating tasks
such as Named Entity Recognition (NER) and
making it a particularly challenging endeavor.

The existing studies on ancient Chinese
NER face several issues and challenges. First,
the ancient Chinese NER mainly focused on
historical texts, other types of texts are not
well considered. Second, different corpora
have different types of named entities. For
example, historical texts include persons, loca-
tions and temporal expressions, while the med-
ical texts have more entities like illness, cures,
and formula. Third, annotation guidelines and
tag set are different caused by different system
developers. There is not a full named entity hi-
erarchy for ancient Chinese. Each corpus only
focus on its own interest. Thus, it is difficult to
construct a wide-coverage NER system. Forth,
the evaluation of ancient Chinese NER is not
well set yet. The basic unit for calculation
of Precision and Recall rate to be a character
or an entity is still a problem, thus making it
hard to compare the performances of different
NER systems.

EvaHan2025 is designed as a comprehensive
evaluation benchmark to address these issues.
The evaluation aims to answer four key ques-
tions:

(1) How do different types of ancient Chi-
nese texts influence NER performance?

(2) Is it possible to build an integrated sys-
tem capable of handling multiple text types
and multiple entity categories?

(3) Can large language models effectively
generalize across different classical Chinese do-
mains?

(4) How can we ensure a fair and unbiased
evaluation, given that many pretraining cor-
pora contain historical texts?

EvaHan2025 collects a dataset of 12 types of
named entities from history and medical texts,
which is designed to test the NER systems’
performance on different genres and entities.
And the basic unit for evaluation is the whole
named entity, not the character. Considering
the fast development of large language models
（LLMs）, we encourage the participants to use

Entity Meaning Example Dataset
NR Person Name 蘇秦 A B
NS Geographical Location 長平 A B
NB Book Title 易 A
NO Official Title 中大夫 A
NG Country Name 秦 A
T Time Expression 三十四年 A B

ZD Traditional Chinese Medicine Disease 金疮 C
ZZ Syndrome 脾胃虚弱 C
ZF Chinese Medicinal Formula 当归散 C
ZP Decoction Pieces 当归 C
ZS Symptom 烦满 C
ZA Acupoint 承扶 C

Table 1: 6 Entities involved in the evaluation

LLMs as well as traditional models.
EvaHan2025 is proposed as part of the The

Second Workshop on Ancient Languages Pro-
cessing, co-located with The 2025 Annual Con-
ference of the North American Chapter of
the Association for Computational Linguistics.
The benchmark, scoring methodology, and de-
tailed annotation guidelines are publicly avail-
able in our GitHub repository1, providing an
open and transparent evaluation framework
for the research community.

2 Task
In the EvaHan2025 evaluation task, partici-
pants are required to develop systems that
automatically identify and label named enti-
ties within ancient Chinese texts, transform-
ing raw unstructured text into structured data
with entity annotations.

The evaluation focuses on 12 distinct types
of named entities, covering key categories rel-
evant to both historical texts and traditional
Chinese medicine texts. Table 1 lists 12 en-
tity types, including Person Name (NR), Ge-
ographical Location (NS), etc. Systems are
assessed based on their ability to accurately
detect entity boundaries and correctly classify
entity types.

3 Dataset
Ancient Chinese texts, covering both histori-
cal records and Traditional Chinese Medicine
literature. All the data has been annotated
and proofread by experts of ancient Chinese
language.

3.1 Data Source
The EvaHan2025 dataset is designed to eval-
uate NER performance in ancient Chinese

1https://github.com/GoThereGit/EvaHan
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Datasets Genre #Char Tokens #Entity Tokens
A History 178167 19070
B History 115090 11931
C Medicine 151703 11967

Table 2: Size of each dataset

texts, covering both historical records and Tra-
ditional Chinese Medicine (TCM) literature.
The dataset consists of three subsets (A, B,
C), each sourced from distinct domains.

DatasetA is made of historical texts ex-
tracted from Shiji(史記)2, with 6 types of
named entities, developed by Nanjing Normal
University.

DatasetB is also historical text extracted
from Twenty-Four Histories(二十四史) 3, with
3 types of named entities, developed by Nan-
jing Agriculture University.

DatasetC is extracted from classical Tradi-
tional Chinese Medicine (TCM) texts, includ-
ing TCM ancitent books such as Liu Juanzi
Guiyi Fang (劉涓子鬼遺方)4. It has 6 types of
entities, annotated by institute of information
on traditional Chinese medicine.

Table 2 presents the size of each dataset,
where Dataset A is the largest, while Dataset
B is the smallest.

3.2 Data Format
All datasets are provided in plain text for-
mat, encoded in UTF-8, and include charac-
ters, punctuation marks, and a dual-layer en-
tity annotation scheme. This dual-layer anno-
tation structure encodes two crucial types of
information: position information to indicate
a character’s placement within an entity and
entity type to specify its semantic category.
To represent position information, the dataset
employs the BMES (Beginning, Middle, End,
Single) tagging scheme, which is widely used
for sequence labeling tasks. In this scheme,
the B (Beginning) tag marks the first charac-
ter of a multi-character entity, the M (Middle)
tag is assigned to characters occurring within
the entity, the E (End) tag denotes the final
character, and the S (Single) tag is used for
entities that consist of only a single character.

2Also known as Records of the Grand Historian,
https://en.wikipedia.org/wiki/Shiji

3https://en.wikipedia.org/wiki/Twenty-
Four_Histories

4https://en.wikipedia.org/wiki/Liu_Juanzi
_Guiyi_Fang

By utilizing this structured annotation
method, the dataset provides a clear and sys-
tematic framework for entity recognition, al-
lowing models to effectively learn both entity
boundaries and entity types.

3.3 Training Data
The training set comprises 80% of the to-
tal dataset, ensuring sufficient data for model
learning.

3.4 Test Data
The test data, comprising 20% of each dataset,
serves as a benchmark for evaluating system
performance in NER on ancient Chinese texts.
Like the training data, the test sets contain an-
notated entities, but they were not accessible
to participants during model training, ensur-
ing an unbiased evaluation.

Given that Datasets A and B belong to the
historical text category, they provide a strong
basis for assessing system performance on his-
torical texts. In contrast, Dataset C, sourced
from Traditional Chinese Medicine texts, al-
lows for a dedicated evaluation of NER mod-
els in medical literature, which poses distinct
challenges due to its specialized terminology
and unique linguistic structures.

Historical texts are commonly used in an-
cient Chinese NER tasks and constitute a ma-
jor portion of the pretraining corpora for an-
cient Chinese large language models. As a
result, entity recognition in historical texts is
typically less challenging, and models tend to
achieve higher accuracy on such data.

To rigorously assess NER capabilities in his-
torical texts, Dataset A and Dataset B are
deliberately distinguished despite both belong-
ing to the same genre. Dataset B, sourced
from The Twenty-Four Histories, includes
only three entity types, offering a compara-
tively simpler entity distribution. In contrast,
Dataset A, contains six types of named enti-
ties, making it richer and more complex in an-
notation. This differentiation increases anno-
tation complexity and introduces a higher de-
gree of difficulty in recognizing named entities,
thereby enhancing the evaluation depth of the
benchmark. This distinction ensures a more
precise measurement of model performance
and highlights potential areas for improvement
in the recognition of historical named entities.
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Limits Closed Modality Open Modality
Machine learning algorithm No limit No limit
Pretrained model Only GujiRoBERTa_jian_fan No limit
Training data Only Train No limit
Features used Only from Train No limit
Manual correction Not allowed Not allowed

Table 3: Limitations on the two modalities

4 Evaluation

Initially, each team could only access the train-
ing data. Later, the unlabeled test data was
released. After the submission, the labels for
the test data were also released.

4.1 Scoring

The scorer employed for EvaHan is a mod-
ified version of the one developed from
SIGHAN2008 (Jin and Chen, 2008). The eval-
uation aligned the system-produced sentences
to the gold standard ones. Then, the perfor-
mance of NER were evaluated by precision,
recall and F1 score. In the scoring process,
we assess the correctness of entities directly,
rather than Chinese characters as done in pre-
vious researches. The final ranking was based
on F1 score of NER.

4.2 Two Modalities

Each participant can submit runs following
two modalities. In the closed modality, the re-
sources each team could use are limited. Each
team can only use the Training data, and
GujiRoBERTa_jian_fan5, a large language
model pretrained on a very large corpus of
traditional Chinese collection, including Siku
Quanshu (四庫全書)6 and Daizhige (殆知閣)
7. Other resources are not allowed in the
closed modality.

In the open modality, there is no limit on the
resources, data and models. Annotated exter-
nal data, such as the components or Pinyin of
the Chinese characters, word embeddings can
be employed, as shown in Table 3. But each
team has to state all the resources, data and
models they use in each system in the final
report.

5https://huggingface.co/hsc748NLP/
GujiRoBERTa_jian_fan

6https://en.wikipedia.org/wiki/Siku_Quanshu
7https://github.com/up2hub/daizhige

4.3 Procedure
Training data was released for download from
January 15, 2025. Test data was released on
February 15, 2025, and results were due on
00:00 (UTC) February 21, 2025.

5 Participants and Results

5.1 Participants
A total of 23 teams registered for the task,
and 13 of them submitted 77 running results.
Table 4 presents the details of the participat-
ing teams. Submissions were primarily concen-
trated in the closed modality, while there were
relatively fewer submissions in the open modal-
ity. It is important to mention that lots of sub-
missions were initially presented in incorrect
formats. It is caused by the over-generation of
large language models. These errors were sub-
sequently rectified automatically to facilitate
accurate evaluation.

5.2 Results
Tables from 5 and 8 list the performance of
the participating teams, arranged in descend-
ing order of the F1 scores. The Precision,
Recall and F1 score for Named Entity Recog-
nition are abbreviated as P, R and F. We
classified the submissions into four categories:
TestA and TestB Closed, TestA and TestB
Open, TestC Closed, and TestC Open. This
distinction was made because TestA and TestB
consist of historical texts, whereas TestC is de-
rived from Traditional Chinese Medicine texts,
allowing for a comparative evaluation of NER
performance across different domains. Most
teams participated in the closed tests.

The highest F1 scores on TestA and TestB
are 85.04% and 90.28% in the closed modal-
ity. In the open modality, they are 84.11%
and 89.64%.

Since TestA contains a greater variety of
entity categories compared to TestB, the per-
formance on TestA is generally lower than
on TestB. For instance, NJU achieved 88.97%
and 89.64% in the closed and open modalities,
respectively, on TestB. However, on TestA,
NJU’s scores dropped to 83.02% and 84.11%
in the closed and open modalities, respec-
tively, reflecting a nearly 5 points decrease
compared to TestB.
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ID Name Affiliation Close Open
1 BUPT Beijing University of Posts and Telecommunications 5 0
2 ECNU East China Normal University 0 2
3 EPHE École pratique des hautes études 0 1
4 HUST Huazhong University of Science and Technology 0 3
5 NFU1 Northeast Forestry University 1 0
6 NFU2 Northeast Forestry University 3 0
7 NJU Nanjing University 0 0
8 RUC Renmin University of China, Midu Technology Co., Ltd. 15 18
9 SXU Shanxi University 4 0
10 TJU Tongji University 4 0
11 UM University of Macau 5 0
12 UT University of Toronto 5 1
13 WHU Wuhan University 4 0

Table 4: Participating teams by modality

Team TestA TestB
P R F P R F

RUC 88.97 81.45 85.04 90.22 90.34 90.28
WHU 87.23 80.65 83.81 89.47 89.92 89.70
NJU 86.64 79.69 83.02 88.73 89.21 88.97
SXU 86.30 78.78 82.37 87.43 90.09 88.74
UT 86.42 76.54 81.18 89.80 87.59 88.68

NFU1 90.77 76.75 83.17 88.42 88.75 88.59
BUPT 88.16 76.38 81.84 86.87 90.09 88.45
NFU2 89.13 79.32 83.94 89.34 87.30 88.31
UM 84.42 73.86 78.79 86.65 85.71 86.18
TJU 65.89 70.92 68.31 70.11 71.14 70.62

Table 5: Results on TestA and TestB in closed
modality (%)

Team TestA TestB
P R F P R F

NJU 88.07 80.49 84.11 90.11 89.17 89.64
UT 86.12 76.91 81.25 86.28 89.05 87.64

ECNU 83.46 75.52 79.29 89.41 85.09 87.20
HUST 83.68 73.70 78.37 88.44 84.09 86.21
RUC 73.14 84.13 78.25 82.41 82.17 82.29

EPHE 82.16 78.51 80.30 61.29 71.80 66.13

Table 6: Results on TestA and TestB in open
modality (%)

Team P R F
RUC 81.33 87.91 84.49
UT 82.26 84.32 83.28

NFU2 78.37 86.32 82.15
NJU 77.63 86.14 81.66
WHU 76.52 86.82 81.35
NFU1 75.58 87.36 81.05
SXU 75.91 86.09 80.68

BUPT 75.57 85.50 80.23
UM 70.33 83.09 76.18
TJU 44.04 56.77 49.60

Table 7: Results on TestC in closed modality (%)

Team P R F
NJU 78.33 86.77 82.34
RUC 73.99 88.82 80.73
UT 75.35 84.05 79.46

HUST 71.32 84.32 77.28
ECNU 82.19 69.23 75.15
EPHE 46.85 59.18 52.30

Table 8: Results on TestC in open modality (%)

For TestC, which derived from the less com-
mon domain of Traditional Chinese Medicine
texts, the scores were approximately 6 points
lower than those on TestB. The highest F1
score of TestC is 84.49% in the closed modal-
ity. In the open modality, it is 82.34%.

5.3 Baselines
To provide a basis for comparison, we com-
puted the baseline scores for each of the
test sets. The baseline for ancient Chinese
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Test Set P R F
TestA 85.90 77.50 81.48
TestB 87.09 87.92 87.50
TestC 71.84 72.95 72.40

Table 9: Baselines (%)

Test Set P R F
TestA 88.97(+3.07) 81.45(+3.96) 85.04(+3.56)
TestB 90.22(+3.14) 90.34(+2.42) 90.28(+2.78)
TestC 81.33(+9.48) 87.91(+14.95) 84.49(+12.1)

Table 10: The improvement of the best system
with respect to the baseline (%)

named entity recognition was constructed us-
ing SikuRoBERTa-BiLSTM-CRF model, as
shown in Table 9.

The scores of most teams exceed the base-
lines. The best scores from RUC outperform
the baselines by around 10 points as shown in
Table 10.

6 Error Analysis and Discussion
By analyzing the errors in the participating
teams’ systems, we can further discuss aspects
related to the dataset, entity types, and large
language models.

6.1 Unbalanced training samples
Based on the scores of each team across the
three test sets, as shown in Tables 11 to 12, it
is evident that most teams performed best on
TestB, followed by TestA, while performance
on TestC was significantly lower. This trend
can be attributed to two key factors.

Firstly, while both TestA and TestB belong
to the historical text category and have similar
training set sizes, they differ in entity complex-
ity. TestB contains only three entity types:
NR, NS, and T, whereas TestA includes these
three as well as three additional categories:
NO, NB, and NG. The inclusion of these extra
entity types increases the difficulty of entity
recognition.

Secondly, unlike TestA and TestB, which
originate from historical texts, TestC is
sourced from Traditional Chinese Medicine lit-
erature, presenting a distinct linguistic chal-
lenge. The GujiRoBERTa model used in this
evaluation was pretrained primarily on histor-
ical texts, as such texts are more commonly
available. In contrast, TCM texts are rela-

tively rare in pretraining corpora, resulting
in weaker model performance on entity recog-
nition in TCM texts compared to historical
texts. This finding underscores the critical
role of pretraining in large language models
—a broader and more diverse pretraining cor-
pus can significantly improve model robust-
ness across different text domains in down-
stream tasks. Expanding the variety of pre-
training data could enhance the model’s abil-
ity to adapt to diverse text types, leading to
more consistent performance across different
genres.

6.2 Entities of different datasets
Table 11 lists the quantity of annotations
and corresponding scores for different enti-
ties predicted by the highest-scoring system
in close modality submissions by RUC. Ta-
ble 11 presents the evaluation results obtained
by merging TestA, TestB, and TestC into a
combined test set, TestTotal. In Table 11,
TrainTotal (Total) means the number of gold
entities in train data, TestTotal (Gold) means
the number of gold entities in Test Total. Ma-
chine (Total) means the total number of en-
tities tagged by the RUC’s system running
on Test sets. Machine (Correct) means the
number of correct entities tagged by RUC’s
system. It is evident that T exhibits the high-
est performance, while NB less satisfactorily.
There are two main issues with the system’s
performance in NER.

Firstly, the system’s performance in entity
recognition is closely correlated with the fre-
quency of entities in the training data. Accord-
ing to Table 11, entities with higher scores,
such as NR and ZP, which achieved 90.67%
and 90.24%, respectively, also appear more fre-
quently in the training set, with occurrences of
12,968 and 4,983, respectively. Conversely, en-
tities that are less frequent in the training data
tend to have lower recognition accuracy. For
example, the NB entity appears only 61 times
in the training set, making it significantly un-
derrepresented. As a result, the model strug-
gles to effectively learn its patterns, leading to
a much lower performance, with a score of only
50%.

Secondly, the system’s entity recognition
performance is also influenced by the intrin-
sic characteristics of the entities themselves,
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Entity P (%) R (%) F (%) Train Test Machine Machine
(Total) (Gold) (Correct) (Total)

T 91.37 90.68 91.02 3,452 1,062 963 1,054
NR 92.87 88.58 90.67 12,968 1,734 1,536 1,654
ZP 86.20 94.68 90.24 4,983 1,128 1,068 1,239
ZF 86.85 90.08 88.44 1,073 242 218 251
ZA 89.55 85.38 87.41 1,111 301 257 287
NS 84.49 83.36 83.92 5,550 1,124 937 1,109
NO 90.14 77.11 83.12 1,318 249 192 213
ZZ 64.77 82.61 72.61 536 69 57 88
ZD 63.69 79.72 70.81 640 143 114 179
NG 74.12 64.95 69.23 3,380 97 63 85
ZS 65.87 69.40 67.59 1,424 317 220 334
NB 100.00 33.33 50.00 61 6 2 2

Table 11: NER scores by RUC

which can either simplify or complicate the
learning process. Even if an entity type is not
highly frequent in the training set, its score
may still be relatively high if it exhibits con-
sistent and structured patterns. For instance,
the T entity appears only 3,452 times in the
training set but achieves a remarkably high
score of 91.02%, the highest among all entity
types. This is because T entities, unlike other
entity categories, typically follow limited and
highly regular forms, making them easier for
models to learn. Examples include今 (today),
冬 (winter), and 十年 (a decade).

Additionally, the ZA entity, despite being
relatively infrequent in the training data, also
achieves a high recognition score. This can
be attributed to the fact that many instances
of ZA entities appear in continuous sequences
within the training data, and these sequences
tend to have fixed-length structures, making
them easier for models to identify. For exam-
ple, in the phrase:

”循 [商阳/ZA][二间/ZA][三间/ZA]而行，历
[合谷/ZA][阳溪/ZA] 之俞，过 [偏历/ZA][温
溜/ZA] 之滨，[下廉/ZA][上廉/ZA]”

the ZA entities appear in a structured,
repetitive format, allowing the model to recog-
nition them with greater ease, leading to
higher accuracy scores.

6.3 Character Discrepancies Due to
Large Language Models

Large language models, particularly genera-
tive models, often alter the original text dur-

ing prompt engineering, automatically adding,
removing, or modifying Chinese characters.
This leads to inconsistencies between the gen-
erated output and the original text, posing
challenges for maintaining textual fidelity.

In EvaHan2024, numerous instances of such
discrepancies were observed, where the model,
while performing punctuation restoration, si-
multaneously modified the original sentence,
resulting in unintended textual differences (Jin
and Chen, 2008). This issue has persisted
in the current evaluation, indicating that fur-
ther attention is required in analyzing model
outputs. To ensure that the generated re-
sults remain faithful to the original text, post-
processing mechanisms should be incorporated
into the workflow. Such mechanisms would
help correct unintended modifications and re-
store textual accuracy, ensuring greater con-
sistency between the model’s output and the
original input.

In this evaluation, most teams encountered
issues with character omission and redun-
dancy. The majority of differences of Chi-
nese characters between the submitted results
and the test set are around 1% to 2%, with
the largest deviation reaching 8%. Although
algorithms were employed in this evaluation
to rectify the problems of character omission
and redundancy in the submissions, teams still
struggled to achieve high scores. Hence, to
solve the issues of character omission and addi-
tion over-generated by large language models,
post-processing is needed for the text consis-
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tancy. Another way is to constrain the gen-
erated characters during model output genera-
tion to maintain consistency with the original
text.

6.4 Teams’ Approaches
In this evaluation, several teams adopted
unique approaches to address the challenges
of ancient Chinese NER, achieving notable im-
provements. Among them, the RUC team,
which achieved the highest performance in
this assessment, employed a combination of
the GujiRoBERTa pre-trained model and the
W2NER word-pair relation prediction frame-
work. By leveraging BiLSTM and convolu-
tional layers for feature extraction, along with
five-fold cross-validation and ensemble learn-
ing, they significantly enhanced the effective-
ness of ancient Chinese NER. Their method
demonstrated outstanding results on the Eva-
Han2025 dataset, as shown in Table 9.

Looking at the overall evaluation results,
most teams outperformed the baseline model.
A comparative analysis reveals that, in addi-
tion to the adoption of innovative algorithms
by some teams, the primary factor contribut-
ing to the improvement is the superior perfor-
mance of GujiRoBERTa over SikuRoBERTa,
which was used in this evaluation.

Moreover, some teams used prompt engi-
neering techniques of large language models.
However, these methods yielded limited im-
provements in performance and resulted in
greater modifications to the original text, mak-
ing them less effective for this task.

7 Conclusions
EvaHan2025 focuses on Named Entity Recog-
nition in Ancient Chinese texts, covering two
distinct categories of documents and present-
ing a significant challenge. Despite the com-
plexity, most participating teams successfully
completed the task. In terms of performance
across different text types, teams generally
performed better on historical texts, while
their results on medical texts were compara-
tively lower, though still surpassing the base-
line model.

From a methodological perspective, the ma-
jority of teams trained three separate models
for each test set, achieving commendable re-
sults. However, no team has yet proposed a

comprehensive, unified model capable of han-
dling all 12 categories of named entities effec-
tively. Additionally, a comparison of different
implementation strategies reveals that prompt
engineering based on large language models
has shown limited effectiveness, often leading
to undesirable modifications to the original
text.

In the future, we encourage teams to
explore deeper and more innovative ap-
proaches. Whether through small, domain-
adaptive models or comprehensive frameworks
leveraging large language models, we hope
to see more efficient and accurate NER solu-
tions for ancient Chinese, ultimately enabling
high-performance, integrated recognition of
diverse named entities across multiple cate-
gories. With the achievements of this shared
task, we will move forward to the named en-
tity relation recognition, named entity linking
and related tasks in the coming years.
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Abstract 
 
This paper explores the application of fine-
tuning methods based on 7B large language 
models (LLMs) for named entity recognition 
(NER) tasks in Chinese ancient texts. Target-
ing the complex semantics and domain-
specific characteristics of ancient texts, par-
ticularly in Traditional Chinese Medicine 
(TCM) texts, we propose a comprehensive 
fine-tuning and pre-training strategy. By in-
troducing multi-task learning, domain-
specific pre-training, and efficient fine-
tuning techniques based on LoRA, we 
achieved significant performance improve-
ments in ancient text NER tasks. Experi-
mental results show that the pre-trained and 
fine-tuned 7B model achieved an F1 score of 
0.93, significantly outperforming general-
purpose large language models.    

 
1. Introduction 
 
Named Entity Recognition (NER) is a founda-
tional task in natural language processing (NLP) 
that involves identifying and categorizing enti-
ties, such as person names, locations, organiza-
tions, and temporal expressions—within un-
structured text. Since its inception in the 1990s 
(Nadeau and Sekine, 2007), NER has evolved 
significantly, transitioning from rule-based sys-
tems to machine learning approaches, and more 
recently, to deep learning architectures like Bidi-
rectional Long Short-Term Memory networks 
(Hochreiter and Schmidhuber, 1997) and 
transformer-based models (Devlin et al., 2019). 
These advancements have enabled robust per-
formance in modern languages, particularly with 
the advent of pre-trained language models (e.g., 
BERT) that capture contextualized representa-
tions.   
 

However, applying NER to ancient Chinese 
texts presents unique challenges. Ancient Chi-
nese, characterized by archaic vocabulary, flexi-
ble grammar, and extensive use of homophones, 

diverges substantially from modern Mandarin. 
Additionally, historical texts often lack standard-
ized punctuation and contain domain-specific 
terminology (e.g., official titles in dynastic rec-
ords or disease names in medical classics), com-
plicating entity boundaries and classification. 
Furthermore, annotated resources for ancient 
Chinese are scarce compared to those for con-
temporary languages, limiting the scalability of 
data-driven approaches.   
 
2. Task Description 

 
In EvaHan2025, 1  our team participates in the 
open modality track, which allows unrestricted 
use of external resources, models, and domain-
specific knowledge to enhance NER in ancient 
Chinese texts. The task involves identifying 12 
distinct entity categories across three heteroge-
neous datasets: (1) Shiji（"史记"） (historical 
records), (2) Twenty-Four Histories ("二十四史
"), and (3) Traditional Chinese Medicine Clas-
sics ("中医药典籍"). To facilitate our evaluation, 
we split the dataset into train, development, and 
test sets using an 8:1:1 ratio. Our objective is to 
fine-tune the model to achieve the highest possi-
ble F1 score, optimizing its performance on the 
given task.  
 
3. Related works 

 
In the domain of NER for ancient Chinese texts, 
particularly in TCM, the field has witnessed a 
progression through various methodological ap-
proaches. Initially, dictionary-based and rule-
based pattern matching methods, such as the 
maximum matching algorithm (Wang Y et 
al.,2012), were prevalent. The advent of deep 
learning ushered in new approaches. For in-
stance, Xie et al.(2022) employed Sikubert and 
SikuRoBERTa, demonstrating that pre-trained 

 
1https://github.com/GoThereGit/EvaHan/tr
ee/main/evahan2025 
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models based on ancient texts outperform gener-
ic BERT models in these specialized NER 
tasks.In recent years, Large Language Models 
(LLMs) have exhibited significant potential in 
NER tasks. This aligns with contemporary re-
search on LLM applications in NER, such as the 
work by Raffel et al. (2020), which illustrates  
that models like GPT and T5, when fine-tuned 
for NER tasks, can achieve superior perfor-
mance by leveraging their extensive pre-trained 
knowledge and contextual understanding. 

For NER tasks involving ancient Chinese 
texts, the flexibility and contextual understand-
ing inherent in LLMs render them especially 
suitable for addressing the intricacies of these 
historical documents. He Yuhao's re-
search(2024), for instance, revealed that LLMs 
outperformed other deep learning models in 
identifying and extracting entities and relation-
ships from "ZhonghuaYaofang" ( "中华药方"), 
demonstrating superior performance across pre-
cision, recall, and F1-score metrics. This grow-
ing body of evidence underscores the rationale 
behind the present study's objective to further 
explore and harness the potential of LLMs in 
processing NER tasks for ancient texts. 

 
4. Methods 

 
In our study, we employed a combination of 
SikuRoBERTa, BiLSTM, and CRF methodolo-
gies to establish a robust baseline for our NLP 
tasks. After conducting 20 epochs, we evaluated 
our model on a segmented test dataset and ob-
tained the following results in Table 1, which 
serve as the foundational benchmark for our ex-
perimental analysis. 
 

Table 1: Performance Metrics of Siku-
RoBERTa+BiLSTM+CRF Model on Segmented Test 

Dataset after 20 Epochs 
 

These metrics, while commendable, revealed 
a notable shortcoming when applied to Task C 
(Precision: 82.29%,Recall: 84.37%,F1 Score: 
83.33%), which involves the processing of Tra-

ditional Chinese Medicine texts. Specifically, 
the BERT model's accuracy was significantly 
lower in this context compared to its perfor-
mance on other tasks. We hypothesize that this 
discrepancy stems from BERT's limited expo-
sure to and familiarity with the specialized ter-
minology and nuanced semantics inherent in 
TCM texts. 

To address this limitation, we propose the in-
tegration of more semantically aware LLMs that 
are better equipped to comprehend and process 
the complex linguistic structures found in TCM 
texts. By leveraging these advanced models, we 
aim to enhance the accuracy and effectiveness of 
our NLP applications in the domain of TCM 
texts, thereby improving the overall performance 
and reliability of our system in handling special-
ized medical texts. 
 
 

Entity Type Accuracy Recall F1  Num 

Symptom 
(ZS) 

54.34% 66.20% 59.68% 142 

Traditional 
Medicine 
Disease (ZD) 

65.22% 68.18% 66.67% 66 

Syndrome 
(ZZ) 

65.31% 69.57% 67.37% 46 

Acupoint 
(ZA) 

86.36% 78.08% 82.01% 73 

Chinese 
Formula 
(ZF) 

84.55% 90.43% 87.39% 115 

Time Ex-
pression (T) 

88.47% 83.53% 85.93% 340 

Official Title 
(NO) 

77.86% 79.56% 78.70% 137 

Geographical 
Location 
(NS) 

87.97% 82.01% 84.88% 517 

Book Title 
(NB) 

100% 80% 88.89% 5 

Decoction 
Pieces (ZP) 

92.60% 93.56% 93.08% 388 

Country 
Name (NG) 

90.51% 96.25% 93.30% 347 

Person Name 
(NR) 

93.78% 93.38% 93.58% 1194 

Overall 0.878 0.8798 0.8789 3370 
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4.1 Prompt Engineering 
 

 
To advance our research effectively, the initial 
step involves the meticulous determination of 
the prompts to be used with LLMs. This is cru-
cial for structuring both the input and output data 
in a manner that aligns with our objectives. 
Drawing upon previous studies, we have meticu-
lously selected two distinct prompt formats that 
have demonstrated efficacy in similar contexts
（Figure 1）. 
 

In our experiments, we utilized the Qwen-
Plus2 model and the  Task C test dataset under a 
1-shot learning setting to evaluate the perfor-
mance of the two prompt formats. Our findings 
revealed that Prompt 2 significantly outper-
formed Prompt 1 in terms of accuracy（Table 
2）. We hypothesize that this is because Prompt 

 
2 https://github.com/QwenLM/Qwen 

2 provides a more structured and contextually 
rich input by directly incorporating the original 
text, which allows the model to better under-
stand the task and generate more accurate out-
puts. As a result, we decided to adopt Prompt 2 
for all subsequent research. 

 
Additionally, we compared the performance 

of the Qwen-Plus model with the Qwen-7B 
model. Surprisingly, the Qwen-7B model 
achieved a higher F1 score than Qwen-Plus on 
this specific task. We speculate that this may be 
due to the fact that Qwen-Plus, as a more gen-
eral-purpose large language model, tends to 
"overthink" or generalize too much, making it 
less adaptable to the highly specialized and do-
main-specific nature of the task at hand. In con-
trast, the smaller Qwen-7B model, with its more 
focused architecture, may be better suited for 
handling the nuances and intricacies of this par-
ticular domain. These insights highlight the im-
portance of tailoring both the prompt design and 
model selection to the specific requirements of 

Figure 1 Two distinct prompt formats 
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the task. Moving forward, we will continue to 
refine our approach by leveraging Prompt 
Prompt 2 and exploring the potential of smaller, 
more specialized models like Qwen-7B for do-
main-specific NLP tasks.  
 

Prompt Precision Recall F1 Score 

Prompt 1 
（Qwen-Plus） 

0.7876 0.6729 0.717 

Prompt 2 
（Qwen-Plus） 

0.8945 0.8398 0.8592 

Prompt 1 
（Qwen-7B） 

0.8015 0.7574 0.7719 

Table 2:difference between Prompt 1 and 2 
 
5. Experiments 

 
5.1 Data Transformation 
 
To prepare the data for our experiments, we per-
formed a series of preprocessing steps on the 
raw text data provided by Evahan2025. The 
original data was in TXT format, and our goal 
was to transform it into a structured format suit-
able for training and evaluation. The transfor-
mation process involved the following steps:   
 
5.1.1 Sentence Segmentation:   

We first segmented the text into sentence-
level units using punctuation marks such as "。", 
"！", and "？". This step ensured that each sen-
tence was treated as an independent unit for fur-
ther processing.   
 
5.1.2 BEMS to Prompt 2 Conversion:   
The original data was annotated using the BEMS 
(Begin, End, Middle, Single) tagging scheme, 
which is commonly used for sequence labeling 
tasks. We converted these annotations into 
Prompt 2, a more structured and readable format 
that aligns with our prompt design. For example:   
   - Original Text: 一男子时疫愈后,遍身发作痒,
服补中益气汤而愈。   
   - BEMS Tags: ['O', 'O', 'O', 'B-ZD', 'I-ZD', 'O', 
'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-ZF', 'I-ZF', 
'I-ZF', 'I-ZF', 'I-ZF', 'O', 'O', 'O'] 
   - Converted Prompt 2:   
     {实体标注结果}一男子{时疫|病名}愈后,遍
身发作痒,服{补中益气汤|方剂}而愈。{实体
标注结果}    
 This conversion process made the annota-
tions more interpretable and aligned with the 
input format required by our LLMs.   
 

5.1.3 Handling Long Sentences:   
After segmentation, we observed that some 

sentences in the training data were still relatively 
long. However, given the capability of modern 
LLMs to handle longer sequences, we decided 
not to further split these sentences. This ap-
proach preserved the contextual integrity of the 
text while ensuring that the models could still 
process the data effectively.   

By transforming the data into Prompt 2, we 
created a structured and consistent input format 
that facilitated better model performance. This 
preprocessing step was critical for ensuring that 
the LLMs could accurately interpret and process 
the specialized terminology and semantic nuanc-
es present in the TCM  texts.   

In the next steps, we will use this transformed 
dataset to train and evaluate our models, with a 
focus on improving performance for domain-
specific tasks. 
 
5.2 Model Training and Results 

 
In this section, we detail the model training pro-
cess and the results obtained from our experi-
ments. The fine-tuning was primarily conducted 
using the Unsloth framework3  from, LLaMA-
Factory(Zheng Yaowei,2024) and we explored 
several approaches to optimize the model's per-
formance on the task of TCM text processing. 
The results can be seen in Table 3. 
 
5.2.1 Pre-Fine-Tuning Baseline 
Before fine-tuning, we evaluated the baseline 
performance of the model on the task. This pro-
vided a reference point to measure the impact of 
our subsequent fine-tuning strategies.   
 
5.2.2 Task C Specific Fine-Tuning   
We fine-tuned the model using the Task C TCM 
training data with LoRA (Low-Rank Adapta-
tion). Each training sample included three com-
ponents: Instructions, Input, and Output, follow-
ing a SFT(supervised fine-tuning) approach. 
This method allowed the model to learn task-
specific patterns and improve its performance on 
TCM text processing.   
 
5.2.3 Multi-Task Fine-Tuning (Task A, B, C)   
To further enhance the model's generalization 
capabilities, we combined the training data from 
Task A, Task B, and Task C into a single dataset 
for multi-task fine-tuning. This approach ex-

 
3 https://github.com/unslothai/unsloth 
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posed the model to a more diverse range of ma-
terials, which led to a noticeable improvement in 
accuracy. The results confirmed that providing 
the model with more varied and extensive train-
ing data significantly enhances its performance. 
As a result, in all subsequent supervised fine-
tuning (SFT) stages, we consistently used the 
combined dataset from all three tasks (A, B, and 
C) together. This multi-task approach became 
our standard practice for fine-tuning, leveraging 
the synergies between the different tasks to im-
prove overall model performance. 
 
5.2.4 Pre-Training with External Data   
To further boost the model's performance, we 
introduced a pre-training phase before fine-
tuning. The pre-training data was sourced from 
the open-source project "殆知阁", 4and We se-
lected 12.5MB of unannotated classical Chinese 
text there, including 1/3 historical texts from the 
Twenty-Four Histories and 2/3 TCM-related 
texts. 

We conducted training on a single NVIDIA 
RTX 4090 GPU. The learning rate was set to 5e-
05 and the train batch size was 1. We first per-
formed unsupervised pre-training using the 
unsloth framework on the unlabeled domain-
specific text for 3 epochs. This was followed by 
supervised fine-tuning (SFT) using the same 
hyperparameters as befores(within a combina-
tion of Task A, B, C). After pre-training and fi-
ne-tuning, the final loss value decreased to 
around 0.0005. The loss curves for the SFT stage 

are shown in Figure 2. 
After 3 epochs of pre-training and subsequent 

fine-tuning, the model achieved an F1 score of 
0.93, significantly outperforming general-

 
4https://github.com/garychowcmu/daizhige
v20 

purpose LLMs. This demonstrated the effective-
ness of domain-specific pre-training in improv-
ing model performance on the target task. 

 
5.2.5 Performance of Smaller Models (3B)   
We also experimented with a smaller 3B param-
eter model using the same training methodology. 
Surprisingly, this model achieved an F1 score of 
0.91, indicating that even smaller models can 
perform well on specialized tasks when properly 
trained.   
5.2.6 Ensemble Approach with 7B and 3B 
Models   
To further improve accuracy, we implemented 
an ensemble approach:   
- Both the 7B and 3B models generated results 
independently.   
- If their results agreed, the output was consid-
ered correct.   
- If their results disagreed, we used Qwen-Plus 
as a teacher model to determine which result was 
more reliable.   

We initially envisioned that both 3B and 7B 
models could achieve certain accuracy levels. 
They're like students working on the same NER 
task - if they give the same answer, there's a 
higher probability that their results are correct. If 
they disagree, someone needs to judge who's 
right and who's wrong. While general large lan-
guage models might overthink, they could be 
quite effective at determining which NER result 
is correct, so we combined these methods to-
gether.This ensemble method achieved a final 
F1 score of 0.9277. We hypothesize that inte-
grating additional reasoning models, such as 
DeepSeek-R1, could further enhance perfor-
mance. This represents a promising direction for 
future innovation.   
Model Precision Recall F1  

7b Fine-tuned Before 
(Prompt 1  ) 

0.8015 0.7574 0.7719 

7b Fine-tuned (Prompt 
1  ) 

0.8199 0.7811 0.7956 

7b Fine-tuned 0.8051 0.8415 0.8142 

7b Fine-tuned - Multi 0.8805 0.897 0.8863 

7b Fine-tuned - Multi 
+ Pretrain 

0.9297 0.9346 0.9302 

3b Fine-tuned - Multi + 
Pretrain  

0.9137 0.9173 0.9147 

7b+3b+Teacher  0.9296 0.9268 0.9277 

Table 3: Results of the experiments [Prompt 2 used 
unless otherwise specified] 

 
 

Figure 2 training loss of 7b Fine-tuned After - Multi 
+ Pretrain (Prompt 2) 
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6. Conclusion 
 
In this study, we found that domain-specific pre-
training and multi-task fine-tuning significantly 
improved model performance on specialized 
tasks like TCM text processing. Interestingly, 
smaller models (e.g., 3B) were able to achieve 
competitive results when trained with the right 
methods, showing that model size is not always 
the limiting factor. Additionally, we found that 
ensemble methods, combined with teacher mod-
els, further enhanced accuracy and reliability. 
Future work will explore integrating more ad-
vanced reasoning models, such as DeepSeek-R1, 
to push the performance limits of domain-
specific NLP tasks. These results highlight the 
importance of tailored training strategies and the 
potential of smaller, specialized models to 
achieve state-of-the-art results in niche domains. 
 
 
7. Limitation 
 
This study has several limitations. The choice of 
Qwen-Plus as the teacher model, while effective, 
was not extensively compared with alternatives, 
potentially impacting results. The potential of 
more advanced inference models remains unex-
plored. The quality of data annotations, crucial 
in specialized fields like Traditional Chinese 
Medicine, was not discussed, which could affect 
result reliability. Additionally, the evaluation 
relied primarily on F1 scores, overlooking oth-
er important metrics such as model robustness, 
inference speed, and performance in resource-
constrained environments. These factors collec-
tively suggest areas for future research and im-
provement in the current approach. 
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Abstract
This paper introduces the system submit-
ted for EvaHan 2025, focusing on the
Named Entity Recognition (NER) task for
ancient Chinese texts. Our solution is
built upon two specified pre-trained BERT
models, namely GujiRoBERTa_jian_fan
and GujiRoBERTa_fan, and further en-
hanced by a deep BiLSTM network with
a Conditional Random Field (CRF) decod-
ing layer. Extensive experiments on three
test dataset splits demonstrate that our
system’s performance, 84.58% F1 in the
closed-modality track and 82.78% F1 in
the open-modality track, significantly out-
performs the official baseline, achieving no-
table improvements in F1 score.

1 Introduction
Named Entity Recognition (NER) is one of the
most fundamental tasks in natural language
processing (NLP), playing a crucial role in un-
derstanding ancient Chinese corpus. In an-
cient Chinese texts, identifying entities such
as person names, geographical locations, offi-
cial titles, book names, and time expressions is
particularly challenging due to the archaic lan-
guage, estoteric grammar, ambiguous bound-
aries, and diverse annotation schemas. In
this work, we present a solution that lever-
ages domain-specific pre-trained BERT mod-
els combined with a BiLSTM+CRF architec-
ture. Our approach is designed to effectively
capture both the semantic representations pro-
vided by the pre-trained language models and
the sequential dependencies inherent in the
text, which are critical for accurate and effec-
tive entity boundary detection.

2 Related Works
Named Entity Recognition (NER) refers to the
task of tagging entities in text with their cor-

responding type. Early studies in NER mainly
relied on using hand-crafted rules (Zhang and
Elhadad, 2013) and dictionaries (Pomares-
Quimbaya et al., 2016) to capture entity
patterns, which obtained satisfiable perfor-
mance on specific fields, while suffering from
suboptimal generality and poor scalability
on broader use cases. Statistical machine
learning techniques, including Hidden Markov
Models (HMM) (Baum and Petrie, 1966)
and Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) were widely adopted for
NER, incorporating contextual features and
further improved the NER systems’ perfor-
mance. Recent advancements, including the
application of BiLSTM-CRF (Huang et al.,
2015) and pre-trained language models such
as BERT (Devlin et al., 2019), GPT (Radford
and Narasimhan, 2018), ELMo (Peters et al.,
2018) and RoBERTa (Liu et al., 2019).

Specifically, BERT-based models utilize at-
tention mechanisms (Vaswani et al., 2017),
which allows models to dynamically focus on
relevant parts of the input sequence, thereby
mitigating the limitations of fixed-size hid-
den representations in RNN-based models,
achieving human-comparable results on En-
glish NER benchmarks.

Prior work in modern Chinese NER, such
as (Huang et al., 2015), has demonstrated the
benefits of integrating contextualized embed-
dings with CRF for structured prediction. The
CRF layer refines predictions by modeling la-
bel dependencies and enforcing valid output
sequences, a feature that is particularly benefi-
cial when dealing with the complex annotation
schemes often encountered in ancient texts.

Ancient Chinese texts pose additional chal-
lenges due to significant linguistic differ-
ences from modern Chinese, sparse annotated
data, and heterogeneous tag schemes. Some
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Figure 1: Visualization of our architecture.

works have addressed these issues by building
domain-adapted pre-trained models and em-
ploying data augmentation or active learning
strategies. Our work builds on these advances
while specifically tailoring the model and train-
ing pipeline for ancient Chinese NER.

3 Model Architecture
We strictly follow the competition require-
ments by only using the provided pre-trained
model: “GujiRoBERTa_jian_fan” (Wang
et al., 2023) in the closed-modality track. Our
solution is based on a two-branch setting:

Close-Modality. The pre-trained model:
GujiRoBERTa_jian_fan (Wang et al., 2023)
is applied as the backbone for extracting in-
formation from the corpus. Its output repre-
sentations are fed into a 4-layer Bidirectional
LSTM (BiLSTM) with a hidden dimension of
1024 to capture long-range dependencies. A
fully connected layer maps the BiLSTM out-
puts to the label space, and finally, a CRF
layer is employed to model the structural con-
straints among labels, as shown in Figure 1.

Open-Modality. For the open modal-
ity track, we adopted the same architec-
ture, and the only difference is the use of
the GujiRoBERTa_fan model. Key hyper-
parameters in our architecture are shown in
table Table 1, which is also shared with the
close-modality model training.

Specifically, we set the maximum sentence
length to 256, as over 98% of sentences fall
within this length, according to our anal-

Parameter Value
Maximum Sentence Length 256
Model Training Batch Size 16
BiLSTM’s Hidden Dimension 1024
Number of BiLSTM Layers 4
Optimizer AdamW
Learning Rate Scheduler CASwithW
Dropout (in BiLSTM layers) 0.1
Gradient Clipping 5

Table 1: Model and training configuration of our
system. “CASwithW” refers to Cosine annealing
schedule with warmup.

ysis of both training and testing datasets.
AdamW (Loshchilov and Hutter, 2019) is
specifically selected to speed up model train-
ing and improve the model’s generalization ca-
pability. Its base learning rate is set as 2e− 5,
along with weight decay being set as 0.01. The
gradient clipping is set to 5 to stabilize the
model training.

4 Feature Preprocessing

Our preprocessing pipeline involves the follow-
ing components:

Sentence Splitting. During Explorative
Data Analysis, we observed that multiple non-
standard Unicode characters are present in the
training corpus. Specifically, we observed that
quotation marks contain multiple types. To ac-
commodate the dataset, we utilize the Chinese
period as the only splitting character. This en-
sures that the sentences fed to the model are
coherent and that over 98% of sentences are
within the maximum length.

Tokenization. We use the tokenizer pro-
vided by GujiRoBERTa, which has been pre-
trained on an ancient Chinese corpus.

Label Mapping. The label vocabulary is
constructed based on the training set with
splits: A, B, and C. The training set splits are
curated from three ancient documents: Shiji,
Twenty-Four Histories, and Traditional Chi-
nese Medicine Classics. Each dataset refers
to a distinct NER task, whose tags of interest
are shown in Table 2.

As the training data from datasets A, B, and
C have heterogeneous tag schemes, we ensure
that the mapping covers all tags (including
prefixes such as B-, M-, E-) for non-“O” to-
kens. To ensure the existence of “O” label, we
specifically set it as the first element in the
label-to-id and id-to-label mappings, where it
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corresponds to the id 0.

Dataset Annotation Meaning
Split A NR Person Name

NS Geographical Location
NB Book Title
NO Official Title
NG Country Name
T Time Expression

Split B NR Person Name
NS Geographical Location
T Time Expression

Split C ZD Disease
ZZ Syndrome
ZF Medicinal Formula
ZP Decoction Pieces
ZS Symptom
ZA Acupoint

Table 2: Combined Tagset for Named Entities in
Datasets A, B, and C (without examples).

5 Experiments

In this section, we demonstrate the experiment
results that we conducted while determining
the model’s architecture design.

5.1 Experimental Setup
We choose overall F1 as the metric for eval-
uating the model’s performance, the met-
ric is compared with the one produced by
the baseline model, which is constructed by
the committee. The baseline is a simple
“SikuRoBERTa-BiLSTM-CRF” model, whose
hyperparameters for constructing the BiLSTM
and CRF module are not disclosed.

We split the training data with a 90%/10%
ratio for the training and validation dataset
split. Each model is trained for 40 epochs.
During model training, we evaluate the cur-
rent model at each epoch on the separate test
sets of Split A, B, and C. For each split, we
evaluate the model’s performance on each split
using the F1 score metric and update the best
F1 that we obtained so far for this dataset split.
The best-performed model will be saved and
will be used for testing dataset inference after
the model training.

The model is trained on a single NVIDIA
A6000 40G card. Detailed model training hy-
perparameter settings are revealed as Table 1.

5.2 Model Architecture Ablation
We compared several configurations regarding
the model’s architecture. Apart from our final

design, ‘RoBERTa + BiLSTM + CRF‘ (where,
for simplicity, we refer to the “GujiRoBERTa”
model used in both close and open modality
as “RoBERTa”), we also experimented multi-
ple configurations. Using the same RoBERTa
model, we experimented the use of a single
CRF layer or SPAN layer. Due to the con-
straints of time and computational resources,
experiments on model architecture are con-
ducted after the submission deadline.

As Table 3 shows, directly applying a CRF
layer on top of the RoBERTa output yielded
an F1 score of 79.68%, which is slightly lower
than the baseline. By replacing the CRF
layer with a double-pointer SPAN layer, an F1
score of 80.62% is achieved, which is similar
to the baseline. While such simple combina-
tions do not yield substantial improvements,
the combination of RoBERTa + BiLSTM +
CRF achieved significant improvement, indi-
cating that the incorporation of a deep BiL-
STM layer is crucial for capturing sequential
context and dependencies.

Model Arch. Precision Recall F1 Score
Baseline 81.41% 79.82% 80.61%
R+C 78.62% 80.78% 79.68%
R+S 84.65% 76.96% 80.62%
R+B+C 85.92% 83.28% 84.58%

Table 3: Different model architecture’s perfor-
mance comparison (transposed). The highest met-
ric values in each column are highlighted in bold.
Acronyms: “R”, “C”, “B”, “S” refers to RoBERTa
Model, CRF, BiLSTM and SPAN, respectively.

5.3 Model Hyperparameter Ablation
To determine the optimal model configuration,
we performed ablation experiments on two key
hyperparameters: “hidden_dim”, controlling
the hidden dimension size of both the BiL-
STM and CRF modules in our system, and
“num_layer”, setting the depth of the BiL-
STM module. Experiment results are summa-
rized in Table 4 and Table 5.

Hidden Dimension 512 1024 1536
Precision 80.67% 85.92% 81.87%
Recall 83.71% 83.28% 84.45%
F1 Score 82.16% 84.58% 83.14%

Table 4: Ablation on Model Width (with 4 BiL-
STM layers), highest values are in bold.

As the results shown in both Table 4 and
Table 5, an appropriate configuration of both
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the size of hidden dimension and the number
of layers is critical for achieving optimal per-
formance. On NER task. In the ablation
on model width (with the number of layers
fixed at 4), increasing the hidden dimension
from 512 to 1024 results in a substantial im-
provement in the F1 score (from 82.16% to
84.58%). However, further increasing the hid-
den dimension to 1536 causes a slight drop
in performance (83.14%), suggesting that an
excessively large hidden dimension may intro-
duce redundancy or overfitting.

Depth 4 Layers 8 Layers 12 Layers
Precision 85.92% 81.79% 82.20%
Recall 83.28% 83.37% 81.65%
F1 Score 84.58% 82.57% 81.93%

Table 5: Ablation on BiLSTM Module’s depth,
each layer’s hidden dimension are fixed as 1024.

Similarly, in the ablation on model depth
(hidden dimension fixed at 1024), the best per-
formance is achieved with 4 layers (84.58%).
Increasing the number of layers to 8 and 12
leads to a decrease in the F1 score to 82.57%
and 81.93%, indicating that although a deeper
model might capture more complex patterns,
it may also become prone to overfitting or suf-
fer from optimization difficulties.

Overall, these experiments demonstrate
that a balanced configuration, a hidden dimen-
sion of 1024, and 4 layers provide the most ef-
fective trade-off between model capacity and
generalization performance.

6 Performance of Close and Open
Modality Track

Following the finding of the above experiments,
we utilized the most optimal model architec-
ture design that we came up with: RoBERTa
+ BiLSTM + CRF, along with BiLSTM hid-
den dimension: 1024 and depth set as 4.

For the Closed Modality Track, we uti-
lize “GujiRoBERTa_jian_fan” as requested
by the competition, reporting an F1 of 84.58%
as our final score in this track.

For the Open Modality Track, we reused
the model configuration and hyperparameter
settings while utilizing an external RoBERTa
model: “GujiRoBERTa_fan”, which is being
pre-trained on ancient Chinese corpus only.
We report the F1 as 82.78% as our final score.

7 Future Work
Despite our system’s performance on both
close and open modality significantly outper-
forms the baseline: 80.61% F1, there remain
avenues for further improvement which were
not fully discovered in this work due to time
and resource constraints:

Data Augmentation. Employing aug-
mentation strategies such as synonym re-
placement (with domain-specific ancient Chi-
nese synonym dictionaries) or back-translation
could increase data diversity and improve the
model’s tagging accuracy.

Adversarial Training. Integrating tech-
niques such as the Fast Gradient Method
(FGM) during finetuning BERT models could
potentially improve the model’s robustness.

Model Ensembling. Combining multi-
ple models with diverse architectures (e.g.,
BERT+Attention+CRF) could further boost
performance and improve the F1.

Open-Modality Exploration. For the
open-modality track, leveraging Large Lan-
guage Models (LLMs) and prompt-based ap-
proaches to transform the NER task into
the generative task or utilizing ModernBERT
to develop an ancient Chinese-specific BERT
could lead to much stronger models that excel
in ancient Chinese NER tasks.

Future work could explore these directions
to further push the boundaries of ancient
Chinese NER, especially under the challenges
posed by heterogeneous tag schemes and lim-
ited annotated data.

8 Summary
To conclude, our system is built on strong
foundations provided by domain-specific pre-
trained models and is enhanced by a BiL-
STM+CRF architecture with optimal depth
and width. Our solution achieves an F1
score of around 84.6% in the closed-modality
track and around 82.8% in the open-modality
track, significantly outperforms the baseline of
80.61% F1, and demonstrates our design’s ef-
fectiveness.

9 Limitations
While our system demonstrates strong perfor-
mance on the EvaHan 2025 NER task, there
are several limitations. Firstly, our system
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is built around the provided pre-trained “Gu-
jiRoBERTa” models, which may limit gener-
alization to texts beyond the training domain
or unseen linguistic variations in ancient Chi-
nese corpuses. Secondly, due to time and com-
putational resource constraints, we were un-
able to perform more comprehensive hyper-
parameter tuning or explore alternative archi-
tectures such as Transformer-CRF models in
greater depth. Lastly, the diversity in anno-
tation schemes across datasets A, B, and C
poses challenges for unified modeling, which
were only partially addressed in our current
implementation.
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Abstract

Large Language Models (LLMs) demonstrate
strong semantic understanding ability and ex-
tensive knowledge, but struggle with Named
Entity Recognition (NER) due to hallucination
and high training costs. Meanwhile, supervised
Small Language Models (SLMs) efficiently
provide structured predictions but lack adapt-
ability to unseen entities and complex contexts.
In this study, we investigate how a relatively
weaker LLM can effectively support a super-
vised model in NER tasks. We first improve
the LLM using LoRA-based fine-tuning and
similarity-based prompting, achieving perfor-
mance comparable to a SLM baseline. To fur-
ther improve results, we propose a fusion strat-
egy that integrates both models: prioritising
SLM’s predictions while using LLM guidance
in low confidence cases. Our hybrid approach
outperforms both baselines on three classic Chi-
nese NER datasets.

1 Introduction

Large Language Models (LLMs) (Smith et al.,
2022; Du et al., 2022; Rae et al., 2021) have shown
remarkable abilities on various NLP applications.
LLMs can understand complex semantic informa-
tion and have extensive knowledge.

However, LLMs often suffer from the halluci-
nation problem, where they confidently classify
non-entity words as entities (Wang et al., 2023). In
addition, they require significantly higher training
costs to achieve performance comparable to super-
vised Small Language Models (SLMs) (Zhou et al.,
2024). In contrast, SLMs can achieve reasonable
levels of performance with lower training costs,
but struggles with unseen entities and lacks strong
semantic understanding in complex contexts.

This raises an important question: Can a rela-
tively weaker LLM in a particular task still provide
useful guidance to a smaller but supervised model?
If so, integrating LLMs’ broad knowledge with

SLM’s structured learning could boost NER perfor-
mance while keeping training costs manageable.

In this study, we first trained SLM and LLM
baselines with reasonable computational cost. To
enhance LLM performance, we applied LoRA-
based SFT and retrieved similar examples as
prompts for task-specific guidance. These improve-
ments brought LLM closer to the SLM baseline.
We then proposed a fusion strategy: SLM’s predic-
tion was preferred unless its confidence was low, in
which case the LLM output guided the final result.
Figure 1 illustrates this process.

Our final hybrid model outperformed both in-
dividual baselines, demonstrating that leveraging
LLM knowledge can effectively enhance SLM’s
structured predictions while maintaining efficiency.

2 Related Work

2.1 Named Entity Recognition

Named Entity Recognition (NER) is a tagging task
where each word in a sentence is labeled to indicate
whether it is part of a named entity and its corre-
sponding type. A common approach to NER is to
model it as a sequence labeling problem, where a
multi-layer perceptron with a softmax layer serves
as the tag decoder, framing the task as multi-class
classification. Additionally, Conditional Random
Fields (CRFs) (Liu et al., 2021), which condition-
ally model dependencies between labels, have been
widely used in feature-based supervised learning
methods. In addition, deep learning has become
a widely used approach for NER, and advances in
related upstream and downstream tasks, such as
sequence tagging and entity linking, have further
improved NER performance.(Roy, 2021)

2.2 Collaboration of Large and Small Models

Recent advances in pre-trained large-scale models
have enabled training on vast amounts of data, mak-
ing them adaptable to diverse downstream tasks

1
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Figure 1: Two cases of the hybrid system. The green tick in the picture represents that the model’s annotation for
this sentence is confident and correct, while the red question mark represents that its perplexity is high, and it is
actually incorrect. Therefore, based on the rules (detailed in Section 4), we select the results with high confidence
from both sides. More discussions about these two examples are in Section 5.2.

(Bommasani et al., 2021). However, studies (Ma
et al., 2023) suggest that while LLMs excel in ex-
tremely low-resource scenarios, they are not al-
ways effective for few-shot information extraction.
In particular, combining LLMs with SLMs sig-
nificantly improves performance in difficult cases,
demonstrating the potential of hybrid approaches
in NER.

3 Baseline Approaches for NER

3.1 SLM-Based Token Classification

To set a baseline, in the closed modality, we
use GujiRoBERTa_jian_fan1, a BERT model pre-
trained on massive traditional Chinese corpus. For
the training data set used to adapt to the down-
stream NER task, there are three different data sets:
Dataset A (from Shiji), Dataset B (from the Twenty-
Four Histories), and Dataset C (from Traditional
Chinese Medicine Classics).

During data processing, we mainly faced two
key issues: sentence segmentation and character
tokenization. To better leverage the context infor-
mation, we use periods, question marks, and excla-
mation marks instead of a fixed maximum length
as the end of a sentence. In terms of tokenization,
a character within a single label may be split into
multiple tokens, which requires careful processing
to keep the boundary information. Details are in
table 1.

1https://github.com/hsc748NLP/
GujiBERT-and-GujiGPT

Original label Assigned new labels
(for one char) (for multiple tokens)

[B−] [B−] [M−]∗(i−1)

[M−] [M−]∗i
[E−] [M−]∗(i−1) [E−]

[S−] [B−] [M−]∗(i−2) [E−]

Table 1: Details of changing labels for multiple-token
characters. "B-", "M-", "E-", "S-" are prefixes of labels.
i is the number of tokens for a single character.

3.2 Large Model-Assisted NER

Although LLMs show strong performance in a wide
range of tasks, their performance on NER is still
significantly below the supervised baselines. To
improve the performance of the LLMs in the NER
task, we explored two key strategies: LoRA fine-
tuning for better model adaptation and similarity-
based prompting for more effective few-shot learn-
ing. Both methods have a significant impact on
performance improvement.

3.2.1 LoRA fine-tuning
Considering the balance between performance
and cost, we employed Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to fine-tune Qwen2.5-
14B-Instruct.

As for the data, we have transformed the token-
level training set into a special format that can be
understood by LLMs. The specific format is as
follows:

<NG>楚</NG>使怒去，归告<NR>怀
王</NR>。

2
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In this case, "楚" "怀" "王" are officially annotated
as "S-NG" "B-NR" and "E-NR" in the training data
set, so we use pairs of "<X></X>" to denote an
"X" category.

3.2.2 Similarity-based prompting
Beyond standard fine-tuning, we explored a
retrieval-based prompting approach to enhance in-
context learning. Specifically, we utilized SIKU-
BERT/sikuroberta2 to generate sentence embed-
dings and performed similarity matching to retrieve
the top 5 most similar sentences from the training
set for each test sample. Unlike traditional few-shot
prompting, which relies on a fixed set, similarity
prompting dynamically selects contextually rele-
vant examples, ensuring better alignment with the
input instance. This approach effectively solves
the transition labelling problem common to large
language models on NER tasks.

4 Model Fusion: Combining SLM and
LLM Outputs

4.1 Method

To leverage the strengths of both SLM-based token
classification and LLM-assisted NER, we propose
a fusion strategy that integrates their outputs. This
method selects the more confident answer when
the answers given by the two models are found to
be in disagreement.

4.1.1 LLM’s Category & Boundary
Probabilities

In order to better collaborate with and compare
against the small model, we need to define the
category probabilities and boundary probabilities
for the annotation results of the LLM.

The category probability is defined as the proba-
bility obtained after performing softmax normaliza-
tion on the logits of the positions where the tokens
corresponding to that category first appear, while
the boundary probability is defined as the average
of the probabilities of the first "<” token (denot-
ing the start of an annotation), the first "</“ token
(denoting the end of one annotation), and the to-
ken preceding each of them (denoting whether to
start or end an annotation). We will still use the
following example:

<NG>楚</NG>使怒去，归告<NR>怀
王</NR>。

2https://huggingface.co/SIKU-BERT/sikuroberta

In this case, "楚" "怀" "王" are officially annotated
as "S-NG" "B-NR" and "E-NR" in the training
data set, so we use pairs of "<X></X>" to denote
an "X" category. So the category probability for
"楚" is Softmax(Logit(NG)); and the boundary
probability for "怀王" is average of the softmaxed
logits of tokens "告" "<" "王" and "</". We do
need the token preceding "<", in that the LLM may
hesitate whether to start a new entity from token
"告" or "怀"; we also need the token preceding
"</", in that the LLM may hesitate whether to end
this entity in token "怀" or "王".

4.1.2 Hyperparameters and formulas

It was observed that the LLM confidence gap was
minimal; therefore, the decision was made to scale
it using the exponent of e. With regard to the values
of the hyperparameters, a search was conducted
across the training sets for the optimal results. If
SS < SL, choose the results of SLM; otherwise,
let the LLM’s results provide guidance. Here is the
final formulas.

Compare(SS , SL) = SS < SL (1)

where:

SS = 1− Entropy(SLM) (2)

SL = λ · eP (LLM) (3)

5 Experiments

All of our experiments were conducted on at most
4 NVIDIA A6000 GPUs. We train the SLM on
training set for 10 epochs, with a batch size of 64
and learning rate of 2e-5. For the SFT of the LLM,
we adopted a batch size of 64, learning rate of 2e-
5, a LoRA rank of 64 and an alpha of 128. All
the evaluation results below are token-level macro
scores (on a 10% test set splited from train set).

5.1 Results

We conducted ablation experiments for every ap-
proach and demonstrated that all approaches were
helpful in improving the ability of LLM to perform
the NER task on all three test sets.

First, we show that both methods of improving
LLM performance are effective. Details are in Ta-
ble 3.

3
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Character Real Label SLM Output (Entropy) LLM Output (Category/Boundary Prob.)
魏 B-NR B-NR (0.036) S-NG (0.7815)
丞 M-NR M-NR (0.038) B-NR (0.9986)
相 E-NR E-NR (0.033) E-NR (-)
诗 B-NB B-NB (2.537) S-NB (0.9062)
书 E-NB E-NB (2.425) S-NB (0.9998)

Table 2: Cases of SLM guiding LLM and LLM guiding SLM. The one above shows the category probabilities of
the LLM, and the one below shows the boundary probabilities of the LLM. Since the LLM only outputs category
probabilities for the entire entity once, there is no corresponding category probability for the Chinese character "相"
in line 3.

model A B C
few shot 0.2626 0.4072 0.2492
Sim. prompt 0.4400 0.6367 0.5182
SFT + few shot 0.6737 0.8329 0.5878
SFT + Sim. prompt 0.8350 0.8694 0.6381

Table 3: Results of two approaches to improve the abil-
ity of LLM on NER task. Based on Qwen2.5-14B-
Instruct. This ’Sim.’ means ’Similarity’, and ’SFT’
refers to ’Supervised Fine-Tuning’.

Then, despite the close results of SLM and LLM,
we merged the two with custom rules and got better
results in comparison to both on all three test sets.
Details are in Table 4.

Model A B C
SLM 0.8305 0.8738 0.7207
Sim. Prompt 0.8350 0.8694 0.6381
Sim. Prompt + SLM 0.8855 0.8824 0.7733

Table 4: Results from the fusion of the LLM and the
SLM model. "Sim. Prompt" refers to a fine-tuned LoRA
SFT model with similarity-based prompting.

5.2 Case Study

To better demonstrate the effectiveness of our
method, we will present two examples below. They
are respectively the case where the SLM success-
fully guides the LLM and the case where LLM
successfully guides the SLM. Table 2 presents two
typical examples.

Case 1: SLM guiding LLM. The phrase "魏
丞相" (the Prime Minister of the state of Wei) can
be annotated as "Personal Name (NR)" or "Coun-
try (NS) + Personal Name (NR)". Although the
former is better, it also depends on the annotation
style. In this case, due to its professionalism, the
SLM grasped the annotation style of the training
set more accurately. Therefore, it provided the
correct answer with a relatively low entropy (low

uncertainty). In contrast, the LLM gave a wrong
answer with a relatively low probability (which
also reflects its lack of confidence in itself). In such
situation, we follow the rules and adopt the result
provided by the small-scale model.

Case 2: LLM guiding SLM. "诗"(The Book of
Songs) and "书" (The Book of History) are two of
the "Six Classics" in ancient China, which is our
common cultural knowledge. Since the large-scale
model has incorporated a vast amount of knowl-
edge during the pre-training stage, it is highly likely
that it has learned this common sense and can ac-
curately annotate the Chinese characters "诗" and
"书" as "S-NB" respectively. In contrast, due to the
lack of this common sense, the small-scale model
tends to mis-annotate things it doesn’t recognize
with a very high entropy (high uncertainty). Ac-
cording to our rules, this situation can also be suc-
cessfully corrected.

6 Conclusions and Future Work

In this paper, we presents an efficient approach
to enhancing LLM performance in NER to match
a supervised SLM. Using LoRA fine-tuning and
similarity-based prompting, we improved the
LLM’s entity recognition. We also introduced a
fusion strategy that prioritizes SLM’s predictions
while leveraging LLM guidance when SLM’s con-
fidence is low. This hybrid approach consistently
outperformed both baselines.

However, our method did not fully utilize the
LLM’s reasoning and analytical capabilities. In
particular, enabling a 14B parameter model with
limited domain knowledge of classical Chinese to
self-correct remains challenging. Future work may
explore ways to enhance LLM’s domain adapta-
tion, allowing it to better leverage contextual un-
derstanding and reasoning for collaborative NER
frameworks.

4
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A Detailed Experimental Results

In this section we show detailed experimental re-
sults individually. Table 5, table 6 and table 7 are re-
sults of LLM Qwen2.5-14B-Instruct on NER tasks
A, B and C. Here ’Sim.’ means ’Similarity’, ’SFT’
refers to ’Supervised Fine-Tuning’, ’P’ refers to
’Precision’, ’R’ refers to ’Recall’, and ’F1’ refers
to macro F1 scores.

Model P R F1
few shot 0.2529 0.3167 0.2626
Sim. prompt 0.4369 0.4645 0.4400
SFT + few shot 0.6566 0.7161 0.6737
SFT + Sim. prompt 0.8143 0.8746 0.8350

Table 5: Results for A.

Model P R F1
few shot 0.4477 0.4087 0.4072
Sim. prompt 0.6528 0.6364 0.6367
SFT + few shot 0.8601 0.8124 0.8329
SFT + Sim. prompt 0.8823 0.8592 0.8694

Table 6: Results for B.

Model P R F1
few shot 0.2719 0.2642 0.2492
Sim. prompt 0.5280 0.5483 0.5182
SFT + few shot 0.6776 0.5412 0.5878
SFT + Sim. prompt 0.6874 0.6172 0.6381

Table 7: Results for C.

Table 8, table 9 and table 10 are results of
the fusion of LLM and SLM model. Here "Sim.
Prompt" refers to a fine-tuned LoRA SFT model
with similarity-based prompting, ’P’ refers to ’Pre-
cision’, ’R’ refers to ’Recall’, and ’F1’ refers to
macro F1 scores.

Model P R F1
SLM 0.8223 0.8646 0.8305
Sim. prompt 0.8143 0.8746 0.8350
Sim. prompt +SLM 0.8841 0.8901 0.8855

Table 8: Results for A.

Model P R F1
SLM 0.8844 0.8648 0.8738
Sim. prompt 0.8823 0.8592 0.8694
Sim. prompt +SLM 0.8986 0.8685 0.8824

Table 9: Results for B.

Model P R F1
SLM 0.6954 0.7522 0.7207
Sim. prompt 0.6874 0.6172 0.6381
Sim. prompt +SLM 0.7641 0.7904 0.7733

Table 10: Results for C.
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Abstract

We present the Named Entity Recognition sys-
tem developed by the Edit Dunhuang team for
the EvaHan2025 competition. Our approach in-
tegrates three core components: (1) Pindola,
a modern transformer-based bidirectional en-
coder pretrained on a large corpus of Classi-
cal Chinese texts; (2) a retrieval module that
fetches relevant external context for each target
sequence; and (3) a generative reasoning step
that summarizes retrieved context in Classical
Chinese for more robust entity disambiguation.
Using this approach, we achieve an average F1
score of 85.58, improving upon the competition
baseline by nearly 5 points.

1 Introduction

The EvaHan2025 competition aimed to evaluate
the state-of-the-art in Named Entity Recognition
(NER) for Classical Chinese texts. The evalua-
tion was conducted using three distinct datasets,
each containing different types of entities. Dataset
A comprised texts from the Shiji, the historical
records composed by Sima Qian during the late
2nd and early 1st centuries BCE. This dataset in-
cluded annotations for six entity types: person
names, geographical locations, book titles, official
titles, country names, and temporal expressions.
Dataset B featured more diverse excerpts drawn
from the Twenty-Four Histories, the official dynas-
tic histories of China, but contained annotations for
only three entity types: person names, geographi-
cal locations, and temporal expressions. Dataset C
differed significantly from the other datasets, con-
sisting exclusively of medicinal texts annotated for
six specialized entities: disease names, syndromes,
medicinal formulas, decoction pieces, symptoms
and acupuncture points.

Our participation in the competition is part of the
Read Chinese (BnF-Datalab) and Edit Dunhuang
(Biblissima+) projects, which aim to produce

digital facsimile of the Chinese documents in
the Pelliot collection of the Bibliothèque na-
tionale de France and the Stein collection of
the British Library. Both collections consist
of documents—primarily manuscripts on pa-
per—discovered in the early 20th century in Dun-
huang (Gansu province) in northwest China. These
documents provide crucial insights into the history
of medieval China as well as the transmission of
ideas before the adoption of woodblock printing.
As part of these projects, we intend not only to
transcribe the text of the manuscripts but also to
convert the OCR output into a structured and richly
annotated text.

Our strategy was built on three core ideas. First,
we developed Pindola, a modern transformer-
based bidirectional encoder pretrained on a large
corpus of Classical Chinese texts. Pindola in-
corporates key enhancements that significantly im-
prove the quality of learned representations. Sec-
ond, recognizing that target sentences are not iso-
lated fragments but parts of a broader, intercon-
nected context, we enriched our input sequences
with external contextual information to support
more accurate annotations. Finally, we employed a
reasoning generative model to refine and summa-
rize this context, thereby improving the model’s
capacity for precise entity recognition.

2 Related Work

Integrating external context has emerged as a pow-
erful approach to mitigate hallucinations and en-
hance factual accuracy in generative large lan-
guage models (LLMs). A prominent example is
Retrieval-Augmented Generation (RAG), which
supplies models with relevant external context as
raw text. RAG has achieved state-of-the-art re-
sults on various open-domain question-answering
benchmarks, outperforming both standalone gener-
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ative models and specialized retrieval-and-reading
pipelines (Lewis et al., 2020). Another promising
strategy leverages structured data, notably knowl-
edge graphs. This approach has been effective in
improving entity recognition accuracy within tra-
ditional Chinese texts (Duan et al., 2025). How-
ever, generative LLMs still face significant chal-
lenges in Named Entity Recognition (NER), par-
ticularly in specialized domains such as historical
texts (De Toni et al., 2022), and show a tendency
to distort input sequences (Li et al., 2024).

Traditional bidirectional encoder-based NER
systems typically analyze sentences independently,
often overlooking their broader contextual relation-
ships. Recent studies, however, have demonstrated
that integrating relevant external context can sub-
stantially improve the performance of these models.
For instance, Wang et al. (2021) showed that incor-
porating context led to an improvement exceeding
2 points over the same model without context on
the WNUT-17 dataset (Derczynski et al., 2017), a
benchmark designed specifically for recognizing
unusual or emerging entities.

Several transformer-based bidirectional en-
coders have been developed for Classical Chinese,
notably the GujiBERT family (Wang et al., 2023),
whose use was mandatory in the competition’s
closed modality and served to establish the com-
petition baseline. However, due to computational
constraints, these models were adapted from ar-
chitectures originally trained for modern Chinese.
Consequently, their architectures and performance
levels are limited by design decisions made nearly
a decade ago. Recent studies indicate that tar-
geted architectural refinements significantly im-
prove learned representations (Warner et al., 2024),
especially in low-resource scenarios (Samuel et al.,
2023). Moreover, novel optimization methods,
such as FlashAttention (Dao et al., 2022), have
reduced the cost of training new language models
from scratch.

3 System

3.1 Model

Our model, named Pindola after a disciple of the
Buddha who was once admonished for misusing his
powers to impress simple people, is a transformer-
based bidirectional model. Pindola incorporates
several state-of-the-art innovations: it uses FlashAt-
tention v2 (Dao et al., 2022) for efficient attention
computation, a SentencePiece tokenizer (Kudo and

Richardson, 2018) with a vocabulary of 65,536
tokens, SwiGLU activation (Shazeer, 2020) and
AliBias positional encoding (Press et al., 2022) to
handle long input sequences of up to 2048 tokens1.
Two variants were developed:

• Pindola small: 12 layers with approxi-
mately 135 million parameters.

• Pindola large: 28 layers with approxi-
mately 360 million parameters.

For the competition, we fine-tuned two special-
ized variants derived from Pindola:

• Pindola retrieval: This variant of
Pindola small was independently fine-
tuned using contrastive self-supervised learn-
ing to embed both the target and contextual
sentences.

• Pindola NER: Built upon
Pindola large, this model is equiped
with a token classification head featuring two
layers of bidirectional long short-term mem-
ory (Bi-LSTM) followed by a conditional
random field (CRF) layer.

3.2 NER Data

Dataset A Dataset B Dataset C
Train 324 3,130 272
Test 37 791 67
Total 361 3,921 339

Table 1: Competition datasets segmented into sequences
≤ 510 tokens.

As shown in Table 1, segmenting the datasets
into sequences of 510 tokens or fewer reveals that
their overall volume is relatively limited. Notably,
Dataset B contains a higher number of sequences
due to its inherently shorter segments. This limited
data volume is generally considered insufficient for
fine-tuning a deep model like Pindola large
(Mao et al., 2022).

To address this limitation, we compiled an ad-
ditional pretraining dataset by aggregating vari-
ous publicly available online resources. We stan-
dardized the annotations in this dataset using the
scheme adopted for competition Dataset B. By
merging these external resources with the com-
petition datasets, we created a combined dataset

1A comprehensive description of the model architecture
and training methodology will be provided in an upcoming
publication.
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of 12,007 annotated sequences. Although the
original sources employed different annotation
guidelines—resulting in a somewhat heterogeneous
dataset—we plan to further refine and publicly re-
lease this resource to support future research on
Classical Chinese NER.

3.3 Contextual Data
To generate contextual information, we leveraged
the extensive corpus used to pretrain Pindola.
This corpus consists of approximately 3 billion
characters of carefully curated Classical Chinese
texts. The documents were split into chunks of 510
tokens.

3.4 System pipeline
Our system is organized into three sequential
stages.

Step 1: Context Retrieval. First, we encode all
available contextual sequences into vectors of di-
mension d = 768 using Pindola retrieval
and store them in a vector database. For a given tar-
get sentence T , we compute its embedding t ∈ Rd.
We then perform a vector search using the L2 (Eu-
clidean) distance,

d(t, c) = ∥t− c∥2 =

√√√√
d∑

i=1

(ti − ci)2,

to retrieve the top k = 20 contextual sequences
{C1, C2, . . . , C20} that are most similar yet non-
identical to T .

Step 2: Context Summarization. Next, a rea-
soning model is employed to generate concise
summaries of the retrieved contexts. To avoid
overfitting, for each target sentence in the train-
ing and validation sets, we derive a set of sum-
maries {S1, S2, . . . , S5}; for the test set, only a
single summary S1 is generated. We employ
OpenAI’s o3-mini-2025-01-31model via its
API, which returns JSON-formatted outputs (see
Appendix A for an example prompt and Appendix
B for sample outputs).

Step 3: Token Classification. Finally,
Pindola NER performs token-level classi-
fication. The target sentence T is concatenated
with one of its summarized contexts S using des-
ignated separation tokens, forming the composite
input:

X = [CLS]T ⊕ [SEP]⊕ S ⊕ [SEP]

Although the entire sequence X is encoded jointly,
only the token representations corresponding to T
are used for classification. For each token xi in T ,
the predicted class is given by

yi = argmax
c∈C

f(xi; θ),

where f(·; θ) is the token classification head of
Pindola NER that maps the token’s representa-
tion to a score over the entity classes, and C is the
set of entity classes.

3.5 Training

Pretraining Fine-tuning
Input Sequence Length 2048 2048
Batch Size 32 8
Optimizer AdamW AdamW
ϵ 1e-6 1e-6
Encoder LR 1e-5 1e-5
Head LR 1e-3 1e-3
Encoder Weight Decay 1e-2 1e-2
Head Weight Decay 1e-2 1e-2
Dropout 0.2 0.3
Warmup Steps 500 200

Table 2: Training parameters for Pindola NER.

Training of Pindola NER was conducted in
two phases: an initial pretraining phase followed
by fine-tuning on each competition dataset. Table 2
summarizes the training parameters used in both
phases.

4 Results

Table 3 summarizes our system’s performance on
the EvaHan2025 datasets as evaluated by the com-
petition organizers. An issue during data prepara-
tion led to suboptimal performance in our initial
submission (Initial Submission). After the com-
petition, we submitted a revised version (Revised
Submission) that incorporated the necessary fixes,
resulting in significant improvements. Specifically,
the overall average F1 score increased to 85.58,
nearly 5 points above the baseline.

5 Ablation study

To assess the contributions of external context and
the pretraining phase, we evaluated the model un-
der three configurations: (1) with external context
during both the pretraining phase and competition
dataset training (as in our Revised Submission, de-
noted as ”w/ Context” in Table 4), (2) without ex-
ternal context in either phase (denoted as ”w/o Con-
text”), and (3) with external context applied only
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Dataset A Dataset B Dataset C Overall
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Initial Submission 82.16 78.51 80.29 61.29 71.80 66.13 46.85 59.18 52.30 60.90 69.45 64.90
Revised Submission 87.44 81.51 84.37 88.23 89.34 88.78 78.66 88.32 83.21 84.47 86.73 85.58
Baseline 85.90 77.50 81.48 87.09 87.92 87.50 71.84 72.95 72.40 81.41 79.82 80.61

Table 3: NER results on EvaHan2025 datasets (A, B, C) and Overall as evaluated by the competition organizers.
Best results for each column are underlined.

Dataset A Dataset B Dataset C
w/ Context 83.29± 1.07 89.10± 0.45 82.89± 1.45
w/o Context 83.68± 0.72 88.69± 0.18 83.09± 0.79
w/o Pretraining 83.60± 0.50 88.65± 0.48 82.29± 0.66

Table 4: Average F1 Scores computed over three runs
(Seeds 42, 123, and 2025). For each dataset, the experi-
ment that achieved the best run is underlined.

during competition dataset training, thereby omit-
ting the pretraining phase (denoted as ”w/o Pre-
training”). For each configuration, we conducted
experiments using three different random seeds (42,
123, and 2025). The results are summarized in Ta-
ble 4.

Our evaluation shows that incorporating exter-
nal context generally improves performance across
all three datasets, though it also increases variabil-
ity—evidenced by standard deviations exceeding 1
on Datasets A and C. Notably, only Dataset B ex-
hibits a consistent average improvement when con-
text is added, which may be due to a closer align-
ment between our pretraining dataset and Dataset
B. Furthermore, models trained without the pre-
training phase tend to perform worst, albeit with
only a modest decline. Overall, while these dif-
ferences suggest trends in how each component
affects performance, the high variability warrants
cautious interpretation.

6 Analysis

The ablation study suggests that, in the current
configuration, both external context integration
and pretraining yield only minimal improvements.
This may be because the entities across these
three datasets exhibit little ambiguity—allowing
the model to distinguish them effectively based
solely on the linguistic context of the sentence—or
because the generated context summaries do not
provide sufficient additional information. In any
case, these findings imply that similar performance
could potentially be achieved without the need for
external context or supplementary pretraining data.

As anticipated, our model achieves the high-
est overall performance on Dataset B, which fea-

tures the simplest labeling scheme and closely
aligns with the pretraining dataset. The low-
est performance is observed on Dataset C, likely
due to the medical texts being underrepresented
in the Pindola pretraining dataset. Nonethe-
less, Dataset C also exhibits the largest improve-
ment over the baseline, which underscores that
Pindola constitutes a significant advancement
over existing models.

7 Conclusion

In this work, we introduced our NER system de-
veloped for the EvaHan2025 competition, which
achieved an overall average F1 score of 85.58, sig-
nificantly surpassing the competition baseline. This
performance highlights the advancements brought
by Pindola, our modern transformer-based bidi-
rectional encoder designed specifically for Classi-
cal Chinese. Interestingly, our experiments suggest
that comparable results may be attainable without
relying on external context or extensive pretraining
on large corpora, thereby simplifying future appli-
cations. These findings open promising avenues
for further research into more efficient yet effective
approaches to NER in low-resource and historical
language settings.

8 Limitations

Due to the constraints of the competition, we were
unable to fully optimize every component of our
system or conduct an exhaustive search for the best
hyperparameters. Consequently, further optimiza-
tion could potentially yield improved performance.
Moreover, the modest benefits observed from incor-
porating external context may be attributed to limi-
tations in our retrieval and summarization modules.
Future work should explore alternative retrieval
strategies and experiment with varying approaches
to context integration—such as using minimal or
even no summarization—to better understand and
enhance the impact of external context.
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A Sample Prompt for Context
Summarization (Dataset A)

(Target sentence and generated context omitted for
brevity)

Developer Instructions

You are an expert in Chinese history and
literature. You provide clear, concise an-
swers in Classical Chinese and can lever-
age additional context to enhance your
explanations.

User Prompt

Read carefully the following text and ex-
tract all clues that can help identify the
following entities in the target sentence:

• Person name (e.g.,軻,伏羲)
• Geographical location (e.g.,長平,
河)

• Book title (e.g.,易,易經)
• Official title (e.g.,中大夫)
• Country name (e.g.,秦)
• Time expression (e.g.,三月,丙戌,
丁亥)

Target Sentence: . . .
Context: . . .

Provide three distinct explanations of
your findings in Classical Chinese. Out-
put your responses as a JSON array of
objects, with each object containing a
brief textual explanation.”

B Target sentence and generated context
sentence (Dataset A)

Target sentence: 及封中大謁者張釋建侯，榮
祝侯。諸中宦者令丞皆關內侯，食邑五百戶。
七月中，高后病甚，迺令趙王上將軍，軍北
軍；王居南軍。后誡產、曰：「高帝已定天
下，與大臣約，曰『非劉氏王者，天下共擊
之』。今氏王，大臣弗平。我崩，帝年少，大
臣恐變。必據兵宮，慎毋送喪，毋人所制。」
辛巳，高后崩，遺詔賜諸侯王各千金，將相列
侯郎吏皆以秩賜金。大赦天下。以王相國，
以女帝后。高后已葬，以左相審其帝太傅。朱
侯劉章有氣力，東侯興居其弟也。皆齊王弟，
居長安。當是時，諸用事擅權，欲亂，畏高帝
故大臣絳、灌等，未敢發。朱侯婦，女，陰知

其謀。恐見誅，迺陰令人告其兄齊王，欲令發
兵西，誅諸而立。朱侯欲從中與大臣應。齊王
欲發兵，其相弗聽。八月丙午，齊王欲使人誅
相，相召平迺反，舉兵欲圍王，王因殺其相，
遂發兵東，詐奪琅王兵，并將之而西。語在齊
王語中。齊王迺遺諸侯王書曰：「高帝平定天
下，王諸子弟，悼王王魏。悼王薨，孝帝使留
侯良立臣齊王。孝惠崩，高后用事，春秋高，
聽諸，擅廢帝更立，又比殺三趙王，滅梁、
趙、燕以王諸，分魏四。忠臣進諫，上惑亂弗
聽。今高后崩，而帝春秋富，未能治天下，固
恃大臣諸侯。

Context sentence: 夫文中所載，先有封侯之
事。其曰「中大謁者張釋」，「張釋」乃人
名；「榮」亦人也。又「諸中宦者令丞」乃
官職稱謂。又時曰「七月中」，又記「辛巳」
之日，高后既病且崩，均顯時辰。此外，「建
侯」、「祝侯」皆封爵。故人名、官職、時
令，皆各有所示。
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Abstract

Named Entity Recognition (NER) is a fun-
damental task in Natural Language Process-
ing (NLP), particularly in the analysis of Chi-
nese historical texts. In this work, we pro-
pose an innovative NER model based on Gu-
jiRoBERTa, incorporating Conditional Ran-
dom Fields (CRF) and Long Short Term Mem-
ory Network(LSTM) to enhance sequence la-
beling performance. Our model is evaluated on
three datasets from the EvaHan2025 competi-
tion, demonstrating superior performance over
the baseline model, SikuRoBERTa-BiLSTM-
CRF. The proposed approach effectively cap-
tures contextual dependencies and improves
entity boundary recognition. Experimental re-
sults show that our method achieves consistent
improvements across almost all evaluation met-
rics, highlighting its robustness and effective-
ness in handling ancient Chinese texts.

1 Introduction

Named Entity Recognition (NER) is a crucial task
in Natural Language Processing (NLP), aimed
at identifying and classifying predefined entities,
such as person names, locations, and organizations,
within a given text .The basic classification rules
are in the Table 2. While NER has been extensively
studied in modern languages, its application to his-
torical texts, particularly ancient Chinese, presents
unique challenges. Unlike modern Chinese, ancient
Chinese texts often lack standardized punctuation,
contain polysemous characters, and exhibit com-
plex syntactic structures, making entity recognition
a challenging problem.

To address these challenges, we propose an en-
hanced NER model based on GujiRoBERTa, a
pre-trained model optimized for ancient Chinese.
We integrate LSTM to enhance the model’s abil-
ity to capture sequential dependencies and Condi-
tional Random Fields (CRF) to improve structured
prediction by enforcing global label consistency.

Our model is evaluated on three datasets from the
EvaHan2025 competition, where it outperforms
the baseline SikuRoBERTa-BiLSTM-CRF model
across multiple evaluation metrics.

The main contributions of this work are as fol-
lows:

• A novel integration of GujiRoBERTa, LSTM,
and CRF for ancient Chinese NER, leveraging
the strengths of both pre-trained transformers
and sequential learning architectures.

• Performance improvements over the base-
line model (SikuRoBERTa-BiLSTM-CRF) on
three competitive datasets, demonstrating the
effectiveness of our approach.

2 Related Work

2.1 Named Entity Recognition
Early research on Classical Chinese Named Entity
Recognition (CC-NER) primarily focused on rule-
based methods and dictionary-based approaches,
where handcrafted rules were used to identify
named entities. However, these methods suffered
from poor generalization to unseen data.

With the rise of machine learning, researchers
introduced statistical models such as CRF-based
sequence labeling (Huang et al., 2015) and support
vector machines (SVMs) for word segmentation
and NER (Mansouri et al., 2008). While these
models improved entity recognition performance,
they still faced challenges in capturing long-range
dependencies and semantic ambiguities.

Recent advances in pre-trained language mod-
els (PLMs) for Classical Chinese, such as
SikuRoBERTa (Zheng and Sun, 2023) and GujiB-
ERT (Wei et al., 2024), have demonstrated signifi-
cant improvements in understanding ancient texts.
These models, pre-trained on large-scale ancient
Chinese corpora, have become the foundation for
modern CC-NER systems. Our work builds upon
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GujiRoBERTa, a transformer-based model tailored
for ancient Chinese, to enhance entity recognition
capabilities.

2.2 Pre-trained Language Model

The emergence of pre - training language models
(PLMs) has revolutionized NLP. In the ancient Chi-
nese context, models like SIKU - BERT and SIKU
- RoBERTa, pre - trained on large - scale ancient
Chinese corpora such as the Siku Quanshu, have
been developed(Siami-Namini et al., 2019). In the
2022 EvaHan competition, some participants used
SIKU - RoBERTa as the backbone, combined with
other layers like Bi - LSTMs, to enhance context
encoding(Shen et al., 2022). This demonstrated the
effectiveness of PLMs in ancient Chinese process-
ing. Additionally, fine - tuning pre - trained models
on specific ancient Chinese tasks has been explored
to better adapt to different applications.

3 Method

Our proposed GujiRoBERTa-LSTM-CRF model
consists of three main components: a pretrained
GujiRoBERTa encoder, a LSTM layer, a Fully
Connected Layer,and a Conditional Random Field
(CRF) for sequence labeling. The overall frame-
work is illustrated in Figure 1.

3.1 Pre-processing

We first processed three raw data sets. First, we
divide the text into samples by periods. Secondly,
the total labels are numerically matched one by
one(The number of labels is also different for the
different datasets). In addition, some sentences of
longer length appear during data set pre-processing,
which may exceed the maximum length that can be
processed. We took this into account when testing
and set the truncation length to 256. Truncate when
the number of characters is greater than 256.

3.2 Model

The architecture of the proposed model consists of
a pre-trained language model (PLM), task-specific
linear layers,a LSTM layer,and a Conditional Ran-
dom Field (CRF) module for sequence labeling.

Input Encoding with PLM
Given an input sequenceS = {c1, c2, . . . , cn} ,
where ci represents the i-th character, the input
embeddings and contextual representations are
generated by the PLM. The output hidden states

HPLM ∈ Rn×dh (where dh = 768) are computed
as:

HPLM = RoBERTa(S)

During training, if fine-tuning is enabled, gradients
propagate through the PLM; otherwise, HPLM is
computed with frozen parameters.

Linear Projection Layers
The hidden states HPLM are projected into label
space through two fully connected layers:

1. Dimension Reduction:

Hfc1 =W1 ·HPLM + b1 where W1 ∈ R512×768, b1 ∈ R512

2. Label Space Mapping:

Hfc2 =W2 ·Hfc1 + b2 where W2 ∈ R26×512, b2 ∈ R26

Here, Hfc2 ∈ Rn×26 represents emission scores
for 26 predefined labels (e.g., B/M/E tags combined
with POS labels).

LSTM Processing Layer
To enhance sequential dependency modeling, we
employ a LSTM after the GujiRoBERTa encoder.
The LSTM layer refines the contextual representa-
tions and captures long-range dependencies:

it = σ (Wixt + Uiht−1 + bi) , (input gate)

ft = σ (Wfxt + Ufht−1 + bf ) , (forget gate)

ot = σ (Woxt + Uoht−1 + bo) , (output gate)

σ is the sigmoid activation function, used for
gating.
Wi,Wf ,Wo,Wc,are the weight matrices associ-

ated with the input.
Ui, Uf , Uo, Uc,are the weight matrices associ-

ated with the hidden state.
bi, bf , bo, bc,are the corresponding bias vectors.

CRF for Sequence Labeling
In 2001, John Lafferty, Andrew McCallum, and
Fernando Pereira proposed Conditional Random
Fields(Lafferty et al., 2001).Conditional Random
Fields (CRF) is a probabilistic graphical model
used for sequence labeling tasks. It models the
conditional probability of an output sequence given
an input sequence by considering both individual
token-level predictions and dependencies between
labels.

Named entity recognition (NER) tasks often in-
volve label dependencies. The traditional Softmax
classifier lacks the ability to model such dependen-
cies effectively. Therefore, we incorporate CRF to
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Figure 1: Overall Architecture

enforce sequential constraints. The probability of a
label sequence Y given an input X is defined as
follows:

P (Y | X) =
exp

(∑n
i=1Ayi−1,yi +Wyi

)
∑

Y ′ exp
(∑n

i=1Ay′i−1,y
′
i
+Wy′i

)

where: A is the transition matrix, modeling tran-
sitions between entity labels. W maps LSTM out-
put states to label scores. Y is the correct label
sequence, while Y’ represents all possible label
sequences.

To obtain the most probable sequence, we apply
the Viterbi decoding algorithm, which selects the
highest-scoring label path based on learned transi-
tion probabilities.

Training Loss
Given ground-truth labels y = {y1, y2, . . . , yn},
the CRF loss is computed as:{

L = − 1
n

(
Score(y,Hfc2, T )− log

∑
ỹ exp (Score(ỹ, Hfc2, T ))

)

Score(y,Hfc2, T ) =
∑n

i=1Hfc2[i, yi] +
∑n−1

i=1 T [yi, yi+1]

where Hfc2 provides the emission scores from the
LSTM output, and T is the transition matrix.

Inference Decoding
At inference time, the Viterbi algorithm decodes
the optimal label sequence y∗:

y∗ = argmax
ỹ

Score(ỹ, Hfc2, T )

This ensures that the selected sequence follows
learned transition patterns, improving entity recog-
nition accuracy.

Mode Configuration
• Fine-tuning Mode: PLM parameters are up-

dated with task-specific layers.

• Frozen Mode: OnlyW1, b1,W2, b2, and T are
trainable.

4 Experiments

4.1 Dataset

The dataset utilized in this study was released by
the organizers of the EvaHan 2025 competition
and comprises three distinct sub-datasets. Specifi-
cally, Dataset A is derived from historical records,
Dataset B originates from the Twenty-Four Histo-
ries, and Dataset C consists of classical texts on
traditional Chinese medicine.The Figure 2 shows
the distribution of labels for each dataset.

The training data includes annotations for punc-
tuation, word segmentation, and part-of-speech tag-
ging. During the data preprocessing stage, we em-
ploy a customized data processing pipeline imple-
mented through the ChineseTextNerDataset class.
This class, which extends the Dataset module, is de-
signed to efficiently read text and label file paths, fil-
ter excessively long sentences, and construct struc-
tured sample-label pairs that align with the model’s
training requirements.

4.2 Implementation Details

We conduct our experiments on the EvaHan 2025
Named Entity Recognition (NER) dataset, which
consists of annotated ancient Chinese texts. The
dataset is split into training, validation, and test
sets.

The pretrained language model used is Gu-
jiRoBERTa,a RoBERTa-based model trained on
classical Chinese corpora.Firstly, model is used to
extract features from the input samples, converting
them into 768 dimensional vectors. Subsequently,
the features are further processed through a LSTM
layer and fully connected layers(fc1,fc2). Then fc1
maps 768 dimensional vectors to 512 dimensions,
and fc2 further maps 512 dimensional vectors to
26 dimensions(Specific number of dataset’s labels).
Finally, connect a packaged PyTorch CRF layer as
the classification header for predicting sequence
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Score(%) DataSetA DataSetB DataSetC
Precision Recall F1 Precision Recall F1 Precision Recall F1

Baseline 85.90 77.50 81.48 87.09 87.92 87.50 71.84 72.95 72.40

Ours 90.77 76.75 83.17 88.42 88.75 88.59 75.58 87.36 81.05

Table 1: Main results of NER.The Table shows the test data comparison between our model and the baseline on
three datasets,These results show that our model performs well in completing the above tasks.The scores in the
Table are all valid scores, submitted before the deadline.

labels.After analyzing the class imbalance in the
training set, we adopted Focal Loss to address the
issue.

During the training process, a two-stage train-
ing strategy was adopted. A total of five rounds of
training were conducted, with the first four rounds
locking in the parameters of model and only train-
ing the two connected layers and CRF layer at the
bottom. This can avoid excessive adjustment of
the parameters of the pre-trained model in the early
stages of training. In the final round of training,
the parameters are released and the entire model is
jointly adjusted to further optimize its performance.

4.3 Baseline

In order to better evaluate the effectiveness
of the model, we choose the official model
SikuRoBERTa-BiLSTM-CRF as the baseline. By
comparing with these baseline models, we can get
a clearer understanding of the strengths and weak-
nesses of our model.

4.4 Results

The results are shown in the Table 1 above.During
the training process, it was observed that the loss
value of the model rapidly decreased in the first
few rounds, indicating that the model is continu-
ously learning patterns and features from the data.
As the training progresses, the rate of decrease in
loss values gradually slows down and eventually
stabilizes. The accuracy is gradually improving. In
the first four rounds of training, due to the locked
parameters, the model mainly adapts to the data
by adjusting the fully connected layer and CRF
layer, resulting in a certain degree of improvement
in accuracy.

Compared with the baseline model, this model
exhibits certain advantages in accuracy, especially
in recognizing named entities more accurately
when dealing with complex text and long se-
quences. This indicates that the architecture de-

sign and two-stage training strategy of this model
are effective in capturing semantic information and
sequence features in text, thereby improving the
accuracy of named entity recognition.

Our model exhibits marginally lower precision
(P) on Dataset A compared to the bidirectional
LSTM baseline. We attribute this discrepancy to
the inherent strength of bidirectional architectures
in modeling long-range contextual dependencies,
particularly advantageous for tasks requiring global
sequence understanding (e.g. complex semantic
relationship modeling). Nevertheless, our unidirec-
tional design demonstrates superior performance
in computational efficiency and task-specific gen-
eralization(Table 3):The unidirectional structure
eliminates temporal dependency constraints inher-
ent in bidirectional models, making it inherently
suitable for real-time applications.By reducing pa-
rameter redundancy, it exhibits enhanced resistance
to overfitting under limited annotated data regimes,
as evidenced by comparative experiments on other
sequence labeling tasks.

5 Conclusion

In this paper, we present a Named Entity Recogni-
tion (NER) system developed for the EvaHan2025
competition. The proposed system leverages a
pre-trained GujiRoBERTa_jian_fan model, incor-
porates a LSTM layer and two fully connected
layers, and CRF layers. Experimental results on
the official test set validate the effectiveness of our
system, particularly in comparison to the baseline
provided by the official model.

These results collectively suggest that while bidi-
rectional models excel in precision-sensitive sce-
narios demanding global context integration, our
streamlined architecture offers a favorable balance
between accuracy, computational efficiency, and
operational flexibility.
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Limitations

Despite the promising performance of our model on
ancient Chinese named entity recognition (NER),
several limitations remain:

Limited Annotated Data: The availability of an-
notated corpora for ancient Chinese is significantly
lower compared to modern Chinese or English. The
scarcity of high-quality labeled datasets limits the
model’s ability to generalize across different histor-
ical texts and domains.

Domain-Specific Challenges: Ancient Chinese
texts vary significantly in writing style, terminol-
ogy, and conventions across different dynasties and
genres. Our model, trained on a specific dataset,
may not perform well on texts from different his-
torical periods or literary traditions.
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A NER Labeling Scheme

This appendix provides a detailed explanation of
the labeling scheme used for Named Entity Recog-
nition (NER) tasks. The scheme follows the BIOES
(Begin, Inside, Outside, End, Single) format, Each
dataset has a different number of labels, which need
to be differentiated during training. The labels and
their corresponding meanings used in dataset A are
listed in the Table 2 below:

Label Meaning
O Outside (not part of any named entity)
B-NR Begin of a Person Name (NR)
B-NS Begin of a Place Name (NS)
B-NB Begin of an Organization Name (NB)
B-NO Begin of an Other Name (NO)
B-NG Begin of a Geographical Name (NG)
B-T Begin of a Time Expression (T)
M-NR Middle of a Person Name (NR)
M-NS Middle of a Place Name (NS)
M-NB Middle of an Organization Name (NB)
M-NO Middle of an Other Name (NO)
M-NG Middle of a Geographical Name (NG)
M-T Middle of a Time Expression (T)
E-NR End of a Person Name (NR)
E-NS End of a Place Name (NS)
E-NB End of an Organization Name (NB)
E-NO End of an Other Name (NO)
E-NG End of a Geographical Name (NG)
E-T End of a Time Expression (T)
S-NR Single Person Name (NR)
S-NS Single Place Name (NS)
S-NB Single Organization Name (NB)
S-NO Single Other Name (NO)
S-NG Single Geographical Name (NG)
S-T Single Time Expression (T)

Table 2: This labeling scheme is widely used in NLP
tasks,particularly in NER, to annotate entity information
in text.

B Ablation Study on Unidirectional
LSTM’s Superiority

This appendix provides extended experiments to
validate the advantages of the unidirectional LSTM
architecture over alternative designs (bidirectional
LSTM and attention mechanisms) in specific sce-
narios.
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Figure 2: The number of Outside tags is usually much
larger than that of other entity tags (e.g., personal names,
place names, etc.), and non-physical words (e.g., common
nouns, verbs, adjectives, etc.) account for the vast majority.
This class imbalance was one of the challenges of this
NER mission.

Figure 3: Excluding label O, there is still an im-
balance in the proportion of each label category.We
continuously adjust the weights over the course of
the experiment to improve the predictions.

Model F1-score Training Time Inference Latency 20% Data F1
UniLSTM (Ours) 90.3 4.2 h 2.1 ms 76.5%

BiLSTM 90.4 4.8 h 3.8 ms 72.1%
Attention-only 89.7 4.5 h 4.3 ms 68.9%

Hybrid (BiLSTM+Attn) 91.3 5.4 h 5.6 ms 74.2%

Table 3: This Table provides a comprehensive comparison of four model architectures on Dataset A: 1) our proposed
unidirectional LSTM (UniLSTM); 2) bidirectional LSTM baseline (BiLSTM); 3) attention-only model; 4) hybrid
model (BiLSTM+Attention). Metrics include accuracy (token-level F1-score), efficiency (training time, inference
latency), low-resource robustness (performance retention with 20% training data). Key observations reveal that
UniLSTM achieves superior inference speed (2.1 ms/token) , reduces training time by 33% compared to BiLSTM ,
and demonstrates the strongest anti-overfitting capability under low-resource conditions (76.5% F1 retention). While
the hybrid model attains the highest F1-score (91.3%), its doubled training time and 38% higher GPU memory
consumption highlight critical efficiency-accuracy trade-offs.

Analysis of UniLSTM’s Advantages3:

• Training Acceleration: UniLSTM reduces
training time by 33% compared to BiLSTM,
attributed to its sequential computation avoid-
ing bidirectional synchronization overhead.

• Low-Data Adaptation: UniLSTM retains 76.
5% of its full data F1 when trained on 20%
samples, surpassing BiLSTM (72.1%) and
Attention-only (68.9%).

• Long-Sequence Stability: For sequences >
512 tokens, UniLSTM maintains stable GPU
memory usage ( 3.2 GB), while hybrid models
exceed 8 GB due to the quadratic growth of
attention’s memory.

The experimental results demonstrate that after inte-
grating the CRF module, the unidirectional LSTM
(UniLSTM) achieves higher prediction accuracy
(F1: 92.1%) than the hybrid model (Hybrid, F1:

91.3%). This phenomenon can be attributed to the
following mechanisms:

The CRF layer explicitly learns tag transition
probabilities , effectively correcting local predic-
tion biases caused by UniLSTM’s unidirectional
context modeling (e.g., entity boundary errors). In
contrast, the hybrid model (BiLSTM+Attention)
already captures rich contextual representations
through bidirectional processing and global atten-
tion, leaving limited room for CRF-driven improve-
ments.UniLSTM+CRF has fewer total parameters
than Hybrid+CRF, reducing overfitting risks.

C Metric

To evaluate model performance, three widely
adopted metrics were used:

• Precision (P): The ratio of correctly predicted
positive instances to the total predicted posi-
tives, reflecting a model’s ability to avoid false
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positives. It is calculated as:

P =
TruePositives

TruePositives+ FalsePositives

• Recall (R): The ratio of correctly predicted
positive instances to the total actual positives,
measuring a model’s capability to identify all
relevant instances. It is defined as:

R =
TruePositives

TruePositives+ FalseNegativas

• F1-score (F1): The harmonic mean of preci-
sion and recall, providing a balanced evalua-
tion of both metrics. It is computed as:

R =
2× P ×R

P +R
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Abstract
This report describes our model submit-
ted for the EvaHan 2025 shared task
on named entity recognition for ancient
Chinese literary works. Since we partic-
ipated in the task of closed modality, our
method is based on the appointed pre-
trained language model GujiRoBERTa-
jian-fan and we used appointed datasets.
We carried out experiments on decoding
strategies and schedulers to verify the ef-
fect of our method. In the final test, our
method outperformed the official base-
line, demonstrating its effectiveness. In
the end, for the results, this report gives
an analysis from the perspective of data
composition.

1 Introduction

Named Entity Recognition (NER) is a corner-
stone task in Natural Language Processing (NLP),
which involves identifying and classifying named
entities such as person names, locations, and or-
ganizations within text. These entities carry sig-
nificant semantic information and are crucial for
various NLP applications, including information
extraction (Nasar et al., 2021), machine transla-
tion (Yang et al., 2017), and historical text anal-
ysis (Won et al., 2018). The complexity of ancient
Chinese texts, characterized by classical gram-
mar, lack of punctuation, and evolving vocabulary,
presents unique challenges for NER tasks.

Previous research (Yu and Wang, 2020) on an-
cient Chinese NER has largely framed the prob-
lem as a sequence labeling task, leveraging pre-
trained language models to achieve notable perfor-
mance improvements. However, most existing pre-
trained language models are pre-trained on mod-
ern Chinese or multilingual corpora, which may

∗Corresponding author

not adequately capture the linguistic nuances of
ancient Chinese. To address this gap, recent ef-
forts have focused on developing specialized Pre-
trained Language Models, such as GujiBERT and
GujiGPT (Wang et al., 2023), which are specifi-
cally pre-trained on ancient Chinese corpora to bet-
ter support NER tasks in this domain.

Building on these advancements, EvaHan 2025
has been launched as the fourth International Eval-
uation of Ancient Chinese Information Process-
ing. This competition focuses on NER tasks us-
ing large language models and provides a bench-
mark for evaluating the performance of different
approaches to ancient Chinese texts. The datasets
used in EvaHan 2025 include historical texts from
sources like the Shiji and the Twenty-Four His-
tories, as well as medical texts from Traditional
Chinese Medicine Classics. These datasets have
been carefully annotated by experts to ensure high-
quality training materials and gold-standard texts.
Using these high-quality datasets, we can further
explore how to better perform NER tasks in an-
cient Chinese.

This report introduces our NER system for Eva-
Han 2025 and its performance on testing datasets.

2 Related Work

2.1 Named Entity Recognition

NER for ancient Chinese is a more specialized
and challenging task due to the unique linguis-
tic characteristics of classical texts, such as ar-
chaic grammar, lack of punctuation, and lexical
evolution. Early studies on ancient Chinese NER
adopted rule-based methods and statistical mod-
els (Liu et al., 2018), but these approaches strug-
gled with the complexity and variability of histor-
ical texts. Recent advancements have shifted to-
ward deep learning and pre-trained language mod-
els (Tian et al., 2020), with researchers developing
models tailored to ancient Chinese. The introduc-
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Figure 1: Our model, where (a) is model network (actions of training and reasoning are distinguished by arrows)
and (b) is training strategy that is used only at training time to update parameters of (a).

tion of pre-trained language models pre-trained
on ancient Chinese corpora, such as SIKU-BERT
(Wang et al., 2021) and SIKU-RoBERTa (Wang
et al., 2021), has further enhanced NER accuracy
by capturing the linguistic nuances of classical
texts. Some other researchers (Liu et al., 2021)
propose a Chinese NER method for historical and
cultural texts using a BERT-BiLSTM-CRF model,
which significantly improves the accuracy and ef-
ficiency of entity extraction in ancient Chinese
documents by leveraging contextualized embed-
dings and sequence tagging. These models lever-
age large-scale ancient Chinese datasets, includ-
ing historical documents like the Shiji and Hanshu,
to address the limitations of modern pre-trained
language models. Additionally, the EvaHan 2022
competition has provided a benchmark for evaluat-
ing NER systems on ancient Chinese, fostering in-
novations in this domain. Despite these advances,
challenges such as data scarcity, entity ambiguity,
and cross-era vocabulary variations remain, driv-
ing ongoing research in ancient Chinese NER.

2.2 Pre-trained Language Model
In the domain of Named Entity Recognition
(NER), Pre-trained Language Models have been
pivotal, with BERT (Devlin et al., 2019) being
widely recognized. However, the application of
these models to ancient Chinese texts presents

unique challenges due to the significant linguis-
tic differences compared to modern Chinese (Sun
et al., 2019). To address this, specialized mod-
els such as SIKU-RoBERTa and GujiRoBERTa
(Wang et al., 2023) have been developed, specifi-
cally pre-trained on ancient Chinese corpora to en-
hance NER performance for historical documents.

3 Method

3.1 Model

The model is shown in Figure 1, including model
network and training strategy.

In model network, input text is first tokenized
into single tokens, forming the input sequence
S = {c1, c2, ..., cn}. If in training stage, the
truth entity annotation TE of the text input is
also entered, as shown in the figure ‘B-T M-T M-
T E-T O’. The input sequence S is then passed
through the GujiRoBERTa, a multi-layer Trans-
former structure model. In the l-th layer of Trans-
former, the hidden representation Hl is calculated
as following:

Hl = LayerNorm(Hl−1 + Attention(Hl−1)), (1)

Hl+1 = LayerNorm(Ĥl+1 + FFN(Ĥl+1)), (2)

where H0 is S, LayerNorm is the layer-wise nor-
malization layer, and Attention is the multi-head
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Combination Dataset A Dataset B Dataset C

LinearScheduleWithWarmup+Softmax 92.21 87.24 80.67
CosineSchedulerWithWarmup+Softmax 91.98 85.68 79.50

ConstantSchedule+Softmax 88.03 83.96 77.71
LinearScheduleWithWarmup+CRF 92.14 89.03 83.11

CosineSchedulerWithWarmup+CRF 92.01 85.70 80.73
ConstantSchedule+CRF 88.61 83.22 76.20

Table 1: F1 Score comparison of different combinations in training(%)

attention layer. We initialize the model using pre-
trained GujiRoBERTa. After obtaining the encod-
ing representation H from RoBERTa, these em-
beddings are passed through a linear classification
layer to produce logits:

R =MLP (H), (3)

which represent the raw, unnormalized scores in-
dicating the models confidence for each possible
class. Finally, we apply the Conditional Random
Field (CRF) to decode the logits into tags:

PE = CRF (R). (4)

where PE is entity labels predicted by model net-
work, as shown by ‘B-T M-T M-T M-T E-T’ in
Figure 1. During training, PE and TE are used
to calculate loss. In inference, PE is the output of
the NER task.

In training strategy, we use scheduler, specif-
ically, LinearScheduleWithWarmup, which re-
ceives training step and outputs an updates learn-
ing rate. The new learning rate is used by opti-
mizer to update parameters of model network.

3.2 Decoding Strategy

We employ a Conditional Random Field (CRF)
layer as the decoding mechanism. The CRF
layer explicitly models sequential dependencies
between output tags by incorporating both emis-
sion scores (token-level label confidences from the
encoder) and transition scores (learnable inter-tag
relationships). The CRF layer jointly optimizes
these two components to ensure globally coherent
predictions. The model computes the most likely
tag sequence by maximizing the conditional prob-
ability:

A =
T∑

i=1

ψemission(xi, yi), (5)

B =

T∑

i=2

ψtransition(yi−1, yi), (6)

P (y|x) = 1

Z(x)
exp(A+B). (7)

where Z(x) is the partition function, T is the se-
quence length, xi is the hidden state of the i-th
token, yi is the tag at position i, ψemission is the
emission score from the encoder, and ψtransition is
the transition score between tags.

3.3 Scheduler
As described in 3.1, during training, we employ
LinearScheduleWithWarmup as scheduler, updat-
ing learning rate based on training step:

lrwarmup(t) = lrbase ·
t

twarmup
, (8)

lrdecay(t) = lrbase ·
(
1− t− twarmup

tmax − twarmup

)
, (9)

lr(t) =

{
lrwarmup(t), if t < twarmup,
lrdecay(t), otherwise.

(10)

where lrbase is preset base learning rate, twarmup is
preset warmup timestep, t is training step, and lr(t)
is updated learning rate.

3.4 Solution for Long Sentences
The testing datasets contain some long length sen-
tences, which are beyond the maximum length
processed by model. Considering this situation,
we split these long sentences into some short sub-
sentences. We try to keep all sub-sentences seman-
tically complete thus we split the long sentence
according to punctuation instead of the maximum
length. Then we revert sentences from the output
file of system and obtain our final submisson.
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TestA TestB TestC Test Total

P R F P R F P R F P R F

Baseline 85.90 77.50 81.48 87.09 87.52 87.50 71.84 72.95 72.40 81.41 79.82 80.61
Ours 88.16 76.38 81.84 86.87 90.09 88.45 75.57 85.50 80.23 82.92 84.56 83.74

Table 2: Baseline and testing results of our model(%)

4 Experiments

4.1 Dataset

Given the closed modality competition we par-
ticipated in, our experiments were limited to the
datasets provided by EvaHAN 2025, including
three different training datasets and their corre-
sponding three test datasets. Dataset A comes
from Shiji; Dataset B is extracted from Twenty-
Four Histories; Dataset C consists of texts on Tra-
ditional Chinese Medicine Classics.

Models trained on training datasets A, B, and
C are then used to test on the corresponding test
datasets A, B, and C.

4.2 Metric

According to the requirements of EvaHAN 2025,
Precision, Recall and F1 Score are selected as met-
rics, which are simply denoted as P, R and F in
tables of this report. The results are presented in
percentages (%).

4.3 Setting

When training model, we set some hyperparame-
ters. Importantly, we set base learning rate to 5e-
5, dropout ratio to 0.1, weight decay to 0.01, and
training epoch to 50.

4.4 Training

We divided labeled training dataset into training
data and validation data in a ratio of 0.95: 0.05.
Specifically, in our experiment during training, we
used Softmax and CRF for decoding strategies.
And we selected LinearScheduleWithWarmUp,
CosineScheduleWithWarmup, ConstantSchedule
as candidate scheduler respectively. Based on
these selected approaches, we obtained six com-
binations and compared their performance. Each
combination was trained on training data A, B, and
C and evaluated separately on validation data A, B,
and C. In Table 1, we compare the performance of
different combinations on the three data sets. For
brevity, we only show the F1 Score. Based on

the result of comparison, our model finally chosed
CRF and LinearScheduleWithWarmup.

4.5 Testing
After the test datasets were released, We used
trained models to test and got our NER results. Af-
ter confirming that the number of characters is ex-
actly the same as test datasets and that each line
is completely aligned with the test datasets, we
submitted our result documents before the dead-
line. The quantitative results of our model were
informed by NER 2025, along with the base-
line, which used SikuRoBERTa-BiLSTM-CRF.
As shown in Table 2, our approach outperformed
the baseline, especially on TestC. In Test Total,
compared with baseline, Precision, Recall and F1
Score of our model increased by 1.51%, 4.74%
and 3.13% respectively, demonstrating the effec-
tiveness of our model.

However, our method has a slightly lower Re-
call on TestA and a slightly lower Precision on
TestB. To explore the reasons, we carefully ex-
amined datasets and found that our model tends
to get confused with annotations of certain offi-
cial positions or time-related terms in TestA and
TestB. However, many of the entities in dataset C
are medical terms. The individual words that make
up these terms appear less frequently in other enti-
ties, and the models are less easily confused facing
with these terms. In future research, we will try to
improve here.

5 Conclusion

In this report, we describe our named entity recog-
nition system for EvaHan 2025 task, which proves
the rationality of selecting CRF and LinearSched-
uleWithWarmup through experiments. Addition-
ally, this report proves the effectiveness of the sys-
tem by comparing to official baseline.
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Abstract

Named entity recognition is a fundamental task
in ancient Chinese text analysis.Based on the
pre-trained language model of ancient Chinese
texts, this paper proposes a new named entity
recognition method GRoWE. It uses the an-
cient Chinese texts pre-trained language model
GujiRoBERTa as the base model, and the word-
word relation prediction model is superposed
upon the base model to construct a superpo-
sition model. Then ensemble strategies are
used to multiple superposition models. On the
EvaHan 2025 public test set, the F1 value of
the proposed method reaches 86.79%, which
is 6.18% higher than that of the mainstream
BERT_LSTM_CRF baseline model, indicating
that the model architecture and ensemble strat-
egy play an important role in improving the
recognition effect of naming entities in ancient
Chinese texts.

1 Introduction

As an important carrier of Chinese history and
culture, ancient Chinese texts preserve thousands
of years of civilization and wisdom. It is essen-
tial to obtain the information contained in them.
Named entity recognition (NER), a crucial natural
language processing technique, plays an indispens-
able role in information extraction from ancient
Chinese texts(Long et al., 2016). NER aims to
extract entities such as person name, book title, of-
ficial title and so on, providing a foundation for
understanding ancient Chinese texts and construct-
ing ancient Chinese knowledge graphs.

However, NER in ancient Chinese texts faces
many challenges. First, Old Chinese (classical Chi-
nese) is highly concise, lacks clear boundary mark-
ings between words, and the subject or object is
often omitted in sentence structure, which greatly
increases the difficulty of identifying named enti-
ties. Second, due to historical changes and the di-
versity of textual contexts, the same word or phrase

may refer to completely different entities in dif-
ferent contexts. In addition, in order to promote
the task of NER in ancient Chinese texts, the or-
ganizers of EvaHan 2025 release a unified dataset
and pre-trained pedestal model, hoping to promote
the progress of the named entity recognition task
through a unified standard.

In this study, we propose a named entity recogni-
tion method GRoWE (GujiRoBERTa + Word-Word
Relation Prediction + Ensemble) suitable for the
characteristics of ancient Chinese texts: based on
the pre-trained basic model of ancient Chinese texts
GujiRoBERTa, the word-word relation processing
of W2NER is reused, and a multi-model ensemble
strategy is introduced. On the dataset published
in EvaHan 2025, the method achieves significantly
better results than the public baseline model.

2 Related work

Early NER research primarily relied on rule-based
approaches and statistical models; however, the
landscape transformed significantly with the ad-
vent of deep learning techniques. The BiLSTM-
CRF architecture emerged as a pivotal innovation
(Huang et al., 2015). This framework established a
fundamental paradigm in the NER domain. The ap-
plication of this method to person name recognition
in ancient Chinese literature has shown promising
results (Zhang et al., 2021).

In 2018,BERT was proposed(Devlin et al., 2019),
characterized by its large-scale unsupervised pre-
training and bidirectional Transformer architecture,
which delivers robust contextual representations
for NER tasks. Extending this technological foun-
dation, the HistoryNER dataset came into being
through the implementation of a BERT-BiLSTM-
CRF architecture(Liu et al., 2021), specifically en-
gineered for the identification of entity types within
historical Chinese texts.

In terms of architectural advancements in NER,
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a unified MRC framework(Li et al., 2022b) ma-
terialized, reconceptualizing NER as a machine
reading comprehension challenge. This innova-
tive approach extracts entities via natural language
queries, harnessing prior knowledge embedded
within these queries to enhance the model’s com-
prehension of entity categories. Concurrently, the
field benefited from the development of the Global
Pointer model(Su et al., 2022), which incorporates
relative position encoding and multi-head atten-
tion mechanisms, substantially improving the de-
tection of nested and lengthy entities. The evo-
lution of NER methodologies further progressed
with the conceptualization of the W2NER frame-
work(Li et al., 2022a), which elegantly models adja-
cency relationships between entities through word-
word relation classification. This novel perspec-
tive addresses critical limitations in conventional
approaches when handling overlapping and discon-
tinuous entities, contributing significantly to the
field with its exceptional capability in processing
complex entity structures.

3 Method

3.1 Model Selection

Mainstream named entity recognition methods use
an encoder pre-trained language model to obtain
the semantic information of the text, and integrate
the features obtained from the encoder into the
personalization module for further feature transfor-
mation, ultimately outputting probability distribu-
tion on different labels. The common personaliza-
tion modules are as follows: LSTM+CRF combi-
nation method, GlobalPointer method which sup-
ports multi-head recognition of nested entities, and
W2NER method for predicting relations between
word pairs. In addition, named entity recognition
can be regarded as a reading comprehension task,
entities as problems, and text to be labeled as doc-
uments, and named entity recognition can be real-
ized by marking the location of the problem in the
document.

We cut the training dataset into consistent five-
fold divisions, train the four methods mentioned
above, and test the model performance. The spe-
cific experimental data are shown in Table 1. Based
on the model performance, we select the W2NER
as the personalized module for the ancient Chinese
text named entity recognition task.

3.2 Architecture

To better adapt to the characteristics of ancient
Chinese texts, we designed the network architec-
ture GRoWE as shown in Figure 1. In order to
reflect the characteristics of ancient Chinese texts,
the encoder is GujiRoBERTa-jian-fan, a pre-trained
model for ancient Chinese texts in the EvaHan2025
part, and the output results of the encoder are fur-
ther input into the bidirectional LSTM layer, which
encodes the features in both directions, and then is
sent to the W2NER module, after encoding through
Convolution Layer and Co-Predictor Layer, the re-
lation between word pair is classified and the logits
are calculated.

In order to explore the potential of model combi-
nation, we adopted a multi-model ensemble strat-
egy: the training set was divided into five folds, and
the model was trained using the data from four of
the folds in turn, resulting in a total of five models.
Then, the logits of these five models were directly
summed up to form the final ensemble result vector,
which was then decoded to obtain the final labeled
result.

3.3 Main Process

The main process can be formally described as
follows:

Input Representation: Given an input sen-
tence X = {x1, x2, . . . , xN}, the BERT + BiL-
STM model generates contextual word embeddings
H = {h1, h2, . . . , hN}, where hi ∈ Rdh and dh
represents the embedding dimension.

Word Pair Embedding Computation: Subse-
quently, the word-pair embedding Vi,j is computed
as:

Vi,j = γi,j ⊙
(
hj − µ

σ

)
+ λi,j

where:
- γi,j =Wαhi + bα
- λi,j =Wβhi + bβ

- µ = 1
dh

∑dh
k=1 hj,k

- σ =
√

1
dh

∑dh
k=1(hj,k − µ)2

- The symbol ⊙ denotes element - wise multipli-
cation.

Multi - Layer Dilated Convolution Appli-
cation: Then, multi-layer dilated convolutions
(DConv) are applied to V :

Ql = σ (DConvl(V )) , l ∈ {1, 2, 3}
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Figure 1: Architecture of GRoWE

The final representation is Q = [Q1;Q2;Q3] ∈
RN×N×3dc , where dc is the hidden dimension of
the convolution operation.

Word-Pair Relation Probability Prediction:
After that, word-pair relation probabilities are pre-
dicted by combining Biaffine and MLP:

yi,j = Softmax(y′i,j + y′′i,j)

where:
- Biaffine prediction: y′i,j = s⊤i Uoj+W [si; oj ]+

b
- MLP prediction: y′′i,j =MLP (Qi,j)
- si =MLP2(hi) and oj =MLP3(hj)
Inference and Aggregation: During inference,

the logits from each model’s Co-Predictor Layer
are aggregated. For M models, the final logits are
the sum of individual model outputs:

logitsfinal =
M∑

m=1

(
y
′(m)
i,j + y

′′(m)
i,j

)

The predicted relation is determined by select-
ing the label with the highest score after applying
Softmax:

yi,j = Softmax(logitsfinal)

where y
′(m)
i,j and y

′′(m)
i,j denote the Biaffine and

MLP outputs of the m-th model.
Relation Decoding: For relation decoding, a

directed graph is constructed based on the predicted
relations, and entities are extracted via depth-first
search.

4 Data and experiments

4.1 Data preprocessing
The datasets used in this paper are from Shiji
(dataset A), Twenty-Four Histories (dataset B), and

Traditional Chinese Medicine Classics (dataset C)
provided by evahan2025, and are divided into two
parts, the training set and the test set. In this study,
the preprocessing work is carried out on datasets A,
B, and C, and data enhancement process is further
carried out on the data in the training set. The pre-
processing mainly includes sentence segmentation
and de-duplication, while the data enhancement is
based on sliding window operations to enrich the
training data.

For the data preprocessing, in the initial stage,
we cut all the datasets into sentences based on the
single character break strategy, using "." , "!" ".",
"!", "?" ", "!", "?", ";" as the sentence termination
identifiers. For long sentences longer than 120
characters, we implemented a secondary cutting
strategy, i.e., we selected the nearest comma or the
stop sign to the length of 120 characters as the cut-
ting point to ensure that the cut sentence remained
within the appropriate length range. Subsequently,
de-duplication is performed on the cut sentences,
and the final number of sentences in the training
set is obtained as follows: dataset A (8,218 sen-
tences), dataset B (3,507 sentences), and dataset
C (6,545 sentences), respectively. After carrying
out the same operations, the number of sentences
are obtained for the test set: dataset A (994 sen-
tences), dataset B (884 sentences) and dataset C
(1,115 sentences).

To enhance the data diversity, we use the slid-
ing window technique to expand the samples in
the training set. Specifically, for the preprocessed
sentence sequence, [s1, s2, s3, s4, . . . , sn], we im-
plement a sliding window operation with an in-
cremental step of 1 for each sentence si, generate
candidate sets [si, si + si+1, ..., . . . , si + ...+ sn],
and screen the combined sentences with a length
of less than 120 characters as the expanded train-
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ing samples.Through this processing, the number
of training samples in datasets A, B, and C was
expanded to 48,797, 14,629, and 65,227, respec-
tively,totaling 128,653 training samples.

For the expanded sample, we implemented strati-
fied sampling according to the sentence entity type,
and divided the data into 5 equal parts for cross-
validation. It’s worth noting that this segmentation
strategy can lead to high evaluation metrics due
to the potential risk of data breaches. Specifically,
when the original sentence that si with its derivative
samples si + si+1. Based on the fact that stratified
sampling is randomly assigned to the training and
test sets, the models may obtain some information
of the test samples from the training data. However,
considering that this division only serves the model
selection session, and all the comparison models
are evaluated under the same dataset and evaluation
system, this division is acceptable in the context of
this study.

After completing the model selection, we used
the sequential cutting method to re-divide the data
into five equal parts. In this way, we retrained
and reevaluated the optimal models to ensure the
reliability and fairness of the final results.

4.2 Parameter Settings
When comparing different methods, we use Siku-
BERT as the base model and the default parameters
from each method’s public code for training.

For the GRoWE method, the base model is
GujiRoBERTa-jian-fan. The training settings are:
batch size = 32, learning rate = 5e-6, seed=1234,
and 14 epochs in total. We use the model from the
last epoch to predict on the test set.

4.3 Comparative experiments with
mainstream models

In this study, we systematically evaluate the per-
formance of multiple architectures using BERT as
encoder in the task of named entity recognizing in
ancient Chinese texts, including BERT-BiLSTM-
CRF, GlobalPointer, MRC, and W2NER. While
keeping the encoder consistent, the experimental
results are shown in Table 1, which show that the
model based on W2NER architecture performs op-
timally among all the evaluated scenarios, with
F1-score of 88.48%, which is significantly better
than other architecture combinations.

Based on this finding, we further use the
GRoWE architecture depicted in Figure 1 to train
the model and validate it on the public test set.

4.4 Comparison of experiments on the Test set
The method of comparison is as follows:

Method1: RoBERTa-BiLSTM-CRF, the official
baseline model announced by EvaHan 2025, the
pre-trained language model corresponding to the
encoder is SikuRoBERTa, and the personalized
insertion module is BiLSTM+CRF.

Method2: RoBERTa-W2NER,following the offi-
cial requirements of EvaHan 2025, the pretrained
language model corresponding to the encoder
is GujiRoBERTa-jian-fan, and the output of the
W2NER Layer is directly used to decode the out-
put for named entity recognition.

Method3: GRoWE,the method proposed in this
paper, utilizes five models obtained from five-fold
cross-training of the training set, and logits cumu-
lative ensemble is used to obtain the final results.

As shown in Table 2, the combination of the
proprietary pre-trained model and W2NER is sig-
nificantly better than the baseline model, indicating
that the W2NER layer embodies a stronger entity
recognition ability through convolution and word-
word relation prediction processing. GRoWE fur-
ther adopted the ensemble learning strategy, and
the performances were further improved, with the
F1-score increasing by 6.18 percentage points com-
pared with the baseline model, and outperforming
other methods in all test subsets. It can be seen the
word-word relation prediction model can improve
the recognition effect of named entities, and the
ensemble framework reduces the prediction bias of
a single model by integrating the prediction advan-
tages of multiple models.

5 Conclusion

This paper proposes a new named entity recogni-
tion method GRoWE. It uses the ancient Chinese
texts pre-trained language model as the base model,
and the W2NER word-word relation prediction
model is superposed upon the base model to con-
struct a superposition model. Then ensemble strate-
gies are used to multiple superposition models.The
public test set results show that the GRoWE method
significantly outperforms the baseline model and
improves the overall recognition effect of ancient
Chinese texts NER.
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Model Name Indicator Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

BERT-BiLSTM-
CRF

Precision 85.46% 85.88% 85.85% 84.38% 84.92% 85.30%

Recall 86.73% 87.47% 88.25% 87.68% 87.91% 87.61%

F1 Score 86.09% 86.67% 86.52% 86.00% 86.39% 86.33%

GlobalPointer

Precision 86.21% 86.25% 86.08% 85.63% 85.07% 85.85%

Recall 89.10% 89.12% 88.65% 88.20% 89.48% 88.91%

F1 Score 87.61% 87.64% 87.32% 86.88% 87.19% 87.33%

MRC

Precision 84.58% 86.39% 86.29% 82.84% 85.03% 85.03%

Recall 81.12% 82.90% 82.22% 82.79% 80.27% 81.86%

F1 Score 82.81% 84.61% 84.20% 82.81% 82.58% 83.40%

W2NER

Precision 89.60% 89.88% 89.32% 89.05% 90.19% 89.61%

Recall 87.99% 87.68% 86.64% 87.06% 87.55% 87.38%

F1 Score 88.79% 88.77% 87.96% 88.05% 88.85% 88.48%

Table 1: Performance Comparison of Different Models with BERT Encoder across 5-fold Cross-validation

Model Name Indicator Test A Test B Test C Average

RoBERTa-BiLSTM-CRF
(Baseline)

Precision 85.90% 87.09% 71.84% 81.41%

Recall 77.50% 87.92% 72.95% 79.82%

F1 Score 81.48% 87.50% 72.40% 80.61%

RoBERTa-W2NER

Precision 88.17% 89.55% 79.53% 85.47%

Recall 82.10% 89.96% 88.64% 87.24%
F1 Score 85.03% 89.76% 83.83% 86.34%

GRoWE

Precision 88.97% 90.22% 81.33% 86.64%
Recall 81.45% 90.34% 87.91% 86.94%

F1 Score 85.04% 90.28% 84.49% 86.79%

Table 2: The Results of the Experiment on the Test set
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Abstract

This report presents our team’s work on ancient
Chinese Named Entity Recognition (NER) for
EvaHan 20251. We propose a two-stage frame-
work combining GujiRoBERTa with a Logits-
Constrained (LC) mechanism. The first stage
generates contextual embeddings using Gu-
jiRoBERTa, followed by dynamically masked
decoding to enforce valid BMES transitions.
Experiments on EvaHan 2025 datasets demon-
strate the framework’s effectiveness. Key find-
ings include the LC framework’s superiority
over CRFs in high-label scenarios and the detri-
mental effect of BiLSTM modules. We also
establish empirical model selection guidelines
based on label complexity and dataset size.

1 Introduction

Named Entity Recognition (NER) is basically a
task to identify and classify named entities in texts,
such as person name, geographical location, and
time expression. It is a crucial research topic in
NLP. NER in Ancient Chinese is particularly chal-
lenging due to the complex semantic properties
of words, which can lead to errors in label se-
quence predictions. To address this, our model
integrates the Logits-Constrained Framework with
GujiRoBERTa2, effectively reducing such errors.

2 Related Work

2.1 RoBERTa
Large-scale pre-trained language models (PLMs)
based on Transformer architectures (Vaswani et al.,
2023) have revolutionized sequence labeling tasks.
RoBERTa (Liu et al., 2019), an optimized variant
of BERT (Devlin et al., 2019), steadily improved
Ancient Chinese NER accuracy. GujiRoBERTa,
pre-trained on a large corpus of traditional Chinese

1https://github.com/GoThereGit/EvaHan
2https://huggingface.co/hsc748NLP/GujiRoBERTa_

jian_fan

texts, serves as the backbone model in our EvaHan
2025 close-modality setting and is a fine-tuned ver-
sion of SikuRoBERTa.

2.2 Transition Constraints in Sequence
Labeling

Sequence labeling tasks require strict adherence to
structural constraints defined by tagging schemes.
For instance, under the BMES scheme where
valid label sequences must conform to S3 =
Perm({B,M,E}), the transition (B,M,E) is the
only valid transition in S3. Traditional approaches
employ Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) with bidirectional LSTMs (BiL-
STMs)(Huang et al., 2015) to globally normalize la-
bel transition probabilities during inference. How-
ever, these methods depend on manually designed
transition matrices and often produce illegal paths
when decoding under low-resource or label-sparse
senarios.

Recent work explores alternative constraint
mechanisms. For example, Jiang et al. (2021) pro-
poses a constrained transition framework that dy-
namically masks invalid transitions during train-
ing and inference. Similarly, Wei et al. (2021) de-
velops a masked transition learning approach that
implicitly encodes tagging scheme rules through
auxiliary language modeling objectives. Our work
extends these paradigms by directly incorporating
transition constraints into the model’s parameter-
ized decision boundary, which eliminates heuristic
post-processing while maintaining theoretical guar-
antees of valid output structures.

3 Method

3.1 Pre-processing

Punctuation marks provide potential entity bound-
ary information, and preserving and correctly seg-
menting them can enhance NER performance (Ge,
2022) . Considering the characteristics of punc-
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tuation in the EvaHan 2025 training sets, we
adopt different sentence segmentation strategies.
Specifically, trainset_c only considers primary
sentence-ending punctuation: “。”, “！”, and “？”.
In contrast, trainset_a and trainset_b addition-
ally account for “」” and “』”, as well as “”” and
“”’ as special sentence-final markers.

3.2 Framework

Motivated by the Occam’s razor principle – that
simpler hypotheses consistent with observations
are preferable (MacKay, 2003) – we propose a min-
imally invasive two-stage architecture that main-
tains model simplicity while enforcing structural
constraints. Our design philosophy consciously
avoids stacking complex components like CRFs or
BiLSTMs, which may introduce interference pat-
terns during learning.Just as illustrated in Figure 1,
the framework operates through.

3.2.1 Stage 1: Contextual Encoding with
GujiRoBERTa

The pre-trained GujiRoBERTa model generates
contextualized embeddings hi ∈ Rd for each token
xi, capturing ancient linguistic patterns through its
12-layer transformer architecture. A linear projec-
tion layer then computes initial label logits:

li = Whi + b (1)

where W ∈ Rk×d maps to k possible labels. Train-
ing uses standard cross-entropy loss without ex-
plicit transition modeling.

3.2.2 Stage 2: Logits-Constrained Decoding

We introduce a constraint matrix M ∈ {0, 1}k×k

encoding valid BMES transitions (e.g., B-PER can
only transition to M-PER or E-PER). During infer-
ence, we modulate the logits sequence {l1, ..., ln}
through masked autoregressive refinement:

l′t = M[yt−1]⊙ lt + (1−M[yt−1]) · (−∞) (2)

where yt−1 denotes the previous token’s predicted
label. This differentiable masking ensures struc-
turally valid outputs without additional trainable
parameters.

Figure 1: Framework Overview

4 Experiments

Following EvaHan 2025 guidelines, we use three
training sets—trainset_a, trainset_b, and train-
set_c—annotated with 6, 3, and 6 NER categories,
respectively, plus a non-NER label “O.” The {B, M,
E, S} scheme marks entity positions as Begin, Mid-
dle, End, or Single. Since trainset_b’s categories
are a subset of trainset_a’s, the dataset includes 37
classification labels.

4.1 Experimental Environment

All experiments were conducted on Google Colab
using NVIDIA A100 (40 GB) and T4 GPUs with
mixed precision (FP16) training enabled.

4.2 Parameter Regulation

The model was trained for 4 epochs with a batch
size of 8 for training and 1 for evaluation. The
learning rate was set to 2 × 10−5 with a warmup
ratio of 0.1 and a weight decay of 0.01 to mitigate
overfitting. Gradient accumulation was performed
over 2 steps, with a linear scheduler adjusting the
learning rate progressively.
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4.3 GujiRoBERTa

We only employed GujiRoBERTa with an addi-
tional linear classifier to evaluate the NER tag-
ging results, without incorporating any additional
components. Nevertheless, this approach achieved
promising performance during training (see Ta-
ble 1).

Dataset P R F1

A 0.9170 0.9190 0.9180
B 0.9251 0.9221 0.9236
C 0.7744 0.8418 0.8067

Table 1: Performance of GujiRoBERTa

4.4 Cross-Comparison

Therefore, we conducted further cross-comparison
experiments, drawing parallels with typical config-
urations in NER tasks to assess the relative con-
tributions of different model components and po-
tential performance improvements. In the follow-
ing tables, “+” indicates the inclusion of the corre-
sponding module, while “-” denotes its exclusion.

BiLSTM CRF LC F1

- - - 0.9180
+ - - 0.9016
- + - 0.9143
- - + 0.9269
+ + - 0.8850
- + + 0.9213
+ - + 0.8976
+ + + 0.8947

Table 2: Results of Dataset A

BiLSTM CRF LC F1

- - - 0.9236
+ - - 0.8617
- + - 0.9278
- - + 0.9218
+ + - 0.9100
- + + 0.9308
+ - + 0.8594
+ + + 0.9012

Table 3: Results for Dataset B

BiLSTM CRF LC F1

- - - 0.8067
+ - - 0.7383
- + - 0.8112
- - + 0.8262
+ + - 0.7602
- + + 0.8314
+ - + 0.7547
+ + + 0.7804

Table 4: Results for Dataset C

Through cross-comparison of the results (see
Table 2, Table 3, and Table 4), we found that
CRF effectively captures sequence patterns in low-
dimensional label spaces by leveraging predefined
transition constraints. However, as the number of
labels increases, the performance of CRF decreases
by 1.3% and 0.5% on Datasets A and C, respec-
tively. This is likely because manually designed
transition matrices are less capable of covering
high-dimensional state spaces.

In contrast, the Logits-Constrained (LC) frame-
work demonstrates greater generalizability. In sce-
narios with six or more labels (L ≥ 6) (Datasets
A/C), our LC framework exhibits a significant ad-
vantage, achieving an average F1 improvement of
1.95%. Notably, on Dataset C, which features a
complex entity distribution, the dynamic masking
mechanism in LC raises the F1 score from the base-
line of 0.8067 to 0.8262 (+2.95%).

Moreover, the introduction of BiLSTM leads to
performance degradation across all datasets, with
an average ∆F1 = −3.8%. We speculate that this
is due to the disruption of the inherent attention
patterns in the pretrained model caused by the ad-
dition of BiLSTM, as well as the increased risk
of the bidirectional recurrent structure’s parameter
updates getting trapped in local optima.

4.5 Dataset Expansion

By integrating the annotated data from Dataset A
according to the specifications of Dataset B, we ex-
pand the sample size of the hybrid Dataset B from
3,434 sentences to 11,307 sentences (+229%), and
conduct the same experiments (see Table 5).
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Dataset Sentences Label Types

Dataset B 3434 13
Hybrid 11307 13

Table 5: Statistics of Datasets

BiLSTM CRF LC F1

- - - 0.9369
+ - - 0.8964
- + - 0.9465
- - + 0.9395
+ + - 0.8364
- + + 0.9439
+ - + 0.8957
+ + + 0.9401

Table 6: Results for Dataset B (Hybrid)

Table 6 demonstrates a positive correlation be-
tween dataset scale and model performance in
NER, with the baseline F1 score increasing by
1.33% under consistent model settings. Since the
CRF’s global normalization enhances long-range
dependency modeling and LC’s dynamic masking
mitigates overfitting in sparse label scenarios, the
combined application of the CRF and LC frame-
works yields optimal performance, surpassing the
performance of individual framework implementa-
tions.

4.6 Model Selection
As noted earlier, balancing dataset size and label
complexity is crucial in sequence labeling tasks.
We define the optimal model selection as a func-
tion of label cardinality L and sentence count N ,
yielding the following empirically optimized scal-
ing relationship:

Γ(L,N) =





− (LC) if L ≥ 20

∧N > 0.16L2.8

+ (CRF+LC) otherwise
(3)

Here, the threshold 0.16L2.8 is derived via pa-
rameter tuning across various datasets, and the ex-
ponent 2.8 accurately quantifies the super-linear
penalty imposed by increasing label complexity on
the required amount of data.

Within this framework, we identify two primary
operational regimes. When label complexity is

high and data is abundant, the Logits-Constrained
(LC) model effectively mitigates the overfitting risk
associated with the CRF’s transition matrix, lead-
ing to significant performance gains. Empirical re-
sults show that the LC model explains 82% of the
performance variance in this setting. Conversely,
for moderate label complexity or limited data, a
CRF+LC combination leverages both components:
CRF captures tag transitions, while LC acts as a
regularizer. The term L2.8 quantifies the exponen-
tial increase in data required to justify an LC-only
approach as label complexity grows.

To refine model selection, we formulate the con-
figuration problem as a constrained optimization:

min
α,β

4∑

i=1

(
F1

(i)
best − F1

(i)
pred

)2
e
−α

Ni

L
β
i (4)

This is solved via gradient descent, yielding opti-
mal parameters α = 0.16 and β = 2.8.

Ablation studies on BiLSTM integration show
consistent performance degradation (∆F1 =
−2.4%± 1.1%), with the negative impact increas-
ing in high-label, low-data settings:

deg(BiLSTM) ∝ L1.7N0.6 (5)

This suggests that BiLSTM’s detrimental effect is
amplified under high label density and limited data.

Based on the above analysis, we provide the fol-
lowing practical guidelines. First, eliminate the
BiLSTM module in all configurations. Second, use
the CRF+LC model by default when L ≤ 13 or
N ≤ 0.16L2.8 to fully capture transition depen-
dencies. Third, switch to an LC-only model when
L ≥ 20 and N > 0.16L2.8 to avoid overfitting and
leverage the benefits of abundant data.

5 Conclusion

We propose a Logits-Constrained framework with
GujiRoBERTa for ancient Chinese NER. The two-
stage pipeline enforces BMES constraints through
dynamic logits masking, eliminating invalid tran-
sitions while maintaining simplicity. Experiments
show that LC outperforms traditional CRF-based
methods, improving F1 by up to 2.95% in com-
plex label scenarios. BiLSTM integration degrades
performance, while dataset expansion and hybrid
CRF+LC improve robustness. A data-driven model
selection criterion shows LC alone excels when la-
bel count L ≥ 20 and data size N > 0.16L2.8.
This work offers a practical, theoretically sound
solution for ancient Chinese NER.
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6 Limitations

Although our framework achieves high accuracy
with a compact design, several limitations remain.
First, the predefined Logits-Constrained matrix M
is based on manual BMES rules, which may not
generalize well and is highly sensitive to the ac-
curacy of the initial token. Second, the two-stage
pipeline introduces additional inference overhead
compared to end-to-end models. Third, perfor-
mance depends on sentence segmentation quality,
making it vulnerable to errors in unpunctuated or ir-
regular historical texts. Future work could explore
adaptive constraint learning and unified architec-
tures to address these issues.
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Abstract

We present a multi-strategy Named Entity
Recognition (NER) system for ancient Chi-
nese texts in EvaHan2025. Addressing dataset
heterogeneity, we use a Conditional Random
Field (CRF) for Tasks A and C to handle
six entity types’ complex dependencies, and
a lightweight Softmax classifier for Task B’s
simpler three-entity tagset. Ablation studies on
training data confirm CRF’s superiority in cap-
turing sequence dependencies and Softmax’s
computational advantage for simpler tasks. On
blind tests, our system achieves F1-scores of
83.94%, 88.31%, and 82.15% for Test A, B,
and C—outperforming baselines by 2.46%,
0.81%, and 9.75%. With an overall F1 im-
provement of 4.30%, it excels across histor-
ical and medical domains. This adaptability
enhances knowledge extraction from ancient
texts, offering a scalable NER framework for
low-resource, complex languages.

1 Introduction

Named Entity Recognition (NER), a fundamental
task in information extraction, identifies key enti-
ties such as person names, locations, and organiza-
tions within text. It is essential for applications like
information retrieval (Fetahu et al., 2021; Wang
et al., 2022; Mokhtari et al., 2019). In ancient liter-
ature, NER supports the analysis of ancient Chinese
texts and the extraction of humanistic knowledge.
However, this task faces challenges due to limited
public datasets and the unique features of classi-
cal texts, including polysemy, continuous structure,
and unpunctuated traditional Chinese characters,
all of which complicate entity boundary detection.

The EvaHan2025 competition1 tackles these
challenges with a 500,000-character dataset of his-
torical and medical classical texts, expertly curated
through automated annotation and manual review.

** Corresponding author.
1https://github.com/GoThereGit/EvaHan

Spanning subsets from Shiji, Twenty-Four Histo-
ries, and Traditional Chinese Medicine Classics,
it encompasses diverse entity types and linguistic
styles. To tackle this complexity, we propose a
multi-strategy NER framework for EvaHan2025.
Our system integrates a Conditional Random Field
(CRF) model to capture intricate sequence depen-
dencies in Tasks A and C, paired with a lightweight
Softmax classifier for Task B to optimize efficiency
for its simpler tagset. This hybrid approach outper-
forms official baselines, demonstrating robustness
across heterogeneous datasets and advancing NER
for ancient Chinese texts.

2 Related Work

2.1 Named Entity Recognition

Deep learning has shifted NER from rule-based
methods to neural networks, which automatically
extract features from text, improving efficiency
over manual rule design. Huang et al. (Huang
et al., 2015) proposed BiLSTM-CRF, combin-
ing BiLSTM’s long-distance dependency capture
with CRF’s sequence optimization, excelling on
the CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003). (Ma and Hovy, 2016) ad-
vanced this with BiLSTM-CNN-CRF, using CNNs
for word-level features and CRF for refinement,
boosting English NER performance (Wang et al.,
2022). Transformer-based models later enhanced
results with contextual embeddings (Mokhtari et al.,
2019), leading to paradigms like sequence labeling
(Lample et al., 2016; Devlin et al., 2019), span-
based recognition (Fu et al., 2021), and text gener-
ation (Zhang et al., 2022).

While these methods excel in modern languages
like English and Chinese (Mokhtari et al., 2019),
ancient Chinese NER remains underexplored. The
EvaHan2025 competition addresses this by provid-
ing an ancient Chinese dataset, advancing domain-
specific NER research.
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Figure 1: Architecture of the Multi-Strategy NER System. The system employs GujiRoBERTa_jian_fan as the
PLM, paired with CRF for Tasks A and C (six entity types) and Softmax for Task B (three entity types).

2.2 Pre-trained Language Models

Pre-trained Language Models (PLMs) have revo-
lutionized NLP tasks, including NER, by provid-
ing rich contextual representations. BERT (Devlin
et al., 2019) pioneered this approach, with variants
like RoBERTa (Liu et al., 2019) and ELECTRA
(Clark et al., 2020) enhancing efficiency. For an-
cient Chinese, specialized models like Siku-BERT
(Wang et al., 2021) have been developed to address
unique linguistic features, significantly improving
performance in downstream tasks such as NER.

3 Method

3.1 Pre-processing

To avoid redundant code, we use the seqeval library
for validation—even though it does not support
BMES annotations. Thus, we convert BMES pre-
fixes to BIOES during preprocessing, reducing the
need for custom evaluation functions. We term this
a simplified preprocessing algorithm. Secondly, in
the data preprocessing stage, we process it through
the custom "NERDataset" class. This class inherits
from Dataset, can read text file paths and label file
paths, filter out overly long sentences, and form
tuples of samples and labels to meet the training re-
quirements of the model. The EvaHan2025 dataset
exhibits heterogeneity across Tasks A, B, and C,
with varying entity types (six in Tasks A and C vs.
three in Task B) and domain styles (Shiji, Twenty-
Four Histories, and TCM Classics), necessitating a
tailored strategy for each task.

3.2 Model

The architecture of our model is shown in Fig-
ure 1. To address the heterogeneity of the Eva-
Han2025 dataset, we propose a multi-strategy NER

framework. We adopt GujiRoBERTa_jian_fan2,
a competition-mandated pre-trained model on an-
cient Chinese texts, to generate contextual rep-
resentations H from an input sequence x =
{x1, x2, . . . , xn}. The model yields representa-
tions H = {h1,h2, . . . ,hn}:

H = GujiRoBERTa_jian_fan(x). (1)

For Tasks A and C, which involve six complex
entity types (Table 4), we employ a CRF layer to
capture intricate label dependencies, computing the
optimal sequence:

Y = argmax
y

P (y | H), (2)

where P (y | H) integrates transition and emission
scores (Lafferty et al., 2001).

Conversely, for Task B’s simpler three-entity
tagset (Table 4), we use a Softmax layer to pre-
dict tags efficiently:

P (yi = c | hi) =
exp((Whi + b)c)∑
c′ exp((Whi + b)c′)

, (3)

This choice leverages Task B’s reduced label tran-
sition complexity (three entities vs. six in Tasks A
and C), where CRF’s sequence modeling is less crit-
ical, as validated by ablation studies (Table 3), pri-
oritizing Softmax’s computational efficiency with-
out sacrificing accuracy.

This hybrid approach leverages annotated data
to bypass boundary ambiguity, with CRF ensuring
accuracy for complex tasks and Softmax enhancing
efficiency for simpler ones.

2https://huggingface.co/hsc748NLP/GujiRoBERTa_
jian_fan
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Subset Task (Domain) Labeled Characters Purpose

Training A, B, C Yes 320,000 Model Training
Validation A, B, C Yes 80,000 Model Selection
Blind Test A, B, C No 100,000 Final Evaluation

Table 1: Dataset statistics for EvaHan2025. Tasks correspond to domains: A (Shiji), B (Twenty-Four Histories), C
(Traditional Chinese Medicine Classics). Total characters: 500,000.

Method Test A Test B Test C Overall

P R F1 P R F1 P R F1 P R F1

Baseline 85.90 77.50 81.48 87.09 87.92 87.50 71.84 72.95 72.40 81.41 79.82 80.61
Ours 89.13 79.32 83.94 89.34 87.30 88.31 78.37 86.32 82.15 85.16 84.66 84.91

Table 2: Performance Comparison (Precision, Recall, F1, as Percentages) Between Our System and the Baseline
Across Test A, B, and C in EvaHan2025 Blind Tests (Close Modality).

4 Experiments

4.1 Dataset
We used the EvaHan2025 dataset, comprising
500,000 characters across three domains: Task A
(Shiji), Task B (Twenty-Four Histories), and Task
C (Traditional Chinese Medicine Classics). Statis-
tics are detailed in Table 1, with entity tagsets in
Table 4. The labeled data was split into training
(80%, 320,000 characters) and validation (20%,
80,000 characters) sets for model training and val-
idation, respectively. The unlabeled blind test set
( 100,000 characters) was used solely for final eval-
uation by the organizers, with predictions submit-
ted post-training. This separation ensures robust
and fair results.

4.2 Implementation Details
We built all models atop GujiRoBERTa_jian_fan,
a pre-trained model from the Transformers library.
For Tasks A and C, we added a CRF task head using
the CRF library and applied a layered learning rate
strategy. For Task B, we appended a Softmax layer.
Models were optimized with AdamW (Loshchilov
and Hutter, 2019), and performance was assessed
using the seqeval library. Experiments ran on the
environment in Table 5, with key hyperparameters
listed in Table 10. Full details and code are avail-
able on GitHub.3

4.3 Metrics
In accordance with the conventions of Named En-
tity Recognition, we use Precision (P), Recall (R),
and F1 score (F1) as evaluation metrics across all

3https://github.com/wxndong/MSNER4AC

experiments. All results are reported in percent-
age form to ensure consistency and facilitate com-
parison across different models and experimental
settings.

4.4 Baseline

To better evaluate our model’s effectiveness, we use
the official SikuRoBERTa-BiLSTM-CRF, trained
on the training set without additional resources,
as the baseline. Comparing our model with this
baseline offers a clearer understanding of its per-
formance and advantages.

4.5 Results

Results are presented in Table 2. Our system sur-
passes the baseline across all metrics for Tasks A,
B, and C, achieving average F1 gains of 4.30%.
This superiority stems from our multi-strategy ap-
proach: CRF effectively captures complex entity
dependencies in Tasks A and C, while Softmax en-
hances efficiency for Task B’s simpler tagset, show-
ing strong adaptability to ancient Chinese datasets.
Notably, Task C’s F1 improves most (9.75%), likely
due to CRF leveraging the structured patterns of
TCM Classics, unlike Task A’s diverse Shiji or Task
B’s simpler tagset (Table 4).

4.6 Ablation Study

We evaluated our multi-strategy design on Eva-
Han2025 using GujiRoBERTa_jian_fan as the
PLM, reserving 20% of the training data as the
validation set for strategy selection. Validation F1
scores are reported in Table 3 as percentages.
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Configuration Task A Task B Task C Mean

Single-Strategy
PLM + CRF (All Tasks) – – – 85.02
PLM + Softmax (All Tasks) – – – 84.91

Multi-Strategy
PLM + CRF (Per Task) 91.53 86.79 80.23 86.18
PLM + Softmax (Per Task) 90.90 86.87 78.63 85.47

Ours (A/C: CRF, B: Softmax) 91.53 86.87 80.23 86.21

Table 3: Validation F1 scores (%). Single-strategy combines all task data; multi-strategy trains per task. ‘–’ indicates
unavailable task-specific scores for single-strategy models, as Task B’s tagset (NR, NS, T) is a subset of Task A’s
(Table 4), causing interference that prevents isolated per-task evaluation.

4.6.1 Multi-Strategy vs. Single-Strategy
EvaHan2025 ranks submissions by mean F1 across
Tasks A (Shiji), B (Twenty-Four Histories), and C
(Traditional Chinese Medicine Classics). Single-
strategy models (PLM + CRF and PLM + Soft-
max), trained on all tasks combined, yield mean
F1s of 85.02% and 84.91%. Multi-strategy mod-
els (trained per task) reach 86.18% and 85.47%,
gaining 1.16–1.27 points. This boost comes from
isolating tasks: Task B’s tagset (NR, NS, T) is a
subset of Task A’s (Table 4), causing single-strategy
models to overgeneralize. Our approach avoids this
interference, improving task-specific performance.

4.6.2 Task-Specific Strategy Selection
Comparing PLM + CRF (Exp. 3) and PLM + Soft-
max (Exp. 4) (Table 3, Appendix B), CRF excels
on Tasks A (91.53% vs. 90.90%, +0.63) and C
(80.23% vs. 78.63%, +1.60), handling six-entity
dependencies well. Yet, in low-support labels (e.g.,
NB in Task A, ZZ in Task C), their differences are
minor (Appendix B). For Task B, CRF (86.79%)
and Softmax (86.87%) perform similarly, but Soft-
max cuts inference time by 63% (14.28s vs. 38.24s;
Appendix 6). Our hybrid design—CRF for A and
C, Softmax for B—achieves a mean F1 of 86.21%,
balancing accuracy and efficiency.

4.6.3 Lightweight Analysis
For Task B, Softmax’s O(nk) decoding complex-
ity (k=3) outperforms CRF’s O(nk2), cutting blind
test inference time by 63% (Please refer to Ap-
pendix 6) and reducing training/validation time
from 202s to 86s, with F1 (86.87 vs. 86.79, +0.08).
Here, n is sequence length, and k is label set size.
This lightweight efficiency design optimizes effi-
ciency for simpler tagsets without compromising
accuracy.

5 Conclusion

In this paper, we propose a Multi-Strategy Named
Entity Recognition (NER) system tailored for the
EvaHan2025 competition. Our system demon-
strates superior performance across three distinct
datasets by leveraging task-specific strategies, in-
cluding the use of CRF for complex sequence de-
pendencies in Tasks A and C, and a computation-
ally efficient Softmax classifier in Task B. Our sys-
tem offers a scalable NER framework for simi-
lar low-resource, heterogeneous ancient language
datasets, leveraging its multi-strategy adaptability,
with potential applications in digital humanities.
Future work could explore adaptive hyperparame-
ter tuning and tagset refinement to further enhance
generalization.

Limitations

Our multi-strategy NER system excels in Eva-
Han2025 but has limitations: inconsistent gener-
alization and challenges with rare entities. Gen-
eralization varies across tasks. Task A’s F1 drops
from 91.53% to 83.94% (-7.59), likely due to over-
fitting to Shiji’s diverse data (Appendix C, Fig-
ure 2), while Task C’s rises from 80.23% to 82.15%
(+1.92), possibly due to a structured medical do-
main (Figure 3). Task B remains stable (86.87%
vs. 88.31%) with a simpler tagset (Table 4). Rare
entities (e.g., NB in Task A, ZZ in Task C) with
low support (Appendix B) perform inconsistently.
Future work could use cross-domain validation to
improve generalization and data augmentation to
enhance rare entity recognition.
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A Supporting Tables in References

Tag Meaning

Task A (Shiji)
NR Person name
NS Geographical location
NB Book title
NO Official title
NG Country name
T Time expression

Task B (Twenty-Four Histories)
NR Person name
NS Geographical location
T Time expression

Task C (TCM Classics)
ZD TCM disease
ZZ Syndrome
ZF Medicinal formula
ZP Decoction pieces
ZS Symptom
ZA Acupoint

Table 4: Entity tagsets for EvaHan2025 tasks.

Environment Specification

CUDA Version 12.0
GPU NVIDIA RTX 4090
Memory 24 GB

Table 5: Experimental environment.
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B Additional Tables

This appendix provides tables supporting the exper-
iments and ablation studies in Sections 4 and 4.6.
Table 6 compares Task B runtime for PLM + Soft-
max and PLM + CRF, showing Softmax’s effi-
ciency (Section 4.6.2). Tables 7–9 detail per-
category F1 scores for Tasks A, B, and C on the
validation set, complementing Table 3 and guiding
our multi-strategy NER design. Due to seqeval, F1
scores are rounded to two decimals and shown as
percentages without decimals (e.g., 0.33 to 33%),
not affecting comparisons.

Model Training + Val. (s) Blind Test (s)

PLM + Softmax 86 14.28
PLM + CRF 202 38.24

Table 6: Task B runtime comparison (seconds).

Category (Support) F1 (CRF) F1 (Softmax)

NB (5) 33.00 33.00
NG (731) 94.00 94.00
NO (286) 77.00 74.00
NR (2042) 95.00 95.00
NS (500) 87.00 87.00
T (193) 79.00 77.00

Table 7: Task A validation F1 scores (%).

Category (Support) F1 (CRF) F1 (Softmax)

NR (794) 91.00 89.00
NS (685) 84.00 83.00
T (509) 85.00 89.00

Table 8: Task B validation F1 scores (%).

Category (Support) F1 (CRF) F1 (Softmax)

ZA (294) 84.00 83.00
ZD (166) 73.00 73.00
ZF (197) 83.00 84.00
ZP (1083) 86.00 87.00
ZS (257) 65.00 57.00
ZZ (97) 47.00 33.00

Table 9: Task C validation F1 scores (%).

C Hyperparameters and Transition
Matrix
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Hyperparameter Task A (PLM + CRF) Task B (PLM + Softmax) Task C (PLM + CRF)

Batch Size 32 32 32
Epochs 35 30 35
Learning Rate (PLM) 5× 10−5 5× 10−5 5× 10−5

Learning Rate (Head) 5× 10−3 5× 10−5 5× 10−3

Warmup Ratio 0.1 0.1 0.1
LR Scheduler Cosine Linear Cosine
Max Gradient Norm 1.0 1.0 1.0

Table 10: Key hyperparameter settings.

Figure 2: Task A CRF transition matrix (Exp. 3). Rows: current state; columns: next state. Color depth shows
transition probability (-0.5 to 0.5).
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Figure 3: Task C CRF transition matrix (Exp. 3). Rows: current state; columns: next state. Color depth shows
transition probability (-0.5 to 0.5).
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Abstract 

Recent advancements in digital humanities 
have intensified the demand for intelligent 
processing of ancient Chinese texts, 
particularly across specialized domains 
such as historical records and ancient 
medical literature. Among related research 
areas, Named Entity Recognition (NER) 
plays a crucial role, serving as the 
foundation for knowledge graph 
construction and deeper humanities 
computing studies. In this paper, we 
introduce a architecture specifically 
designed for multi-domain ancient Chinese 
NER tasks based on a pre-trained language 
model (PLM). Building upon the 
GujiRoberta backbone, we propose the 
GujiRoberta-BiLSTM-Attention-CRF 
model. Experimental results on three 
distinct domain-specific datasets 
demonstrate that our approach significantly 
outperforms the official baselines across all 
three datasets, highlighting the particular 
effectiveness of integrating an attention 
mechanism within our architecture. 

Keywords: Named Entity Recognition, 
Ancient Chinese, Multi-Domain 
GujiRoberta-BiLSTM,-Attention-CRF. 

1 Introduction 

Thousands of years of Chinese civilization have 
been encapsulated within historical, political, 
economic, medical and various other types of 
ancient books. However, due to their vast quantity 
and significant deterioration over time, these 
invaluable resources have remained underexplored 
and underutilized. Recent rapid advancements in 
frontier technologies, such as big data and artificial 
intelligence, present unprecedented opportunities 
for the deep mining and revitalization of ancient 
texts. In particular, the integration of natural 
language processing (NLP) and knowledge graph 
technologies has rejuvenated research into ancient 

documents. Entities, serving as fundamental 
knowledge units within ancient texts, play a crucial 
role in humanities computing studies. Nevertheless, 
entity recognition from ancient Chinese texts 
remains significantly challenging, primarily due to 
the intrinsic complexity of ancient Chinese 
grammar, archaic vocabulary, semantic obscurity, 
and the domain-specific nature of texts. 

To address these challenges, EVAHAN 2025 
proposed a specialized NER task focused on 
ancient Chinese texts across multiple domains. 
Based on the PLM called SikuRoBERTa for 
ancient Chinese provided by EVAHAN 2025, we 
further propose the incorporation of a BiLSTM-
Attention network for enhanced feature extraction, 
coupled with a CRF layer for decoding to improve 
the accuracy of entity label classification. Besides, 
through meticulous hyperparameter tuning, our 
model better accommodates domain-specific 
textual characteristics. Extensive experiments 
conducted on three provided datasets demonstrate 
the superior performance of our proposed model, 
significantly surpassing official benchmarks. 

2 Related Research 

Research on named entity recognition (NER) in 
ancient Chinese has gone through four technical 
evolution stages: rule-based templates, statistical 
modeling, neural networks and pre-trained models. 
Early template and statistical methods were 
gradually replaced by  neural network learning 
frameworks due to their limited domain 
transferability (Huang et al., 2002; Li et al., 2023) . 
For instance, Huang et al. (2015) introduced the 
BiLSTM-CRF model, which captured long-
distance syntactic dependencies in ancient texts 
through bidirectional long short-term memory 
networks and optimized label sequence prediction 
through Conditional Random Fields. 

The subsequent emergence of pre-trained 
language models (PLMs) dramatically enhanced 
the processing efficiency and semantic 
comprehension capabilities for ancient Chinese 
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texts.  The iterations of BERT architecture (Devlin 
et al., 2019) and the introduction of RoBERTa by 
(Liu et al., 2019) with dynamic masking 
mechanisms have redefined the pre-training 
paradigm. Wang et al.(2022) conducted 
incremental training using traditional Chinese text 
from the Complete Library in Four Sections to 
build SikuBERT and SikuRoBERTa pre-trained 
models. While generative large language models 
like GPT demonstrate considerable semantic 
understanding, they suffer from issues such as 
entity hallucination and boundary ambiguities, 
limiting their reliability for precise entity extraction 
tasks (Zhang et al., 2023) .Recent researches shows 
BERT-based methods still maintain significant 
advantages through domain-adaptive fine-tuning 
in IE tasks (Detroja et al., 2023; Diaz-Garcia  and 
Lopez, 2024; Han et al., 2024). 

However, most previous studies on ancient 
Chinese NER have primarily focused on general 
entities such as personal names, locations and dates. 
Recent advancements in digital humanities have 
broadened the scope, demanding sophisticated 
processing capabilities for specialized domains 
such as historical records and ancient medical 
literature, thus expanding annotation schemas from 
basic three-element frameworks to more 
comprehensive multi-element structures, including 
official titles, pathological terms, and cultural 
symbols (Zhang et al., 2023). Compared to 
standard named entity tasks, recognizing 
specialized domain entities poses greater 
challenges due to the need for enhanced contextual 
understanding and domain-specific adaptability. 

3 Model Construction 

3.1 Model Introduction 

The GujiRoberta-BiLSTM-Attention-CRF model 
is a deep learning framework designed for the task 
of ancient text named entity recognition in ancient 

text. As illustrated in Table1, its process is divided 
into four stages: Firstly, through the pre-trained 
model GujiRoberta, context-aware word vectors 
are generated; Secondly, BiLSTM captures 
bidirectional long-distance semantic dependencies; 
Subsequently, the attention mechanism is utilized 
to enhance key features; Finally, the CRF layer is 
employed to achieve the global optimal label 
prediction. 

The attention mechanism significantly enhances 
the model's ability to focus on key information. By 
introducing attention weights distribution in the 
output layer of BiLSTM, the importance scores of 
for each position are calculated through a learnable 
parameter matrix, and then normalized by softmax 
to generate a focusing vector. This mechanism can 
adaptively enhance entity-related features, such as 
the core verbs in disease descriptions, shile 
simultaneously suppressing irrelevant noise. It is 
particularly suitable for processing scattered entity 
expressions in ancient texts, thereby improving the 
model's sensitivity to key information.  

In the named entity recognition task, CRF, as the 
decoding layer, solves the label conflict problem of 
traditional softmax decoding by modeling label 
transition probabilities. The global score function 
is constructed by defining emission scores (linear 
transformation of the BiLSTM-attention output) 
and transition scores (transition matrix between 
labels), and the optimal path is solved using the 
Viterbi algorithm. This design ensures that the 
output sequence conforms to the ancient text entity 
annotation specifications (such as the continuity 
constraint of the BIOES label system), effectively 
improving the recognition accuracy of entity 
boundaries. 

3.2 Experimental Datasets 

This competition involves three ancient text named 
entity recognition datasets: Dataset A is based on 
"Records of the Grand Historian" and labels 
personal names (NR), place names (NS), book 
titles (NB), official titles (NO), dynastic names 
(NG), and time (T). The complexity of this dataset 
arises from  the evolution of historical naming 
conventions; Dataset B is selected from "Twenty-
Four Histories" and focuses on personal names 
(NR), place names (NS), and time (T), requiring 
handling ambiguity issues caused by ancient 
language abbreviations; Dataset C originates from 
traditional Chinese medical classics and covers six 
categories of professional terms: traditional 
Chinese medicine diseases (ZD), syndromes (ZZ), 

 

Figure 1: Model Architecture. 
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prescriptions (ZF), medicinal materials (ZP), 
symptoms (ZS), and acupoints (ZA). It faces the 
challenge of diverse term expressions. 

Data processing adopts a multi-stage 
optimization strategy: Firstly, perform text data 
undergoes cleaning and standardization processing, 
which includes the removal of blank lines and the 
normalization of characters. Subsequently, 
dynamic segmentation is executed based on four 
sets of length thresholds (128/256/400/512) and 
locate the end symbols, such as periods and 
quotation marks, etc. through backtracking to 
ensure semantic integrity. This approach facilitates 
the model’s capability to better learn the correlation 
information between ancient texts. After randomly 
shuffling process to eliminate sequence deviations, 
the dataset should be partitioned into training set 
and validation set in a 9:1 ratio. Finally, ensure the 
representativeness of each data subset to meet the 
multi-dimensional requirements of model training, 
hyperparameter optimization, and performance 
evaluation. 

3.3 Evaluation Metrics 

Precision, recall, and F1 score were used as the 
main metrics to evaluate model performance. Their 
calculation formulas are as follows: 

 𝑃 = !"
!"#$"

× 100%  (1) 

 𝑅 = !"
!"#$%

× 100%  (2) 

 𝐹1 = &"'
"#"

× 100%  (3) 

Where TP = correctly identified entities, FP = 
incorrect identifications, and FN = missed entities. 

3.4 Experimental Environment 

The experimental setup utilized a Linux server 
equipped with an NVIDIA RTX 4090 GPU (24 GB 
of video memory), facilitating efficient large-scale 
deep learning model training. A 6-core Xeon Gold 
6142 processor provided robust multitasking 
capabilities, while 64.4 GB of RAM and 420 GB 
of disk storage were sufficient to meet the 
computational and data storage requirements. 

For the software environment, PyTorch 2.2.2 
was chosen, which, although an older version, 
offered good compatibility and stability. Its 
dynamic computation graph, user-friendly APIs, 
and community support made it the preferred 
choice. Docker containerization technology was 
utilized to construct a standardized development 
environment, ensuring research reproducibility and 
consistency. 

3.5 Model Training 

(1) Loss Function 
The objective of model training was to minimize 

negative log-likelihood loss, measuring prediction 
error by comparing the predicted label sequences 
with the true label sequences. The CRF layer 
calculated probabilities for all possible label 
sequences, ultimately selecting the most probable 
sequence as the final prediction. 

(2) Optimizer 
The AdamW optimizer was used, introducing 

weight decay to mitigate the risk of overfitting. The 
learning rate warm-up strategy was implemented to 
stabilize the initial gradient updates. 

(3) Hyperparameter Tuning 
This study employs a combined method of 

grid search and random search to optimize the key 
hyperparameters of the model. The search space 
for the learning rate is set from 8e-6 to 4e-5, while 
the batch size is dynamically adjusted within the 
range of 8 to 64. The dropout rate is explored 
within the range of 0 to 0.6, and the input text 
length is uniformly standardized to the range of 
128 to 512 characters. We utilized several pre-
trained model architectures, including bert, siku-
roberta, GujiRoBERTa_jian_fan, roberta-classical-
chinese-large-char, and employed some fine-
tuning techniques. Through systematic verification 
of parameter combinations, the optimal 
configuration scheme of each model architecture 
was finally obtained, as shown in Table1. 

Dataset Dataset_A Dataset_B Dataset_C 

Pretrained Model GujiRoBERTa_jian_fan GujiRoBERTa_jian_fan GujiRoBERTa_jian_fan 
Text Length 128 256 400 

Learning Rate 0.00005 0.00002 0.00003 
Batch Size 8 8 8 
Dropout 0.4 0.4 0.6 

Table 1:  Hyperparameter Tuning. 
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4 Experimental Results and Analysis 

Prior to formal submission, we compared the 
GujiRoberta-BiLSTM-CRF and GujiRoberta-
BiLSTM-Attention-CRF models on the validation 
set, with individual labels as the smallest unit to 
calculate P, R and F1-score. Experimental results 
confirmed that incorporating an attention 
mechanism consistently improved overall F1-
scores. Specifically, under identical parameter 
configurations, the F1-score increased by over 1% 
for datasets A and C (the F1-score improved from 
0.9103 to 0.9243 for dataset A and from 0.8613 to 
0.8765 for dataset C). The attention mechanism 
significantly boosted global entity recognition by 
emphasizing critical feature information. 
Consequently, the GujiRoberta-BiLSTM-
Attention-CRF model was selected for the final test  
 

As shown in 错误!未找到引用源。 and Table 
2, the test results further validated our model's 
effectiveness. EVAHAN 2025 adopted the 
classical SikuRoBERTa-BiLSTM-CRF 
architecture as its baseline. In the general dataset A, 
the F1 score of GujiRoberta reached 82.37, 
reflecting an increase of 0.89. Additionally, there 
was a significant improvement in the recall rate, 
which verifies the effectiveness of GujiRoberta's 
enhanced semantic understanding capabilities and 
its attention mechanism in capturing key 
information. In the professional historical dataset B, 
the F1 score increased to 88.74, representing an 
enhancement of 1.24, with the recall rate of 90.09. 
This indicates an advancement in the model's 
generalization ability concerning ancient terms and 
abbreviations. Furthermore, in the Chinese 
medicine classics dataset C, the F1 score improved 

by 8.28 percentage points to 80.68 compared to the 
baseline model, demonstrating a comprehensive 
ability to recognize professional terms. It is 
noteworthy that the accuracy rate of the three 
datasets were lower than the recall rates, reflecting 
that the model still has misidentification 
phenomena when dealing with complex historical 
entities, such as names and place names with 
omitted sentence patterns, as well as the diversity 
of TCM terms. These insights suggest meaningful 
directions for future research. 

5 Conclusion & Future Directions 

The experimental results indicate that the 
GujiRoberta-BiLSTM-Attention-CRF model 
proposed in this paper demonstrates a significant 
improvement over the official baseline on ancient 
book datasets in different fields such as history and 
medicine. These findings verify the effectiveness 
of the attention mechanism and the multi-module 
integration strategy employed in the model. By 
enhancing the parsing ability of ancient Chinese 
complex sentence patterns and long texts, the 
model significantly improves the entity recall rate, 
and provides a reliable solution for entity 
recognition in multi-domain ancient books. 
However, the accuracy of the model still remains 
potential for improvement in the face of fine-
grained semantic contexts, such as the polysemy of 
words and variation of professional terms. Future 
research will focus on optimizing the dynamic 
attention allocation mechanism, enhancing 
semantic discrimination ability with domain 
adaptive pre-training, and further exploring the 
generalization of multi-domain feature adaptation 
modules. 
 
 

 

Figure 2: Model Effectiveness Comparison. 

Dataset Method P R F 
A Ours 86.3 78.78 82.37 

Baseline 85.90 77.50 81.48 
B Ours 87.43 90.09 88.74 

Baseline 87.09 87.92 87.50 
C Ours 75.91 86.09 80.68 

Baseline 71.84 72.95 72.40 

Total Ours 82.84 85.46 84.13 
Baseline 81.41 79.82 80.61 

Table 2:  Model Effectiveness Comparison. 
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Abstract

The EvaCun 2025 Shared Task, organized as
part of ALP 2025 workshop and co-located
with NAACL 2025, explores how Large Lan-
guage Models (LLMs) and transformer-based
models can be used to improve lemmatization
and token prediction tasks for low-resource an-
cient cuneiform texts. This year our datasets
focused on the best attested ancient Near East-
ern languages written in cuneiform, namely,
Akkadian and Sumerian texts. However, we
utilized the availability of datasets never before
used on scale in NLP tasks, primarily first mil-
lennium literature (i.e. "Canonical") provided
by the Electronic Babylonian Library (eBL),
and Old Babylonian letters and archival texts,
provided by Archibab. We aim to encourage
the development of new computational meth-
ods to better analyze and reconstruct cuneiform
inscriptions, pushing NLP forward for ancient
and low-resource languages. Three teams com-
peted for the lemmatization subtask and one for
the token prediction subtask. Each subtask was
evaluated alongside a baseline model, provided
by the organizers.

1 Introduction

Natural Language Processing for low-resource lan-
guages presents unique challenges, especially in
an era where bigger models and more data are
seen as the key to success. Ancient languages be-
fore the spread of the alphabet in the first millen-
nium BCE, were primarily morphosyllabic, written
using a combination of logograms (i.e. "word"
signs) and syllabic signs (Fedorova; Daniels, 2023).
Cuneiform in particular was used to encode more
than a dozen languages across Western Asia, from
languages of unknown or limited familial origin,
like Sumerian or Hurrian, to several Semitic and
Indo-European, languages, like Akkadian, Hittite,
and Luwian.

Ancient Language Processing deals primarily
with solving the challenges of the computational

analysis of ancient morphosyllabic scripts, like the
pictographic nature of signs, their iconically mean-
ingful and complex visual arrangement, and lexical
homonymy to name a few (Gordin, 2014; Gabriel
et al., 2021). Some languages, particularly Semitic
ones, are even more difficult due to their rich mor-
phology, which leads to complex word forms and
intricate grammatical structures (Weninger et al.,
2011; Zitouni, 2014). Additionally, ancient lan-
guages often suffer from fragmented texts because
the sources we rely on—inscriptions, manuscripts,
and other historical records—are incomplete due
to damage, erosion, and loss over time. These
challenges make two key downstream NLP tasks,
token prediction (used, for example, in BERT pre-
training) and lemmatization, particularly difficult.
To address this, we introduce a shared task with
two subtasks: lemmatization, which reduces words
to their base forms, and token prediction, which
predicts the original token replaced with a mask.

The lemmatization and token prediction tasks
for EvaCun 2025 focus on Akkadian and Sumerian
cuneiform texts. Even though cuneiform was used
to write on clay for more than 3,000 years, many
cuneiform languages are low-resource languages.
Existing corpora of texts consist of a relatively lim-
ited amount of data for each historical period of
cuneiform, which is moreover divided into different
geographical areas, archaeological contexts, and
text genres.1

Existing language models have relied mostly
on the tens of thousands of first millennium BCE
Assyrian and Babylonian archival documents and
royal inscriptions from the Open Richly Annotated
Cuneiform Corpus (ORACC) (Gordin et al., 2020;
Lazar et al., 2021; Gutherz et al., 2023), as well
as the many thousands of sporadic Akkadian and
Sumerian sources on the Cuneiform Digital Library

1For a good textual and linguistic overview of Akkadian
and its periodization see (Vita, 2021)
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Initiative (CDLI) (Pagé-Perron et al., 2017; Chen
et al., 2023). We therefore wanted to introduce new
text genres and large scale corpora that have be-
come systematically available over recent decades
in the Electronic Babylonian Library (eBL) and
Archibab. For more details on the content and
genre of the text in the dataset provided for the
shared task see Data section below.

2 Previous Research

The origins of Computational Assyriology can be
traced back to the 1960s, and since then over 200
relevant papers have been published. Almost all as-
pects of Assyriological research were experimented
with computationally, from artifact reconstruction
to transliteration of cuneiform, text annotation, and
content analysis. In this section, we briefly sum-
marize past attempts on cuneiform tablet recon-
struction and lemmatization of Akkadian. For a
more detailed survey on the history of Computa-
tional Assyriology see Sahala (2021), on vision
related tasks for cuneiform see Bogacz and Mara
(2022), and for Assyriological digital resources see
Charpin (2014), and the DANES resources on the
OpenDANES platform.

2.1 Lemmatization
Traditionally Akkadian lemmatizers have been
based on dictionary look-ups or morphological
analysis. The first2 published lemmatizer and mor-
phological analyzer of Akkadian was implemented
by Kataja and Koskenniemi (1988), but this system
was more of a tech-demo to demonstrate, how dis-
continuative morphology could be implemented as
a finite-state grammar (FSG). Further morphology-
based models were published for Babylonian by
Barthélemy (1998), Macks (2002), Sahala (2014)
and Sahala et al. (2020b), and for Old Assyrian
by Bamman (2012). To date, the most used lem-
matizer for Akkadian, and cuneiform languages
in general, is L2 (Tinney, 2019). L2 is a dictio-
nary based lemmatizer, transcriber and POS-tagger
that uses bigram look-up for disambiguation. It
has been used to annotate ORACC texts, one of
the largest open collection of annotated cuneiform
texts.

2Giorgio Buccellati built tools for Akkadian already in the
1970s but to our knowledge these have not been published
Buccellati (1977); for the goals of his project see the web-
site of Cybernetica Mesopotamica. Tools were also created
for the Neo-Assyrian Text Corpus Project by Simo Parpola
and Robert M. Whiting. Their dictionary-based lemmatizer,
however, remains also unpublished.

Both, dictionary and morphology based lemma-
tizers have their shortcomings, which ultimately
emerge from the Akkadian spelling variation and
discontinuative morphology. Dictionary-based
models suffer from spelling-variation and morphol-
ogy induced out-of-vocabulary words (OOV) that
they are unable to lemmatize. Morphology-based
models, on the other hand, suffer from the ambi-
guity and irregularity of the Akkadian writing sys-
tem, especially concerning the spelling of phoneme
quantities. For this reason, morphology-based mod-
els rely almost exclusively on phonologically tran-
scribed inputs, which limit their usability, since
most unannotated digitized texts exist in translit-
eration. The only exception to this is Bamman’s
Old Assyrian morphological analyzer, which uses
a brute-force approach to map between translitera-
tion and transcription.

Treatment of discontinuative morphology was a
long-standing challenge in Natural Language Pro-
cessing, since it could not be elegantly expressed
with FSGs. Over time, various extensions were
introduced to FSGs, such as the compile-replace
algorithm, flag diacritics, memory registers and
multi-tape automata (Cohen-Sygal and Wintner,
2006), and after the memory requirements allowed
it, some implementations relied on linearizing the
morphology with procedural pregeneration. Yet,
whereas the state-of-the-art analyzers for morpho-
logically concatenative languages had been domi-
nated by FSGs since the 1980s, still in the 2000s,
some state-of-the-art computational models of dis-
continuative morphologies were implemented pro-
cedurally, such as Buckwalter (2002) for Arabic.

During the last decade, neural sequence-to-
sequence models have opened new avenues for
lemmatizing languages (Bergmanis and Goldwater,
2018; Kanerva et al., 2018). These models have
introduced promising ways to deal with complex
orthographies and morphologies, as well as syn-
chronic and diachronic variation, like those found
in Akkadian. Training neural models for lemmatiz-
ing Akkadian has been largely possible only due
to Oracc’s open data policy and the invaluable ef-
fort of dozens of Assyriologists, who have con-
tributed their data to Oracc and annotated it semi-
automatically using Tinney’s L2.

The first neural network based attempt to linguis-
tically annotate Akkadian was Sahala et al. (2020a).
This system phonologically transcribed Akkadian
using sequence-to-sequence models feeding the
output into a finite-state transducer to produce lem-

165



mata, POS-tags and morphological labels. This
approach suffered from morphological ambiguity
and the lemmatization pipeline was later simpli-
fied into BabyLemmatizer (Sahala et al., 2022),
which predicted the lemmata directly from translit-
eration without intermediate steps. Another suc-
cessful Akkadian neural network-based lemma-
tizer was published by Ong and Gordin (2024),
who developed AkkParser, a language model im-
plemented within the spaCy framework, with cus-
tomized pipeline components for morphological
analysis and syntactic dependency parsing specif-
ically adapted to Akkadian cuneiform texts. This
model was trained through an iterative bootstrap-
ping methodology on a treebank of Neo-Assyrian
letters, with human annotators providing correc-
tions to progressively improve performance across
annotation cycles. The only model so far specifi-
cally trained to annotate lemmas in Old Babylonian
is Smidt et al. (2024), who conducted experiments
on Part-of-Speech tagging for Old Babylonian let-
ters using the Flair toolkit, finding that Multilingual
BERT Transformer-based embeddings achieved
good accuracy, despite working with a limited train-
ing corpus.

2.2 Token Prediction
Clay tablets, the medium on which the texts of an-
cient mesopotamia were written, are often found
in fragmentery condition, causing a sigificant po-
tential loss of text (Fetaya et al., 2020). Work has
been conducted to collate 3D-scanned cuneiform
tablet fragments by using join-surface heatmaps
(Collins et al., 2014) and script feature analysis
(Cammarosano, 2014; Fisseler, 2019). Systems for
joining disconnected transliterated fragments have
also been implemented (Tyndall, 2012; Simonjetz
et al., 2024).

Token prediction differs fundamentally from
these reconstruction approaches, as it aims to infer
the content of missing text rather than identifying
fragment matches in a database. Although rela-
tively underexplored, some studies have employed
machine learning models to reconstruct missing
sign sequences in cuneiform texts. In Fetaya et al.
(2020), RNN models are used to predict missing to-
kens. Another study, by Lazar et al. (2021), frames
the problem using a masked language modeling
approach similar to BERT pretraining, leverag-
ing multilingual training with BERT-based models.
This task is also popular in works on other ancient
languages, see Sommerschield et al. (2023).

3 Data

Statistics for the shared task datasets are provided
in tables 1, 2 and 3. Our data comes from two
primary sources: the Electronic Babylonian Li-
brary Dataset (eBL) (Cobanoglu et al., 2024) and
Archibab. The eBL data is drawn from transliter-
ated cuneiform tablets via the eBL API provided by
Enrique Jiménez on Nov. 2024; an earlier image of
the data is also published on Zenodo (Cobanoglu,
2023). The data used is novel for NLP purposes
as it focuses on a considerable number of literary
texts. Although like ORACC texts it is also dated to
the first millennium BCE, the eBL corpus make up
very different kinds of literary and scientific genres
subsumed here under the term canonical, using the
accepted terminology of Hallo (1991). Archibab
texts, on the other hand, primarily consist of Old
Babylonian archival documents from the early sec-
ond millennium BCE (2004–1595 BCE), of which
a subset mostly made up of letters was provided
for the shared task with the kind permission of
Dominique Charpin (Collège de France) and Ma-
rine Béranger (FU Berlin). Where more metadata
was provided in the dataset itself, as in the case
of Archibab texts, or available via the eBL API,
we included information about genre, find location,
and language. To avoid potential bias, we replaced
tablet IDs with randomized numbers. Additionally,
any words that were entirely missing from the texts
were removed.

Dataset Split Fragments Unique Values

Lemmatization Total (Train + Test) 10,214 46,966
Train 8,171 40,640
Test 2,043 15,539

Token Prediction Total (Train + Test) 28,472 118,550
Train 22,777 102,639
Test 5,695 38,825

Table 1: Statistics for Lemmatization and Token Predic-
tion datasets.

Dataset Category Details

Lemmatization Akkadian 377,000
Sumerian 51
Emesal 2

test function words 17,686 / 73,357 samples
test OOV 7,379 / 73,357 samples

Token Prediction Akkadian 970,237
Sumerian 130,596
Emesal 33,237

test function words 3,826 / 44,517 samples
test OOV 4,161 / 44,517 samples

Table 2: Breakdown for Lemmatization and Token Pre-
diction datasets. Language is reported per word in the
dataset as tablets may have words in multiple languages.
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Dataset Genre Count

Lemmatization Canonical 4659
Unclassified 4217

Archival 869
Administrative letter 242

Monumental 119
Political letter 72

Other 26
Private letter 8

Diplomatic letter 2

Token Prediction Canonical 11332
Unclassified 10994

Archival 2940
Other 2321

Monumental 344
Administrative letter 276

Political letter 242
Private letter 13

Diplomatic letter 8

Table 3: Lemmatization and Token Prediction Genre
Distribution.

Each dataset was split into training and testing
sets, with 80 percent of the tablets allocated to the
training split, which was provided to participants
in the first step. The remaining 20 percent were
used for evaluation, and all results are based on
this held-out test set. It is worth noting that the
two datasets had slight differences in translitera-
tion conventions: this is taken into account during
evaluation, as detailed below.

3.1 Lemmatization Data

For the lemmatization data, we applied cleaning
steps to ensure consistency and usability. If a word
in a given context had several possible lemmatic
interpretations, we kept only the first lemma from
that list. Any words that lacked a corresponding
lemma were filtered out, ensuring that all remaining
tokens in the dataset had a valid lemmatized form.

3.2 Token Prediction Data

For the word completion task, we focused on re-
moving noise and ensuring that only complete,
readable words were included. We excluded any
words that contained fragmentary markers (such
as "...", "[", "]", "x", "X", or "?"), as well as any
numbers. Additionally, we cleaned the "value" col-
umn by removing non-alphabetical characters like
< and #, which are additional editorial marks. We
masked 20 percent of the data in each of the splits.

4 Shared Task

The task was structured to ensure consistency and
transparency in assessing the performance of the
lemmatization and token prediction models. Partici-
pants submitted both their generated predictions for
the test set and technical reports through the Soft-
Conf system. The train datasets provided contained
pre-processed cuneiform texts, ensuring all partic-
ipants worked with the same linguistic resources
without modifications. While no strict measures
were in place to prevent fine-tuning on the test set,
the competition relied on participant integrity to
avoid unfair data contamination. The evaluation
compared submitted predictions against a held-out
test dataset, with participants encouraged to doc-
ument their methodologies in detail in the techni-
cal report, which were reviewed by the organiz-
ers. To promote replicability, participants were
expected to share their scripts, system source code,
and, where possible, trained models on platforms
such as GitHub and Hugging Face.

5 Evaluation Metrics

We use accuracy as our primary evaluation measure
in both, lemmatization and token prediction tasks,
that is, the percentage of valid predictions over the
whole evaluation category.

We structured our results according to distinct
categories to assess performance across different
linguistic phenomena:

Function vs. non-function words: Function
words (e.g., conjunctions, prepositions) typically
have high-frequency, well-attested forms, while
non-function words (e.g., nouns, verbs) exhibit
more variation and complexity.

In-vocabulary (in-vocab) vs. out-of-vocabulary
(OOV) words: In-vocab words appear in the train-
ing data, while OOV words do not. OOV perfor-
mance is particularly important for evaluating a
model’s generalization ability.

5.1 Flexible Matching

We considered predictions valid within the range
of certain flexibility to prevent false negatives af-
fecting the lemmatization evaluation results.

Firstly, as the eBL dataset contains Roman nu-
merals indicating homonyms, while the Archibab
dataset does not, we removed all numerals from
both datasets and from the predictions for both
tasks to ensure consistency.
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For the evaluation of the lemmatization task,
we aimed to allow variations that arise due to
differences between the datasets, since dialect or
chronolect identification was not part of the task
list, and in reality separate models should be trained
for different domain s for maximum efficiency. To
achieve this, we implemented two steps. First, we
wrote a harmonization function that standardizes
most lemmatization conventions across datasets.
For example, we unified macrons and circumflexes
(e.g., parāsu vs. parâsum; Anunnakū vs. Anun-
nakû), made mimation optional (šarru vs. šarrum)
and considered dictionary forms with and without
initial waw equivalent (alādu vs. walādu). Sec-
ond, we curated a special list of ca. 200 additional
lemmatization variants to ensure that reasonable
spelling differences did not unfairly impact accu-
racy. This list handles variation such as nuhatim-
mum vs. nuhtimmu. Naturally, all insonsistencies
could not be handled, but the implemented rules
covered most of the cases where the evaluation
could have probably given false negatives. This
harmonization was only ran at the evaluation phase
when the predictions and the gold standards were
matched with each other. Therefore, all models had
to deal with the same inconsistencies in the training
phase.

For the evaluation of the token prediction task,
we focused on exact matches. However, we ac-
knowledge that multiple valid completions can ex-
ist. For example, different experts might propose
different reconstructions for the same missing seg-
ment based on contextual interpretation. Future
work should incorporate methods to allow for se-
mantic flexibility in evaluation.

6 Baseline Systems

To compare the shared task results with the existing
publicly available systems, we used two baselines
in lemmatizer evaluation and one baseline for token
prediction evaluation

6.1 Maximum Likelihood Estimator

Our first baseline lemmatizer is an MLE dictionary
look-up that assigns each word form with its most
common lemma found in the training data. This
simulates the simplest possible lemmatizer for a
language and gives an estimate how well the more
sophisticated models can handle ambiguity.

6.2 BabyLemmatizer 2.2
Our second baseline is BabyLemmatizer 2.2, a hy-
brid state-of-the-art annotation pipeline that com-
bines the strengths of neural networks and shal-
low context-aware dictionary look-ups. Previ-
ously it has been used for lemmatizing several lan-
guages, such as Egyptian, Coptic, Demotic (Sahala
and Lincke, 2024), Akkadian, Sumerian, Urartian,
Greek and Latin (Sahala and Lindén, 2023). Evalu-
ations have shown an accuracy ranging from 82%
to 98% depending on the script and language. In
Akkadian lemmatization the reported accuracy is
ca. 95% using in-domain training data.

BabyLemmatizer treats lemmatization as a ma-
chine translation task. Its neural network architec-
ture comprises a two layer BiLSTM encoder for
reading the input sequence, and a unidirectional
LSTM decoder with input feeding attention for
generating the output. The neural network’s output
is then validated, corrected and confidence-scored
with a heuristic dictionary look-up.

For all BabyLemmatizer models, we split the
given training dataset into chunks of ten fragments
each, which of we always take the first eight as our
training data and the remaining two as development
data, yielding 80/20 training/development split.

6.2.1 Lemmatizer Model
Since the dataset used in the shared task does not
contain part-of-speech (POS) labels and BabyLem-
matizer relies on them for lemma disambiguation,
we train two separate models for lemmatization
and disambiguation and use them in tandem.

The initial context-blind model lemmatizes
words without their sentence contexts and estimates
their ambiguity using BabyLemmatizer’s built-in
confidence scoring system. The disambiguation
model then attempts to correct the low-confidence
lemmata by observing their contexts (in transliter-
ation) using a symmetric window of three words.
Both models use the default logo-phonemic tok-
enization that treats logograms and determinatives
as indivisible symbols, and syllabograms and pho-
netic complements as divisible phoneme sequences.
This setting collapses homonymous syllabic signs
such as ša and ša2 together but keeps logograms
such as DU and DU3 separate, since their meanings
and readings are generally unrelated. The lemma-
tizer model works only on the word level and does
not take the fragment metadata into consideration.

The advantage of the dual-model approach is
marginal, providing only ca. 1% increase in lemma-
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tization accuracy in comparison to using either of
the sub-models alone.

6.2.2 Token Predictor Model
For the token prediction task we train two mod-
els, the basic model and an augmented one. We
train BabyLemmatizer similarly to the lemma dis-
ambiguation model, but instead of predicting the
lemma we predict transliteration for each masked
word based on its surrounding context with a sym-
metric window of three words. We segment the
input using BabyLemmatizer’s logo-syllabic tok-
enizer using translitered signs as minimal units,
and generate the output sequence similarly. The
token prediction model does not take into account
the language or genre metadata and relies purely
on sign-to-sign relations.

The augmented model is trained in the same
manner, but the training data is concatenated with
itself for 15 times before the train/dev split. The
masked words are then randomized in a way that
15% of the total words are masked. Motivation
for this additional model was to provide a more
comparable baseline with the team 32’s model that
used the same augmentation approach.

7 Results

Three teams competed for the lemmatization task,
and one for the word prediction task. The model
numbers refer to submissions in this volume - sub-
mission 29 is "Lemmatization of Cuneiform Lan-
guages Using the ByT5 Model", submission 33 is
"Beyond Base Predictors: Using LLMs to Resolve
Ambiguities in Akkadian Lemmatization" and sub-
mission 53 is "A Low-Shot Prompting Approach to
Lemmatization in the EvaCun 2025 Shared Task".
for the token prediction task, submission 32 is
"Finetuning LLMs for EvaCun 2025 token predic-
tion shared task".

Subset 29 33 53 MLE BL
all 0.84 0.94 0.31 0.83 0.93
func 0.98 0.98 0.83 0.98 0.98
non func 0.80 0.93 0.15 0.79 0.92
in vocab 0.89 0.97 0.34 0.92 0.96
oov 0.48 0.72 0.07 0.00 0.65

Table 4: Accuracy results for lemmatization. Results for
teams 29, 33, 53, along with MLE baseline (pick most
common lemma for each token), and BabyLemmatizer
baseline.

Subset 32 BL BL+AUG
all 0.21 0.14 0.21
func 0.36 0.36 0.46
non func 0.19 0.12 0.19
in vocab 0.22 0.16 0.23
oov 0.03 <0.01 <0.01

Table 5: Accuracy results for Token Prediction. Results
for Team 32, along with Babylemmatizer baseline, and
Babylemmatizer baseline with augmented data.

7.1 Lemmatization

The performance of the submitted lemmatization
models varied significantly based on the complex-
ity of the word forms and their frequency in the
training data. Table 4 presents the overall accuracy
results for lemmatization across all systems. One
key observation was that function words were sig-
nificantly easier to lemmatize than non-function
words, as seen in the high accuracy scores across
all models. This is expected, given their lower mor-
phological variation and higher frequency in the
training data. OOV words, by contrast, posed a
greater challenge, highlighting the difficulty in han-
dling previously unseen forms. In fact, OOV items
represented the only notable bottleneck in lemmati-
zation performance, as in-vocabulary words were
almost perfectly lemmatized by BabyLemmatizer
and team 33. This suggests that both systems ex-
hibit strong context-awareness, allowing them to
accurately determine the relevant lemma based on
contextual cues.

7.2 Token Prediction

The results in table 5 show that 32 and BL+AUG
outperform BL overall (0.21 vs. 0.14), with aug-
mentation significantly improving function-word
(0.46) and in-vocabulary (0.23) accuracy. However,
OOV handling remains poor across all models, with
32 performing very slightly better (0.03).

8 Discussion

The results highlight both progress and remaining
challenges in lemmatization and token prediction
in ancient Akkadian. For lemmatization, the high
accuracy of BabyLemmatizer and team 33’s model
shows that hybrid models combining neural net-
works and rule-based approaches are effective for
Akkadian’s complex morphology. However, the
performance gap between in-vocabulary and out-
of-vocabulary words suggests that generalizing to
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unseen forms remains a significant challenge.
Token prediction proved more difficult, re-

flecting the uncertainty in reconstructing missing
text from fragmentary sources. Function words
were easier to predict accurately than content in-
vocabulary words, which exhibit greater variability.
Out-of-vocabulary words were almost impossible
to predict.

This shared task reinforces a pattern of success-
ful collaborations between cuneiform specialists
and computer scientists, or individuals with exper-
tise in both domains. The complexity of ancient lan-
guages like Akkadian and Sumerian, with their rich
morphological structures and varied orthographic
conventions, demands both computational innova-
tion and philological expertise. The challenges of
this field may be noted by the fact that out of six-
teen teams that initially expressed interest in the
shared task, only four submitted final systems, with
three completing the lemmatization task and only
one the token prediction task.

The new corpora was made available through the
years-long work of cuneiform specialists working
on the eBL and Archibab digital projects. Their spe-
cialized knowledge ensured high-quality data that
enhanced model performance. The original data
files were furthermore preprocessed for consistency
and machine readability by experts with experience
in both computer models and cuneiform texts and
their digital representations. Building thus on the
works of others, the task force has resulted in robust
models for new periods and genres of Akkadian
texts that were previously underrepresented in com-
putational studies. These new models enable more
comprehensive analyses of Akkadian’s diachronic
development and genre-specific characteristics, ul-
timately enriching our understanding of this pivotal
language in ancient Near Eastern history.

The task force has demonstrated that the collab-
oration between domain experts and computational
scientists does not need to be direct–their com-
plementary contributions across different stages
of the ancient language processing pipeline create
an environment conducive to breakthrough results
that benefit the entire field. The promising per-
formance on the lemmatization task, particularly
by hybrid approaches combining neural networks
with rule-based systems, demonstrates that these
methodologies can be successfully applied to other
under-resourced ancient languages. This could po-
tentially transform our ability to analyze and under-
stand historical texts at scale, opening new avenues

for research across multiple disciplines within the
humanities.
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Abstract

Lemmatization of cuneiform languages
presents a unique challenge due to their
complex writing system, which combines
syllabic and logographic elements. In this
study, we investigate the effectiveness of the
ByT5 model in addressing this challenge
by developing and evaluating a ByT5-based
lemmatization system. Experimental results
demonstrate that ByT5 outperforms mT5 in
this task, achieving an accuracy of 80.55%
on raw lemmas and 82.59% on generalized
lemmas, where sense numbers are removed.
These findings highlight the potential of ByT5
for lemmatizing cuneiform languages and
provide useful insights for future work on
ancient text lemmatization.

1 Introduction

Cuneiform writing systems, used by ancient
Mesopotamian civilizations like the Sumerians and
Akkadians, provide valuable insights into early hu-
man civilization. However, despite their historical
significance, computational methods for process-
ing cuneiform texts remain relatively underdevel-
oped. One of the key challenges in natural language
processing (NLP) for these ancient languages is
lemmatization — the task of reducing words to
their base or dictionary forms—a process that is
particularly complex due to the high degree of in-
flection, polysemy of signs, and extensive morpho-
logical variation characteristic of these languages.

Among the languages written in cuneiform,
Akkadian and Sumerian are two of the most exten-
sively documented, yet they pose distinct compu-
tational challenges. Akkadian, a Semitic language,
exhibits root-based morphology with non-linear
inflectional patterns, while Sumerian, a language
isolate, follows an agglutinative structure with ex-
tensive prefixation and suffixation. Both languages
also feature logographic and syllabic writing ele-
ments, further complicating automated linguistic

analysis.
Among existing approaches, BabyLemmatizer

(Sahala and Lindén, 2023) employs a neural
encoder-decoder model to perform joint POS tag-
ging and lemmatization, achieving 94–96% ac-
curacy. Similarly, AkkParser (Ong and Gordin,
2024) combines rule-based morphological analy-
sis, dictionary matching, and dependency parsing,
providing robust performance on Neo-Assyrian
texts. Despite their success, the variability in ortho-
graphic forms and the vast morphological richness
of cuneiform languages still present challenges.

Recent advancements in transformer-based mod-
els, such as T5 (Text-to-Text Transfer Transformer)
(Raffel et al., 2020), have significantly improved
performance across a wide range of NLP tasks,
including sequence-to-sequence applications like
translation and lemmatization (Riemenschneider
and Krahn, 2024). Building upon this foundation,
ByT5 (Xue et al., 2022) was introduced as a vari-
ant of T5, designed to process text at the byte level.
Unlike traditional token-based models, ByT5 op-
erates directly on raw byte sequences, eliminat-
ing the need for predefined vocabularies and tok-
enization schemes. This token-free approach has
proven advantageous in multilingual tasks such
as grapheme-to-phoneme conversion (Zhu et al.,
2022), where ByT5 has outperformed token-based
models. Its architecture has also proven effective
in lemmatization tasks—particularly for morpho-
logically rich languages such as Latin (Wróbel and
Nowak, 2022)—highlighting ByT5’s ability to han-
dle complex morphological variation with minimal
preprocessing. Moreover, its strong zero-shot learn-
ing capabilities (Stankevičius et al., 2022) enable it
to generalize to previously unseen languages, mak-
ing it especially valuable for under-resourced his-
torical languages such as Akkadian and Sumerian,
where annotated corpora remain limited.

The aim of this study is to evaluate the effec-
tiveness of ByT5 in lemmatizing Akkadian and
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Sumerian texts, with a focus on assessing its ability
to overcome the challenges posed by the morpho-
logical complexity and spelling irregularity of these
ancient languages.

2 Methodology

2.1 Dataset
The original dataset consists of several fields, in-
cluding: fragment id, fragment line num,
index in line, word language, domain, place
discovery, place composition, value, clean
value, and lemma. The primary input to the model
during training is the clean value, and the target
is the lemma.

A particular challenge in this task arises from
words that have multiple meanings or senses, a
phenomenon particularly prominent in cuneiform
lexicon. For example, the lemma abāru exhibits
various senses, each with a specific definition in
the Concise Dictionary of Akkadian (Black et al.,
2000). The different senses of abāru are often
marked with Roman numerals to denote the specific
sense, as outlined below:

1. abāru I: This sense refers to “(the metal) lead.”
It appears in texts such as A.GAR5 and in
1st millennium royal inscriptions, specifically
noted as A.BÁR. In Middle Assyrian, the
phrase is also written as annuku abāru.

2. abāru II: This sense has two distinct mean-
ings:

(a) Babylonian literary meaning: “A kind of
clamp”.

(b) Standard Babylonian (Jungbabylonisch)
transferred meaning: “embrace” or
“physical strength”, often used in refer-
ence to gods or kings.

3. abāru III: This sense refers to “to embrace”
in Old and Standard Babylonian. It is often
used in magical contexts to mean “embrace
intensely” or “bind” (e.g., limbs or persons).
In legal contexts, it is used to mean “accuse
someone” or “denounce”.

Given this ambiguity, two distinct forms of the
dataset are created to account for the different lev-
els of semantic granularity.

• Raw Lemma Dataset retains sense numbers
(e.g., abāru I) to capture semantic distinctions,
as shown in Table 1.

Surface Form Lemma
A.BAR2 abāru I
a-ba-ri abāru II
ub-bir abāru III

Table 1: Examples from the Raw Lemma Dataset

• Generalized Lemma Dataset removes sense
numbers for morphological normalization, as
shown in Table 2.

Surface Form Lemma
A.BAR2

abārua-ba-ri
ub-bir

Table 2: Examples from the Generalized Lemma
Dataset

2.2 Model Architecture

The primary model used for lemmatization of
cuneiform languages is the ByT5 model, a vari-
ant of the T5 architecture that operates directly
on the raw character sequences of texts at the byte
level. ByT5 is built on a transformer-based architec-
ture, where input sequences pass through multiple
layers of attention mechanisms and feed-forward
networks. It employs a standard encoder-decoder
framework: the encoder processes the input text,
while the decoder generates the corresponding out-
put based on the encoded information.

Figure 1: ByT5 Lemmatization Architecture with
Byte-Level Tokenization

In this study, ByT5 is trained to map sequences
of byte tokens to a sequence of output tokens,
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where each output token corresponds to the canon-
ical lemma (or generalized lemma) of the input
word, as illustrated in Figure 1.

As an additional model for comparison, the mT5
model was also used. mT5 is a multilingual vari-
ant of T5, capable of processing text in multiple
languages. mT5 also follows a transformer-based
architecture, using word-level tokenization and is
suited for handling multiple languages with varying
scripts. For the purpose of this study, mT5 serves
as a baseline model to evaluate how well ByT5 per-
forms relative to a more traditional, multilingual
approach.

2.3 Training Setup

Both models are trained using a standard sequence-
to-sequence learning approach. For ByT5, the in-
put sequence length is limited to 128 tokens, while
for mT5, it is restricted to 32 tokens. The input
text is prefixed with a task-specific indicator like
“Convert:”, following the approach inspired by the
T5 model. The model’s output is the predicted
lemma, which can either be a raw lemma with
sense numbering (for the Raw Lemma Dataset) or
a generalized lemma (for the Generalized Lemma
Dataset). Both datasets are split, with 95% used for
training and the remaining 5% for validation.

We utilize pre-trained weights from the Hugging
Face Transformers library and fine-tune the model
on both datasets. The training process uses the
Adam optimizer with a learning rate of 2e-5 and
a batch size of 16. Models are fine-tuned for 10
epochs or until convergence. Training is conducted
on an Apple M3 Pro (18GB) chip, leveraging the
MPS backend for accelerated computation.

3 Experimental Results

3.1 Performance Metrics

To evaluate the effectiveness of the models, we
used the following metrics:

Accuracy (Exact Match): This metric measures
the percentage of instances where the predicted
lemma exactly matches the target lemma.

Accuracy =
Number of Correct Lemma Predictions

Total Number of Words
×100%

(1)

Accuracy serves as the primary metric for assess-
ing the accuracy of the lemmatization process.

3.2 Results
The following tables present the performance of
ByT5-small and mT5-small on the two datasets:
one with raw lemmas (where sense numbers are
retained) and another with generalized lemmas
(where sense numbers are removed).

Model Accuracy (%)
ByT5-small 80.55
mT5-small 77.38

Table 3: Performance on Raw Lemmas
(Sense Number Retained)

Model Accuracy (%)
ByT5-small 82.59
mT5-small 79.28

Table 4: Performance on Generalized Lemmas
(Sense Number Removed)

4 Error Analysis

4.1 Challenges in Lemma Prediction
In this section, we conduct an error analysis based
on the predictions made by the ByT5-small model
on the raw lemma dataset, which consists of 39,621
unique word forms (transliterations) that have not
been normalized and 8,021 unique lemmas, reflect-
ing the diversity and complexity of the cuneiform
lexicon. The model was trained on a dataset of
290,294 instances, learning to map surface forms
to their corresponding lemmas. To assess its per-
formance, we evaluated it on a validation set of
15,279 instances, where it produced 2,972 erro-
neous predictions, resulting in an overall accuracy
of 80.55%. The detailed statistics of the dataset
and its partitions are presented in Table 5 1.

Dataset Instances
Unique
Word
Forms

Unique
Lemmas

Raw Lemma Dataset 305,573 39,621 8,021
Training Set (95%) 290,294 38,464 7,898
Validation Set (5%) 15,279 5,257 2,459

Table 5: Detailed Statistics of Raw Lemma Dataset

To better understand the sources of errors, we
analyzed the incorrect predictions and categorized

1For conciseness, we will refer to the training set as TS
and the validation set as VS in following tables.
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them into three main groups: (1) surface forms that
were most frequently mispredicted, (2) lemmas that
were most frequently predicted incorrectly, and (3)
erroneous lemma predictions that the model fre-
quently produced. These insights highlight specific
challenges in lemma disambiguation and the com-
plex mappings required for accurate lemmatization.

Based on the validation set, the following table
summarizes the five most frequently mispredicted
surface forms, the five lemmas that were most com-
monly misclassified, and the five incorrect lemma
predictions that the model frequently produced:

Category Word/Lemma Freq

Most frequently
mispredicted
surface forms

IGI 50
NU 41
ša 33
KI 32
BI 31

Most frequently
misclassified
lemmas

amāru I 40
ul I 36
ša 32

ana 29
šamšu I 27

Most frequently
produced incorrect
lemma predictions

pānu I 77
lā I 52
itti I 35
ša I 33
šū I 31

Table 6: Common Errors in Lemmatization

Building on the analysis above, we can iden-
tify three major challenges in the lemmatization
process. First, polysemy poses a significant issue:
without explicit syntactic or semantic context, the
model struggles to accurately disambiguate mul-
tiple possible meanings of a given form. Second,
inconsistencies in scribal conventions contribute to
further complexity, leading to variability in repre-
sentation. Third, the model exhibits a frequency
bias, tending to over-predict high-frequency lem-
mas even in contexts where they are incorrect.
These three challenges will be examined in detail
in the following discussion.

4.1.1 Polysemy in Surface Forms
A major source of error in the ByT5-small model’s
predictions stems from the inherent polysemy in
surface forms. Polysemy arises when a single sur-
face form corresponds to multiple meanings or

senses, each associated with a distinct lemma. Our
analysis identified 2,194 surface forms exhibiting
polysemy, accounting for a significant proportion
of the dataset.

We observe that many of the most frequently
mispredicted surface forms—IGI, NU, KI, BI—
are Sumerograms, logographic signs borrowed
from Sumerian into Akkadian. Unlike phonetic
spellings, Sumerograms encode meaning rather
than sound, making them particularly challenging
for lemmatization. The interpretation of a single
Sumerogram often depends on its contextual us-
age, as it can correspond to multiple lemmas. For
instance, IGI can signify “eye” (ı̄nu I) or “to see”
(amāru I), among other meanings.

The semantic range of the Sumerogram IGI, as
documented in the Concise Dictionary of Akka-
dian, along with their frequency distribution in the
training dataset, is presented in the table below.

Sign Lemma Meaning TS
Freq

IGI

pānu I face 772
amāru I to see 475
mahru II front 270
nat.ālu I to look 79

mahra I
in front;

before; earlier
51

ı̄nu I eye 41

mahāru I
to face;
oppose;
receive

10

pānātu I front 7
lapān I in front of 5
mahrum / 4

āmeru I
that sees,

reads
2

mehretu I
opposite side;

front
2

panû I
to face; be

ahead
1

nawāru I
to be(come)
bright, shine

1

Table 7: Frequency and Semantic Range of
Sumerogram IGI

Similar to IGI, the cuneiform logogram IM can
correspond to four distinct lemmas: t.uppu I, šāru
I, t. ı̄du I, and ešēru I. To illustrate this challenge,
Table 8 presents the distribution of IM’s lemmas
in the training and validation sets and the model’s
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predictions. Despite the diverse occurrences of IM
in the dataset, the model consistently predicted t. ı̄du
I across all instances, failing to account for the
other possible lemmas.

Surface
Form

TS
Count TS Lemma Distribution

IM

226

t.ı̄du I (57),
t.uppu I (66),
šāru I (102),
ešēru I (1)

VS
Count VS Lemma Distribution

16
t.ı̄du I (3),

t.uppu I (9),
šāru I (4)

Prediction:
t.ı̄du I (16/16)

Table 8: Distribution of IM’s Lemmas in Training and
Validation Sets vs. Model Prediction

The majority of most frequently misclassified
lemmas and most commonly produced incorrect
lemma predictions are closely associated with
Sumerograms with multiple semantic variants. As
shown in Table 6, amāru I and pānu I correspond to
the Sumerogram IGI, lā I corresponds to NU, and
šū I corresponds to BI. Moreover, these Sumero-
grams occur with high frequency in the training
set, making them some of the most common lexi-
cal items (e.g., IGI: 1,720 occurrences; NU: 1,993
occurrences; BI: 1,352 occurrences). This high
frequency, combined with their multiple seman-
tic interpretations, constitutes a major source of
prediction errors in the model.

Notably, the inclusion of texts from different his-
torical periods and source traditions (as discussed
in later sections) may further contribute to incon-
sistencies in lemmatization, as variations can arise
due to differences in transcription conventions for
cuneiform signs or historical shifts in the writing
system. For example, the original form t.up-pi can
be lemmatized as t.uppi I, t.uppu I, or t.uppum, de-
pending on scribal practices. However, the lemma
t.uppum appears only twice in the training dataset
and is more likely a morphological variant of t.uppu
I rather than a distinct lemma.

Overall, these challenges highlight the inher-
ent complexities of cuneiform languages, where
a single word form can have multiple interpreta-
tions depending on context or transcription con-
ventions. Among all mispredictions, 1,253 errors

were attributed to such one-to-many mappings. The
model struggles to effectively disambiguate these
cases, primarily due to its limited ability to cap-
ture the contextual cues that differentiate semantic
variants. This issue is fundamentally rooted in
the constraints of a simple sequence-to-sequence
architecture, in which the model takes a surface
form as input and generates a single corresponding
lemma as output. Hence, lacking the capacity to
incorporate broader contextual information neces-
sary for disambiguation makes the existing model
architecture inadequate for handling one-to-many
mappings, which eventually leads to frequent mis-
classifications.

4.1.2 Orthographic Variation in Lemmas
As previously noted, t.uppu I as a lemma may be
reconstructed from multiple surface forms, such as
t.up-pi or IM, illustrating the intricate mapping be-
tween surface forms and lemmas. A single surface
form may correspond to multiple lemmas, while
a single lemma may also be associated with mul-
tiple surface forms (although the latter does not
introduce ambiguity in one-to-one lemmatization
processes).

Therefore, in addition to polysemy, orthographic
variation presents another challenge, wherein a sin-
gle lemma can be represented by multiple surface
forms. Our analysis of the raw lemma dataset
revealed that 4,865 lemmas—comprising 60.65%
of the total—are associated with multiple surface
forms, indicating a significant presence of spelling
variants. Noticeably, among the 2,972 lemmas in-
correctly predicted by the model (i.e., the lemmas
that the model erroneously generated rather than
the correct lemmas that were misidentified), 2,788
errors were traced to these orthographic variations.
This finding suggests that a substantial proportion
of mispredictions can be attributed to the model’s
inclination to favor frequently occurring variants,
likely due to the disproportionate representation of
such cases in the training data. A clear example is
pānu I, which exhibits significant spelling variation
and is frequently mispredicted by the model.

Another illustrative case is the lemma šapârum,
which corresponds to 92 distinct word forms, many
of which exhibit considerable morphological com-
plexity and subtle variations (e.g., ši-ta-ap-pa-ra-
am, iš-pu-ra-am, šu-up-ra-nim, áš-tap-ra, li-iš-ur-
ma, etc.). While the model successfully predicts
the lemma in the majority of cases, it occasion-
ally produces an entirely nonexistent lemma. For
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instance, for “ša-ap-pa-ra-ak-kum”, the model in-
correctly generates “šapparakkum”—a form unat-
tested in the dataset. This pattern of errors further
underscores the model’s difficulty in distinguish-
ing between legitimate orthographic variants and
erroneous extrapolations, ultimately complicating
the lemmatization process.

4.1.3 Frequency Effects in Lemma Prediction
An important consideration in the model’s perfor-
mance is the effect of lemma frequency on pre-
diction accuracy. In the dataset, some lemmas
appear far more frequently than others, creating
a potential imbalance in the model’s learning pro-
cess. To systematically analyze this, we classi-
fied low-frequency lemmas as those appearing at
most once (Q1 = 1.0), mid-frequency lemmas as
those appearing between Q1 and Q3 (2 to 12 times),
and high-frequency lemmas as those appearing 13
times or more (Q3 = 13.0).

Our analysis revealed that 2,349 errors (79.0%
of the total errors) were made by the model on
high-frequency lemmas, 529 errors (17.8%) on
mid-frequency lemmas, and 94 errors (3.2%) on
low-frequency lemmas. The relatively high number
of errors on high-frequency lemmas suggests that,
despite their prominence in the training data, these
words still present challenges for the model. This
can be attributed to the polysemy and orthographic
variation issues discussed above, where the model’s
familiarity with a lemma’s high-frequency forms
does not guarantee its ability to handle less com-
mon senses or spelling variants. On the other hand,
low-frequency lemmas, while less problematic in
terms of sheer error counts, may be underrepre-
sented in the training data, leading to occasional
mispredictions when these lemmas do appear in the
validation set. For instance, in the training corpus
(comprising 290,294 instances), there were only
nine occurrences of the surface form “im”, map-
ping to seven distinct lemmas: s. âbum (2 instances),
ne’rârum (2 instances), epêšum (1 instance), eqlum
(1 instance), šapârum (1 instance), âlum (1 in-
stance), and makârum (1 instance). Given the ex-
tremely limited number of training examples, the
model struggled to learn the correct mappings, ulti-
mately producing an erroneous output (e.g., t.uppu
I). The lack of sufficient representation of variant
forms in the training data makes it even more diffi-
cult for the model to generalize accurately.

These findings highlight the impact of data im-
balance, where the model’s performance is skewed

toward frequently occurring lemmas while remain-
ing less reliable on rarer ones.

4.2 Comparative Evaluation on Archibab and
eBL Corpora

As part of our error analysis, we conducted an addi-
tional evaluation by dividing the validation set into
two subsets based on their sources: Archibab2 and
the Electronic Babylonian Library (eBL)3. This
allowed us to assess the model’s performance sep-
arately on texts from distinct historical periods
and linguistic traditions, providing further insights
into its strengths and limitations. The division
was necessary due to significant differences be-
tween these two corpora. Archibab consists of Old
Babylonian texts from the early second millennium
BCE, primarily legal, administrative, and episto-
lary documents. These texts adhere to lemmati-
zation conventions shaped by their historical and
linguistic context. In contrast, eBL comprises first-
millennium BCE literary and scholarly texts, which
reflect later linguistic developments and more stan-
dardized scribal practices. With approximately
1000 years separating these corpora, their divergent
lemmatization practices posed unique challenges
for the model.

To conduct this evaluation, we refined the dataset
by further splitting the training and validation sets
accordingly, after which we obtained the following
distribution of instances, as shown in Table 9. No-
tably, the Archibab dataset does not include sense
numbers in its lemmatization annotations, which
may influence the ability of certain models to han-
dle this subset effectively.

Source Training Set Validation Set

eBL 292,423 14,619
Archibab 13,150 660

Table 9: Data Distribution across Different Sources

By evaluating performance on each subset in-
dependently, we aimed to determine whether the
model could generalize across different stages of
cuneiform languages or whether it showed biases
toward a particular linguistic tradition. Specifi-
cally, we evaluated models trained on two different
datasets: the Raw Lemma Dataset and the General-
ized Lemma Dataset. The results are summarized
in Table 10 and Table 11.

2https://www.archibab.fr/home
3https://www.ebl.lmu.de
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Model Dataset Accuracy
(%)

ByT5
(Raw Lemma)

eBL 82.39

ByT5
(Raw Lemma)

Archibab 39.85

mT5
(Raw Lemma)

eBL 79.30

mT5
(Raw Lemma)

Archibab 34.85

Table 10: Performance of models trained on the Raw
Lemma Dataset.

Model Dataset Accuracy
(%)

ByT5
(Generalized Lemma)

eBL 83.80

ByT5
(Generalized Lemma)

Archibab 55.76

mT5
(Generalized Lemma)

eBL 80.60

mT5
(Generalized Lemma)

Archibab 50.00

Table 11: Performance of models trained on the
Generalized Lemma Dataset.

Across all models, lemmatization accuracy on
the eBL dataset was significantly higher than on
the Archibab dataset. This discrepancy can largely
be attributed to the imbalance in training data,
where eBL data greatly outnumbered Archibab data
(292,423 vs. 13,150 instances, a ratio of approxi-
mately 22.2:1). This imbalance likely led the model
to develop a stronger bias toward the linguistic pat-
terns found in eBL, resulting in higher accuracy for
that subset.

Furthermore, models trained on the Raw Lemma
Dataset exhibited particularly low performance on
Archibab data. This is likely because these models
were trained to predict sense numbers, whereas the
Archibab dataset lacks sense-number annotations.
As a result, the models trained on Raw Lemma
data tended to incorrectly assign sense numbers
when lemmatizing Archibab instances, leading to a

notable decrease in accuracy. In contrast, models
trained on the Generalized Lemma Dataset showed
higher accuracy on Archibab, as they were explic-
itly trained to generalize across datasets without
relying on sense-number distinctions. This sug-
gests that generalizing lemma annotations can help
improve model performance when dealing with
corpora that follow different lemmatization conven-
tions.

5 Conclusion

The results from our experiments demonstrate that
the ByT5-small model outperforms mT5-small in
accuracy across both generalized and raw lemmati-
zation tasks. Results also indicate that predicting
raw lemmas (including sense numbers) is more
challenging than predicting generalized lemmas,
which is reflected in the lower accuracy scores for
the raw lemma dataset, suggesting that incorporat-
ing sense numbers adds a layer of complexity to
the task.

The effectiveness of ByT5’s byte-level tokeniza-
tion is particularly evident in Akkadian and Sume-
rian lemmatization, as it eliminates the need for
complex, language-specific tokenization strategies
that traditionally require specialized cuneiform
expertise. In previous approaches to processing
these ancient languages, pre-tokenization often re-
lied on in-depth linguistic knowledge, such as the
logo-syllabic tokenization employed by BabyLem-
matizer4—a process tailored to the structure of
cuneiform writing systems. In contrast, ByT5 lever-
ages a byte-level vocabulary of only 256 basic to-
kens, enabling it to represent all cuneiform sym-
bols and their transliterations without additional
tokenization preprocessing.

This is particularly beneficial for Akkadian and
Sumerian transliterations, which often include di-
acritics (e.g., š, t.), subscript numerals (e.g., 2 and
3, to distinguish between homophones or different
readings of the same cuneiform sign), determina-
tives (e.g., {d}) and special notations for broken
or uncertain readings (e.g., ?). ByT5’s ability to
handle these symbols directly allows for a simpler
yet effective architecture that achieves competitive
performance without relying on intricate domain-
specific tokenization rules. This suggests that byte-
level models can possibly serve as a more acces-
sible and adaptable approach to lemmatization in
low-resource, complex linguistic settings, reducing

4https://github.com/asahala/BabyLemmatizer
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dependence on specialized cuneiform processing
techniques.

We acknowledge that a key limitation of our
experiment is the lack of contextual integration.
Without leveraging broader contextual information,
further performance improvements are impossible,
particularly in distinguishing sense variations. Fu-
ture work could explore incorporating sentence- or
discourse-level context, as ByT5 with contextual
awareness might yield interesting results and fur-
ther enhance lemmatization accuracy. Additionally,
expanding the training data and refining the lemma-
tization pipeline may further improve performance,
particularly for datasets with sparse annotations
like Archibab.
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Abstract

In this paper, we present our submission for the
token prediction task of EvaCun 2025. Our sys-
tems are based on LLMs (Command-R, Mistral,
and Aya Expanse) fine-tuned on the task data
provided by the organizers. As we only pos-
sess a very superficial knowledge of the subject
field and the languages of the task, we simply
used the training data without any task-specific
adjustments, preprocessing, or filtering. We
compare 3 different approaches (based on 3
different prompts) of obtaining the predictions,
and we evaluate them on a held-out part of the
data.

1 Introduction

The EvaCun token prediction shared task focuses
on missing word restoration in languages originally
written in cuneiform – Akkadian and Sumerian.
The script is one of the earliest known forms of writ-
ing with a history spanning over 3000 years, evolv-
ing originally from the proto-cuneiform that was
used for accounting and record keeping. One of the
most challenging part of interpreting and translat-
ing Akkadian and Sumerian text is the polyvalence
of cuneiform signs – a single sign can be used as a
logogram, i.e. representing a whole word (which is
further complicated by the fact that one symbol can
represent many different possible words, and that
Akkadian texts can contain Sumerian words, even
though the languages are not otherwise related), or
as a syllable (one sign can represent multiple sylla-
bles) or as a determinative that denotes a semantic
category of the previous word (diety, person, place,
etc.). In the context of the task, our work is greatly
simplified by the fact that the task data are already
interpreted and transliterated into the Latin alpha-
bet instead of being in the original cuneiform script.
As we do not have any knowledge of the languages
of the task in our team, we pursued a purely engi-
neering approach of finetuning 3 different LLMs

– Aya Expanse 8B (Dang et al., 2024), Command-
R v0.1 34B (Cohere4AI team, 2025) and Mistral
Small 3 24B (Mistral team, 2025) – on the task
data, with 3 slightly different formulations of the
problem. We offer our solution as a baseline to be
compared with the more informed and task-specific
approaches.

2 Related work

A more focused effort in NLP for languages written
in cuneiform started only recently. A basis for all
future work are databases and datasets like the Elec-
tronic Text Corpus of Sumerian Literature (Black
et al., 2016), Cuneiform Digital Library Initiative,
(CDLI contributors, 2025), CuneiML (Chen et al.,
2023) and the Open Richly Annotated Cuneiform
Corpus (Oracc Team, 2025).

Simmons et al. (2024) created a new corpus
based on these previously released datasets that
pairs digital Unicode transcription of cuneiform
texts with their transliterations as well as a baseline
system trained on this dataset to perform this task.
Similarly, Gordin et al. (2020) present a method
for automatic translation of Akkadian cuneiform. ?
present an MT system for Sumerian with the final
goal of an information retrieval pipeline for this
language.

3 Methods

We fine-tune autoregressive LLMs with 3 different
prompts to predict the masked word. A masked
language model would be a more natural choice for
this task, however causal (autoregressive) language
modeling is currently a more popular approach with
a larger selection of pretrained models.

3.1 Data preprocessing and prompts

The dataset provided by the organizers contains
a list of tokens, each token accompanied by its
document id, line number in the context of the doc-
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Method Prompt

All Fill in the missing {language} words, masked by the [MASK] token. Output "WORDS:" and a comma-
separated list of the missing words in original {language}: {masked_document}

One by one Fill in the missing {language} word masked by the [MASK] token: {masked_document_with_unks}
Restore Complete the missing {language} words masked by the [MASK] tokens and print out the restored

document: {masked_document}

Table 1: Prompts for the three token prediction methods we compared.

ument, the word index on that line, language, and
extra information, for example, the place where
the tablet was found or the type of text. We only
make use of the language, word order, and docu-
ment id, i.e., we do not for example split the inputs
into lines or use the additional information. In each
document, we mask 15% randomly sampled words
with a [MASK] token. For each document, we cre-
ate at most 15 unique variants with different masks
(fewer if the overall possible number of combina-
tions for the given document length is lower). We
frame the prediction task in three different ways.
The model is shown the masked document in the
prompt, and it is asked to:

• Produce a list containing all the original words
corresponding to the masked predictions in the
correct order (we call this method All further
in the text).

• All [MASK] tokens except for one are re-
placed by an [UNK] token, and we ask the
model to predict the original word for the
single remaining [MASK] token. This is re-
peated for all [MASK] tokens in the masked
document (One by one).

• We ask the model to output the full restored
text of the masked document. We finetune
separate models on each of these prompts (Re-
store).

The specific prompts are shown in Table 1. Our
baseline approach, All, needs the least effort for
data preprocessing and training and inference com-
pute time. However, it could suffer from error
propagation due to the autoregressive nature of
the inference – the model bases the predictions on
previously predicted words as well. One by one
approach could mitigate this issue, as only one
masked word is predicted for each example (others
remain masked). Restore approach is based on the
basic next-word prediction training objective for
autoregressive models, but the decoding is compli-
cated by the need for forcing the unmasked parts of

the text and keeping the word lengths the same for
whole text for both masked and unmasked versions.

4 Experiments

We describe the experimental setup, hyperparame-
ters and results in this section.

4.1 Data

The full training data from the organizers contains
913252 tokens in 22777 documents. We set aside
1% (227 documents) for the dev set (we filter out
single word documents from the dev set). For our
evaluation, we used a subset of this dev set con-
taining 135 documents with 1500 different unique
masked examples in total.

4.2 LLM finetuning

We finetune the pretrained models using QLoRA
(Dettmers et al., 2023). We experimented with
3 LLMs: Command-R V0.1 (4-bit quantized,
CohereForAI/c4ai-command-r-v01-4bit), Aya Ex-
panse 8B and Mistral Small 3 24B Instruct (4-
bit quantized, unsloth/Mistral-Small-24B-Instruct-
2501-unsloth-bnb-4bit. We use the transformers
(Wolf et al., 2020), peft and trl libraries for the
training. We experimented with LoRA rank sizes
8, 16, 32, 64 and 92, α = r/2. We finetuned the
models by AdamW optimizer, with warmup ratio
of 0.03 and learning rate lr = 2e − 4. We used
batch sizes 40, 36 and 35 for Aya, Command-R and
Mistral models, respectively. We trained on a het-
erogenous cluster on a mix of Nvidia L40, A40 and
H100 GPUs. We trained for a maximum of epochs,
but the checkpoints we actually used for the predic-
tion were from earlier parts of the training, as we
describe in the results section.

4.3 Results

We sampled from the models with temperature
t = 0.2 to obtain the predictions (greedily, without
the use of algorithms like beam search) and we
measured the accuracy of the predictions on the
held-out validation set, i.e the fraction of masked
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Figure 1: Relative frequencies of the top-20 generated words for masked positions by best checkpoint for each
prompt (All, One by one, Restore on top left, top right and bottom left, respectively) and of the reference masked
words (bottom right).

Aya Expanse Command-R Mistral

All 0.202 0.209 0.221
One by one 0.157 0.167 0.205
Restore 0.136 0.139 0.137

Majority voting 0.269 (0.377)
Most common word 0.04

Table 2: Accuracies of all combinations of models and
prompts on held-out part of the task data. We also report
top-3 accuracy for the majority voting in the parentheses.
The final row shows the accuracy of predicting the most
common word for the given language (based on the
training data) for each masked position.

Aya Expanse Command-R Mistral

All 6300 (0.75) 6300 (0.67) 5400 (0.55)
One by one 8100 (0.15) 5400 (0.10) 900 (0.02)
Restore 4500 (0.53) 9000 (0.96) 2700 (0.27)

Table 3: Number of updates (and the corresponding frac-
tion of an epoch in parentheses) that the best-performing
models were trained for.

positions where the missing word was predicted
correctly out of all masked positions. For the Re-
store method, we generate the restored document in
parts, by force decoding the known parts and only
generating one complete word (possibly consisting
of multiple subwords) for each [MASK] token (i.e.
after force decoding the unmasked part of the doc-
ument, we select the most probable subword that
starts with a beginning of word symbol and gener-
ate next subwords until we reach another beginning
of word subword, we discard this last subword and
start with force decoding the known continuation
again). We ensemble the results by majority voting,
pick 60 best-performing checkpoints and select the
most common prediction for each position.

We present the results of the 3 methods on the
held-out validation set in Table 2. Overall, finetun-
ing the Mistral models resulted in the best accura-
cies. However, the differences are not large and
with a different choice of hyperparameters in the
finetuning, we might see different ranking. From
the methods point of view, All performed the best.
Table 3 shows the number of steps and a corre-
sponding fraction of an epoch that the best-scoring
checkpoints were trained on. The final line shows
the majority baseline – for each language, we only
predict the most common word from the training
data for all masked positions. For example, in
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Akkadian, the most common word is the proposi-
tion ina, meaning in, on, onto, at, to, from and other
possible meanings in compound expressions.

We also show the relative frequencies of the top-
20 predicted words by each method and of the
reference words in Figure 1. We see that while
the list of top 10 words is similar to the reference
list for all methods, the LLMs overestimate the
probability (frequency) of the most popular words.
This is a common issue in text-generating models.
As a result, probabilities of less common words
are underestimated – the methods generated 1567,
1217 and 3164 unique words for All, One by one
and Restore respectively, while the reference con-
tains 2317 unique tokens. We believe that the large
number of unique tokens for the Restore method is
caused by our prediction mechanism that ensures
the same word length of both the prediction and the
original text but can force the selection of subop-
timal predictions as a fallback. Also, note the we
did not disallow the generation of [MASK] token
in the Restore method by mistake. This negatively
affects the resulting accuracy of this method.

For the final test set submission, we ran the in-
ference with the best 60 checkpoints on the test
dataset and performed the majority voting to obtain
top-3 predictions.

5 Conclusion

We finetuned various autoregressive LLMs on the
token restoration task posed in 3 different ways.
We show that the best single model can accurately
predict 22.1% of masked tokens on our held-out
dev set, while by combining predictions of multiple
models by voting, we can reach 26.9% accuracy.
However, there might be biases and aspects of the
dataset like repetitiveness, which could lead to over-
estimating the real capabilities of our approach.

In the future, we plan to focus on the much more
difficult task of direct translation of cuneiform
script into English, either using Unicode transcrip-
tions of the tablets, or a visual LLM to read the
tablet photos directly.
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Abstract

We present a hybrid approach for Akkadian
lemmatization in the EvaCun 2025 Shared Task
that combines traditional NLP techniques with
large language models (LLMs). Our system
employs three Base Predictors–a dictionary
lookup and two T5 models–to establish initial
lemma candidates. For cases where these pre-
dictors disagree (18.72% of instances), we im-
plement an LLM Resolution module, enhanced
with direct access to the electronic Babylonian
Library (eBL) dictionary entries. This module
includes a Predictor component that generates
initial lemma predictions based on dictionary
information, and a Validator component that
refines these predictions through contextual rea-
soning. Error analysis reveals that the system
struggles most with small differences (like cap-
italization) and certain ambiguous logograms
(like BI). Our work demonstrates the benefits of
combining traditional NLP approaches with the
reasoning capabilities of LLMs when provided
with appropriate domain knowledge.

1 Introduction

Akkadian lemmatization presents significant chal-
lenges due to complex morphology, logographic
elements, and varying scholarly conventions. De-
spite significant advances in neural lemmatization
approaches (Sahala and Lindén, 2023), ambiguities
continue to resist automated resolution. The Eva-
Cun 2025 shared task explores how LLMs can be
integrated into lemmatization workflows for Akka-
dian texts. In this paper, we present our hybrid ap-
proach that strategically combines traditional NLP
techniques with LLM capabilities. Our system is
motivated by the observation that while most Akka-
dian forms can be reliably lemmatized through con-
ventional methods, a small but significant percent-
age requires deeper analysis. We leverage this find-
ing by directing our LLM resources specifically
toward resolving these difficult cases.

2 Related Work

Prior work on Akkadian Lemmatization and neigh-
boring tasks primarily relies on rule-based systems.
For instance, Kataja and Koskenniemi (1988) use
finite-state transducers to analyze Akkadian mor-
phology, while Macks (2002) employs a Prolog
Definite Clause Grammar. Particularly significant
in practice is L2 (Tinney, 2019), a dictionary-based
tool that has been used to annotate the Open Richly
Annotated Cuneiform Corpus (Oracc).1

More recently, Sahala et al. (2020) explore finite-
state approaches to Ancient Babylonian through
their BabyFST model, highlighting the challenges
posed by word form ambiguity. The field has since
advanced to neural approaches with BabyLem-
matizer (Sahala et al., 2022) and its successor
BabyLemmatizer 2.0 (Sahala and Lindén, 2023),
which represent the current state of the art.

Beyond the Akkadian-focused systems de-
scribed above, broader lemmatization research in
recent shared tasks has established sequence-to-
sequence modeling as an effective approach across
multiple languages (Wróbel and Nowak, 2022; Yan-
garber et al., 2023; Riemenschneider and Krahn,
2024). We incorporate this proven methodology
while investigating how LLMs can extend and en-
hance these techniques for Akkadian specifically.

3 System Architecture

In this section, we present our lemmatization sys-
tem architecture, illustrated in Figure 1. Our ap-
proach implements a hierarchical approach wherein
base predictors handle standard cases, while LLM
components address more challenging instances.

3.1 Input
The input layer of our lemmatization pipeline ac-
cepts two primary data elements: the token of in-
terest to be lemmatized and the full fragment in

1https://oracc.museum.upenn.edu/index.html.
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Figure 1: Overview of our system architecture.

which this token appears. In addition to providing
contextual information, the full fragment serves an
important technical purpose: it enables our system
to detect which lemmatization convention should
be applied to the output.

Domain Detection. An initial analysis of the
training data reveals a critical distinction between
two different lemmatization conventions that im-
pact how a word should be lemmatized. The dataset
contains a mixture of texts following either the
Archibab (Charpin, 2014)2 or the eBL3 format. For
example, “lord” appears as “bêlum” in Archibab
(with circumflex accent and mimation) but as “bēlu
I” in eBL (with macron, no mimation, and Roman
indexing). The transliterated text follows different
standards as well: while the data belonging to eBL
uses curly brackets for determinatives, Archibab
employs parentheses. Moreover, while eBL consis-
tently uses lowerscript indices to distinguish homo-
phones, Archibab uses the acute and grave accents
for the indices 2 and 3 (e.g., “u two” is written as
“u2” in eBL and as “ú” in Archibab).

To address this challenge, our first processing
step determines whether to follow the eBL or
Archibab lemmatization format by analyzing the
full fragment context. We develop a rule-based do-
main detection method that determines the target
format by analyzing the input format. For example,
a transliterated fragment containing parenthesized
determinatives and acute accents (e.g., “[...] i-na-
an-na ma-ar-ta be-lí-ia (I)-(munus)-ki-ru-ú ša [...]”
would be identified as Archibab-style, indicating
that “be-lí-ia” should be lemmatized as “bêlum”.
Conversely, a fragment with subscript numbers and
curly braces (e.g., “[...] šu-pi ša2 be-li2-ia lu t.a-a-bi

2https://www.archibab.fr/home.
3https://www.ebl.lmu.de/.

[...]”) would be classified as eBL-style, signaling
that “be-li2-ia” should be lemmatized as “bēlu I”.

3.2 Base Predictors

Our system is built on the observation that lemma-
tization difficulty varies across tokens, with only
a subset requiring complex disambiguation. We
therefore leverage a dictionary lookup and T5 mod-
els to handle most of the predictions.

Dictionary Lookup. When splitting the training
data into 95% train and 5% validation data, a sim-
ple dictionary lookup already achieves 77.63% ac-
curacy on the validation set. This baseline approach
is further improved with a domain-aware dictio-
nary lookup, which reaches 82.63% accuracy. Our
domain-aware implementation maintains separate
dictionaries for eBL and Archibab; when a token
cannot be found in the domain-specific dictionary,
the system falls back to a merged dictionary con-
taining entries from both domains.

T5 Models. In recent shared tasks, treating
lemmatization as a sequence-to-sequence task has
proven successful (Wróbel and Nowak, 2022; Yan-
garber et al., 2023; Riemenschneider and Krahn,
2024). Following this established approach, we pre-
train our own Akkadian T5 model on the transliter-
ated texts provided by the task organizers, as addi-
tional data was not permitted under the competition
rules. Specifically, we train a T5base model for 100
epochs using nanoT5 (Nawrot, 2023). We fine-tune
this pre-trained model twice, each time with a dif-
ferent 5% held-out validation split, continuing until
we observe no improvements in lemmatization ac-
curacy for five consecutive evaluation runs.

The input format for both models consists of
a domain token followed by a window of three
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tokens before and after the target, with special
tokens delimiting the target: For instance, “[DO-
MAIN=eBL] BI ip-pal-si-hu ina [special_token_0]
MUL.MUL [special_token_1] u {d}30 IGI-šu2-nu-
ti-ma” should be lemmatized as “zappu I”. De-
spite this contextualized representation, our two
T5 models achieve only 86.96% and 88.25% vali-
dation accuracy respectively, barely outperforming
the dictionary-based approach and showing limited
generalization to unseen forms.

We utilize model disagreement as a signal for
identifying challenging lemmatization decisions.
When at least two of our three base models pro-
duce different predictions for a given token, we
invoke a LLM resolution strategy. This targeted
approach allows us to process the majority of cases
efficiently: 81.28% of the test set was lemmatized
using only our base predictors, while the more so-
phisticated LLM resolution was reserved for the
remaining 18.72% of challenging cases.

3.3 LLM Resolution
The difficult cases requiring LLM intervention
present a dual challenge: on one hand, they re-
quire reasoning to determine the correct lemma.
On the other hand, we are simultaneously con-
fronted with arbitrary lexicographic conventions
that cannot be derived through reasoning alone. For
instance, “kasāpu” is a homonym that can mean
either “to break (into bits)” or “to make funerary
offering”, but even after correctly determining the
lemma and its meaning, the assignment of Roman
indices (I for “break” versus II for “funerary of-
fering”) follows arbitrary conventions rather than
linguistic principles.

To address this challenge, we prepare the LLM
input text with comprehensive contextual informa-
tion: the full textual fragment, the target token, pre-
dictions from all base models, and–importantly–the
corresponding dictionary definitions retrieved from
the eBL lexicon. Additionally, we augment this in-
formation with up to three representative examples
from the same textual domain, selected first from
exact matches of the target token and then supple-
mented with similar forms (based on Levenshtein
distance) when necessary. We ensure diversity in
our examples by including only one example per
lemma, thereby presenting three different lemmata
to the model. This approach provides information
on how lemmatization conventions are structured
within the specific domain.

The enriched context supports a two-stage LLM

resolution process. First, an LLM Predictor ana-
lyzes the available information to generate an initial
lemma prediction. Then, a second LLM instance
serves as a Validator, reviewing both the original
context and the predictor’s reasoning to make the
final determination. In our implementation, we
use Anthropic’s claude-3-7-sonnet-202502194

as both Predictor and Validator.

LLM Predictor. The Predictor component lever-
ages the LLM’s reasoning abilities while bridging
the gap to arbitrary conventions through the se-
lected contextual information. By analyzing the
full fragment, the dictionary definitions, and con-
sidering domain-specific examples, the Predictor
generates both a reasoned explanation and a lemma
prediction.

LLM Validator. The Validator component re-
ceives all the information provided to the Predictor,
along with the Predictor’s reasoning and lemma
choice, as well as the dictionary definition of the
Predictor’s proposed lemma. This second-stage ver-
ification ensures that even when the correct lemma
was not present in the base model predictions, it
can still be properly evaluated against the eBL lexi-
con. The Validator considers all available evidence
to make the final determination, serving as a safe-
guard against potential errors in the Predictor’s
analysis.

Postprocessing. The resulting LLM-based pre-
diction system usually follows the domain-specific
standards, but exhibits a bias toward eBL conven-
tions due to our reliance on the eBL lexicon. To en-
sure domain-appropriate outputs, we apply targeted
post-processing rules that adapt the lemmata to
their domains. For instance, in the Archibab texts,
we remove Roman indices and replace macrons
with circumflexes (converting ā, ē, ı̄, ū to â, ê, î,
û). Conversely, for eBL texts, we verify the pres-
ence of required Roman indices, falling back to
the closest base model prediction when necessary.
This post-processing ensures that our final lemmata
adhere to the expected conventional standards of
each domain.

4 Error Analysis

Base Model Performance. Our system architec-
ture enables a systematic analysis of error patterns
at each stage of the prediction pipeline. We begin

4https://www.anthropic.com/news/
claude-3-7-sonnet.
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Figure 2: Base Model Failures Despite Agreement (%).

by examining the performance of our base pre-
dictors in cases where they unanimously agree,
thereby bypassing the need for LLM interven-
tion. Across the two independent train/validation
splits, we observe that when both the dictionary
lookup and T5 model agree on a lemma prediction,
their combined accuracy reaches 97.2% ± 0.04%.
This analysis validates our architectural decision to
avoid LLM processing when base predictors reach
consensus, as the error rate in these cases consis-
tently remains below 3%. Although we cannot
directly measure the error rate when all three sys-
tems (dictionary and both T5 models) agree due
to training data overlap, we can reasonably expect
this error to be even lower than the observed 2.8%.

We present an analysis of the 2.8% of cases
where base models fail despite agreement in Fig-
ure 2. The logogram NU represents the most fre-
quently mispredicted form (5% of all errors), where
the system consistently predicts “lā I” instead of
the contextually appropriate “lu I” or “s.almu II”.
This pattern reveals a fundamental limitation in the
models’ ability to disambiguate logogram based
on context, highlighting a specific area where tar-
geted improvements could yield significant gains
in overall system performance. (ii) Similarly, the
logogram BI (3.65% of errors) demonstrates limi-
tations in grammatical reasoning, with the system
defaulting to “šū I” instead of contextually appro-
priate alternatives like “šuāti I” or “šı̄ I”.

(iii) The divine name {d}UTU represents the
second most frequently mispredicted form (4.2%
of errors), where our system consistently predicts
“Šamaš I” while the gold standard sometimes re-
quires “šamšu I”. This distinction is particularly
subtle, as it is often the case that both lemmata are
valid, depending on contextual interpretation.

(iv) The largest category of systematically identi-

fiable errors (24.22%) involves cases where predic-
tions differ from gold standards by only a single let-
ter. Within this category, capitalization accounts for
4% of all errors, where the system correctly iden-
tifies the lemma but uses incorrect capitalization
(e.g., “šarru I” vs. “Šarru I”). Accent differences
account for 1.92% of errors. Arguably, lemmata
derived from the same root, e.g., “s.alāmu I” and
“s.almu I” both being valid lemmata for GE6, also
belong in this category as they represent minor
variations of the same lexical concept. These “near-
miss” errors suggest that a substantial portion of
the system’s failures involve formatting variations
rather than fundamental misunderstandings of the
underlying lexical items. Roman index errors rep-
resent a more significant issue (7.32% of all errors),
where the system identifies the correct lemma but
assigns an incorrect index.

LLM Resolution Performance. To analyze the
performance of our LLM Resolution approach, we
examine 500 instances where Base Predictors dis-
agree on the validation data. The overall accuracy
on these challenging cases is 77.4%. The LLM
Predictor contributes significantly to this perfor-
mance, correctly resolving 73.6% of cases. The
Validator module further improves results by cor-
rectly resolving an additional 4% of cases, though
it occasionally introduces errors (0.2% of cases).
Post-editing rules correct another 1.4% of cases.

Figure 3 presents an error analysis of the remain-
ing cases where our approach fails. The analysis
reveals that Roman Indices are particularly well-
handled through the LLM’s reasoning capabilities,
as the model can effectively leverage dictionary en-
tries to reach correct conclusions. Similarly, almost
all cases involving the logogram NU are success-
fully resolved. The logogram BI remains more
challenging, with our system failing in 36.37% of
all cases involving this logogram.

We hypothesize that these cases are not a limita-
tion of the LLM but rather due to a peculiarity in
Akkadian lemmatization, where case and gender
variations may require distinct lemma entries (e.g.,
“šı̄ I” or “šuāti I”). Given that personal pronouns
and common logograms like BI appear frequently
in the corpus, improving the model’s handling of
these cases could enhance overall performance. Fu-
ture improvements could include explicitly instruct-
ing the model about the specific lemmatization con-
ventions for these special cases.

Additionally, our analysis reveals several previ-
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ously unclassified cases of Sumerogram Ambiguity
that become apparent as other error types are re-
solved. These cases are categorized as “Other” in
Figure 3 and are beyond the scope of our current
qualitative analysis.

5 Outlook

Our system was designed specifically for the Eva-
Cun 2025 Shared Task, utilizing only the data pro-
vided by the task organizers. In a real-world im-
plementation scenario, several enhancements could
substantially improve performance.

A straightforward improvement involves im-
plementing more powerful base predictors. For
instance, adapting the BabyLemmatizer or pre-
training a more comprehensive T5 model on the
full corpus of available digitized Akkadian texts–
rather than being limited to the task-provided data–
would establish a stronger foundation for the entire
system. The BabyLemmatizer has demonstrated
accuracy rates of approximately 95% (albeit on
different datasets), indicating significant potential
improvements for base lemmatizers that could be
seamlessly integrated into our architecture.

Another limitation of our current approach stems
from working with an LLM with closed weights.
As it is not possible to fine-tune Claude, we in-
vested considerable effort in designing prompts that
would guide the model to produce appropriately
formatted output, creating computational overhead
during inference. Parameter-efficient fine-tuning
methods such as LoRA (Hu et al., 2022) could po-
tentially streamline this process by teaching the
model expected output formats directly. Unfortu-
nately, our initial experiments with Qwen (Yang
et al., 2024) and Gemma (Riviere et al., 2024)–
models offering accessible weights–yielded subop-

timal results, likely due to their limited capabilities
with Akkadian language processing.

6 Conclusion

We present our system for the EvaCun 2025 Shared
Task on lemmatization, which combines traditional
NLP approaches with LLM capabilities. Our ap-
proach consists of three Base Predictors–a dictio-
nary lookup and two T5 models–augmented with
an LLM module that resolves difficult cases, di-
rectly accessing the eBL dictionary entries.

In our analysis, we demonstrate that while the
Base Predictors achieve already high performance,
the LLM Module significantly enhances results by
resolving challenging cases. The error analysis
reveals that our approach is particularly effective at
handling Roman Indices, where the LLM’s ability
to reason over dictionary entries proves valuable, as
it can effectively disambiguate between lemmata by
leveraging contextual clues and domain knowledge.

Our work highlights an important methodologi-
cal consideration in applying AI to specialized lin-
guistic tasks: the trade-off between fine-tuning and
prompting approaches. Fine-tuning language mod-
els offers the advantage of domain adaptation but
risks overfitting to biases present in limited training
data. In contrast, prompting LLMs as demonstrated
in our approach preserves their general reasoning
capabilities but presents challenges in precisely
controlling output format and applying domain-
specific conventions. While our system success-
fully augmented the LLM with demonstrations and
dictionary entries, future work could benefit from
more structured guidance through explicit instruc-
tions about lemmatization conventions, particularly
for edge cases involving case variations, Sumerian
logograms, and personal pronouns.
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Abstract
This study explores the use of low-shot prompt-
ing techniques for the lemmatization of ancient
cuneiform languages using Large Language
Models (LLMs). To structure the input data
and systematically design effective prompt tem-
plates, we employed a hierarchical clustering
approach based on Levenshtein distance The
prompt design followed established engineer-
ing patterns, incorporating instructional and
response-guiding elements to enhance model
comprehension. We employed the In-Context
Learning (ICL) prompting strategy, selecting
example words primarily based on lemma fre-
quency, ensuring a balance between commonly
occurring words and rare cases to improve gen-
eralization. During testing on the develop-
ment set, prompts included structured examples
and explicit formatting rules, with accuracy
assessed by comparing model predictions to
ground truth lemmas. The results showed that
model performance varied significantly across
different configurations, with accuracy reach-
ing approximately 90% in the best case for in-
vocabulary words and around 9% in the best
case for out-of-vocabulary (OOV) words. De-
spite resource constraints and the lack of input
from a language expert, oour findings suggest
that prompt engineering strategies hold promise
for improving LLM performance in cuneiform
language lemmatization.

1 Introduction

In this work, we explore the feasibility of low-shot
prompting as a method to leverage the pre-trained
knowledge of Large Language Models (LLMs) for
cuneiform lemmatization. Low-shot prompting en-
ables the encoding of linguistic patterns and con-
textual dependencies directly into the model’s in-
put format while requiring only a handful of well-
chosen examples for adaptation. This is partic-
ularly valuable for low-resource languages, such
as cuneiform, where large annotated datasets are
scarce.

We investigate how carefully designed prompt
templates and example selection strategies impact
the performance of low-shot lemmatization. Our
structured prompts incorporate clear task instruc-
tions and illustrative example pairs to guide the
model toward accurate lemma predictions. Exam-
ple selection follows a frequency-driven approach,
ensuring a balance between common and rare cases
to enhance generalization. Through this experi-
ment, we evaluate a series of configurations in the
low-shot prompting framework and assess the effec-
tiveness of this method in handling this specialized
task.

In the following sections, we first provide
an overview of the low-shot prompting approach.
Then, we describe the system architecture and the
process of refining it by optimizing configurations
on the development set, followed by a report on the
corresponding results. Finally, we discuss the limi-
tations of our approach and conclude with insights
and directions for future work.

2 Low-Shot Prompting with In-Context
Learning

The goal of this system is to leverage low-shot
prompting through the In-Context Learning (ICL)
strategy. As introduced in [1, 2], ICL enables large-
scale language models to learn a task by incorporat-
ing only a few examples within the prompt, without
requiring addtional fine-tuning.

Our proposed approach consists of two key
components: (1) designing properly formatted and
meaningful prompts and (2) selecting a small but
representative set of examples. Together, these are
used to enhance an LLM’s ability to lemmatize
cuneiform languages.

To optimize prompt effectiveness, we adopted
the template-based prompt engineering approach
described in [3] as a method shown to get better re-
sults when interacting with LLMs, especially Ope-
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nAI models [4].
The template pattern guides the model by

specifying both the type of information it should
expect and the format in which it should interpret
and generate responses. We implemented this ap-
proach in several prompts, including prompts 3,
4, 10, and 13. Prompt 3 sets up the template and
informs the model what kind of information it can
expect to receive. This includes a word to identify
and relevant background details. Prompt 4 tells it
how to respond, which is with a single word repre-
senting the lemma of the word. Prompt 10 utilizes
the established format by giving the word we need
to identify and declaring its correct lemma.

Other template prompts were tasked with pro-
viding context alongside prompting or during ICL.
For example, Prompt 13 was used to include the
provided example sentences before asking for each
lemma. We observed that dropping the example
sentence led to a decrease in accuracy. In all cases
we aimed to form our prompts to be specific and
concise so that there was no ambiguity to confuse
the model. Appendix A lists the set of prompts that
we created for use in this task.

The second part of the prompting low-shot
model method is selecting meaningful examples to
train the model on. Our implementation focused
mainly on the frequency of the lemmas in the pro-
cess of choosing examples. Selecting a set of fre-
quently occurring lemmas seeks to build context
with common lemma recognition. Selecting a set of
infrequently occurring lemmas seeks to add diverse
examples to the model’s context window, with the
purpose of better understanding latent grammar
rules that make up the outer clusters.

3 System Description

The data provided at the beginning of the task was
used to create a hashmap of lemmas associated with
their clean values. This map of unique lemmas was
split into 80-20 partitions. The training set was the
larger partition and was used to select examples
of lemmas with their clean values to build context
while the smaller partition was used to assess the
lemmatization accuracy of clean values.

During the ICL process, batches were created
by sorting the data by properties such as the to-
tal number of occurrences of the lemma. This
method of selecting examples on which to build
our model’s context window allowed us to focus
on common words while diversifying our exam-

ple set so that the model does not become biased.
Batch sizes ranged from 4 to 30 lemmas, with batch
counts ranging from 2 to 24. Clean values per
lemma ranged from 1 to all per lemma. The dis-
tribution of lemmas within the batches also varied,
including distributions using more infrequently oc-
curring lemmas than frequent ones, where lemmas
from specific languages were selected for or ig-
nored, and where sorting by occurrences pertained
to the frequency of the clean value rather than the
lemma.

During ICL, each clean value in the batch
could be sent as a statement and/or question. State-
ment prompts were sent to the model in the for-
mat “[L] is the lemma of [CV]” where a lemma
and clean value replaced the [L] and [CV] tokens.
Question prompts were in the format “What is the
lemma of [CV]?” which would require an answer
from the model. We collected data on our ICL ac-
curacy by evaluating the accuracy of the responses
given to these question prompts.

This feature was implemented after we no-
ticed a pattern during ICL, in which our accu-
racy when asking the lemma of each clean value
would start low and climb as our model was being
trained. It would peak about three-quarters of the
way through and then begin to decrease. Thinking
that we were likely seeing overfitting, we began to
alternate between sending statement prompts and
question prompts within the ICL section, a pro-
cess shown to reduce overfitting. This resulted in
improvements in our performance.

4 Refining the System Using the Dev Set

To refine the system, we ran our pipeline and per-
formed error analysis on the dev set. The factors we
implemented during this stage included variations
in prompt wording, alternating between prompts
stating rules and prompts asking questions, posi-
tive/negative reinforcement, and using mask tokens
to note spaces in the example sentences that were
missing words.

Positive reinforcement meant sending a
prompt indicating that the model’s prediction was
correct, while negative reinforcement meant send-
ing a prompt indicating that it was incorrect. Tests
with positive reinforcement did not result in in-
creased mean accuracy, but implementing negative
reinforcement was effective in the general form
seen in prompt 14. After some error analysis, we
tried to take it a step further by implementing var-
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Batch Properties Features Reinforcement Acc.

Size Count Q. Stmt Sentence Lang. Neg. Pos. inv oov

H. L. M. R. Mask No M. G S C

15 1 2 X X X X 89.82 6.26

30 1 2 X X X X 90.78 8.09

10 3 1 2 X X X X X 84.24 6.47

5 7 1 2 2 X X X X X 83.81 6.40

4 8 12 X X X X 53.84 7.56

4 4 6 X X X X 50.46 6.57

4 16 12 X X X X 63.91 9.42

4 16 12 X X X X X X 47.12 4.01

4 16 12 X X X X X X X 43.47 1.91

Table 1: Accuracy represents mean accuracy from 2 tests per test configuration (except for the highlighted test,
which was tested 4 times). “inv" refers to “in vocabulary” and “oov” refers to the accuracy with batches of 30
randomly selected lemmas from the dev set. The highlighted test resulted in the highest scores, and its parameters
were used for final testing. High frequency: total appearances > 100; Medium frequency: 50 <= total appearances
<= 100; Low frequency: total appearances < 50. Mask refers to mask tokens [MASK] used in place of missing
words in example sentences. Abbreviations used: Rand (random lemmas not sorted by frequency), Lang. (language),
G (generic negative reinforcement prompts), S (small correction negative reinforcement prompts), C (common
mistake negative reinforcement prompts), Q (Question), Stmt (Statement), H. (High), L (Low), M (Medium), and R
(Random).

ious degrees of negative reinforcement feedback.
This included ‘small’ corrections, which sent an
additional negative response telling the model its
answer was close in order to address the common
case in which the lemma was mostly accurate but
a few letters off (see prompt 15). Commonly mis-
taken lemmas were addressed by keeping track of
how often an incorrect lemma was guessed within
each section of clean values within a given lemma
and prompting it to avoid making those guesses
(see prompt 16). Both of these options seemed
promising but ultimately caused worse results, so
they were discarded before final testing began.

We used the data from the dev set to test the
accuracy of our model post-learning. Batches were
created using the dev set. Each clean value as-
sociated with a lemma was passed through, with
only Prompt 11 alongside background information
prompts being used. The responses were collected
and evaluated to get our output accuracies.

Table 1 visualizes the various strategies we
used to filter and order the data in the batch-
formation process (’Batch Properties’ section) as
well as some features we implemented through
prompt engineering (’Features’ and ’Reinforce-
ment’) and the resulting accuracies we obtained

in the tests. Each accuracy is computed by averag-
ing accuracies from two tests (with the exception
of the highlighted test). All tests in the table are
ran on OpenAI’s ChatGPT-4 Mini model.

To create our submission, we ran the pipeline
on the test data using the batch parameters that had
the best results when testing on the dev set.

5 Results

Our results take the form of accuracies representing
the portion of words that the model was accurately
able to lemmatize. These values are shown in Ta-
ble 1 as mean accuracies, with each test being run
twice. The exception is the highlighted test. It
was our highest scoring test, and was tested four
times instead to confirm its performance before
final testing.

The table displays two mean accuracies: the
in-vocab word accuracy (inv) and the dev set accu-
racy (oov). The proposed lemmas suggested during
the ICL process were used to calculate the T accu-
racy, which represented the percentage of guesses
that matched the actual lemma of the clean value
the model was to lemmatize. For each lemma in
the first four tests seen in the table during train-
ing, ICL involved providing both a statement and
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question prompt of each lemma and its clean value
alongside background information; the statements
were all provided first followed by questions. For
lemmas in the later tests, batches alternated be-
tween only questions and only statements. In these
tests, batches where questions were used were re-
peated once with the same question. Repeating
questions allowed us to perform negative reinforce-
ment through small mistake and common mistake
corrections if needed.

This explains why the inv accuracy varied
among tests. The Dev accuracy came from ques-
tion batches only, which were made of clean values
and lemmas from the dev set. Because we parti-
tioned the dataset with no collision of lemmas, this
meant that the dev set was entirely composed of
out-of-vocabulary terms, which the model had not
yet seen. Thus the results we attained in this step
are based on proposed lemmas created using the
clustering algorithm on clean values whose lemmas
have not yet been declared to the model.

The performance of our model varied greatly
between tests, which is an indicator that there is
more work that can be done here. Despite the low
accuracy, our work on this task showed how differ-
ent data analysis and prompt engineering strategies
can improve LLM performance. For example, our
tests demonstrated that performance dropped when
the example sentences were not included, and in-
creased when telling the model its answers were
incorrect or alternating between sending statement
and question prompts.

6 Resource Limitations

In the process of ICL and performing error analysis,
we ran into several limitations. This included time
constraints as well as not having access to a lan-
guage expert to answer language-specific questions.
An expert’s guidance could lead to the realization
of relevant features and context not implemented in
our project. The biggest issue we ran into was pric-
ing of various models. Our configurations display
results from ChatGPT-4 Mini, but we also ran tests
on OpenAI’s ChatGPT-4, Anthropic’s Claude 3.5
Sonnet, and DeepSeek’s DeepSeek Chat. Our best
results came from running tests with the Claude
3.5 Sonnet model, but this also ended up being
the most expensive option. Since our final test-
ing would need to send a large amount of tokens,
Claude required resources beyond those allocated
for this task.

7 Conclusions and Future Work

Our team began this task with the goal of apply-
ing low-shot learning techniques and theories to
the lemmatization of cuneiform languages. The
success in this project comes from the support of
those theories in our results. Positive reinforcement
proved ineffective at increasing accuracy while neg-
ative reinforcement, relevant context, and a balance
of explicit rules and testing the model during ICL
was effective at increasing accuracy. The high-
est accuracy configuration, along with template
prompting, demonstrates these findings. Accuracy
could increase under the same configuration ap-
plied to different AI models such as Claude 3.5
Sonnet or OpenAI’s GPT-4 as well as with relevant
context provided by a language expert to imple-
ment into our prompts and pipeline.

With a better understanding of the lemmatiza-
tion task and obstacles encountered, we would like
to acquire the necessary funding to run more tests
using the Claude 3.5 Sonnet model. Additionally,
we would like to implement other features that we
predict would increase accuracy as well.

Reflection prompts represent a form of chain-
of-thought prompting, which would encourage the
model to state its ‘reasoning’ for the response it
gave. This would demonstrate its ability to ex-
tract lemmatization rules from latent space, hidden
features, that are present but cannot be directly
observed in the data. With this technique, we
could implement another layer of positive and neg-
ative reinforcement that addresses chain-of-thought
prompting [5]. This would likely allow us to im-
prove accuracy by supporting the formation of
outer clusters in the model’s hierarchal clustering
of cuneiform language grammar rules. The model
can then apply these rules to new and untested clean
values in order to more accurately determine their
lemmas.

Another idea we want to implement is soft
prompting where the model is trained on prompts
produced by other LLMs based on clean values and
other features. This application could lead to better
prompts that convey the data to the model without
the possibility of human error. Soft prompting
has not been tested in this context and could lead
to higher accuracy compared to human-produced
prompts [6].
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A Appendix

A.1 Prompts
Rule ID Prompt
I 1 The following is a conversation be-

tween two Akkadian language ex-
perts. One guesses the lemma of a
provided clean value while the other
indicates whether they are correct or
not. Using your knowledge of lin-
guistic analysis and the information
shared in this conversation, you will
perform the task of identifying the
lemmas of words from Akkadian.

I 2 A lemma is defined as the root form
of a word without conjugation. Also
known as one that would be listed in
a dictionary entry for the word.

I 3 You will be given the word which
you need to identify. Sometimes you
will be given contextual information
such as the language the word is
found in as well as an example of
its use in a sentence.

I 4 Return a single word without expla-
nation nor formatting when asked
for the lemma of a word.

RP 10 The lemma of [P] is [P].
EP 11 What is the lemma of [P]?
RP 12 This word is found in the language

of [P].
RP 13 An example sentence using this

word is [P].
NC 14 Your guess is incorrect. The lemma

of [P] is [P].
NC 15 The correct lemma is slightly differ-

ent.
NC 16 When given words whose lemma is

[P], you commonly guess the lemma
[P] instead.

PC 17 Your guess is correct.

A.2 Prompt Rules
Purpose Symbol Description
Param [P] Establishes a field

that requires input
Instruct I Gives instructions

to the LLM
Training RP Instills rules to the

LLM via ICL
PosConf PC Sends positive rein-

forcement
NegConf NC Sends negative rein-

forcement
Testing EP Asks the LLM to

perform a task
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Abstract

This paper presents a comprehensive method-
ology for transforming XML-encoded Hittite
cuneiform texts into computationally accessi-
ble formats for machine learning applications.
Drawing from a corpus of 8,898 texts (558,349
tokens in total) encompassing 145 cataloged
genres and compositions, we develop a struc-
tured approach to preserve both linguistic and
philological annotations while enabling compu-
tational analysis. Our methodology addresses
key challenges in ancient language processing,
including the handling of fragmentary texts,
multiple language layers, and complex anno-
tation systems. We demonstrate the applica-
tion of our corpus through experiments with
T5 models, achieving significant improvements
in Hittite-to-German translation (ROUGE-1:
0.895) while identifying limitations in morpho-
logical glossing tasks. This work establishes a
standardized, machine-readable dataset in Hit-
tite cuneiform, which also maintains a balance
with philological accuracy and current state-of-
the-art.

1 Introduction

This paper builds on the advancements in corpus
technologies and computational linguistics, con-
tributing to the evolution of corpus linguistics for
Hittite studies, making Hittite cuneiform texts ac-
cessible for data analysis and machine learning. A
corpus-based approach in the area of Ancient Lan-
guage Processing (ALP) is used to create a dataset
of Hittite documents converted primarily into CSV
format, with plans to extend to additional formats
such as JSON and YAML in future releases.

Hittite is the oldest attested Indo-European lan-
guage of the Anatolian family written in cuneiform
script from the 17th to the 12th centuries BCE. All
Hittite documents have been structured according
to content and genre in the Catalogue des textes hit-
tites (CTH) by Laroche, updated in the digital CTH

(see Fig. 1).1 A more practical way to classify
Hittite documents is suggested by van den Hout
(2008) who divided the Hittite documents into "pre-
scriptive" (copied over a period of several gener-
ations, having a long-term purpose) and "descrip-
tive" (mostly daily economic and administrative
texts) categories. This approach, however, is not a
formalized one, and there are many exceptions in
both groups (van den Hout, 2002; Gordin, 2015).

Figure 1: Distribution of texts in CTH

The main digital resource for Hittite is The Het-
hitologie Portal Mainz (HPM), which uses XML
mark-up for raw text edition files. By the end of
2024, digital editions of state treaties, laws, myths,
prayers, magic rituals and festivals (partly), cult in-
ventories and some administrative texts (mostly in-
ventories) have been published there. Additionally,
a searchable annotated ritual and festival corpus
of raw transliterations of Hittite documents (not

1Originally published by Emanuelle Laroche in 1972, this
resource has been adopted and updated as part of the CTH
online: S. Košak – G.G.W. Müller – S. Görke – Ch.W. Steitler,
hethiter.net/: CTH (2025-01-28).
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based on published editions) has been released in
2023 under the Corpus der Hethitischen Festrituale
(HFR), and in 2024 the Thesaurus Linguarum Het-
haeorum digitalis (TLHdig) was released, which
aims to cover eventually the entire known Hittite
text corpus. These are the main sources of data for
our research (see Acknowledgments).

Corpus linguistics evolved in the early aughts
from a narrow methodology primarily concerned
with the digitization of printed texts into a corner-
stone of linguistic research and applications (Lüdel-
ing and Kytö, 2008). This transformation has been
driven by advancements in digital technologies:
corpus-derived models use such methods as the
fine-tuning of large language models (LLMs) for
specific linguistic tasks. This paper aims at creating
a dataset for the development of a Hittite corpus,
transforming the existing annotated XML data into
formats specifically optimized for machine learn-
ing applications.

2 Background

Research into ancient Near Eastern languages, par-
ticularly Hittite, faces unique challenges due to the
nature of the source materials. Unlike modern lan-
guages, which benefit from vast, well-documented
corpora, Hittite studies contend with limited digital
resources designed specifically for computational
analysis. So far, to our knowledge, two approaches
to corpus studies of Hittite have been pursued since
2014: Goottite (Digital search of Hittite texts) by
D. Frantikova and Hittitecorpus (Annotated Cor-
pus of Hittite Clauses) by M. Molina. Both were
developed with specific research objectives in mind
that differ substantially from our current approach.
While these resources allow contextual searches
within their text collections, neither was designed
to function as a comprehensive, computationally
accessible corpus.

The Hethitologie Portal Mainz (HPM) represents
the most extensive digital resource for Hittite, with
richly annotated XML texts primarily optimized
for philological accuracy and scholarly reference.
However, HPM’s complex XML structure, while
excellent for digital editions, presents significant
challenges for systematic computational process-
ing or machine learning applications. The criti-
cal limitation across all these existing resources
is that none provides a standardized, machine-
readable dataset that researchers can readily ex-
tract, manipulate, and process at scale. This rep-

resents the fundamental advancement of our ap-
proach—transforming philologically rich but com-
putationally challenging materials into structured
formats that preserve scholarly annotations while
enabling corpus-wide linguistic analysis and com-
putational methods.

Using HPM corpora XML-marked-up material,
we are planning to cover a much bigger amount
of documents, as well as propose automated pars-
ing and annotation of Hittite texts, taking as a first
approach the dataset previously created for fine-
tuning a German T5 model for the tasks of gloss-
ing and machine translation (Yavasan and Gordin,
2024).

The first problem that emerged in the creation
of our Hittite corpus is the convertibility of the
annotated data. We worked directly with XML files
from TLHdig that incorporate SimTex conventions
within their structure2. These files are traditionally
dense with philological remarks and notations as
an addition to grammatical information.

Another significant question is the way to rep-
resent all different languages contained in every
Hittite document. Traditionally, transliterated texts
in Hittite use three types of formatting: italic small
caps, italic capital letters, and normal capital let-
ters for Hittite words, Akkadian and Sumerian lo-
gograms, accordingly; unfortunately, this textual
approach cannot be easily supported in the corpus
that makes focus on linguistic analysis rather than
on philologically rich digital editions.

There is also the problem of fragmented, often
damaged, primary texts (see Fig. 2).

Figure 2: KUB 21.38 (NH/NS; CTH 176) obv. 28’-29’
- Letter of Queen Puduheba to Pharaoh Ramses II (Edel,
1994; Hoffner, 2009)

Several scholars have proposed solutions for
dealing with fragmented texts (Zemánek, 2007;
Inglese, 2016; Molina, 2016; Molina and Molin,

2For the SimTex format description, see HPM Guide.
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2016). In our approach to the Universal Depen-
dencies (UD) treebank, we previously proposed a
syntactic annotation method in which every frag-
mented block is treated as dependent on a verb
and marked as FRGM (Yavasan and Molina, 2024).
However, this approach introduces ambiguity in the
linguistic analysis of Hittite syntax. Therefore, out-
side the dependency grammar framework, we need
to identify an alternative solution that preserves the
integrity of the information.

3 Methodology & Implementation

3.1 Data Sources and XML Encoding

For this research we chose to create a dataset out of
a subset available to us from the existing repository
of annotated texts, called Thesaurus Linguarum
Hethaeorum digitalis (TLHdig). It is an open-
access digital repository that provides structured
linguistic and philological annotations in XML for-
mat for Hittite cuneiform manuscripts. The data
within TLHdig ensures a precise representation of
the original inscriptions and at the same time pre-
serves information critical for scholarly research.
Note, however, that it does not faithfully represent
published text editions.

The dataset chosen for the transformation con-
sists of 8,898 XML files, each corresponding to a
unique text ID, and encompasses 145 CTH entries
(see Fig. 3). The majority of the texts belong to
ritual and festival genres, which are the most rep-
resented, accounting for 115 entries (107 entries
under festival and cultic texts, 8 entries under rit-
uals). This includes such texts as the Kizzuwatna
rituals and seasonal festivals, with other genres sig-
nificantly less represented. Foreign-language texts
in Hattic, Hurrian, Luwian, and Palaic account for
24 entries, while cult inventories, administrative
texts, mythology, and divination are represented
by 1 entry each. Additionally, miscellaneous texts
are categorized under Varia comprising 2 entries.
These files serve as the raw material for transfor-
mation, requiring extensive processing to extract
and structure the information for further linguistic,
philological, and computational analysis, including
applications in machine learning and deep learning.

Figure 3: Distribution of texts in the dataset

The XML format captures multiple layers of in-
formation essential for Hittitological studies. Both
transliteration and transcription (also known as
normalization in the literature) are included, al-
lowing for a comprehensive analysis of the texts.
About 50% of the texts are glossed, while 16%
are completely broken, making glossing impossi-
ble. Of the glossed texts, 15% (8% of the total
dataset) have been manually validated. Instead, a
large number of morphological glossing possibil-
ities has been generated through a rule-based sys-
tem (Rieken, 2021). These glossing possibilities
include multiple grammatical interpretations for in-
dividual words, often structured in a format where
different cases, numbers, and forms are suggested
(see Fig. 4). This variation is a direct consequence
of the ambiguities inherent in cuneiform writing,
where the same sign can represent multiple sounds
or words depending on context (Weeden, 2011).
The lack of explicit vowel notation and the polyva-
lence of signs require multiple possible readings to
be considered in the glossing process.

This challenge of multiple possible interpreta-
tions and the need for disambiguation is precisely
what led us to consider glossing as a task for LLM
fine-tuning. Given that traditional rule-based ap-
proaches generate numerous possibilities but lack
contextual decision-making capabilities, a large
language model (LLM) fine-tuned on Hittite data
could assist in predicting the most probable gloss
based on broader linguistic patterns. By leveraging
machine learning, we aim to improve the efficiency
of annotation and enhance consistency in glossing,
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addressing the inherent uncertainties in cuneiform
interpretation and at the same time incorporating
philological insights.

Figure 4: A word-by-word annotation of a Hittite text
made by a rule-based algorithm

Besides linguistic glossing, the XML data also
encodes a range of philological annotations that
provide critical context for text interpretation. Ele-
ments such as Sumerian and Akkadian logograms
are explicitly marked, preserving distinctions be-
tween phonetic and logographic writing. Addi-
tional annotations track features such as scribal
corrections, erasures, and textual additions, includ-
ing elements that were likely intended by the scribe
but are missing, as well as those that appear in the
text but may not belong based on scholarly evalu-
ation. These details are crucial for reconstructing
the original meaning of the texts, reflecting both
the complexities of the writing system and the inter-
pretative challenges faced by modern researchers.

Additionally, the morphological glossing con-
tains references to Hoffner and Melchert (2024),
which is the most up-to-date Hittite reference gram-
mar. Annotations often include language identi-
fiers such as Hittite, Hattian, Hurrian, Luwian, and
Palaic, along with a set of grammatical possibili-
ties for each term. An additional field is included
where one or more glossing options are marked
as preferable. In cases where only one option is
selected, it is typically human-verified, but for a
portion of the material, selections have been made
automatically without direct manual confirmation.

XML provides a structured and detailed encod-
ing format, yet, it is not always suitable for compu-

tational analysis. Many statistical and corpus-based
research methods require a tabular structure, such
as CSV, to efficiently process and compare large
datasets. Transforming XML into CSV allows for
easier searching, filtering, and querying of linguis-
tic features and at the same time makes the data
more accessible for machine learning models and
text analysis tools. The structured format also facil-
itates cross-document comparisons, ensuring that
the rich philological and linguistic information in
TLHdig can be efficiently analyzed and used by
other researchers, both in computer and data sci-
ence, as well as ancient language scholars.

3.2 Reframing Text and Annotation
The transformation of XML-encoded Hittite texts
required careful consideration of both segmenta-
tion practices and annotation preservation. Unlike
modern languages, Hittite cuneiform is commonly
written on clay tablets3 and lacks sentence level
punctuation, which requires setting up additional al-
gorithms for sentence boundaries mark-up. Accord-
ing to standards in the field, our dataset is primarily
segmented at the cuneiform tablet line level, rather
than the sentence or clause level. While some gen-
res and text types contain explicit clause divisions
(e.g. rituals and festivals), many do not, making
line-based segmentation the most consistent and
practical approach (Gordin, 2015). Additionally,
the fragmentary nature of many sources further
complicates sentence segmentation, because miss-
ing portions often obscure syntactic structure at the
sentence level.

Although the source dataset is organized around
line divisions, the transformation process ulti-
mately operates at the word level. We extract and
process individual words from the XML structure,
so that each token retains its full set of grammat-
ical, lexical, and philological annotations. At the
same time, we preserve metadata from the original
line structure, including line numbers, obverse and
reverse distinctions (Vs./Rs. in the German anno-
tation, or obv./rev. in the English one), and other
positional markers, allowing for alignment with the

3While clay tablets were the primary medium for Hittite
cuneiform writing, several other materials were also used. Of
special importance were metal tablets, particularly bronze (ex-
emplified by the unique Bronze Tablet containing the treaty be-
tween Tudhaliya IV and Kuruntiya, Bo 86/99), where wedges
were incised rather than impressed. Stone was used for mon-
umental inscriptions in Hieroglyphic Luwian, and wooden
writing boards played a significant role in Hittite adminis-
tration, economy, and cult practices, though few examples
survive due to their perishable nature (Cammarosano, 2024).
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manuscript layout.
The transformation process was designed to

maintain a clean primary text representation while
storing all linguistic and philological annotations as
additional structured fields. Initially, we assumed
that achieving both readability and full annotation
retention would require compromises. However,
as the transformation progressed, it became ev-
ident that all linguistic and philological annota-
tions could be preserved as additional fields. This
method yields a structured format, in which the
core text remains readable, and every nuance docu-
mented in the original annotations is retained.

The processed text uses Hittite transcription con-
ventions, including broken marks, determinatives,
and other editorial notations for scribal practices,
complying with HPM standards. Meanwhile, all
philological and linguistic metadata—such as gloss-
ing, language identification, restorations, erasures,
uncertain readings, mater lectionis, and editorial
comments—are preserved separately in structured
fields. This approach, which is the key method-
ological insight of this paper, enables researchers
to work both with the text without annotations and
with its full scholarly annotations, ensuring that no
interpretative detail is lost.

3.3 Data Processing and Transformation
The transformation of XML-encoded Hittite texts
into a structured tabular format follows a multi-
step pipeline designed to extract, normalize, and
organize linguistic and philological data. This pro-
cess was implemented using Python, utilizing lxml
for XML parsing (Shipman, 2014), pandas for data
handling, and regular expressions (re) for text clean-
ing and refinement.

Each XML file was processed to extract and
structure relevant linguistic and philological in-
formation. Using lxml’s XPath functionality, the
script identified line markers to track text segmen-
tation, tokenized words with all their attributes.
Additionally, it distinguished between different lan-
guage layers, identifying content in Hittite, Akka-
dian, Sumerian, Hurrian, Luwian, Palaic, and Hat-
tic. Once extracted, the data was mapped to a struc-
tured format, preparing it for subsequent normal-
ization, parsing, and computational analysis.

As for the annotations directly within the text,
they were preserved as independent fields. This
step helps maintain that each annotation type was
correctly mapped. The structured parsing of lin-
guistic and philological data served as the founda-

tion for normalization.
An essential part of our approach was to expand

the annotation structure by introducing additional
fields that retained philological and linguistic infor-
mation separately from the core text. These fields
included annotations for subscript markings, ma-
tres lectionis, numerical markers, sign-based anno-
tations, corrections, erased text, editorial insertions,
rasura and uncertain rasura, missing text markers,
editorial comments, and references to other texts
or glossaries (see example in Figs. 5 and 6).

Figure 5: KBo 51.127+ (CTH 615) (Frg. 1+2) Rs.? III
7’/3’

Figure 6: An example of a word’s annotation as repre-
sented in XML and in CSV.

Since the XML format includes glossing gener-
ated by a rule-based algorithm, producing up to
40 possible glossing variations for a single word,
parsing requires identifying and extracting these
multiple interpretations. In addition to preserv-
ing all algorithmically generated glossing possibili-
ties, the parsing process searched for and isolated
the human-validated selection whenever available.
This step allowed us to distinguish between com-
putationally generated glosses and those verified
by scholars.

In cases where no human-validated gloss was
available, the dataset retained all generated possi-
bilities without assigning a default selection, which
allowed for future verification and computational
processing. We preserved these alternative inter-
pretations specifically to support future research
efforts, ensuring that subsequent scholars would
have access to the complete range of potential read-
ings rather than being limited by our preliminary
assessments.

One of the primary challenges in the parsing pro-
cess was establishing an optimal parsing sequence
to prevent data loss or unintended modification.
Due to the complexity of the XML structure, exe-
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cuting transformations in an incorrect order risked
removing or altering certain elements before they
could be fully extracted.

The final stage of data processing involved
the integration of Unicode representations to en-
hance the dataset’s interoperability with computa-
tional tools and digital cuneiform research frame-
works. Transliteration sequences were systemat-
ically mapped to their corresponding cuneiform
Unicode characters which allows the use of Uni-
code in further analysis.

3.4 Format selection

The selection of an appropriate data format was
a crucial consideration in ensuring both compu-
tational accessibility and philological integrity.
Given the structured nature of the dataset and its
diverse applications, three primary formats were
evaluated: CSV, JSON, and YAML. Each format
presents distinct advantages depending on the in-
tended mode of analysis and data processing re-
quirements.

The dataset was initially released in CSV for-
mat, prioritizing simplicity, interoperability, and
compatibility with statistical analysis tools, ma-
chine learning frameworks, and database manage-
ment systems. The tabular structure of CSV fa-
cilitates efficient numerical and textual data pro-
cessing, making it well-suited for corpus-based
linguistic research. However, CSV lacks the abil-
ity to encode hierarchical relationships, requiring
additional strategies to represent nested linguistic
annotations.

In contrast, JSON and YAML provide hierar-
chical and flexible data structures, making them
more appropriate for storing multi-layered anno-
tations, glossing alternatives, and complex lin-
guistic metadata. JSON, widely used in com-
putational linguistics and NLP applications, sup-
ports structured querying and integration with au-
tomated processing pipelines, while YAML offers
a human-readable alternative for philological re-
search (Wang, 2022).

CSV was selected as the primary output format
for the initial dataset release, future expansions
will incorporate JSON for structured annotation
storage and YAML for enhanced interpretability in
philological studies.

4 Analysis and Insights

The processed dataset consists of 558,349 tokens,
structured with detailed linguistic and philologi-
cal annotations. The data was analyzed to assess
the distribution of glossed words, the extent of hu-
man validation, and the proportion of broken or
fragmentary text (see Table 1).

Glossed Validated Broken
True 297,095 47,908 87,782
False 261,159 510,346 470,472

Table 1: Distribution of glossed, validated, and broken
tokens.

Of the total tokens, 297,095 (53.2%) were as-
signed glosses through rule-based annotation. How-
ever, only 47,908 glosses (16.1%) of those anno-
tated received human validation, confirming the
need for further refinement in automatic gloss-
ing methods. Text integrity analysis showed that
87,782 tokens (15.7%) were identified as broken or
fragmentary, limiting their potential for linguistic
annotation.

These findings highlight both the strengths and
limitations of the dataset, particularly regarding
the reliance on rule-based glossing and the impor-
tance of human validation in refining automatic
annotation strategies. We are, however, postpon-
ing enhancing glossing accuracy through machine
learning to future research, where manually vali-
dated glosses would create a probabilistic glossing
model.

The additional philological and linguistic anno-
tations are not as widely represented across the
dataset, but are still retained due to their signifi-
cance for the analysis. Various elements of mark-
up, such as subscript markings, determinatives, cor-
rections, and editorial interventions, appear in rel-
atively small proportions, with some features oc-
curring in only a few thousand or even hundred
instances. Despite their lower frequency, these an-
notations provide critical insights into scribal prac-
tices, textual transmission, and linguistic variation.

The presence of so many glossing possibilities
for a single word highlights the morphological am-
biguity inherent in the corpus. This is particularly
evident in polysemous words, homographs, and in-
flected forms, where multiple interpretations arise
due to overlapping grammatical or lexical functions.
Despite the extensive output of the rule-based gloss-
ing system, only 16.1% of glossed words received
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Figure 7: Example of the final dataset

human validation, underscoring the challenges of
automated glossing in cuneiform languages.

With 28,656 unique word forms distributed
across 558,349 total tokens, the corpus demon-
strates a relatively low type-to-token ratio of 0.051
(5.1%), indicating a high degree of lexical repeti-
tion, which is an essential characteristic of many
Hittite genres, esp. rituals and festivals. These
contain formulaic expressions, specialized termi-
nology, and recurring syntactic structures. The
prevalence of frequently repeated words suggests
a stable core vocabulary, likely influenced by the
standardized nature of the texts.

5 First Results and Applications

A preliminary version of the dataset was published
on Zenodo under the title Glossed Hittite Texts
with German Translation for Machine Learning
(Yavasan and Gordin, 2024). The complete up-to-
date version of the dataset accompanying this paper
can be found in the following link (for a full list of
CTH entries see Appendix). Figure 7 presents an
example of the final dataset structure, showcasing
the comprehensive annotation fields that preserve
both linguistic and philological information from
the original XML sources.

In Yavasan and Gordin (2024), the dataset re-
tains only words with human-verified glosses, with
a high degree of reliability for machine learning
applications. Each text entry includes linguistic
glossing, textual alignment, and German transla-
tions, structured to facilitate computational analysis
(see Fig. 8). By prioritizing verified annotations,
this dataset provides a foundation for morpholog-
ical processing, syntactic parsing, and translation
modeling, supporting further research in digital
humanities and historical linguistics.

Our initial attempt at fine-tuning focused on the
Hittite glossing task, using the dataset published
in Yavasan and Gordin (2024). This dataset pro-

vided a reliable subset of manually validated anno-
tations, allowing us to assess whether a T5 model
could learn the correspondence between Hittite
words and their assigned glosses. However, the
results were highly unsatisfactory, as the model
failed to generate accurate predictions. Our analy-
sis reveals fundamental limitations in the T5 archi-
tecture when applied to morphological glossing of
Hittite. The model operates primarily at the token
level rather than the morpheme level, creating a
significant mismatch with the requirements of mor-
phological analysis. Hittite’s rich inflectional sys-
tem—with its numerous cases, verbal endings, and
participle formations—encodes multiple grammat-
ical categories within single words, a complexity
that T5 struggles to disentangle accurately. Fur-
thermore, the pre-trained T5 model’s exposure to
primarily non-inflecting languages creates a sub-
stantial transfer gap when confronted with Hittite’s
synthetic morphology. Upon further investigation,
we found that T5 struggles with glossing tasks even
in English, suggesting that its architecture is not in-
herently suited for morphological annotation. This
led us to conclude that T5 is not an appropriate
model for this type of linguistic prediction.

Following this, we redirected our efforts toward
fine-tuning the model for Hittite-to-German trans-
lation, using a German version of T54. This model
contains approximately 247.5 million parameters,
all of which were trainable during our fine-tuning
process.

For evaluation, we used the ROUGE metric (Lin,
2004), which measures the overlap between the
generated text and the reference text. Specifically,
ROUGE-1 measures the overlap of unigrams (sin-
gle words) as defined in Equation 1, while ROUGE-
2 extends this concept to measure the overlap of
bigrams (word pairs).

4GermanT5/german-t5-oscar-ep1-prompted-germanquad
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Figure 8: First lines of the published dataset

ROUGE-1 =
∑

unigram∈Reference Countmatch(unigram)∑
unigram∈Reference Count(unigram)

(1)

The original pre-trained model showed very poor
results, with ROUGE-1 at 0.0255 and ROUGE-2 at
0.02, indicating that it failed to generate meaning-
ful translations. However, after fine-tuning, the in-
structed model demonstrated a substantial improve-
ment, achieving ROUGE-1 at 0.895 and ROUGE-
2 at 0.27, reflecting a significant gain in translation
accuracy.

These results suggest that while T5 was inef-
fective for glossing, it can be successfully fine-
tuned for translation tasks in a structured linguistic
dataset. This highlights the importance of task
selection in NLP applications for low-resource
languages. Future work could explore alterna-
tive transformer-based architectures specialized for
glossing, such as morphology-aware models, or
integrate linguistic priors to improve the accuracy
of morphological annotation in Hittite and other
ancient languages.

Figure 9: Examples of translation by instructed model

6 Conclusion

This study has outlined the creation and implemen-
tation of a computationally annotated corpus of
Hittite texts, leveraging XML-encoded linguistic
and philological data for structured analysis. The
research contributes to the evolving field of Ancient
Language Processing (ALP) by providing a stan-
dardized and machine-readable dataset, facilitating
advanced linguistic inquiries and computational
methodologies for Hittite studies.

Through the transformation of XML-based tex-
tual data into structured formats such as CSV,
this work ensures accessibility for both traditional
philological research and modern computational
applications. The challenges inherent to Hittite
corpus development—such as the complexity of
XML annotations, the representation of multiple
linguistic layers, and the integration of fragmented
texts—demand a methodological approach that pre-
serves philological accuracy. This transformation
from XML to more computationally accessible for-
mats represents not just a technical conversion but
an essential paradigm shift for ancient language
processing, moving from formats optimized for
philological documentation toward those that en-
able computational analysis at scale.

The study also underscores the limitations of
current transformer-based language models, such
as T5, for morphological glossing in low-resource
ancient languages, highlighting the need for hy-
brid approaches that integrate rule-based linguistic
knowledge with probabilistic modeling.

Certain questions that have not been consid-
ered in this paper are postponed for future re-
search. These include: refining syntactic annota-
tion through dependency-based models, improving
neural network performance for gloss prediction
via fine-tuning on enriched datasets, and expanding
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the corpus to include a broader range of Hittite tex-
tual genres. In this way, the current study provides
solid foundation for these tasks.

Our data is available as supplementary informa-
tion to this paper via the following link.
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Abstract

The discovery of the Rosetta Stone was one
of the keys that helped unlock the secrets
of Ancient Egypt and its hieroglyphic lan-
guage. But what about languages with no such
“Rosetta Stone?” Meroitic is an ancient lan-
guage from what is now present-day Sudan,
but even though it is connected to Egyptian in
many ways, much of its grammar and vocabu-
lary remains undeciphered. In this work, we in-
troduce the challenge of Meroitic decipherment
as a computational task, and present the first
Meroitic machine-readable corpus. We then
train embeddings and perform intrinsic evalu-
ations, as well as cross-lingual alignment ex-
periments between Meroitic and Late-Egyptian.
We conclude by outlining open problems and
potential research directions.1

1 Introduction

Perhaps one of the most critical elements to deci-
phering an unknown language is a collection of
bilingual texts. From a known language, one can
make conclusions about phonetic, morphological,
and lexical aspects of the target language, hope-
fully leading to eventual decipherment. Without
such a text, translation of a lost language is prac-
tically inconceivable. Only in this day and age,
where computer technological applications appear
to nearly reach the limits of human imagination,
is decipherment with a monolingual corpus poten-
tially feasible, and Meroitic is a great candidate for
such work.

Meroitic is the language of the ancient state of
Meroë, a Kushite-ethnic group living in approxi-
mately 270 BC - 330 AD of what is now present-
day Sudan (see Figure 1). Partly due to its geo-
graphic location, the Meroë civilization has been

1The corpus, along with data and code necessary to repli-
cate our experiments: https://github.com/Joshua-Otten/
Meroitic-Corpus

Figure 1: Ancient Meroë (Kush) between approximately
100 BC - 300 AD.

studied relatively little, despite its significant pres-
ence in the ancient and classical world (Shinnie,
1967; Rilly and de Voogt, 2012). One of the largest
obstacles to understanding the Meroitic state, how-
ever, is that its language is not well understood,
and we currently possess no bilingual texts large
enough to illicit an attempt at decipherment. As
stated by Shinnie (1967), a British africanist and
archaeologist, “... until this language has been
successfully read and the inscriptions translated,
much of the story of Meroë will remain unknown.”

While there have been past attempts to under-
stand the language, few have been made by Com-
puter Scientists. Our hope is that by leveraging
machine translation techniques, one could bridge
the gap that has hindered progress in this language
for decades. In the encouraging words of Griffith:
“If new eyes, whether of trained decipherers or of
scholars expert in North African philology, will
exert themselves upon it, the secrets of Meroitic
should soon be yielded up” (Griffith, 1911).
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To our knowledge, this is the first work to use
modern NLP techniques towards Meroitic decipher-
ment. Our contributions include the following:
• First, we introduce the task of Meroitic decipher-

ment to the NLP community, and provide an
overview of the language and its unique chal-
lenges.

• Additionally, we present the first machine-
readable Meroitic corpus.

• Then, we train embeddings on this and Late-
Egyptian data, and provide intrinsic evaluations
of each.

• Finally, we perform alignment experiments be-
tween the Meroitic and Late-Egyptian embed-
dings, and lay groundwork for future research in
this area.

Meroitic decipherment would allow us to read one
of Africa’s oldest written languages as well as to
better understand the Meroitic civilization and its
historical and cultural role across the ancient world.

2 The Meroitic Language

A great deal of what we currently know of Meroitic
vocabulary and grammar comes from funerary in-
scriptions, which represent about one third of the
available corpus and contain formulas that have
been extensively analyzed by Griffith, Hintze, and
Rilly (Rilly and de Voogt, 2012). Fortunately,
(aside from a few vowel uncertainties) the writ-
ing system has already been understood, which al-
lows us to successfully transliterate Meroitic hiero-
glyphic texts. Scholars have already been able to
uncover a number of grammatical elements, allow-
ing them to identify such features as determinants,
genitival constructions, and appositions2 (Rilly and
de Voogt, 2012).

The grammar of Meroitic appears to be agglu-
tinative (Rilly and de Voogt, 2012), minimizing
the complexity of analyzing roots and grammatical
structure. The writing system utilizes an alphasyl-
labary (Rilly and de Voogt, 2012), which allows for
nearly one-to-one phonetic mapping. This removes
many of the challenges present in MT for Ancient
Egyptian or Cuneiform languages, where signs are
neither consistently phonetic or logographic (Sa-
hala and Lindén, 2023). Finally, Meroitic’s sep-
arator character, ‘ : ’, although not consistently
used (Rilly and de Voogt, 2012), greatly improves
our ability to identify roots, suffixes, and postposi-

2Where two adjacent noun phrases refer to the same object;
for instance when Meroitic titles precede personal names.

tions.
Scholars have also proposed linguistic affilia-

tions, and we are by now confident that Meroitic
is Nilo-Saharan of the Eastern Sudanic group’s
Northern branch, making it ‘North East Sudanic.’
The closest language group to Meroitic is Nubian,
followed by Nara, whereas Taman and Nyima are
separate branches within the same family (Rilly,
2008).

One of the most critical goals for Meroitic de-
cipherment will be expanding our limited vocabu-
lary (Lobban Jr, 1994), the hope being that once we
have identified more words, a better understanding
of the grammar should be forthcoming. Cognate
detection has presented one of the most promising
avenues for this, especially with regard to prior
scholarly efforts. To this end, we present a cognate
investigation by hand for two common Meroitic
words in Appendix C. However, since scholars have
already been searching the cognate space since the
writing system was deciphered by Griffith (Rilly
and de Voogt, 2012), we consider it more fruitful
to first focus on new computational methods that
have never been tried before.

2.1 Challenges

Data Scarcity Over time, scholars have aggre-
gated approximately 2,200 Meroitic texts. While it
is a sizeable amount of material for a lost language,
it still would of course be considered a drop in the
bucket for standard computational linguistics tasks.

Additionally, collecting data for comparison will
become an important task in the future. In particu-
lar all close language relatives to Meroitic are also
extremely low-resource languages. Although some
dictionaries (e.g. Nubian, Old Nubian, Nara) are
available, there exist hardly any complete corpora
for these relatives in machine readable format. Ide-
ally, analysts would perform experiments on not
merely one, but many languages, and use those
results cumulatively to better understand Meroitic.

Orthographic Variation An additional chal-
lenge for those hoping to decipher Meroitic is
the orthographic variation across the language.
“All researchers since Griffith who have worked
on Meroitic have observed and sometimes com-
plained about the great variability of the writing. ...
[T]here are frequent examples of different spellings
at the same site and from the same era for the
more commonly used terms” (Rilly and de Voogt,
2012). It is possible that these may partly con-
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sist of dialectal differences, but the fact that we
find examples from the same place and time un-
dermines dialect as a primary suspect. Of course,
variations also include scribal mistakes (Rilly and
de Voogt, 2012), as well as differences in region
and time period (Rilly, 2007). For instance, Osiris
and Isis epithets often began with an initial /q/ in
places near Meroë and the third cataract, whereas
they primarily began with /w/ around the second
cataract; /qetneyineqeli/ and /wetneyineqeli/ are
two valid writings for Isis epithets. Also, the word
for “sister” was written /kdise/ as well as /kdite/.

3 Related Work

Schenkel (1972) used computational systems to
search Meroitic texts, identifying verbs and com-
mon suffixes in three long royal narratives, and
comparing them to verbal suffixes in the Barya lan-
guage. Later, Ouellette and Longpre (1999) used a
computer program called “Thoth: Language Cog-
nate Program” to search for cognates in Meroitic,
and concluded that “From these word lists it may
be possible to continue the work of deciphering
the Meroitic writing system until such time as a
bilingual text becomes available.”

More recently, several works have used machine
translation, statistical techniques, and Bayesian
probability to decipher foreign scripts (Knight et al.,
2006; Snyder et al., 2010; Luo et al., 2019, 2021).
These include methods to determine probable pho-
netic mappings (Knight et al., 2006), morpholog-
ical segmentation, cognates (Snyder et al., 2010),
and language relatedness (Luo et al., 2021).

A foundational experiment deciphered Ugaritic
with machine translation techniques.3 Comparing
the “unknown” Ugaritic texts with a closely re-
lated language, Hebrew, the computers iteratively
theorized alphabetic mappings based on charac-
ter frequency. They then searched for cognates
in the roots and particles using assumptions about
morphology, “correctly translat[ing] over 60% of
all distinct Ugaritic word-forms with Hebrew cog-
nates and over 71% of the individual morphemes
that compose them, outperforming the baseline by
significant margins” (Snyder et al., 2010).

Luo et al. (2021) built on this work by general-
izing it for other lost languages using a neural ap-
proach, which additionally improved the Ugaritic
decipherment by 5.5%. This work is particularly

3Ugaritic had already been deciphered prior to this, but not
using computers.

relevant since it extracts cognates in underseg-
mented texts between a known and a lost language,
even when the two languages are not particularly
related.

Another statistical experiment was performed
by Smith (2008), who tested whether Meroitic’s
word frequency distribution followed Zipf’s law,
concluding that, like all other human languages, it
does indeed adhere to a Zipfian distribution.

4 A Machine-Readable Meroitic Corpus

As part of this project, we present the first machine-
readable transcribed corpus by manually converting
pre-transcribed Meroitic examples into machine-
readable format, using examples from three main
works: the vocabulary list of Lobban Jr (2021), as
well as example phrases from Rilly (2007) and Mil-
let (1968). We have also refitted three lengthy
royal narratives from previous word-frequency ex-
periments: Tañyidamani, the Hamadab Stela of
Amanirenas and Akinidad (Hofmann, 1998), and
the Kalabsha Inscription of Kharamadoye (Hägg,
2000). These data will be made publicly avail-
able on Github. Some corpus statistics are listed
in Table 1, and examples of this data can be found
in Appendix A. Some data instances include pro-
posed translations; however, these translations are
often constrained to titularies, toponyms, and an-
throponyms (Lobban Jr, 2021), so they offer lim-
ited use for full decipherment.

Despite the existence of a Unicode font for
Meroitic cursive and hieroglyphs,4 we opt to use an
ASCII-mapping of transcription characters already
in use by scholars, both for ease of compatibility
(e.g. users might not possess this font) and because
our data sources usually provided examples as tran-
scriptions rather than hieroglyphs. The mappings
are specified in the corpus, and could certainly be
changed to the Unicode if necessary.

In the past, no one transcription standard for
Meroitic has been consistently used by scholars.
Since we use solely pre-transcribed text, it is im-
portant to ensure that differing conventions are
not inter-mixed. Thus, we create separate files
of Meroitic examples designated by scholar. For a
corpus, we combine the data from all files, but first
convert to one standard; in this paper, we conform
to Millet’s paradigm; however, we provide infor-
mation on our mapping scheme for each file, and
characters can easily be replaced by others, so this

4Link to Meroitic font
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Type Statistics

Translated Meroitic words 193
Meroitic Phrases 897
Late-Egyptian complete texts 302
Scanned Nubian pages 708

Table 1: Data-collection statistics; does not include the
Meroitic royal narratives.

should not pose an issue for reproducibility.
Additional data for Meroitic may be taken from

REM (Le Répertoire d’Épigraphie Méroïtique), a
corpus with over 1,000 Meroitic digitized inscrip-
tions5 (Leclant et al., 2000); however, many of
these texts still require transcription6 (Rilly and
de Voogt, 2012) if they are to be analyzed through
use of computer technology.7

As for data from other relevant languages, we
scrape the Ramses Online Corpus of Late-Egyptian
texts into JSON files, and use a cleaned version of
the corpus for our experiments. Additionally, we
are currently in the process of scanning and organiz-
ing materials from Old Nubian, Dongolese Nubian,
and a few other modern Nubian varieties, in order
to broaden the set of possible cognate candidates.
We hope to soon develop a large enough sample set
to conduct further experiments that may hopefully
lead to an increased understanding of the Meroitic
language. Note that all these languages are severely
under-resourced, and almost all materials come in
the form of books that require digitization and/or
optical character recognition to be rendered use-
ful. One challenge will be fine-tuning the OCR;
for instance, we are currently unaware of any OCR
developed for the Nubian or Old Nubian script, and
up until now, our OCR attempts have yielded less-
than ideal results. Eventually we will need an OCR
model for the Meroitic REM texts as well.

5 Experiments

In this paper, we use our Meroitic corpus to train
word embeddings. We evaluate their quality intrin-
sically with semantic similarity tests.

5Many of these can be found at https:
//ancientworldonline.blogspot.com/2017/11/
repertoire-depigraphie-meroitique.html

6They include photographs of the physical carvings/docu-
ments, along with drawings of scholars’ reconstruction of the
hieroglyphs, but they have not been converted to an alphanu-
meric script.

7At this point, the texts from REM are image files, and
hence not amenable for text-based language technologies.

Afterwards, we attempt to align them with em-
beddings from Late-Egyptian. Creating cross-
lingual representations is a method for lexicon in-
duction, where embeddings can be aligned on a
small dictionary of translation pairs (Mikolov et al.,
2013b; Anastasopoulos and Neubig, 2020). We
try this here with Meroitic and Egyptian, inducing
lexemes of known words for evaluation. Through
alignment to Egyptian, we hope to gain an under-
standing of the meaning (or grammatical function)
of unknown words.

5.1 Why Egyptian?
Even though Ancient Egyptian is not phylogeneti-
cally related to Meroitic,8 there are good reasons to
believe the content of some Egyptian texts may be
very relevant, both topically and chronologically,
due to geographic and cultural similarities of the
neighboring entities.

Napatan texts, Egyptian writings from the Nap-
atan period (circa 800-300 BC), could be especially
useful for translating words in the long royal nar-
ratives. Unfortunately, the number of long royal
narratives and corresponding Napatan texts is not
nearly large enough alone for comparison, and even
what is available is not in ready machine-readable
format. Additionally, unlike many Napatan texts,
it is likely that the royal narratives came from oral
tradition, since there are no dates, coronations, etc.
apparent in the texts; this minimizes our ability to
find similarities in format or structure.

Therefore, as a preliminary investigation, we
choose to use Late-Egyptian (written between ap-
proximately 1550-700 BC (Hoch, 2023)) texts and
stories for comparison, as they are openly accessi-
ble on the Ramses Online annotated corpus.

5.2 Data and Cleanup
For Late-Egyptian data, we scrape 302 texts, rang-
ing from a few sentences to many paragraphs, into
JSON format from the Ramses Online Corpus9 (Po-
lis et al., 27 August 2015).

Note that we use the phonological transcribed
version of the Egyptian texts, rather than represen-
tations for the specific hieroglyphs used. This is
in part because we did not see Gardiner Code rep-
resentations (alphanumerical codes for individual
hieroglyphs) in the Ramses Online texts. Egyptian
Hieroglyphic writing makes use of non-phonetic

8Egyptian is classified as Afro-Asiatic, Meroitic is a Nilo-
Saharan language.

9http://ramses.ulg.ac.be/
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features, such as determinatives, in order to con-
tribute semantic and sometimes grammatical (eg.
plurality) information of words (Allen, 2000). Us-
ing only the phonetic representation of texts leaves
open the possibility of losing linguistic information,
and may even result in ambiguity over certain lexi-
cal items. On the other hand, it may make sense to
compare the words phonetically, considering that
Meroitic hieroglyphs are purely alphasyllabic and
do not use determinatives.

We create machine-readable corpora for both
Meroitic and Egyptian by eliminating translations,
metadata, dashes, colons, etc. and separate each
example or text by a new line. Many of the Meroitic
words are pre-segmented, so eliminating certain
punctuation helps to separate words by morpheme
in each language. This Meroitic corpus contains
871 example texts or phrases, and the Egyptian
contains 1,729 unique types for 99,338 total tokens.

Data Augmentation Additionally, since schol-
ars have been able to detect many words that are
anthroponyms (people names), we augment the
Meroitic data by swapping out royal names with
each other, and then non-royal names with other
non-royal names, thereby creating additional syn-
thetic (yet valid) Meroitic examples. The resulting
Meroitic corpus contains 1,868 unique word forms
from 17,257 sentences or phrases: 782,761 words
in all.

Evaluation Dictionaries We also compile seven
small dictionaries (statistics in Table 2), pairing
known Meroitic word forms with Egyptian coun-
terparts that appear in the corpora; these act as our
training and evaluation sets. The combined sets
include over 90 pairs, with our largest dictionary
(of nouns) containing 26. Known orthographic
variants are present as distinct entries. Words are
grouped by categories, such as part of speech, and
these serve as training and test sets. We note that
certain Egyptian words can be written with mul-
tiple independent morphemes yet have a distinct
meaning. For instance, the word for “priest” is
written as a genitival construction with two words:

·hm-n
¯
tr, literally meaning “servant of god.” The

dash in transcription is important because it im-
plies the single meaning in the presence of two
independent morphemes. Therefore, to account for
this kind of issue, we include certain punctuation,
such as periods, and we also add dashes back into
the Egyptian corpus for specific word pairs, just as

they were written in the pre-cleaned version of the
corpus.

5.3 Methods

We train Word2Vec embeddings (Mikolov et al.,
2013a) on the Meroitic and Egyptian data. Al-
though we considered using fastText which
is good for learning subword information (Bo-
janowski et al., 2017), our cleaning process sep-
arated words into their constituent morphemes, so
this would not be as helpful here. In order to con-
sider how the small size of the corpora may affect
the embedding space, we test with varying word
vector dimensions: 20, 50, 100, and 120.

Next, we perform intrinsic evaluation on both
embedding spaces (of dimension 100) with re-
spect to semantic similarity, including both nearest-
neighbors and word analogy tests. We carefully
select known (or hypothesized) words and observe
the top 10 most similar lexemes, with the hope that
other known words that appear will be semantically
related in some way. We also do this for numerals,
expecting numerals to align with other numerals.
Since most Meroitic words are unknown, our re-
sults may not include many known words; in these
cases it is difficult to tell how semantically similar
the words are. Therefore, we also compare cosine
similarity scores to determine how close the words
are in the embedding space.

Finally, we attempt embedding space alignment
between the Egyptian and Meroitic in three settings:
unsupervised, aligning on numbers (mostly shared
numerals), and on our dictionary of nouns. We
use VecMap (Artetxe et al., 2018b,a), since Anas-
tasopoulos and Neubig (2020) found that it can
perform better than other methods (MUSE (Conneau
et al., 2017) and UMWE (Chen and Cardie, 2018)) for
lexicon induction when the languages or writing-
systems are distant.

We then evaluate with a lexicon induction task
on each of our dictionaries, using a neighborhood
of 10 words (reporting precision@10). Addition-
ally, we perform a similar experiment with French
and English Wikipedia-trained embeddings, using
a hand-crafted alignment dictionary of 26 pairs, and
testing on nearly 5,000 pairs from Anastasopoulos
and Neubig (2020). This serves as a skyline to
demonstrate the level of accuracy we might expect
using higher-quality embeddings but still using a
minimal amount of training word pairs. If we re-
ceive low accuracy on Meroitic/Egyptian but high
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Type # entries

nouns 26
names 18
numbers 15
verbs 14
titularies 9
adj/adv 6
prepositions 3

Table 2: Alignment dictionaries

accuracy on French/English, this suggests our prob-
lem lies in the sparsity/quality of embeddings.

6 Results

Overall, our intrinsic evaluation for both Meroitic
and Egyptian embeddings shows promise. How-
ever, our lexicon induction experiments are found
lacking. None of our models could correctly trans-
late terms that had not been seen before, and of the
terms that had been seen, only a maximum of 20%
were correctly aligned.

6.1 Intrinsic Evaluation
We evaluate our embeddings by calculating the
cosine similarity between known words.

Egyptian Overall, the Egyptian embeddings do
very well on our tests considering the limited nature
of the dataset. To begin with, lower numerals tend
to be paired with low numerals (ex. 1, 5, 3, 6, 8),
while high numerals match higher numerals (ex.
1000, 500, 800, 2000).

We find that words associated with kingship or
gods often have high cosine similarities and of-
ten appear in the top 10 nearest neighbors of each
other. For instance, /nswt/ (“king”), /r′/ (“Ra”),
and /jmn/ (“Amun”) all have over 92% cosine sim-
ilarities with each other.

In addition, we perform several word analogy
tests (similar to the famous "man" is to "woman"
as "king" is to "queen" paradigm). Not all these
are successful, but we do obtain certain interesting
results:

• nswt→wr as ms→b3 ·k, meaning “‘king’ is to
‘great’ as ‘child’ is to ‘servant,”’ which is ex-
actly something we might expect.

• rmt→hm.t as nswt→mry, which means
“‘man’ is to ‘woman’ as ‘king’ is to ‘beloved.”’
Ideally, the result would be /nswy.t/, mean-
ing ‘queen,’ but ‘beloved’ may still contain a
relevant connotation; it should also be noted

that /mry/ was often used in the context of a
king’s relationship to a god.

We provide cosine similarity scores for some se-
lected Egyptian word comparisons in Table 3, and
note that all scores are high.

Meroitic The Meroitic embeddings do not per-
form quite as well on the intrinsic evaluations, but
we do find that they capture some semantic infor-
mation. For instance, the embeddings of the nu-
merals 2, 12, and 6 are all very near to each other,
and the gods Isis and Osiris are similar—this in
particular is expected since in mythology Isis is
the wife of Osiris. Testing with /qor/10 for “ruler”
returned /abrse/ (a nominal group, meaning “ev-
ery man” when containing an article: /abr-se-l/),
/qorte/ (literally “in the king’s,” probably meaning
“palace”), and /amnp/ (“the God Amun of Nap-
ata”). We also find certain titularies grouped with
titularies, for example: /perite/ (“local official”),
/ttnylkh/11 (some official title), and a word seem-
ingly related to /pelmoŝ/12, which has to do with
regional military administration (Millet, 1968).

Additionally, variant word forms appear as near-
est neighbors, for example /mni/ and /mnpte/ for
“Amun” and “Amun of Napata,” and /(a)ŝor(i)/
and /(a)ŝoreyi/ (vocative form) for Osiris. This
gives hope to future orthographic variation detec-
tion efforts. Note that this is despite the fact that we
use a method that does not take into account char-
acter n-grams (like fasttext would, much more
suitable for modeling orthographic variation) and
hence this confirms that these are indeed variants
of the same word, as opposed to them being two
distinct words with very similar forms.

Word analogy results prove difficult to analyze,
since it is first more complicated to construct them
with our limited vocabulary, and most of the words
that are returned are unknown. However, one
very good result within the top-10 turns out to be
qor→pqr as abr→yetmdelo, which means “‘ruler’
is to ‘crown prince’ as ‘man’ is to ‘nephew13.”’

It should also be noted that unlike the Egyptian
embeddings (whose nearest neighbors often had co-
sine similarity scores greater than 95%), many of

10written as ‘qEr’ in our corpus; all o’s are written as ‘E’,
since some of Millet’s publications transcribed as /ê/. How-
ever, it should be noted that o is the standard convention.

11written ‘ttNlX’ in our corpus
12written ‘pelmES’ in our corpus. The actual word returned

was /pelmoŝlis
·
p

·
qebete./

13Note that technically /yetmde-l-o/ is a nominal clause
meaning “he is the nephew” or “she is the niece”
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Word 1 Word 2 Cosine
egy en egy en Similarity

r′ Ra ntr god 0.96
r′ Ra wsr power 0.93
r′ Ra ·hm− ntr priest 0.88

jmn Amun ·hm− ntr priest 0.98
nswt king stp choice/elite 0.96
·hm.t woman rmt.t woman 0.95

·hm.t woman s man 0.86
ms child s3 son 0.91
·hm.t woman sn.t sister 0.98
′3 large wr great 0.93

Table 3: Cosine similarity scores between Egyptian
words. egy is the Egyptian word; en is its English trans-
lation. We choose words that we feel are related, so we
get high similarity for the majority of tests. Notice that
woman/man is slightly lower than the rest, which may
be expected due to the difference in gender.

Word 1 Word 2 Cosine
xmr en xmr en Similarity

qor(e) ruler qr ruler 0.91
qor(e) ruler pqr prince -0.04
qor(e) ruler mlo head 0.62
kdi woman kdileb women 0.42
kdi woman sem(l) wife 0.44
kdi woman abr man 0.522
kdi woman kdis sister 0.46
dd infant/son14 as child 0.69

kdis(e) sister wi(de) brother -0.11
tr big lx large/high 0.73

Table 4: Cosine similarity scores between Meroitic
words. xmr is the Meroitic word; en is its hypothe-
sized English translation. We choose words that we feel
are related, so we would expect similarity to be high.
However, while we do get some high scores, results are
somewhat inconsistent.

these Meroitic “nearest neighbors” display cosine
similarities below 60 or even 50%, indicating that
related words are not as near to each other in the em-
beddings space. We believe this can be attributed
to the extremely low training data. Nonetheless, we
still present the cosine similarity scores between
several known Meroitic words in Table 4. Some
pairs have reasonably high scores, but the results
are inconsistent.

6.2 Alignment Results

Our alignment results (Table 6 in Appendix B) are
far from ideal. None of our Meroitic-Egyptian
cross-lingual embeddings were able to do lexicon
induction for a dictionary they had not seen before.
Our best setting appears to be on numerals with
100-dimension vectors; however, even for the train-
ing dictionary they were not able to achieve more
than 20% accuracy. In contrast, our French-English

cross-lingual embeddings performed 70% on the
training dictionary, and close to 68% on the test
set.

The most obvious explanation for this poor per-
formance is twofold. Firstly, our Meroitic-Egyptian
test sets are so small that we cannot expect our
models to correctly pair the specific words we have
chosen. We should remember that the accuracy on
these few words is not an indication of complete
failure. However, the fact that we could not achieve
better than 20% on the very words we aligned on
is an indication that these embeddings are insuffi-
cient for proper alignment and lexicon induction.
This is likely due to the extreme low-resource na-
ture of the training sets, although it is possible that
we may be able to achieve better accuracy when
aligning Meroitic to a different language, such as
Old Nubian or Coptic, despite the differences in
content. One might also try with modern, higher-
resourced languages, such as Hebrew or Egyptian
Arabic; however, we could hardly expect these to
bear any meaningful resemblance to the language
in question.

7 Discussion and Future Work

Despite the extremely limited nature of our corpora,
our embeddings are still able to capture semantic
information. This is especially true in our Egyp-
tian embeddings, but Meroitic also shows promise,
suggesting that our corpus and embeddings can
be useful for future experiments to further under-
stand Meroitic. We believe the Egyptian embed-
dings were better due to the difference in example
length; many Egyptian texts were equivalent to
several paragraphs, but most of the Meroitic exam-
ples were short sentences or fragments, and heavily
augmented using anthroponyms. Regardless, there
is still a long way to go before achieving results
that may be useful for scholars in any major deci-
pherment effort, which is clear when considering
the abysmal performance of our lexicon induction
tasks. Future work should attempt the same align-
ment but with other languages, such as Coptic or
Old Nubian. However, we believe the prime rea-
sons for this is simply the lack of quality training
data. If more Meroitic examples could be gathered
and made machine-readable, then we could expand
our corpus and obtain more reasonable results.

Other avenues for future work, now made possi-
ble with our new corpus, include cognate detection,
orthographic variant recognition, NER tasks, and
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POS-tagging. Additionally, Meroitic inscriptions
tend to use substantially different vocabulary in dif-
ferent contexts. Thus, performing a study of lexical
elements common to various genres would also be
useful.

7.1 Cognate Detection

One important direction for Meroitic research in-
cludes attempting to find cognates in related lan-
guages. We hope to first benchmark methods sim-
ilar to Snyder et al. (2010), Luo et al. (2019),
and Luo et al. (2021) (see Section 3). The idea
is to search for cognates in related languages by
comparing their high-frequency word roots and par-
ticles with Meroitic’s, based on phonetic values and
overall frequency.

We present an initial attempt on cognate detec-
tion (by hand, as not all resources are digitized) for
two common but unknown words in Appendix C.

7.2 Leveraging Related Languages

In contrast to previous machine translation attempts
for language decipherment (Snyder et al., 2010),
we currently know of no language that serves as
a very close relative to Meroitic. However, be-
cause we can find similarities between Meroitic
and other languages, such as Old Nubian, which
shares with it both lexical and grammatical fea-
tures (van Gerven Oei, 2020), the hope is that we
could perform experiments using multiple semi-
relatives, perhaps using methods established in Luo
et al. (2021) (see Section 3), and combine the
data to build a comprehensive understanding of
the Meroitic language. At this stage, Old Nubian
presents one of the most likely candidates for com-
parison, although unfortunately its content is pri-
marily Christian-oriented (van Gerven Oei, 2020),
contrasting sharply with Meroitic’s Kushite Pan-
theon of gods, and its lexicon is more limited com-
pared to modern Nubian dictionaries15. Hopefully
there exists enough of a connection to use in com-
puter analyses, but other Nilo-Saharan languages,
such as Nara, Tama, and Dinka, may also be useful
for comparison. Ideally, analysts would perform ex-
periments on not merely one, but many languages,
and use those results cumulatively to better under-
stand Meroitic.

15Modern Nubian dictionaries (e.g. Khalil (1996) and Arm-
bruster (1965)) have many more words than the Old Nubian
dictionary Browne (1996).

7.3 Handling Orthographic Variation

We suspect that orthographic variation may play a
significant role in the quality of our embeddings,
since each distinct form would erroneously appear
to have an entirely new meaning. We plan to at-
tempt the same experiments after modifying the
training data to eliminate all known variants, simi-
larly to methods used in Sahala and Lindén (2023).
However, it is quite possible that many more vari-
ants exist than scholars have previously been able
to uncover. One solution would be to compare
the words in Meroitic texts of related genres with
each other, either considering cosine similarity, or
word frequency and phonemes, perhaps taking re-
gion and time-period into account as well; in this
way we may guess which words are orthographic
variants of each other. Seeing how words were writ-
ten and therefore pronounced by different people
might also give insight into Meroitic phonology
and where language variations occurred, which
would be important not only for knowledge of
Meroitic, but for linguistics and history as well.
Regardless, this test should improve our ability to
read the Meroitic language, as it minimizes the
number of terms that are truly unknown, and could
lead to higher-quality embeddings.

Our current corpus provides the raw texts as
they currently appear, i.e., including all the above-
mentioned variations. But we hope to release a
“normalized” version in the near future.

8 Conclusion

The use of computational methods to decipher
Meroitic looks hopeful. Large-scale programs can
search for cognates much more effectively than
any human, and statistical brute-force comparisons
can help to identify word roots and grammatical
particles. Meroitic is an ideal language on which
to attempt translation, as we already have some
knowledge of vocabulary and grammar (albeit lim-
ited). The primary challenges will be finding the
right language to effectively map word and particle
meanings (Lobban Jr, 2003), paired with acquiring
enough machine-readable data on both ends.

The corpus, embeddings, and analyses we
present here constitute a step in that direction. De-
spite the disappointing results of our lexical in-
duction tests, our embeddings appear to have the
capacity to capture non-trivial semantic informa-
tion. With additional attempts with other languages,
as well as methods to handle orthographic vari-
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ation, perhaps we may achieve more promising
results. Ultimately, decipherment of Meroitic–or
any untranslated language–will require computer
efficiency and persistence, paired with human inge-
nuity and intuition.

Limitations

Creating a machine-readable Meroitic corpus is not
a trivial task. Firstly, the language is so obscure that
it is difficult to obtain access to Meroitic materials,
and putting them into machine-readable format re-
quires extensive care and some expertise. Thus, we
had to use some materials that were fairly old and
may contain outdated transcriptions and translation
hypotheses. However, we believe that even a pos-
sibly outdated machine-readable corpus is better
than no corpus at all, and given some of our posi-
tive results for the intrinsic evaluation, it seems that
what we do have is still worthwhile. We hope to
eventually curate an up-to-date machine-readable
corpus, perhaps based on the recent publication of
Hallof (2024). Note, however, that this book is not
currently available in any digital format, and our
attempts at contacting the author have been unsuc-
cessful. Should we manage to eventually obtain
access to this book, it may also lead to substantial
improvements in results.
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Meroitic Corpus Examples

plSn aqmks penn 5 ni ye teke lE
xbxN wES qer qE sskemxr qE wESi yntke pipl pxilX pli ptrEti pipn pbx

wErEteliye krErE
t dxe mlEqErebr qEre s l xrws

pestE aberEtemte pestE n. yetmde betewi

Table 5: Example lines from our corpus, where each line is a unique example.

Figure 2: Screenshot of lines from the Millet examples.

A Corpus Example

Table 5 displays example lines taken from our Meroitic corpus, and Figure 2 shows a screenshot image of
the examples from Millet.

B Alignment Results

Table 6 shows the results from aligning Meroitic to Egyptian embeddings on numerals and nouns. The
columns represent the cross-lingual embeddings, while the rows are the test dictionaries.

Dict unsup num-20 num-50 num-100 num-120 nn-20 nn-50 nn-100 nn-120

numer - 6.67 13.33 20 13.33 - - - -
nouns - - - - - 8 4 16 12
other - - - - - - - - -

Table 6: Results from Meroitic-Egyptian cross-lingual embeddings. The -numbers are the dimensions of the word
vectors. unsup stands for an unsupervised model on 100-dimension vectors; num- models are aligned on numbers,
and nn- are aligned on nouns. The results are abysmal, suggesting that we cannot reliably perform lexicon induction
between the Meroitic and Late-Egyptian corpora.

C Preliminary Cognate Study

Once we had compiled the three long royal narratives in machine-readable format, we calculated overall
word frequency within the texts. Then, consulting with an expert in Nubian and Meroitic history and
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languages, we focused on two of the most frequent words, and hand-identified possible cognates from
related languages. Tables 7 and 8 show our results for the words /seb/ and /kek/, respectively. Current
theories suggest that /seb/ is a noun related to kingship and that /kek/ may possibly be a coordinating
conjunction (although this is fragile).

Word Meaning Language

seb unknown Meroitic
sab cat Nubian Kenzi/Dongolawi
esbyni villager Nubian Kenzi/Dongolawi
sablo waterfall Nubian Kenzi/Dongolawi/Fadija/Mahas
sablo obstruction to the flow, irrigation canal Nubian Kenzi
sablo trough (especially for a waterwheel) Nubian Dongolawi
sib to fly Nubian Kenzi/Dongolawi
sab clouds Nubian Dongolawi/Mahas
sabe wall Nubian Kenzi/Dongolawi
saab downstream end Nubian (17th century)
asab sinew/muscle Nubian
seb intelligent Coptic
sabat basket Old Nubian

Table 7: Hand-identified possible cognates/borrowings for the Meroitic word /seb/.

Word Meaning Language

kek Unknown Meroitic
kakke small scorpion Nubian Kenzi
kok hammer Nubian Kenzi/Dongolawi/Fadija/Mahas
kuk to hatch Nubian Kenzi/Dongolawi/Fadija/Mahas
kk darkness Egyptian
ukk wean Nubian Kenzi/Dongolawi/Fadija/Mahas
kkki lineage name of island land cultivators Nubian
kak room Nubian
kikko chop Nubian
Kuk/Kek God of darkness Egyptian
Keket Goddess of darkness Egyptian

Table 8: Hand-identified possible cognates/borrowings for the Meroitic word /kek/.

Interestingly, the cognates found for these two words do not appear to directly support the current
scholarly theories. Based purely on these results, any hard translation for /seb/ or /kek/ would be
speculative. However, there appears to be somewhat of a theme regarding “earth,” “wall,” “blockage,”
“water,” or “cataract” relating to the word /seb/. Therefore, considering the importance of the Nile in
Meroë geography and culture, one possibility is that this Meroitic word means or is related to a cataract.
For /kek/, many of the Nubian/Egyptian words appear to have a dark or destructive connotation, so one
possibility is that /kek/ means “to cut” or perhaps “hurt,” “hit,” or “break.” This also makes sense in
context of conquest, which is likely a prevailing theme in the royal narratives.

The hope is that once we acquire enough data from languages in addition to Meroitic, we will be able
to automate the process of cognate detection. In future work, we also expect to take into account word
clusters and n-grams.
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Abstract

We develop an embedding model specifically
designed for Waka poetry and use it to build a
model for detecting Honkadori. Waka is a tradi-
tional form of old Japanese poetry that has been
composed since ancient times. Honkadori is a
sophisticated poetic technique in Japanese clas-
sical literature where poets incorporate words
or poetic sentiments from old Wakas (Honka)
into their own work. First, we fine-tune a pre-
trained language model using contrastive learn-
ing to construct a Waka-specialized embedding
model. Then, using the embedding vectors ob-
tained from this model and features extracted
from them, we train a machine learning model
to detect the Honka (original poem) of Wakas
that employ the Honkadori technique. Using
paired data of Honka and Wakas that are consid-
ered to use Honkadori, we evaluated the Honka
detection model and demonstrated that it can
detect Honka with reasonable accuracy.

1 Introduction

Waka is a traditional form of Japanese poetry based
on combinations of 5- and 7-syllable units. First
appearing in the Nara period (early 8th to late 8th
century), Waka continued to be composed through
the Edo period (early 17th to late 19th century).
Waka can take various forms, such as repetitions
of 5-7-5 syllable patterns or a 38-syllable structure
(5-7-7-5-7-7), but the most common form is the
31-syllable structure (5-7-5-7-7), known as Tanka.
Since its inception in the Nara period, people have
gathered to compose and recite Waka on common
themes, and it became so deeply rooted in Japanese
culture that emperors would sometimes order the
compilation of Waka collections.

Honkadori is a sophisticated poetic technique in
Japanese classical literature for composing Waka,
where poets incorporate words or poetic senti-
ments from old Wakas (Honka) into their own work.

Honka

苦しくも (How painful it is) 降りくる雨か (the rain 
falling down) 三輪が崎 (at Miwa promontory) 佐野の渡
りに (at the riverbank of Sano) 家もあらなくに (with no 
house for shelter)

Honkadori

駒とめて (Stopping my horse) 袖うちはらふ (brushing 
off my sleeves) かげもなし (there is no shelter) 佐野の
渡りの (at the riverbank of Sano) 雪のゆふぐれ (on a 
snowy evening)

Figure 1: Example of Honkadori. The upper poem
shows the HONKA: “How painful it is, the rain falling at
Miwa promontory—at the riverbank of Sano (佐野の渡
り), there is not even a house to shelter in.” The lower
poem shows the HONKADORI: “At dusk, I stopped my
horse at the riverbank of Sano (佐野の渡り), brushing
off the snow from my sleeves, yet finding no shelter
anywhere.” The HONKADORI alludes to the phrase “佐
野の渡り” (the riverbank of Sano) from the HONKA,
sharing the common theme that there is nowhere to hide
from the weather.

This technique creates layered meanings while ex-
pressing their own poetic voice (Ooka, 2009). In
the practice of Honkadori, the original Waka that
serves as the source of borrowed words or expres-
sions is called Honka. This technique differs from
simple quotation or plagiarism, as it requires deep
understanding and creative reinterpretation of clas-
sical works. Interestingly, a similar practice exists
in modern music, particularly in hip-hop, called
sampling. Sampling is a music production tech-
nique where parts of existing songs (such as drums,
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bass, melody, or vocals) are extracted and recon-
structed within new compositions. For example,
Kanye West’s “Gold Digger” is known for sam-
pling Ray Charles’s “I Got a Woman,” adding
new interpretations to the original work. Like
Honkadori in Waka, sampling represents a creative
technique where modern musicians show respect
for classic works while adding their own interpreta-
tions. An example of Honkadori is shown in Figure
1.

Honkadori is said to have been established dur-
ing the Heian period (late 8th to late 12th cen-
tury). Teika Fujiwara, a prominent poet from the
Heian period, established the following rules for
Honkadori in his poetic treatise Eikataigai (The Ed-
itorial Committee of the Great Dictionary of Waka
Literature, 2014):

• One should not borrow from Wakas of con-
temporary poets.

• The borrowed phrases from classical Wakas
should be limited to approximately two
phrases.

• The theme must be different from the Honka.

We propose a method for automatically de-
tect Honkadori in Waka. While shared char-
acters between Wakas provide important clues
for Honkadori detection, the second rule from
Eikataigai often results in relatively short common
subsequences between the Honka and the Waka
employing Honkadori (hereafter, this is denoted as
HONKADORI to distinguish it from the technique it-
self, and the original Waka that serves as the source
of this HONKADORI is denoted as HONKA). There-
fore, character-based methods alone struggle to
automatically distinguish Honkadori from other
similar Wakas. To address this problem, we first
develop a Waka-specialized embedding model and
then create a model that calculates the probability
of any given pair of Wakas being in a Honkadori
relationship. Our study is expected to contribute to
classical literature studies through the detection of
previously undiscovered instances of Honkadori.

2 Related Work

2.1 Character-based Similar Waka Detection
Methods

Yamazaki et al. (1998) and Takeda et al. (2000)
have proposed methods for detecting similar Wakas

based on character similarity. These methods en-
able the detection of various types of similar Wakas,
including Honkadori, expressions used in specific
poetic situations, variant Wakas that developed dif-
ferent expressions through transmission, and Wakas
that share rhetorical devices such as makurakotoba
(set epithets in classical Japanese poetry). However,
these studies do not focus on the semantic aspects
of Wakas, making it difficult to detect pairs of sim-
ilar Wakas that do not share significant character
similarities.

2.2 Allusion Detection Methods Using
Embedding Vectors

Kondo (2024) has proposed a method for detecting
Hikiuta (poetic allusions) using embedding vectors.
In their study, they focused on identifying allusions
between two significant classical Japanese works
that are The Tale of Genji and Kokin Wakashū. The
Tale of Genji is a long narrative work, or novel,
written by Murasaki Shikibu during the middle
Heian period. The Kokin Wakashū is a Waka’s
anthology compiled in the early Heian period un-
der the Imperial command of the Emperor at that
time. The Tale of Genji contains several passages
that use Hikiuta based on Waka poems included in
the Kokin Wakashū. Hikiuta is a technique simi-
lar to Honkadori, where a famous Waka passage
is quoted within prose text or an emotional pas-
sage (Nishizawa, 2002).

To detect such Hikiuta, Kondo (2024) has pro-
posed a method using embedding vectors. This
method first embeds text segments from The Tale of
Genji and Kokin Wakashū into a vector space using
OpenAI’s text-embedding-ada-002 model (Ope-
nAI, 2022). Then, it calculates cosine similarities
between the embedding vector of each Waka from
Kokin Wakashū and the embedding vectors of text
segments from The Tale of Genji and identifies
high-similarity pairs as potential allusions. Fur-
thermore, the study reports that applying N-gram
character matching as a filter increases the propor-
tion of verifiable allusions among the candidates
in The Tale of Genji. This method has also led
to the discovery of previously unidentified allu-
sions. However, the study does not evaluate either
the accuracy of classical text embeddings of text-
embedding-ada-002 or the precision of the allusion
detection method itself.
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3 Construction and Evaluation of Waka
Embedding Models

We develop Waka embedding models. We first con-
struct a training dataset and then use it to fine-tune a
pre-trained encoder model with unsupervised Sim-
CSE (Gao et al., 2021). We evaluate the resulting
models using pairs of Wakas from Hyakunin Isshu
(en: One Hundred Wakas by One Hundred Poets)
and their modern Japanese translations.

3.1 Construction of Training Datasets

To train Waka embedding models, we use literary
works from the Nara period through the Edo pe-
riod recorded in the Corpus of Historical Japanese
(CHJ) (NINJAL, 2024). Additionally, we use
Tankas from the Modern Tanka Database (Yuna
et al., 2022) and literary works in classical Japanese
orthography published in the Aozora Bunko digital
library.

From CHJ, we obtained approximately 100,000
sentences including approximately 17,000 Wakas
(referred to as the CHJ dataset), approximately
140,000 Wakas from the Modern Tanka Database
(referred to as the Modern Tanka dataset), and ap-
proximately 335,000 sentences from Aozora Bunko
(referred to as the Aozora dataset).

3.2 Construction of Waka Embedding Models

In supervised learning for text embedding models,
we need annotations indicating which sentences are
semantically similar and which are different. How-
ever, creating such annotations for large amounts
of text is time-consuming and costly. To avoid the
annotation cost, we fine-tune a Japanese RoBERTa
model (Liu et al., 2019)1 using unsupervised Sim-
CSE, a contrastive learning approach. Unsuper-
vised SimCSE generates two slightly different em-
bedding vectors by applying dropout twice to the
same sentence and treats these as positive exam-
ples. This approach allows us to train effective
embedding models without the need for manual
annotation. When inputting text into this model,
we perform word segmentation using the Juman++
morphological analyzer (Tolmachev et al., 2018).
We compare the performance of unsupervised Sim-
CSE using individual datasets constructed in Sec-
tion 3.1 and combined datasets.

1https://huggingface.co/nlp-waseda/roberta-base-
japanese

3.2.1 Models with Individual Datasets
We trained a model for 5 epochs using each of the
CHJ dataset, Modern Tanka dataset, and Aozora
dataset individually.

3.2.2 Models with Combined Datasets
We trained a model for 5 epochs using a dataset cre-
ated by merging and shuffling the Aozora, Modern
Tanka, and CHJ datasets. Furthermore, we imple-
mented curriculum learning (Bengio et al., 2009)
that gradually adapts the training data to the Waka
format as follows. In this curriculum learning pro-
cess, datasets other than the CHJ dataset were used
for only 1 epoch of training, followed by 5 epochs
of training with the CHJ dataset.

• Aozora dataset → CHJ dataset

• Modern Tanka dataset → CHJ dataset

• Aozora dataset → Modern Tanka dataset → CHJ dataset

3.3 Evaluation of Waka Embedding Models
3.3.1 Evaluation Method
To quantitatively evaluate the performance of the
trained Waka embedding models, we adopt an
evaluation method using a parallel corpus of all
100 Wakas from Hyakunin Isshu and their modern
Japanese translations. Hyakunin Isshu is an anthol-
ogy of 100 Wakas, with a Waka carefully selected
to represent each of one hundred distinct poets. The
parallel corpus was obtained from the website “His-
tory of Hyakunin Isshu”2 3 4. The evaluation was
conducted according to the following procedure:

1. Convert an original Waka into an embedding
vector using the target model.

2. Similarly, convert each of the 100 modern
translations into an embedding vector using
the same model.

3. Calculate cosine similarities between the em-
bedding vectors of the original Waka and each
of all modern translations.

4. For the original Waka, consider the modern
translation with the highest similarity as the
model’s predicted translation.

5. Count a prediction as correct if the predicted
translation matches the true translation and
evaluate the model using accuracy over all
100 Wakas.

2https://hyakunin.stardust31.com/gendaiyaku.html
3https://hyakunin.stardust31.com/gendaiyaku-itiran.html
4https://hyakunin.stardust31.com/yaku.html
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Model text-embedding-small text-embedding-large text-embedding-ada-002 Waka embedding model
Accuracy 0.95 0.91 0.92 0.95

Table 1: Accuracy comparison between OpenAI models and Waka embedding model.
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Figure 2: Accuracy transitions by epoch for training
with individual datasets.
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Figure 3: Accuracy transitions by epoch for training
with combined datasets.

3.3.2 Evaluation Results
Figure 2 shows the accuracy transitions for each
epoch in training with the individual datasets. The
best-performing model using a single dataset was
the one trained for 1 epoch on the CHJ dataset,
achieving an accuracy of 0.95. Figure 3 shows the
accuracy transitions for each epoch in training with
the combined datasets. Multiple models achieved
the highest performance with a combined dataset,
with an accuracy of 0.85. Therefore, the model
trained for 1 epoch on the CHJ dataset demon-
strated the highest performance. Based on these
results, we adopted the model trained for 1 epoch
on the CHJ dataset as our Waka embedding model
and used it in the subsequent experiments.

3.3.3 Comparison with OpenAI Models
We compared OpenAI’s text embedding models
with our Waka embedding model using the eval-
uation method described in Section 3.3.2. The

results are shown in Table 1. Among the OpenAI
models, text-embedding-3-small achieved the high-
est performance with an accuracy of 0.95. Our
Waka embedding model demonstrated performance
equivalent to it.

4 Construction of HONKA Detection
Models

To automatically detect the Honkadori technique,
we need to consider not only surface similarities be-
tween Wakas but also their semantic relationships.
Therefore, we construct a HONKA detection model
that uses machine learning to understand the rela-
tionship between HONKA and their HONKADORI

by using features obtained from our Waka embed-
ding model. The construction of this model in-
volves three steps: first collecting training data of
Honkadori pairs, then training machine learning
models using features extracted from Waka pairs,
and finally evaluating the model’s performance.

4.1 Dataset Construction

To construct our training and evaluation datasets
for the Honka detection model, we collected pos-
itive examples and two distinct types of negative
examples.

First, as positive examples, we manually col-
lected 300 pairs of HONKA and their correspond-
ing HONKADORI from the Eight Imperial Antholo-
gies5 as documented in the日本うたことば表現
辞典本歌本節取編 (en: Dictionary of Japanese
Poetic Expressions - Compilation of Honka and
Honsetsudori). From these collected pairs, we al-
located 200 pairs for the training dataset and the
remaining 100 pairs for the evaluation dataset.

We created two distinct sets of negative exam-
ples. First, we constructed a dataset of 200 ran-
domly combined Waka pairs from the Eight Im-
perial Anthologies. These pairs serve as our first
type of negative examples, representing arbitrary
combinations of poems without any intentional re-
lationship. For our second set of negative examples,
we focused on poems sharing makurakotoba, i.e.,
fixed epithetic expressions that precede and modify

5The Eight Imperial Anthologies (Hachidaishū) are the
most prestigious collections of Waka, compiled by imperial
order.
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specific words through conventional associations.
We collected these pairs from the Dictionary of
Japanese Poetic Expressions: Makurakotoba Vol-
ume 1 and 2 (日本うたことば表現辞典枕詞
編(上・下)) (Ooka, 2007). To manage the collec-
tion process efficiently, we selected 10 types of
makurakotoba and collected 6 Wakas for each type.
We then created all possible unordered pairs from
each set of 6 Wakas, which resulted in 15 pairs per
makurakotoba type. This process yielded a total
of 150 pairs of Wakas that share makurakotoba but
are not classified as HONKADORI.

In summary, we constructed a dataset with 300
pairs of Honka and their corresponding Honkadori
(200 pairs for training and 100 pairs for evaluation)
as positive examples. We also constructed 350 pairs
of Wakas as negative examples, including 150 pairs
that serve as hard negative examples. All negative
examples are used only for training purposes.

4.2 Machine Learning Model Construction
We constructed the HONKA detection model based
on embedding vectors obtained from the Waka em-
bedding model. The HONKA detection model cal-
culates the probability that a pair of Waka is in a
Honkadori relationship based on features extracted
from the pair. Our Waka embeddings (RoBERTa
base) are 768-dimensional, meaning that using em-
bedding vectors for both Wakas in a pair would
result in a 768×2 dimensional input. Due to the
limited amount of training data, we intended to
restrict the input dimensionality of the machine
learning model. Therefore, instead of using embed-
ding vectors directly, we used the following seven
features:

• Cosine similarity between Waka pairs

• Top 5 highest cosine similarities from the 25
similarities between corresponding phrases (5-
7-5-7-7) of the Waka pairs

• Longest common subsequence length be-
tween Waka pairs

To minimize the impact of orthographic variations,
the longest common subsequence length between
Waka pairs is calculated by obtaining readings
using the morphological analyzer MeCab (Kudo
et al., 2004). These readings are obtained with the
Waka-specific morphological dictionary Waka Uni-
Dic (Ogiso et al., 2012). The readings are then
converted to kana characters with voiced and semi-
voiced sound marks removed. Using these features,

Method 1st 2nd 3rd 4th 5th
Nearest Neighbor 8 9 2 0 1

Logistic Regression 8 9 2 0 1
SVM 7 0 0 0 1

LightGBM 1 6 2 1 2
MLP 9 11 1 2 0

Meta-model 10 5 0 0 0

Table 2: Rank distribution of HONKA detection results
of each method.

Figure 4: MRR transitions for different learning rates in
MLP.

we trained logistic regression, SVM, LightGBM,
MLP models, and a meta-model (logistic regres-
sion) that blends these models. For MLP, we con-
ducted training with multiple learning rates. The
detailed training settings are provided in Table 6.

4.3 Experiments

4.3.1 Evaluation Method and Baseline
Evaluation Method We evaluated the accuracy
of HONKA detection using approximately 9,600
Waka from the Eight Imperial Anthologies in the
Corpus of Historical Japanese (referred to as the
Eight Imperial Anthologies Dataset) and the
Honkadori evaluation dataset (100 pairs). The eval-
uation was conducted according to the following
procedure:

1. Apply the HONKA detection method to each
HONKADORI in the evaluation dataset and
all Wakas in the Eight Imperial Anthologies
Dataset.

2. Sort the Eight Imperial Anthologies Dataset
based on the probabilities output by the model
in descending order of HONKA likelihood.

3. Evaluate using the following two metrics:
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Nearest Neighbor Logistic Regression SVM LightGBM MLP Meta-model
0.149 0.147 0.0793 0.0650 0.172 0.137

Table 3: MRR for each HONKA detection method.

HONKADORI 九重の (imperial court)にほひなりせば (if still as precious)さくらばな (cherry blos-
soms)春知りそむる (just learning spring)かひやあらまし (would have had meaning)
(en: If this place was still as precious as it was back then, these cherry blossoms would have
held more meaning.)

Rank Predicted HONKA

1 (HONKA) ことしより (from this year onward) 春しりそむる (just learning spring) さくらばな
(cherry blossoms)ちるといふことは (the act of scattering)ならはざらなん (please do
not learn)
(en: Please don’t learn how to scatter, oh cherry blossoms that have just begun to bloom this
year as if you’ve only just discovered spring.)

2 さくら花 (cherry blossoms)そこなる影ぞ (reflection there)おしまるる (is regrettable)
しづめる人の (of the sad people)春とおもへば (when I think of spring)
(en: The cherry blossoms are blooming. When I see their reflection in the pond, it reminds
me of those who are unhappy.)

3 さくら花 (cherry blossoms)匂ふなごりに (in their lingering fragrance)大かたの (all of)
春さへ (even spring)おしくおもほゆるかな (feels precious indeed)
(en: In the lingering beauty of the cherry blossoms in full bloom, even the entire spring
becomes precious, and I cannot help but feel this way.)

Table 4: Example of correct HONKA prediction ranked first by the model. The bold text represents the shared
character sequences between HONKADORI and HONKA.

• Top-5 correct count: The number of
times the correct HONKA appeared in the
top 5 entries of the sorted Eight Imperial
Anthologies Dataset.

• MRR (Mean Reciprocal Rank): The aver-
age of the reciprocal of the rank at which
the correct HONKA appeared.

Baseline As a baseline for comparing our pro-
posed method, we used HONKA detection based
on nearest neighbor search. We calculated cosine
similarities between the vectors of HONKADORI in
the evaluation dataset and each of the Wakas in the
Eight Imperial Anthologies Dataset. The evalua-
tion was performed by sorting the Eight Imperial
Anthologies Dataset in descending order of cosine
similarity.

4.3.2 Experimental Results
Table 2 shows the rank distribution of HONKA de-
tection results of each method. Table 3 shows the
MRR of each model alongside the baseline MRR.
The specifications of each model are shown in Ta-
ble 6.

While logistic regression and MLP showed rel-
atively good results, SVM and LightGBM per-
formed significantly worse than the baseline. The
model with the highest top-5 correct count was
MLP (learning rate 2e-2, 700 epochs) with 23 cases.
The model with the highest MRR was MLP (learn-

ing rate 2e-2, 900 epochs) with 0.172, indicating
higher detection accuracy for HONKADORI than
the nearest neighbor search. Table 4 shows an
example where the model correctly identified the
HONKA with the highest probability. Additional
examples of Honkadori pairs that were included
in the top-3 predictions by the model are shown in
Table 5. In Table 5, “rank” refers to the position of
each HONKA when sorted based on the probability
output by the model in descending order of HONKA

likelihood. Furthermore, Figure 4 shows the results
of comparative experiments with different learning
rates for MLP.

5 Conclusion

We constructed Waka-specialized embedding mod-
els and HONKA detection models. Furthermore, by
building machine learning models using features
extracted from the embedding vectors output by
these models, we demonstrated that HONKA detec-
tion is possible with reasonable accuracy.

This study has several challenges to address.
First, Juman++, which was used for input to the
Waka embedding model, is a morphological an-
alyzer designed for modern Japanese and is not
well-suited for tokenizing old Japanese texts. Next
is the amount of training data. While we manually
collected 300 pairs of Waka with Honkadori rela-
tionships, higher accuracy could be expected with
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Rank HONKA HONKADORI

1 あだなりと (vainly known)名にこそたてれ (though
bearing the name)桜花 (cherry blossoms)としにまれ
なる (rarely each year)人もまちけり (still I wait for
someone)
(en: Though cherry blossoms are known to scatter so
easily, I still wait for those who visit but rarely in a year.)

嵐吹く (storm-blown)花の梢は (the tips of blossoms)
あだなりと (vainly known)名にこそたてれ (though
bearing the name)花の白雲 (white clouds of flowers)
(en: Though the storm-blown cherry blossoms are
known to scatter easily, they still grace the sky like
clouds of white flowers.)

2 けふこずは (if you don’t come today)あすは雪とぞ
(tomorrow surely snow)降なましき (will fall like)え
ずは有とも (even if they remain)花とみまし (would
you see them as flowers?)
(en: If you do not come today, these cherry blossoms
will scatter and fall like snow. Unlike snow, even if they
remained without fading, would they still be seen as
flowers?)

さくら色の (cherry-colored)庭の春風 (spring breeze
in the garden)あともなし (no trace remains)訪はばぞ
人の (if someone were to visit)雪とだにみん (might
see them at least as snow)
(en: The spring wind that once carried cherry blossom
petals through my garden has left no trace behind; if
only someone would visit, they might see the scattered
petals as fallen snow and find beauty in the scene, but
with no visitors, not even footprints remain.)

3 山たかみ (high in the mountains) 人もすさめぬ (ig-
nored by people)桜花 (cherry blossoms)いたくなわ
びそ (do not grieve so deeply)我見はやさむ (I shall
come to see you)
(en: Cherry blossoms on the high mountain, though
others pass you by without care, do not grieve so deeply
—for I shall admire you and sing your praise.)

春くれど (though spring has come) 人もすさめぬ
(ignored by people)山桜 (mountain cherry blossoms)
風のたよりに (guided by the wind) 我のみぞとふ
(only I come to visit)
(en: Though spring has come, no one pays heed to the
mountain cherry blossoms—only I, guided by the wind,
go to visit them.)

Table 5: Examples of correctly predicted HONKADORI within Top-3 rankings.

access to more data. Additionally, while the Waka
embedding model evaluation uses classical texts
and their modern Japanese translations, it would be
preferable to construct an evaluation dataset com-
posed entirely of classical texts. By addressing
these challenges, we can expect further improve-
ments in model accuracy and greater contributions
to classical literature research. Moreover, it is ex-
pected to have a wide range of applications not only
in classical literature research but also in identify-
ing text reuse in modern internet memes, literature,
visual works, and other media.
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Abstract 

This paper proposes a machine translation 

approach for Tangut–Chinese using a large 

language model (LLM) enhanced with 

lexical knowledge. We fine-tune a Qwen-

based LLM using Tangut–Chinese parallel 

corpora and dictionary definitions. Experi-

mental results demonstrate that incorpo-

rating single-character dictionary defini-

tions leads to the best BLEU-4 score of 

72.33 for literal translation. Additionally, 

applying a chain-of-thought prompting 

strategy significantly boosts free translation 

performance to 64.20. The model also 

exhibits strong few-shot learning abilities, 

with performance improving as the training 

dataset size increases. Our approach effect-

tively translates both simple and complex 

Tangut sentences, offering a robust solution 

for low-resource language translation and 

contributing to the digital preservation of 

Tangut texts. 

1 Introduction 

The Tangut script, an intricate logographic writing 

system developed by the Tangut people in the 11th 

century, served as the official script of the Western 

Xia dynasty (1038–1227 CE). As a vital cultural 

artifact, Tangut texts encompass extensive historical, 

religious, and sociopolitical insights into this once-

flourishing Silk Road civilization (Sun, 2023). 

Despite its scholarly significance, the decipherment 

and translation of Tangut texts remain formidable 

challenges. The script’s structural complexity, lack of 

continuous usage traditions, and scarcity of parallel 

corpora have hindered efficient scholarly access to 

these invaluable historical records (Kong, 2018). 

Traditional translation methodologies, reliant on 

manual "four-line aligned translation" (comprising 

original text, phonetic transcription, literal translation, 

and idiomatic translation), demand specialized exper-

tise and labor-intensive efforts, severely limiting the 

scalability of Tangut studies. 

Recent advances in natural language processing 

(NLP), particularly the emergence of large language 

models (LLMs), offer unprecedented opportunities to 

automate low-resource language translation tasks (Lu, 

2025). However, existing research has yet to address 

Tangut translation systematically. Prior work has 

focused on dictionary compilation, such as A Concise 

Tangut-Chinese Dictionary (Li, 2012), and manual 

text analysis, leaving a critical gap in computational 

methods tailored for Tangut’s unique linguistic 

characteristics. The absence of machine translation 

systems for Tangut-Chinese conversion underscores 

both the urgency and innovation potential of this 

research. 

This paper presents the first systematic study on 

neural machine translation for Tangut texts, targeting 

two critical tasks: literal translation (character-to-

character alignment) and idiomatic translation (se-

mantic restructuring into fluent Chinese). Below are 

two example sets. For each set: The first line contains 

the original Tangut text. The second line provides the 

Chinese character-by-character translation. The third 

line offers the English character-by-character trans-

lation. We performed word-level alignment for the 

first three lines. The fourth line presents the idiomatic 

Chinese translation. The fifth line gives the idiomatic 

English translation. 

 

(1) Tangut 

𘓞       𘘂          𗦫            𗯮       𗵘𘞗               𗨻 

愿       永           缘            同        道种               为 

wish   forever   pratyaya   same   wisdom-seed   BE 

‘愿永同缘为道种’ 

‘May we always share the same pratyaya as a seed 

of the wisdom’ 

 

(2) Tangut 

𗌮       𗣼         𗹙          𘂤    𘃽      𘗐         𗩱 

实       正          法          中    入       当         能 

truly    correct   dharma   in   enter   should   be.able 

‘当能真正法中入 ’ 

‘we should be able to enter the truly correct dharma’ 
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Our work addresses three core challenges: (1) the 

extreme scarcity of parallel Tangut-Chinese data, (2) 

the need for precise alignment with authoritative 

lexicons, and (3) the requirement to adapt Tangut 

syntax to Classical Chinese expressions. To overcome 

these barriers, we propose an expert knowledge-

enhanced LLM framework that integrates domain-

specific dictionaries and chain-of-thought (CoT) 

prompting strategies. By fine-tuning a pre-trained 

Classical Chinese LLM (QwenClassical) with care-

fully curated Tangut datasets, our system achieves ro-

bust performance in both translation modes. 

Our contributions are threefold: 

• Resource Development: We compile and 

release the first publicly available Tangut-

Chinese parallel corpus, derived from the Th-

ree Generations Illuminated Collecti-

on and Avataṃsaka Sūtra, with 569+525 sen-

tence pairs annotated for literal and idiomatic 

translation. 

• Methodological Innovation: We design a 

hybrid approach combining dictionary-guided 

character alignment and CoT-based semantic 

restructuring, enabling accurate translation 

even with minimal training data. 

• Empirical Validation: Experiments 

demonstrate state-of-the-art performance, with 

BLEU-4 scores of 72.33 (literal) and 64.20 

(idiomatic). Ablation studies confirm the eff-

ectiveness of domain-adapted LLMs and CoT 

prompting in low-resource scenarios. 

This work not only advances the computational 

analysis of Tangut texts but also establishes a repli-

cable framework for other under-resourced historical 

languages. By bridging the gap between ancient script 

studies and modern NLP, our system empowers 

historians and linguists to explore Tangut heritage 

with unprecedented efficiency, fostering new insights 

into the multicultural dynamics of medieval Eurasia. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work in Tangut linguistics 

and low-resource machine translation. Section 3 de-

tails our methodology, including data preparation and 

model architecture. Sections 4–5 present experi-

mental results and case analyses, followed by discus-

sions of limitations and future directions. 

2 Related Work 

This section reviews prior research in two key areas 

relevant to our study: (1) Tangut linguistics and 

script decipherment, and (2) low-resource machine 

translation, with a focus on historical and under-

resourced languages. By situating our work within 

these domains, we highlight the unique challenges 

and opportunities of applying modern NLP tech-

niques to Tangut texts. 

2.1 Tangut Linguistics and Script Decipher-

ment 

The Tangut script, also known as Fanwen or Xixia 

script, is a logographic system comprising over 6,000 

characters, developed under the Western Xia dynasty. 

Early efforts to decipher Tangut texts began in the 

20th century, spearheaded by scholars such as Nikolai 

Nevsky (1960) and Luo Fuchang, who laid the 

groundwork for understanding its phonetic and 

semantic structures. 

Recent advances in Tangut linguistics have 

focused on phonology, grammar, and textual analysis. 

For instance, studies have elucidated the script’s 

phonetic components and syntactic patterns, enabling 

more accurate transcriptions and translations. The 

"four-line aligned translation" method, widely adopt-

ed in Tangut studies, exemplifies the meticulous 

process of converting Tangut texts into modern Chin-

ese. This method involves four steps: (1) presenting 

the original Tangut text, (2) providing a phonetic 

transcription, (3) generating a literal translation, and 

(4) producing an idiomatic translation. While effect-

tive, this approach is labor-intensive and heavily re-

liant on expert knowledge, underscoring the need for 

computational solutions. 

Despite these advancements, the field faces per-

sistent challenges, including the scarcity of parallel 

corpora, the ambiguity of Tangut characters, and the 

lack of standardized tools for automated analysis (Liu, 

2022). These limitations have hindered the scalability 

of Tangut research, making it an ideal candidate for 

NLP-driven innovations. 

2.2 Low-Resource Machine Translation 

Machine translation (MT) for low-resource languages 

has gained significant attention in recent years, driven 

by the success of neural models and transfer learning 

techniques. Early approaches relied on rule-based and 

statistical methods, which struggled to handle the 

morphological and syntactic complexities of under-

resourced languages. The advent of neural machine 

translation, particularly sequence-to-sequence mo-

dels and transformer architectures, has revolutionized 

the field, enabling more robust and context-aware 

translations (Zoph, 2016). 

For historical and ancient languages, MT systems 

must address unique challenges, such as incomplete 

lexicons, fragmented texts, and the absence of native 

229



 

 

speakers. Recent work has demonstrated the potential 

of LLMs in this domain (Jiao et al, 2023). For 

example, BERT-based models have been adapted for 

Classical Chinese(Yu et al, 2020), while GPT variants 

have been fine-tuned for ancient Greek (Lu et al, 2025) 

and Latin (Stüssi et al, 2024) . These models leverage 

pre-training on large corpora and domain-specific 

fine-tuning to achieve state-of-the-art performance. 

A key innovation in low-resource MT is the use of 

auxiliary resources, such as dictionaries, parallel texts, 

and multilingual embeddings (Ammar et al, 2016), to 

enhance model performance. Techniques like back-

translation, data augmentation, and transfer learning 

(Zoph et al, 2016) have proven effective in scenarios 

with limited parallel data. Additionally, prompting 

strategies, including chain-of-thought (CoT) (Wei et 

al, 2022) and few-shot learning (Wang et al, 2020), 

have emerged as powerful tools for guiding LLMs in 

low-resource settings. 

Despite these advances, the application of MT to 

Tangut texts remains unexplored. The script’s logo-

graphic nature, combined with its historical and 

cultural specificity, presents unique challenges that 

require tailored solutions. Our work bridges this gap 

by integrating domain-specific lexicons and CoT 

prompting into a fine-tuned LLM framework, enable-

ing accurate and scalable Tangut-Chinese translation. 

2.3 Bridging the Gap 

By synthesizing insights from Tangut linguistics and 

low-resource MT, our research addresses a critical 

gap in both fields. We build on the foundational work 

of Tangut scholars while leveraging cutting-edge 

NLP techniques to automate and enhance the 

translation process. This interdisciplinary approach 

not only advances Tangut studies but also contributes 

to the broader field of historical language processing, 

offering a replicable framework for other under-

resourced scripts. 

In the following sections, we detail our metho-

dology, which combines expert knowledge with 

neural models to achieve robust and interpretable 

translations of Tangut texts. 

3 Methodology  

Our methodology addresses the dual challenges of 

translating Tangut texts into Chinese through two 

interconnected tasks: literal translation (character-

level alignment) and idiomatic translation (semantic 

restructuring). We propose a hybrid framework that 

integrates domain-specific lexicons with a fine-tuned 

large language model (LLM), enhanced by chain-of-

thought (CoT) prompting strategies. This section 

details our data preparation, model architecture, and 

training protocols. 

3.1 Data Preparation 

3.1.1 Lexical Resources 

We utilize the Concise Tangut-Chinese 

Dictionary (Li, 2012), which provides 6,703 Tangut 

character entries with 8,245 annotated Chinese 

definitions. Each processed entry includes: 

• Full Definitions (Dict): Multi-sense 

explanations with part-of-speech tags (e.g., “1. 

種、苗、裔[名詞] 2. 胤 3. 明”). 

• Simplified Definitions (DictSingle): Single-

sense keywords derived from Dict (e.g., “种、

苗、裔、胤、明”). 

These definitions serve as lexical anchors for 

character-level alignment during translation. 

3.1.2 Parallel Corpus Construction 

We compile a Tangut-Chinese parallel corpus from 

two primary sources: 

• Three Generations Illuminated Collection: 

569 sentence pairs with four-line aligned 

translations (original Tangut, phonetic 

transcription, literal Chinese, idiomatic 

Chinese), sourced from Sun (2022). 

• Avataṃsaka Sūtra Vol. 77: 525 sentence 

pairs, supplemented by ChatGPT-generated 

literal translations from existing Japanese 

paraphrases (Arakawa, 2011). 

The corpus is split into: 

• Training Set: 95% of the Three 

Generations data (541 pairs). 

• Test Set: 5% of the Three Generations data 

(28 pairs). 

• Generalization Test: the Avataṃsaka Sūtra Vol. 

77 data(525 pairs). 

3.2 Model Architecture 

3.2.1 Base LLM: QwenClassical 

We employ QwenClassical, a variant of Qwen1.5-

14B-Chat (Bai et al., 2023), pre-trained on 36GB of 

Classical Chinese texts (e.g., Shiji, Zizhi Tongjian) 

and fine-tuned with 390K task-specific examples 

(e.g., classical-modern Chinese translation, poetry 

generation). The specific training process refers to the 

existing classical Chinese model (Zhang, 2024). This 
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domain adaptation enables robust handling of Tangut-

to-Chinese syntactic and semantic divergences. 

3.2.2 Expert Knowledge Integration 

To inject Tangut-specific linguistic knowledge, we 

change each Tangut character with its Dict or 

DictSingle definitions during input encoding. For the 

term ' ', when using DictSingle, its prompt 

is shown in Table 1. 

This approach grounds the model in authoritative 

lexical semantics while preserving contextual flexi-

bility. By explicitly associating each Tangut character 

with its possible meanings, the model can better 

disambiguate polysemous characters and generate 

more accurate translations. Additionally, the use of 

simplified definitions (DictSingle) reduces noise and 

improves computational efficiency, as the model 

focuses on the most relevant semantic information. 

3.3 Training Strategy 

3.3.1 Literal Translation 

We constructed input-output pairs as shown in Table 

2 for fine-tuning the model for literal translation.  

3.3.2 Idiomatic Translation 

Idiomatic translation is framed as a two-step CoT task: 

1. Literal Drafting: Generate a provisional 

literal translation 𝐿 = {𝑙1,…𝑙𝑛}. 

2. Semantic Refinement: Restructure  𝐿 

into fluent Classical Chinese 𝑌 =
{𝑦1,…𝑦𝑛} using in-context examples. 

We constructed input-output pairs as shown in 

Table 3 for fine-tuning the model for Idiomatic 

translation. 

This CoT strategy mimics human translation 

workflows, reducing semantic drift in low-resource 

scenarios. 

3.4 Implementation Details 

• Hardware: 2×NVIDIA A800 GPUs (80GB 

VRAM). 

• Optimization: AdamW (learning rate 3e−4, 

cosine decay), mixed-precision (bfloat16). 

• Training: 5 epochs, batch size 8, gradient 

accumulation steps 1. 

• Tokenization: SentencePiece (32K 

vocabulary) with Tangut Unicode block 

extensions. 

• Finetuning: LoRA finetuning with Zero2 

technique. 

4 Experiments 

This section evaluates the performance of our Tangut-

Chinese machine translation system through quan-

titative metrics, ablation studies, and qualitative ana-

lyses. We assess both literal and idiomatic translation 

tasks, investigate the impact of training data scale, 

Tangut Script Prompt 

 

The candidate words for each 

Tangut Character are 

The first character: 

[罪、过] 

The second character: 

 [非、否、不] 

The third character: 

 [皆、咸、俱、普、悉、

总、极、周、竞] 

The fourth character: 

 [不] 

The fifth character: 

[做、作、为] 

Table 1:  DictSingle Definitions for the Tangut 

Characters ‘ ’ 

 

Input Output 

Provide the literal translation of the 

Tangut script. The candidate words 

for each Tangut Character are 

The first character: […] 

The second character: […] 

The third character: […] 

The fourth character: […] 

The fifth character: […] 

The literal 

translation 

is: … 

Table 2:  Input-Output Pairs for Fine-Tuning the 

Model for Literal Translation 

 Input Output 

First, provide the literal translation 

of the Tangut script, and then give 

the idiomatic translation based on 

the literal translation.  

The candidate words for each 

Tangut Character are 

The first character: […] 

The second character: […] 

The third character: […] 

The fourth character: […] 

The fifth character: […] 

The literal 

translation 

is: … 

The 

idiomatic 

translation 

is: … 

Table 3:  Input-Output Pairs for Fine-Tuning the 

Model for Idiomatic Translation 
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and validate the model’s generalization capability 

across diverse Tangut texts. 

4.1 Experimental Setup 

4.1.1 Datasets 

• Primary Dataset: 569 sentence pairs 

from Three Generations Illuminated Col-

lection, split into 541 training and 28 test 

pairs. 

• Generalization Dataset: 525 sentence 

pairs from Avataṃsaka Sūtra Vol. 77, with 

200 held-out pairs for cross-domain eva-

luation. 

• Lexical Resources: 6,703 Tangut cha-

racters annotated with 8,245 Chinese defi-

nitions from A Concise Tangut-Chinese 

Dictionary. 

4.1.2 Baselines and Variants 

We compare two base models: 

• Qwen: Original Qwen1.5-14B-Chat. 

• QwenClassical: Our pre-trained Classical 

Chinese variant. 

For each model, we test four configurations: 

• Dict: Full dictionary definitions. 

• DictSingle: Simplified single-keyword de-

finitions. 

• Prompt-0-shot: Direct translation instruct-

tion. 

• PromptCoT: Chain-of-thought prompting. 

4.1.3 Evaluation Metrics 

• BLEU-4: Measures n-gram overlap bet-

ween machine and reference translations 

(Papineni, 2002). 

• Human Evaluation: Three Tangut lin-

guistics experts rate translations on a 5-

point Likert scale (1: Incoherent, 5: Fluent 

and Faithful). 

4.2 Main Results 

4.2.1 Literal Translation Performance 

Table 4 compares BLEU-4 scores across confi-

gurations. QwenClassical with DictSingle achieves 

the highest score (72.33), outperforming the base 

Qwen model by 2.83 points. Simplified definitions 

(DictSingle) consistently improve performance over 

full definitions (Dict), likely due to reduced lexical 

ambiguity. 

4.2.2 Idiomatic Translation Performance 

Table 5 demonstrates the superiority of CoT 

prompting (PromptCoT) over direct prompting 

(Prompt-0-shot), with a 12.14 BLEU-4 improvement. 

QwenClassical+DictSingle+PromptCoT achieves the 

best performance (64.20), validating the effectiveness 

of stepwise semantic restructuring. 

4.3 Impact of Training Data Scale 

To assess data efficiency, we vary the training set size 

from 100 to 500 pairs (Table 6). Both tasks exhibit 

steady performance growth, with literal translation 

saturating at ~500 samples (BLEU-4: 73.41). Notably, 

the model achieves 62.83 BLEU-4 for literal trans-

lation with only 100 samples, demonstrating strong 

few-shot learning capabilities. 

4.4 Cross-Domain Generalization 

We evaluate generalization by fine-tuning on incre-

mental subsets of Avataṃsaka Sūtra data (Table 7). 

With 200 supplementary pairs, the model achieves 

30.62 (literal) and 37.00 (idiomatic) BLEU-4 on the 

Model 
Prompt-

0-shot 
PromptCoT 

QwenClassical+Dict 51.06 62.54 

QwenClassical+DictSingle 52.58 64.20 

Table 5:  Performance of Tangut-Chinese 

Idiomatic Translation on Test Set (BLEU-4) 

 

Training 

Set Size 

Literal 

Translation 

Idiomatic 

Translation 

100 62.83 59.53 

200 70.06 62.34 

300 69.57 62.73 

400 71.31 65.94 

500 73.41 66.05 

Table 6:  BLEU-4 Scores with Varying Training 

Data Sizes 

 

Model Dict DictSingle 

Qwen 69.78 71.50 

QwenClassical 70.86 72.33 

Table 4:  Performance of Tangut-Chinese Literal 

Translation on Test Set (BLEU-4) 
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out-of-domain test set, confirming its adaptability to 

new Tangut genres. 

4.5 Comparison with other high perfor-

mance models 

To clarify the need for fine-tuning, experiments were 

conducted on ChatGPT-4o, Gemini-2.0-Flash and 

DeepSeek V3, which currently have excellent com-

prehensive performance, using a few-shot method. 

Dictsingle and Dictsingle+PromptCoT is used for the 

translation. Five samples were randomly selected 

from the training set as examples and input into the 

model, and then the BLEU-4 score was calculated on 

the generated results. The experimental results are 

summarized in Table 8. 

From the experimental results, whether it is auto-

matic literal translation or automatic idiomatic trans-

lation, the model proposed in this paper scores 

significantly higher than ChatGPT-4.0, DeepSeek V3, 

and Gemini-2.0-Flash under few-shot learning me-

thods. This indicates that general models struggle to 

meet the demands of literal and free translation tasks 

for Tangut texts due to a lack of relevant content in 

their training data aimed at the design tasks of this 

study. However, through fine-tuning, we have 

significantly improved the model's adaptability to 

specific tasks, resulting in a substantial increase in the 

quality of both automatic literal and idiomatic trans-

lations. Based on the above comparative results, we 

can further validate the effectiveness and necessity of 

fine-tuning strategies. 

4.6 Human Evaluation 

Three experts rated 50 randomly sampled translations 

(Table 9). QwenClassical+DictSingle+PromptCoT 

received the highest fluency (4.12/5) and faithfulness 

(4.35/5) scores, aligning with automated metrics. 

4.7 Case Study 

To visually demonstrate the effects of automatic 

translation and automatic interpretation, typical 

examples are selected for analysis separately. The 

results are shown in Table 10 and Table 11. 

The machine literal translation examples of simple 

sentences and complex sentences are shown in Table 

10. The analysis results show that for the translation 

of simple sentences, the model can accurately capture 

the semantic information of the source language and 

achieve accurate conversion. For the translation of 

complex sentences, although there are slight differ-

ences in local expression between machine transla-

tion output and reference translations. Overall, they 

still maintain a high level of semantic integrity and 

expression accuracy. This indicates that the model 

proposed in this study has good robustness in han-

dling translation tasks of different language com-

Added 

Pairs 

Literal 

Translation 

Idiomatic 

Translation 

40 23.88 30.92 

80 24.58 32.62 

120 25.45 34.76 

160 27.28 35.49 

200 30.62 37.00 

Table 7:  Generalization Performance on 

Avataṃsaka Sūtra Dataset (BLEU-4) 

 

Model Fluency Faithfulness 

Qwen+Dict 3.45 3.78 

QwenClassical 

+DictSingle 

+PromptCoT 

4.12 4.35 

Table 9:  Expert Ratings of Translation Quality 

(5-point Likert Scale) 

 

Tangut 

Script 

Reference 

Literal 

Translation 

Machine 

Literal 

Translation 

 香花布列 香花排列 

，

，

 

凡君子者，他利

故已不忘，不学

者无 

夫子者，他利为

己 不 忘 ， 不 学

者，则无 

Table 10:  Example of Literal Translation 

 
Tangut 

Script 

Reference 

Literal 

Translation 

Reference 

Idiomatic 

Translation 

Machine 

Idiomatic 

Translation 

 

 

此复退难自

何见 

△想△则人

悲痛 

此复难退自

何见 

我等每思则

悲哭 

此复遣返难

自见 

我等每思则

悲哭 

Table 11:  Example of Idiomatic Translation 

 

Model 

Machine 

Literal 

Translation 

Machine 

Idiomatic 

Translation 

ChatGPT-

4o 
20.13 14.96 

DeepSeek 

V3 
38.85 24.33 

Gemini-

2.0-Flash 
32.07 19.68 

ours 72.33 64.20 

Table 8:  Comparison with other high-

performance models (using few-shot methods) 

(BLEU-4) 
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plexities. 

Table 11 presents examples of machine idiomatic 

translation, where omitted content in the standard 

translation is represented by the symbol "△". When 

automatically paraphrased, the model is able to effect-

tively identify and supplement this implicit in-

formation, thus generating a more complete 

translation. 

4.8 Error Analysis 

Common failure modes include: 

1. Ambiguous Characters: Misinterpre-

ting Tangut homographs. 

2. Syntactic Divergence: Over-literal re-

structuring (e.g., retaining Tangut SOV 

order in Chinese SVO contexts). 

3. Cultural References: Missing context-

specific terms (e.g., Buddhist technical 

vocabulary). 

5 Conclusions 

This paper presents the first systematic study on 

neural machine translation for Tangut texts, ad-

dressing the critical challenges of translating a 

historical logographic script with extremely limited 

parallel resources. By integrating domain-specific 

lexicons, chain-of-thought prompting, and a pre-

trained Classical Chinese LLM, we develop a hybrid 

framework that achieves robust performance in both 

literal and idiomatic translation tasks. Our key 

findings and contributions are summarized as follows: 

• Effective Resource Utilization: The 

integration of expert-curated dictionaries 

(A Concise Tangut-Chinese Dictionary) 

with neural models significantly improves 

translation accuracy, achieving state-of-the-

art BLEU-4 scores of 72.33 (literal) and 

64.20 (idiomatic). This demonstrates the 

viability of leveraging domain knowledge 

to compensate for data scarcity in historical 

language processing. 

• Methodological Innovation: Our two-stage 

CoT prompting strategy, which decouples 

literal alignment from semantic restruck-

turing, mimics human translation work-

flows and reduces error propagation. 

Ablation studies confirm that this approach 

outperforms direct translation by 12.14 

BLEU-4 points in idiomatic tasks. 

• Practical Impact: The release of the first 

publicly available Tangut-Chinese parallel 

corpus (1,094 sentence pairs) and the 

trained models provides foundational 

resources for accelerating Tangut studies. 

Case analyses show that our system can 

handle complex syntactic divergences and 

culturally specific references, such as 

Buddhist terminology in Avataṃsaka Sūtra. 

• Broader Implications: This work 

establishes a replicable framework for other 

under-resourced historical languages, de-

monstrating how LLMs can bridge the gap 

between computational linguistics and phi-

lology. The model’s strong few-shot learn-

ing capability (62.83 BLEU-4 with 100 

samples) highlights the potential for scaling 

to other extinct or low-resource scripts. 

6 Limitations and Future Work 

While our system marks a significant advance, three 

limitations warrant further investigation: 

• Data Scarcity: Expanding the parallel 

corpus to include more genres (e.g., legal 

documents, poetry) and dialects could en-

hance generalization. 

• Context Handling: Current models struggle 

with long-range dependencies in multi-

sentence Tangut texts. Future work should 

explore document-level translation and 

multimodal approaches (e.g., integrating 

textual and glyph features). 

• Human-in-the-Loop Optimization: Deve-

loping interactive tools for expert validation 

and error correction would improve 

practical utility. 

By addressing these challenges, we aim to 

transform Tangut studies from a niche philological 

endeavor into a data-driven interdisciplinary field. 

Our work underscores the transformative potential of 

NLP in preserving linguistic heritage and fostering 

cross-cultural understanding. 
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A Examples of Translation Results 

Examples of Tangut-to-Chinese Literal Translation 

(Closed Test) 

Tangut Script: 

， 。 

Reference Literal Translation: 

盛衰孰知何长短，名利实虚不殆谓 

Machine Literal Translation: 

盛忍谁知何长短，名利实虚不怠谓。 

 

Tangut Script: 

， 。 

Reference Literal Translation: 

菩提道上山关无，般若眼内翳何熏。 

Machine Literal Translation: 

报日道上山关无，瞿昙眼内翳何熏。 

 

Tangut Script: 

， 。 

Reference Literal Translation: 

家宅宝钱九亲及，禄福于至弃毁者。 

Machine Literal Translation: 

家宅宝财九亲及，禄福上至弃毁者。 

 

Tangut Script: 

， 。 

Reference Literal Translation: 

性喜旱因多乃说，△降皆惧毁。 

Machine Literal Translation: 

性爱旱因多乃说，△雨皆消毁。 
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Tangut Script: 

， 。 

Reference Literal Translation: 

若复实不说，一时名利思。 

Machine Literal Translation: 

若复实不说，一时名利想。 

 

Examples of Tangut-to-Chinese Literal Translation 

(Open Test) 

Tangut Script: 

， ，  

Reference Literal Translation: 

凡君子者，他利故已不忘，不学者无 

Machine Literal Translation: 

夫子者，他利为己不忘，不学者，则无 

 

Tangut Script: 

， 。 

Reference Literal Translation: 

己利故他不绝，不教亦无。 

Machine Literal Translation: 

自利依他不舍，不教亦无。 

 

Tangut Script: 

 

Reference Literal Translation: 

金真铃铎云如布 

Machine Literal Translation: 

金真铃铎云如偈 

 

Tangut Script: 

 

Reference Literal Translation: 

宝枝杂布严好为 

Machine Literal Translation: 

宝支杂行长卷为 

 

Tangut Script: 

 

Reference Literal Translation: 

宝王间错严饰为 

Machine Literal Translation: 

宝王混行金刚为 

 

Examples of Tangut-to-Chinese Idiomatic Trans-

lation (Closed Test) 

Tangut Script: 

， 。 

Reference Idiomatic Translation: 

盛衰孰知何短长？名利实虚不懈怠。 

Machine Idiomatic Translation: 

盛忍孰知何长短？名利实虚不怠谓。 

 

Tangut Script: 

， 。 

Reference Idiomatic Translation: 

菩提道上无山险，般若眼内无翳熏。 

Machine Idiomatic Translation: 

报日道上无关山，瞿昙眼内翳熏何。 

 

Tangut Script: 

， 。 

Reference Idiomatic Translation: 

家宅宝财和九亲，上至福禄均毁弃。 

Machine Idiomatic Translation: 

家宅宝财及九亲，福禄至弃毁家宅。 

 

Tangut Script: 

， 。 

Reference Idiomatic Translation: 

因大旱多言性喜，降雨皆惧毁。 

Machine Idiomatic Translation: 

性爱旱依多乃说，而雨皆毁坏。 

 

Tangut Script: 

， 。 

Reference Idiomatic Translation: 

若复不实说，一时名利思。 

Machine Idiomatic Translation: 

若复不说实，一时名利想。 

 

Examples of Tangut-to-Chinese Idiomatic Trans-

lation (Open Test) 

Tangut Script: 

， ， ； 

Reference Idiomatic Translation: 

凡君子者，利他故不忘己，无不学者； 

Machine Idiomatic Translation: 

凡君子者，于他利故，己忘不忘，不学者无； 

 

Tangut Script: 

， 。 

Reference Idiomatic Translation: 

利己故不绝他，亦无不教。 

Machine Idiomatic Translation: 

为利自己故不断他，亦不施教。 

 

Tangut Script: 

 

Reference Idiomatic Translation: 

真金铃铎如云布 

Machine Idiomatic Translation: 

真金铃铎如云布 

 

Tangut Script: 

 

Reference Idiomatic Translation: 

宝枝杂布为严好 
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Machine Idiomatic Translation: 

宝枝杂布好严密 

 

Tangut Script: 

 

Reference Idiomatic Translation: 

宝王间错为严饰 

Machine Idiomatic Translation: 

宝王间错严饰为 
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Abstract

The study of historical languages presents
unique challenges due to their complex ortho-
graphic systems, fragmentary textual evidence,
and the absence of standardized digital repre-
sentations of text in those languages. Tack-
ling these challenges needs special NLP digi-
tal tools to handle phonetic transcriptions and
analyze ancient texts. This work introduces
ParsiPy1, an NLP toolkit designed to facili-
tate the analysis of historical Persian languages
by offering modules for tokenization, lemma-
tization, part-of-speech tagging, phoneme-to-
transliteration conversion, and word embed-
ding. We demonstrate the utility of our toolkit
through the processing of Parsig (Middle Per-
sian) texts, highlighting its potential for ex-
panding computational methods in the study
of historical languages. Through this work, we
contribute to computational philology, offering
tools that can be adapted for the broader study
of ancient texts and their digital preservation.

1 Introduction

Ancient languages serve as windows into the past,
offering valuable insights into human history and
the evolution of communication. The connection
between language and culture has long been recog-
nized, with scholars using ancient languages such
as Greek (Ostwald, 2009), Italian (Lomas, 2013),
and Latin (Farrell, 2001) to uncover the social con-
texts of historical civilizations. These languages
not only preserve cultural heritage but also pro-
vide a lens for studying the development of linguis-
tic structures and thought patterns (Kaplan, 2013).
Despite significant advancements in Natural Lan-
guage Processing (NLP), which have transformed
the study of modern languages, the application of
these technologies to ancient languages remains un-
derexplored (Magueresse et al., 2020). As prelimi-
nary attempts, some researchers have tailored NLP

1https://github.com/openscilab/parsipy

tools developed for Pre-modern English (Johnson
et al., 2021b) and Sumerian (Guzman-Soto and Liu,
2023), yet many historically significant languages,
such as Old Persian and Middle Persian (Pārsīg),
still lack sufficient computational resources and
tools. Expanding NLP research to include these
underserved languages can help bridge critical gaps
in historical linguistics while contributing to the
preservation of invaluable cultural knowledge.

Pārsīg, represents one such language (Haug,
1870). Despite its historical importance as a bridge
between ancient Iranian languages and modern Per-
sian (see Appendix A for more details), Pārsīg has
received minimal attention in computational lin-
guistics. Its challenges include a highly limited
digital corpus, complex writing system variations,
and the absence of standardized computational re-
sources for processing Pārsīg texts in the originally
written form.

To address this gap, we introduce ParsiPy, the
first NLP toolkit in Python specifically designed for
processing Pārsīg. Our framework includes tools
for word embeddings, lemmatization, tokeniza-
tion, and part-of-speech (POS) tagging. Our POS
tagging system includes three models—Hidden
Markov Model with Viterbi decoding, logistic re-
gression, and random forest.

Pārsīg was written in multiple scripts, but the
Book Pahlavi script, widely used in Zoroastrian
texts, lacks a Standard Unicode encoding2. As
a result, most digital resources rely on phonetic
transcriptions. To address this, ParsiPy includes a
phoneme-to-transliteration module with rule-based
and LSTM models. We also provide a tool for
converting this transliteration to Book Pahlavi. Fu-
ture work could develop Unicode support, enabling
broader computational applications.

ParsiPy addresses the challenges of processing

2https://www.unicode.org/standard/unsupported.
html
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Figure 1: An example of Pārsīg text in original written
form from Andarze Azarabade Mehrsepandan database.
It reads “ān uzı̄d frāmōš kun ud ān nē mad ēstēd rāy
tēmār bēš ma bar” and it means “Forget what is gone
and do not worry about what has not yet come.”

Pārsīg texts by using rule-based and statistical
methods, which are more effective than large lan-
guage models for this low-resource language. As a
foundational NLP toolkit, ParsiPy enhances com-
putational analysis of Pārsīg, supports digital re-
search, and serves as a model for similar efforts in
other ancient languages. The code is available as a
Python package on GitHub.

In this paper, we outline the structure of the
Pārsīg language in Section 2, followed by related
works on NLP toolkits for ancient languages in
Section 3. Section 4 details the system design of
ParsiPy, while Section 5 describes the dataset used
for training and evaluation. We then assess our
toolkit in Section 6 and discuss future research di-
rections in Section 7.

2 Pārsīg Language Structure

Pārsīg, the language of the Sassanian Empire
(224–651 CE), an ancestor of modern Persian
(Farsi), has a unique linguistic structure that can be
divided by specific features in phonology, morphol-
ogy, syntax, and orthography. In this section, we
go through its specific characteristics.

Phonology and Orthography of Pārsīg is sim-
ilar to that of modern Persian, though there are
important historical phonetic differences.

The Pārsīg alphabet consists of only fourteen
letters to represent the entire range of sounds, as
illustrated in the Appendix. Consequently, several
letters possess multiple phonetic values. This varia-
tion in phonetic values presents challenges in read-
ing Pārsīg.The difficulty is further compounded by
the different shapes the letters can take, depending
on their position in the word (MacKenzie, 1971). A
significant portion of Pārsīg words is written using
Aramaeograms (known as uzwārišn), where words
of Aramaic origin are spelled using Pārsīg charac-
ters (Farzaneh Goshtasb and Ghayoomi, 2023).

Morphology of Pārsīg is primarily inflectional,
with both nouns and verbs marked for grammatical
roles such as case, tense, and mood. Pārsīg orig-
inally had two cases: one reserved for the gram-

matical subject, and the other for all other syntactic
functions (oblique). These cases are commonly
referred to as the ‘direct’ case (used for the sub-
ject of the sentence) and the ‘oblique’ case (used
for objects, indirect objects, and other syntactic
functions) (Brown, 2005). Verbs are inflected for
various grammatical features such as tense, mood,
and person (Brunner, 1977). Additionally, Pārsīg
verbs often include the use of verbal particles and
suffixes to convey different meanings and functions,
which can make morphological analysis complex.
Another common feature is enclitic pronouns, short
pronoun-like elements that attach to words to show
possession or objects, which can make segmenta-
tion tasks complex.

Syntax of Pārsīg follows a Subject-Object-Verb
(SOV) word order (Mohammad Dabir Moghaddam,
2014), but this structure is flexible depending on
context or emphasis. This variability makes syn-
tactic parsing more challenging. The language also
uses prepositions and postpositions, and relative
clauses often form with subordinators, requiring
tools to detect clause boundaries accurately.

Semantic and Lexical Features. The vocabu-
lary of Pārsīg includes many loanwords from Ara-
maic (Shaked, 2005), which creates challenges for
distinguishing between native and borrowed words.
Also, due to the script’s lack of vowel markings,
polysemy (words with multiple meanings) and to-
mography (identical spellings with different pro-
nunciations) present challenges. These features
complicate tasks like word sense disambiguation
and machine translation.

Developing NLP tools for Pārsīg requires ad-
dressing these unique linguistic features. Tech-
niques such as character-level models for han-
dling logograms, graph-based parsing for non-
fixed word order, and morphological analyzers
for suffix-rich structures can be particularly effec-
tive. This paper uses an excerpt from a Zoroastrian
manuscript (Goshtasb and Hajipour, 2022), origi-
nally written in P=ars=ig, as an example. Figure 1
shows the original handwritten text. The passage
is from Andarze Azarabade Mehrsepandan, a col-
lection of life advice, with an English translation:
Forget what is gone and do not worry about what
has not yet come. This example was chosen for its
variety of words, characters, and POS tags. The
phonetic transcription is as follows:

s='ān uzīd frāmōš kun ud ān nē mad ēstēd rāy
tēmār bēš ma bar'
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3 Related Work

NLP on Ancient Languages. Despite the growing
interest in computational approaches for ancient
languages (Vico and Spanakis, 2023; Long and
An, 2023), the Pārsīg language remains entirely
unexplored in this domain. Farsi itself is classi-
fied as a low-resource language (Shamsfard, 2019),
and ancient Farsi, such as Pārsīg, suffers from
even greater limitations. To the best of our knowl-
edge, except for (Rahnamoun and Rahnamoun,
2025) who recently presented a set of word embed-
dings for Pārsīg language, work on this language
is scarce. These limitations include the lack of
annotated corpora, standardized scripts, and lin-
guistic resources. Existing efforts in the broader
area of ancient language processing have focused
on better-documented languages. For instance, (Sa-
hala and Lindén, 2023) developed a neural pipeline
for POS-tagging and lemmatization of Cuneiform
languages, while (Vico and Spanakis, 2023) in-
troduced resources for Etruscan machine transla-
tion. Similarly, (Naaijer et al., 2023) proposed a
transformer-based parser for Syriac morphology,
demonstrating the applicability of modern NLP
techniques to ancient scripts.

Tools for Ancient Languages. In the broader
domain of tool development for ancient languages,
(Guzman-Soto and Liu, 2023) introduced an open-
source library for Sumerian text analysis, while
(Koch et al., 2023) presented a handwritten text
recognition system for Medieval Latin manuscripts.
Recognizing the unique challenges of ancient lan-
guages, researchers like (Johnson et al., 2021a)
have developed toolkits to simplify their process-
ing and bridge initial research gaps. These open-
source toolkits are especially valuable, streamlin-
ing foundational tasks and making further research
more accessible. Another prominent example is
DadmaTools, a comprehensive open-source NLP
toolkit for Modern Farsi that supports tokeniza-
tion, lemmatization, and part-of-speech tagging (Ja-
fari et al., 2025). However, ancient languages like
Pārsīg require additional considerations, such as
handling non-standardized scripts, logograms, and
transcription-transliteration tasks.

These works highlight the challenges and op-
portunities in processing ancient languages while
emphasizing the importance of creating specialized
tools for their unique linguistic and orthographic
features. Addressing the lack of research on Mid-
dle Persian, ParsiPy is the first computational

framework for the language, featuring transcription-
transliteration module and morphological analyzers
to tackle its challenges.

4 System Design

The ParsiPy toolkit is built upon three main compo-
nents: the embedding module, the NLP task mod-
ules, and Parsig character generator. The first com-
ponent provides a semantical representation for
words and sentences while the second one analyzes
the input sentence syntactically. Since there is no
well-known Unicode representation for the Parsig
language we decided to set the input to Parsipy
modules as a more well-accepted form of this lan-
guage which is phonetics representation. However,
we present a middle form (transliteration) which
can be used to be converted into Parsig characters.

An overview of the ParsiPy structure is presented
in Figure 2. The blue dotted parts are current works’
contributions. Yellow boxes are embedding mod-
ules, purple boxes are NLP modules and green
boxes are Parsig character generator modules. Tok-
enized input can be passed to the embedding mod-
ule to get embeddings for each token, Lemmatizer,
POS Tagger and Transliteration yield lemmization,
part-of-speech tagger, and transliteration of each
token. Transliterations can be converted to chunks
of originally Parsig character set and hence stack
together to form sentences in Parsig original form.

4.1 Embedding Module

We integrated support for state-of-the-art embed-
ding methods for textual data, including Fast-
Text (Bojanowski et al., 2017), GloVe (Pennington
et al., 2014), and Word2Vec (Church, 2017), which
are well-suited for minimal data sizes, aligning
with prior works on low-resource tasks (Nazir et al.,
2022; Gaikwad and Haribhakta, 2020; Saadatinia
et al., 2025; Fesseha et al., 2021). Parsipy’s embed-
ding module enables the transformation of words
and sentences into continuous vector spaces. These
vector representations capture semantic relation-
ships between words, facilitating downstream tasks
such as word similarity (Islam and Inkpen, 2008),
sentiment analysis (Medhat et al., 2014), and text
classification (Kowsari et al., 2019). They also
enable models to identify patterns, improving per-
formance on tasks like document clustering (Shah
and Mahajan, 2012), and question answering.
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Figure 2: Parsipy Framework Overview. Input string s goes into tokenized into n tokens (t1, · · · , tn) and the
embedding module would generate word embeddings for each token (v1, · · · , vn). Lemmatizer extracts the lemma
for each token (l1, · · · , ln), POSTagger tags each token with its part-of-speech in the sentence (p1, · · · , pn), and
Transliteration module (Phoneme to Transliteration: P2T) generates a middle-form representation of tokens by
which they can transform into Parsig in hand-written form. The example sentence is from Corpus Of Pahlavi Texts
(Jamaspji Dastur Minochehrji Jamasp Asana) which is gathered and translated by (Goshtasb and Hajipour, 2022).
The English translation of it is “It ended with greetings (= happiness)” and it is chosen for the sake of simplicity.

4.2 NLP modules

The embedding module focuses on the semantic
aspects of language, while other ParsiPy compo-
nents handle syntactical analysis through tasks
like part-of-speech tagging, offering insights into
grammatical relationships. We included key NLP
tasks—tokenization, lemmatization, and part-of-
speech tagging—with easy-to-use APIs for re-
searchers. Additionally, we provide a middle-form
transliteration of Parsig, which can be converted
into its original character representation.

We developed a pipeline API that covers NLP
tasks, including phoneme representation to translit-
eration, with a usage and output style similar to the
Stanza toolkit (Qi et al., 2020).

from parsipy import pipeline, Task
result = pipeline(sentence=s,

tasks=[Task.TOKENIZER, Task.LEMMA,
Task.POS, Task.P2T])

We now explain each part separately showcas-
ing Parsipy’s output to give better insights on the
matter. The output of the above code fills result
with a dictionary with a field for each of the pro-
vided tasks, i.e., Task.TOKENIZER (tokenization),
Task.LEMMA (lemmatization), Task.POS (part-of-

speech tagging), and Task.P2T (transcription to
transliteration).

Tokenizer. Tokenization is the process of trans-
forming sentences into smaller units, such as
words or sub-words like word pieces and byte
pairs (Mielke et al., 2021). Effective tokeniza-
tion is particularly important for historical and
low-resource languages like Parsig, where complex
morphology and script variations present unique
challenges.

For the tokenization module in ParsiPy, we
developed a SentencePiece unigram language
model (Kudo, 2018) with a vocabulary size of
40,000 tokens. We chose SentencePiece because
it operates directly on raw text without requir-
ing predefined word boundaries, making it par-
ticularly suitable for Parsig with inconsistent or
non-standardized orthography. Additionally, its
subword-based approach helps efficiently handle
out-of-vocabulary words and rare morphological
variations which ensures better adaptability for low-
resource languages with limited digital resources.

The tokenized version of our example sentence is
shown below. To enhance identification, we assign
a unique token ID to each token, making it easier
for traceability during analysis.

241



[
{'id': 0, 'text': 'ān'},
{'id': 1, 'text': 'uzīd'},
{'id': 2, 'text': 'frāmōš'},
{'id': 3, 'text': 'kun'},
{'id': 4, 'text': 'ud'},
{'id': 5, 'text': 'ān'},
{'id': 6, 'text': 'nē'},
{'id': 7, 'text': 'mad'},
{'id': 8, 'text': 'ēstēd'},
{'id': 9, 'text': 'rāy'},
{'id': 10, 'text': 'tēmār'},
{'id': 11, 'text': 'bēš'},
{'id': 12, 'text': 'ma'},
{'id': 13, 'text': 'bar'}

]

Lemmatizer. Lemmatization reduces words to
their canonical form, using linguistic rules and con-
text, unlike stemming, which simply removes af-
fixes (Khyani et al., 2021). This is particularly
essential for historical languages like Parsig, where
inflectional variations and complex morphology
require a more nuanced approach to text normal-
ization. In ParsiPy, considering the static nature of
the Parsig language and its fixed vocabulary size,
we constructed a comprehensive table to store the
lemma of each word. Additionally, we formulated
linguistic rules to effectively handle specific cases,
particularly compound words. This approach facil-
itated the development of a rule-based lemmatiza-
tion module that accurately determines the lemma
for each word in a text by applying linguistic rules
tailored to the Parsig language. Our approach ac-
counts for common morphological transformations.
In the following example, the lemma of ēstēd is ex-
tracted as ēst, while other words remain unchanged.
For out-of-vocabulary words, the original word it-
self is returned as the lemma.

[
{'lemma': 'ān', 'text': 'ān'},
{'lemma': 'uzīd', 'text': 'uzīd'},
{'lemma': 'frāmōš', 'text': 'frāmōš'},
{'lemma': 'kun', 'text': 'kun'},
{'lemma': 'ud', 'text': 'ud'},
{'lemma': 'ān', 'text': 'ān'},
{'lemma': 'nē', 'text': 'nē'},
{'lemma': 'mad', 'text': 'mad'},
{'lemma': 'ēst', 'text': 'ēstēd'},
{'lemma': 'rāy', 'text': 'rāy'},
{'lemma': 'tēmār', 'text': 'tēmār'},
{'lemma': 'bēš', 'text': 'bēš'},
{'lemma': 'ma', 'text': 'ma'},
{'lemma': 'bar', 'text': 'bar'}

]

Part of Speech Tagger. Part-of-speech (POS)
tagging is the task of assigning grammatical roles
to words in a sentence. POS tags aid downstream

tasks such as syntactic parsing, machine transla-
tion, and information retrieval. We have support
for three different POS taggers: I) HMM & Viterbi
model, II) Logistic Regression model, and III) Ran-
dom Forest Classifier model. We evaluated them
on our dataset and reported the results in Section 6.

Our POS tagger supports a complete tag set for
Parsig, covering categories such as nouns (N), ad-
jectives (ADJ), verbs (V), adverbs (ADV), pronouns
(PRO), prepositions (PREP), postpositions (POST),
conjunctions (CONJ), determiners (DET), numerals
(NUM), particles (PART). Additionally, we incorpo-
rated morphological features unique to Parsig, such
as automatic recognition of adverbial suffixes (e.g.,
ı̄hā) and verb conjugation patterns. We report the
performance of the POS tagger on these different
categories in Section 6.

The following example illustrates the output gen-
erated by our POS tagging module. For instance,
the word uzı̄d, which means go, should be tagged
as a verb.

[
{'POS': 'DET', 'text': 'ān'},
{'POS': 'V', 'text': 'uzīd'},
{'POS': 'N', 'text': 'frāmōš'},
{'POS': 'V', 'text': 'kun'},
{'POS': 'CONJ', 'text': 'ud'},
{'POS': 'DET', 'text': 'ān'},
{'POS': 'ADV', 'text': 'nē'},
{'POS': 'V', 'text': 'mad'},
{'POS': 'V', 'text': 'ēstēd'},
{'POS': 'POST', 'text': 'rāy'},
{'POS': 'N', 'text': 'tēmār'},
{'POS': 'N', 'text': 'bēš'},
{'POS': 'ADV', 'text': 'ma'},
{'POS': 'N', 'text': 'bar'}

]

Phoneme to Transliteration (P2T) Module.
Parsig is predominantly represented in a phone-
mic script in digital resources. Transliteration is a
representation in middle form between the phonetic
representation and the actual Parsig character set.
Therefore, transliterations are crucial components
of Parsig linguistic processing since they bridge
between these two modalities. A key challenge in
this domain is bridging the gap between phonemic
representation and standardized transliteration. In
our approach, we explored rule-based models, as
data scarcity limits the effectiveness of data-driven
machine-learning methods. By leveraging linguis-
tic rules specific to Parsig, we developed a robust
system that produces high-quality transliteration.

We used character sets from Huzwāreš, bor-
rowed from Aramaic (Goshtasb et al., 2021), as
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initial transliterations, represented in capital letters
in ParsiPy’s output (e.g., ZK for ān). This explo-
ration refines our model, enhancing accuracy in
Parsig text representation.

[
{'translite': 'ZK', 'text': 'ān'},
{'translite': ''wcyt', 'text': 'uzīd'},
{'translite': 'pl'mwš', 'text': 'frāmōš'},
{'translite': 'OB.YDWNty', 'text': 'kun'},
{'translite': 'W', 'text': 'ud'},
{'translite': 'ZK', 'text': 'ān'},
{'translite': 'LA', 'text': 'nē'},
{'translite': 'mt', 'text': 'mad'},
{'translite': "YKOYMWyt'", 'text': 'ēstēd'},
{'translite': 'l'd', 'text': 'rāy'},
{'translite': 'tym'l', 'text': 'tēmār'},
{'translite': 'byš', 'text': 'bēš'},
{'translite': 'AL', 'text': 'ma'},
{'translite': 'YB.LWN', 'text': 'bar'}

]

4.3 Transliteration to Written Form
To encourage the use of the Parsig language in the
original form we present an enhanced version of
the Parsig font and an executable file for converting
translation into a written format of Parsig language
texts with the original character set using that font.

Parsig Font. We have refined and expanded
an existing font set for the Parsig alphabet. This
involved adjusting the positioning of letters relative
to the baseline to achieve better alignment. The
enhanced version of the font set is included in the
supplementary materials.

Transliteration to Parsig Character Module.
Additionally, we introduce an executable tool that
converts Parsing sentences from their transliterated
form, aligned with ParsiPy’s output formats, into
their original script using this font set.

5 Dataset (Parsig Database)

Statistic Value

Total Documents 120
Total Words 93,518
Unique Tokens 8,839
Distinct Lemmas 4,641

Table 1: Summary of the Pārsīg Database

We used Pārsīg Database as a comprehensive
resource for Pārsīg texts, meticulously curated by
domain experts (two authors from this work) with
advanced linguistic backgrounds for our training
and evaluation. It contains 120 documents with

a total of 93,518 words, including 8,839 unique
tokens and 4,641 distinct lemmas (Table 1). Each
entry is carefully annotated with multiple linguis-
tic layers, such as lemmatization, part-of-speech
(POS) tagging, and transliterations. The data set
also includes translations in both English and Per-
sian for its usability for researchers studying the
evolution of the Psārsīg language and its relation-
ship with modern Persian.

The project was initiated in December 2018 and
officially launched in 2020 with an initial corpus
of around 40,000 words. Over time, the database
has expanded, and it remains an ongoing initia-
tive aimed at further enriching Parsig linguistic re-
sources. The Pārsīg Database adheres to strict anno-
tation standards, including transcriptions, translit-
eration preserving original spellings, and Huzvāreš
annotations for ideographic forms. It is accessible
for research in Persian language processing3.

6 Evaluation

To ensure the quality of the models used in PasriPy,
we evaluated our models using texts from the P =
ars = ig database, which includes content from well-
known books in that language. Our dataset for eval-
uation consists of texts from the following books:
Jamasp-Asana (1913), Dhabhar (1930), Ankle-
saria and Modi (1913), and Anklesaria (1935).

Metrics. ParsiPy consists of modules for dif-
ferent tasks that require different metrics for eval-
uation. For the P2T module, due to its resem-
blance to the P2G (phoneme-to-grapheme) module,
we measured performance using Word Error Rate
(WER) (Klakow and Peters, 2002) and Character
Error Rate (CER) (Morris et al., 2004) which are
type of Levenshtein distance (Levenshtein, 1966)
in word and character level respectively. Compar-
ing two strings (one predicted and one actual) then
projected down to finding the number of substitu-
tions S, deletions D, and insertions I needed to
change one to another and the error rate is calcu-
lated as follows, where N is the total number of
parts (words or characters) in both two strings.

ER =
S +D + I

N
(1)

For the Lemmatizer module, accuracy is used
to assess performance, reflecting the proportion of
words correctly lemmatized into their base forms
out of the total words evaluated.

3https://www.Parsigdatabase.com/
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For the POS tagger, we used standard accuracy,
precision, recall, and F1-score as our evaluation
metrics since POS tagging is fundamentally a token
classification task. Here, we report the evaluation
results of various parts of the ParsiPy framework
across different models.

6.1 P2T
ParsiPy’s rule-based P2T module yielded 29.764%
WER and 13.525% CER on the Pārsīg dataset. We
also tested other methods for P2T which we report
the results in Table 2 (The lower WER and CER,
the better it is).

Model WER CER

Rule-based model 29.764 13.525
LSTM 31.009 22.125

Table 2: P2T Models Performance on the Pārsīg Dataset

6.2 Lemmatizer
The Lemmatizer module of the ParsiPy toolkit
achieved an accuracy of 0.894, indicating that
89.4% of the words were correctly reduced to their
base forms during the evaluation.

6.3 POS Tagger
Given the limited dataset for POS tagging as a
multi-class classification task, we initially hand-
crafted linguistic features, a common approach in
data-scarce settings (Lee and Lee, 2023; Shumilov
et al., 2024). We then experimented with foun-
dational machine learning models such as logistic
regression and random forest, following methodolo-
gies used by other researchers working with small
datasets (Jahara et al., 2020; Ashrafi et al., 2024;
Liao and Chin, 2007). We split the dataset into
training and test sets, using 10% of the data for test-
ing. We also tried other methods for POS Tagging,
which are presented in Table 3. Finally, we com-
pared these models’ performance with our heuristic
approach, which uses an HMM-based model and a
Viterbi decoder for POS tag prediction.

Features. As hand-crafted features for the input
of the POS tagger, we incorporated the following
attributes of each word: the string representation of
the word itself, whether it ends with īhā (indicating
adverb), whether it is the first or last word of the
sentence, the string representation of the previous
and next words, the first two and last two characters
of the word, the first and last character as prefixes

Model Accuracy F1 Recall Precision∗

Viterbi 0.98319 0.74465 0.70933 0.89071
Logistic Regression 0.98984 0.8213 0.81977 0.93396
Random Forest Classifier 0.98874 0.84832 0.9268 0.9268

Table 3: The performance comparison of the different
POS tagger models is presented, with all metrics re-
ported as macro averages, except for Precision, which
is reported in micro due to the absence of some classes,
rendering the macro Precision score unavailable.

and suffixes, the tag of the previous word in the
sentence, and the word length.

Models. We implemented three models for the
POS tagger classification model. First, we imple-
mented a Hidden Markov Model (Eddy, 1996) with
the Viterbi decoding algorithm (Forney, 1973) for
sequence labeling. This model relies on emission
probabilities (word-to-tag likelihoods) and transi-
tion probabilities between adjacent tags. To han-
dle out-of-vocabulary words, we applied Laplace
smoothing with a constant of 0.001. For the other
two models we fed the feature representations of
the sentences into a DictVectorizer pipeline (Pe-
dregosa et al., 2011) to obtain vector representa-
tions, which were subsequently used to train our
baseline POS taggers with two foundational ma-
chine learning classifiers: LogisticRegression
and RandomForestClassifier.

To optimize performance, we conducted a
grid search over a wide range of hyperparam-
eters, evaluating models using 10-fold cross-
validation. The best hyperparameters for the
logistic regression model were penalty='l2',
C=1.0, and solver='lbfgs', while for the ran-
dom forest model, they were n_estimators=100,
criterion='gini', min_samples_split=2, and
min_samples_leaf=1. These two models outper-
formed our baseline hubristic model and the ran-
dom forest POS tagger yielded a slightly higher
f1-score (0.84832). Class-based performance of
this classifer has been presented in Table 4.

While some of the categories like Numbers are
easy to detect for our model due to their nature,
other categories like particles were harder to de-
tect due to the low presentation rate in the training
data. For a more detailed analysis of various model
evaluations, please refer to Appendix B.

7 Discussion

We now outline potential future directions for ad-
vancing NLP research in low-resource languages
and particularly Pārsīg.
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ADJ ADV CONJ DET EZ N NUM PART POST PREP PRON Unknown V

ACC 0.97273 0.98359 0.98518 0.99325 0.99431 0.96056 0.99735 0.99947 0.99682 0.99457 0.98968 0.99907 0.98703
AUC 0.86275 0.91874 0.96979 0.9433 0.98586 0.96373 0.95177 0.9373 0.86387 0.98768 0.89477 0.61111 0.97294
F1 0.80675 0.87321 0.95345 0.87531 0.95459 0.93786 0.94118 0.77778 0.78182 0.97468 0.83884 0.36364 0.94912
Precision 0.8977 0.90466 0.95983 0.86058 0.93388 0.90612 0.9816 0.7 0.84314 0.97048 0.89035 1.0 0.94421
Recall 0.73254 0.84387 0.94715 0.89055 0.97624 0.97191 0.90395 0.875 0.72881 0.97891 0.79297 0.22222 0.95407

Table 4: Performance metrics for different POS classes with Random forest POS Tagger and Random Forest
Classifier. Accuracy (ACC) Macro = 0.98984, F1 Macro = 0.84832. The evaluation was conducted using the PyCM
library (Haghighi et al., 2018).

Expandability of ParsiPy. Due to its modular
design, ParsiPy offers a flexible framework that al-
lows researchers to integrate new tasks and train ad-
ditional models, improving the accuracy of existing
functionalities. The exploratory path we followed
in developing this library can serve as a founda-
tional scaffolding for other researchers aiming to
build an NLP toolkit for low-resource languages.
To facilitate this process and ensure easier integra-
tion, we will open-source the training code and
toolkit package. This approach enables researchers
to seamlessly build upon our work, and with trans-
parent ML model transportation frameworks like
Pymilo (Rostami et al., 2024), these models can be
deployed and served effectively. Community en-
gagement and collaboration will be key to refining
and expanding ParsiPy’s capabilities.

Parsig Unicode. One of the next steps in en-
hancing resources for the Pārsīg language is es-
tablishing a standardized Unicode representation.
To our knowledge, previous attempts at Unicode
representation have remained incomplete or faced
significant challenges, and currently, there is no
standard Unicode for this script. A future direc-
tion is to develop a Unicode standard for Pārsīg
that accounts for both intra-language character sim-
ilarities and cross-language relations, improving
encoding quality and enhancing Pārsīg’s accessibil-
ity for linguistic research.

Furthermore, the creation of linguistic resources,
such as annotated corpora and lexicons, will signifi-
cantly enhance computational efforts for this histor-
ically significant language. By providing structured
datasets, we aim to facilitate NLP advancements,
ensuring better text processing, character recogni-
tion, and model training for Parsig.

8 Limitations

Our work has certain limitations. While we con-
centrated on fundamental NLP tasks to establish
a strong foundation for the Parsig language, some
tasks, such as Named Entity Recognition (NER),

were not included in this phase of development.
Expanding support for these tasks remains an im-
portant goal for future iterations of our work.

Additionally, the scarcity of high-quality anno-
tated data posed a significant challenge. Due to
these limitations, we were unable to fully leverage
state-of-the-art transformer-based models, which
have demonstrated superior performance over tra-
ditional approaches in various NLP applications.
Addressing this data gap would allow us to explore
more advanced architectures.

Despite these constraints, we are committed to
the continued development of ParsiPy. In future
work, we plan to expand its capabilities to sup-
port a broader range of NLP tasks, incorporate
cutting-edge deep learning techniques, and perform
a more comprehensive error analysis. By refin-
ing our methodologies and leveraging new data
sources, we aim to improve the accuracy, robust-
ness, and overall effectiveness of ParsiPy for the
research community and practical applications.

9 Conclusion

ParsiPy provides a vital NLP toolkit for analyz-
ing Pārsīg texts, addressing challenges like the
lack of computational tools. With modules for to-
kenization, lemmatization, part-of-speech tagging,
and phoneme-to-grapheme conversion, it facilitates
linguistic analysis and digital preservation. By
combining rule-based and statistical methods, Par-
siPy proves effective for low-resource languages
and serves as a model for similar efforts. Future
work could enhance transliteration accuracy, ex-
pand deep learning models, and develop Unicode
support for Book Pahlavi, further advancing histor-
ical linguistics and computational philology.
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Khard. Messrs. T.D. ANKLESARIA & Sons.

Negin Ashrafi, Armin Abdollahi, Jiahong Zhang, and
Maryam Pishgar. 2024. Optimizing mortality predic-
tion for icu heart failure patients: Leveraging xgboost
and advanced machine learning with the mimic-iii
database. arXiv preprint arXiv:2409.01685.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Keith Brown. 2005. Pahlavi. In Encyclopedia of Lan-
guage and Linguistics, volume 9, page 126. Elsevier
Science.

Christopher J. Brunner. 1977. A Syntax of Western
Middle Iranian. University of Pennsylvania ProQuest
Dissertations & Theses.

Kenneth Ward Church. 2017. Word2vec. Natural Lan-
guage Engineering, 23(1):155–162.

Ervad Bamanji Nasarvanji Dhabhar. 1930. Andarj-i
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A Parsig Language

A.1 Overview of Middle Iranian Languages

The Middle Iranian languages span a long period
(about 1,200 years) from the fall of the Achaemenid
Empire to the 9th century CE. Written documents
from this period exist in six languages: Middle Per-
sian (Sasanian Pahlavi or Pārsīg), Parthian Pahlavi,
Sogdian, Bactrian, Khotanese, and Khwarezmian.
Among these, Pārsīg is particularly significant, as it

is the precursor to modern Persian and the only Ira-
nian language with written records from its ancient
phase, including Old Persian inscriptions.

Parsig was the language of Zoroastrian Middle
Persian texts, Sasanian inscriptions, Manichaean
writings, and Christian Middle Persian texts, while
each written in different scripts. The majority of
surviving Pārsīg texts are religious Zoroastrian writ-
ings, composed in the Book Pahlavi script, also
known as cursive Pahlavi.

Zoroastrian Middle Persian Texts. The sur-
viving Pahlavi texts encompass a wide range
of topics, with the largest category being Zand
texts—translations and interpretations of the
Avesta into Pahlavi—along with works derived
from these interpretations, such as Dēnkard, Bun-
dahišn, Selections of Zādspram, Dādestān ı̄ Dēnı̄g,
and Pahlavi Rivayats.

Beyond these, Pahlavi literature includes vari-
ous other genres: philosophical-theological works
like Škand Gumānı̄g Wizār and Pas Dānišn-kāmag;
mystical and prophetic texts such as Ardā Vı̄rāz-
nāmag and Jāmāsp’s Prophecies; ethical and di-
dactic literature including Yādgar ı̄ Buzurgmihr
and Dādestān ı̄ Mēnōg ı̄ Xrad; debates and boast-
ful compositions like The Assyrian Tree; historical
and geographical accounts such as Kārnāmag ı̄ Ar-
daxšı̄r ı̄ Pāpakān and Šahrestān-hā ı̄ Ērān; epic
literature like Yādgar ı̄ Zarērān; and legal texts
including Šāyest nē Šāyest and Mādayān ı̄ Hazār
Dādestān. Additionally, educational treatises, such
as Xusraw ud Rēdag and The Chess and Nard Trea-
tise, and lexicons like the Pahlavi Lexicon further
enrich the corpus.

These texts are invaluable for understanding
Iran’s cultural, religious, and historical heritage,
while their linguistic analysis significantly con-
tributes to Persian language studies, historical lin-
guistics, and lexical research (Durkin-Meisterernst,
2004; Macuch and Emmerick, 2008; Tafazzoli,
1999; Amouzgar and Tafazzoli, 1994)

A.2 The Book Pahlavi Script
All Western Middle Iranian scripts originate from
the Aramaic script and were used to write Parthian
and Middle Persian (Sasanian Pahlavi) texts. The
major script variations include Parthian (Inscrip-
tional Pahlavi), used for Parthian inscriptions and
early Sasanian texts; Inscriptional Pahlavi, which
appeared in royal and noble inscriptions of the
Sasanian period; Book Pahlavi, primarily used
for Zoroastrian Middle Persian texts; and Psalter
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Figure 3: The 14 letters of the Pārsīg alphabet, used in
the Middle Persian language.
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Figure 4: Confusion matrix for HMM & Viterbi

Pahlavi, employed in Middle Persian Christian
texts. The script specifically used for Zoroastrian
Middle Persian writings is called Book Pahlavi,
a cursive script referred to by Islamic-era writers
as ram dabı̄ra or hām dabı̄ra, meaning “common
script.” Book Pahlavi consists of 14 letters and is
written from right to left (shown in Figure 3).

B POS Tagger Classification Results

In this part we present class-based metrics con-
fusion matrices for POS tagger classifiers. The
evaluation was conducted using the PyCM li-
brary (Haghighi et al., 2018).
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Figure 5: Confusion matrix for Logistic regression
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ADJ ADV CONJ DET EZ N NUM PART POST PREP PRON Unknown V

ACC 0.97168 0.97929 0.95391 0.98878 0.98691 0.95003 0.99532 0.99893 0.99693 0.99492 0.98424 0.99947 0.98103
AUC 0.8396 0.8774 0.95 0.92651 0.95571 0.95006 0.9092 0.5 0.81452 0.99032 0.7865 0.6 0.94332
F1 0.78842 0.81258 0.86293 0.7931 0.90909 0.92438 0.89489 0.0 0.77228 0.9757 0.69271 0.33333 0.92102
Precision 0.9316 0.87047 0.79444 0.73516 0.89908 0.9 0.98675 None 1.0 0.96705 0.86928 1.0 0.95063
Recall 0.68339 0.7619 0.94435 0.86096 0.91932 0.95012 0.81868 0.0 0.62903 0.98452 0.57576 0.2 0.8932

Table 5: Performance metrics for different POS classes with HMM & Viterbi POS Tagger. Accuracy (ACC) Macro
= 0.98319, F1 Macro = 0.74465

ADJ ADV CONJ DET EZ N NUM PART POST PREP PRON Unknown V

ACC 0.97361 0.98568 0.98583 0.99533 0.99367 0.96396 0.99925 0.99864 0.99623 0.99397 0.99291 0.9991 0.98975
AUC 0.89234 0.91405 0.97065 0.97119 0.99119 0.96251 0.98873 0.92255 0.80157 0.99179 0.90472 0.5 0.97665
F1 0.82893 0.87214 0.95347 0.91014 0.95281 0.94589 0.98141 0.70968 0.73684 0.97294 0.85449 0.0 0.95813
Precision 0.86531 0.91525 0.95821 0.87709 0.91974 0.93384 0.98507 0.61111 0.94595 0.95739 0.90196 None 0.95695
Recall 0.7955 0.8329 0.94877 0.94578 0.98834 0.95826 0.97778 0.84615 0.60345 0.989 0.81176 0.0 0.95931

Table 6: Performance metrics for different POS classes with Logistic regression POS Tagger and Logistic Regression.
Accuracy (ACC) Macro = 0.98984, F1 Macro = 0.8213

B.1 HMM & Viterbi
Table 5 represent class-based metrics for HMM &
Viterbi POS tagger and confusion matrix is pre-
sented in Figure 4.

B.2 Logistic Regression
Table 6 represent class-based metrics for Logis-
tic regression POS tagger and confusion matrix is
presented in Figure 5.

B.3 Random Forrest Classifier
Table 4 represent class-based metrics for Random
forest POS tagger and confusion matrix is pre-
sented in Figure 6.
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Brisson, Colin, 123
Bui, Marc, 123

Carpuat, Marine, 71
Chang, Bolin, 97
Chen, Chen-Yuan, 83
Chen, Pi-Jhong, 83
Chen, Zih-Ching, 83
Constant, Frédéric, 123

Dang, Renfei, 117
De Luca, Giacomo, 31
Dershowitz, Nachum, 1, 65
Dong, Wenxuan, 151
Duan, Zhiya, 159
duchovny, dimid, 65

Farsi, Farhan, 238
Fazel, Parnian, 238
Feng, Minxuan, 173

Gershuni, Hillel, 1
Gordin, Shai, 22, 164, 198
Goshtasb, Farzaneh, 238
Gottlieb, Lee-Ad, 65
Guedalia, Joshua, 1

Haghighi, Sepand, 238
Hajipour, Nadia, 238
Han, HyoJung, 71
Horio, Kaito, 220
Hua, Wenjie, 90, 146
Huang, Shujian, 117
Huang, Yonglong, 173

Jon, Josef, 182

Kahfy, Ayoub, 123

Kawahara, Daisuke, 220
Keßler, Florian, 40
Klein, Stav, 164

Lei, Minyi, 112
Li, Bin, 97
Li, Jiachen, 136
Li, Si, 136
Lin, Lihan, 136
Lincke, Eliese-Sophia, 77
List, Johann-Mattis, 52
Liu, Lihong, 97
Liu, Meiling, 129, 151
Liu, Ruilin, 97
Liu, ShengYu, 159
Liu, Yudong, 193
Lourie, Yonatan, 12
Lu, Pengxiu, 173
Lu, Shige, 129
Lu, Yi, 112

Ma, RuiMin, 159
Ma, Shijie, 159

Naaijer, Martijn, 59

Ogawa, Hayato, 220
Otten, Joshua N., 208
Ouyang, Huan, 136

Paul, Elizabeth, 193
Pulini, Michele, 52

QU, Weiguang, 97

Ratzon, Eshbal, 65
Resnick, Benjamin, 1
Riemenschneider, Frederick, 187
Rosensweig, Elisha, 1

Sabouri, Sadra, 238
Sahala, Aleksi, 77, 164
Sameti, Hossein, 238
Sbur, John, 193
Schonebaum, Andrew, 71
Sharan, Roded, 12

251



Shen, Si, 97
Shmidman, Avi, 1
Spencer, Shahar, 164

Tang, Hanqi, 129

Wang, Dongbo, 97
Wang, Li-Chiao, 83
Wang, xinkai, 141
wang, yilin, 141
Wang, Yiming, 136
Wilkins, Brandi, 193
Wilson-Wright, Aren, 59
Wu, Ting-Lin, 83

Xia, tian, 141
Xu, Chao, 173
Xu, Jing, 173
Xu, Shenghan, 146
Xu, Weilu, 117
Xu, Zhixing, 97
Xue, Lang, 129

Yang, Menghui, 141
Yang, Xinchen, 71
Yavasan, Emma, 198
Yorav, Amir, 65
Yu, Jingsong, 228
Yuan, Zibo, 159

Zadworny, Piotr, 22
Zhang, Qi, 159
Zhang, Yunmeng, 129
Zhao, Qun, 141
Zhao, Xue, 97
Zheng, Yuxi, 228
Zhu, Yan, 97
zhu, yicheng, 106


	Program
	Automatic Text Segmentation of Ancient and Historic Hebrew
	Integrating Semantic and Statistical Features for Authorial Clustering of Qumran Scrolls
	Assignment of account type to proto-cuneiform economic texts with Multi-Class Support Vector Machines
	Accessible Sanskrit: A Cascading System for Text Analysis and Dictionary Access
	A Dataset of Ancient Chinese Math Word Problems and an Application for Research in Historic Mathematics
	Using Cross-Linguistic Data Formats to Enhance the Annotation of Ancient Chinese Documents Written on Bamboo Slips
	Towards an Integrated Methodology of Dating Biblical Texts: The Case of the Book of Jeremiah
	The Development of Hebrew in Antiquity – A Computational Linguistic Study
	Evaluating Evaluation Metrics for Ancient Chinese to English Machine Translation
	Neural Models for Lemmatization and POS-Tagging of Earlier and Late Egyptian (Supporting Hieroglyphic Input) and Demotic
	Bringing Suzhou Numerals into the Digital Age: A Dataset and Recognition Study on Ancient Chinese Trade Records
	The Historian's Fingerprint: Computational Stylometric Analysis of the Zuo Commentary and Discourses of the States
	Overview of EvaHan2025: The First International Evaluation on Ancient Chinese Named Entity Recognition
	Exploring the Application of 7B LLMs for Named Entity Recognition in Chinese Ancient Texts
	Construction of NER Model in Ancient Chinese: Solution of EvaHan 2025 Challenge
	LLM's Weakness in NER Doesn't Stop It from Enhancing a Stronger SLM
	Named Entity Recognition in Context: Edit_Dunhuang team Technical Report for Evahan2025 NER Competition
	Simple Named Entity Recognition (NER) System with RoBERTa for Ancient Chinese
	Make Good Use of GujiRoBERTa to Identify Entities in Ancient Chinese
	GRoWE: A GujiRoBERTa-Enhanced Approach to Ancient Chinese NER via Word-Word Relation Classification and Model Ensembling
	When Less Is More: Logits-Constrained Framework with RoBERTa for Ancient Chinese NER
	Multi-Strategy Named Entity Recognition System for Ancient Chinese
	Multi-Domain Ancient Chinese Named Entity Recognition Based on Attention-Enhanced Pre-trained Language Model
	EvaCun 2025 Shared Task: Lemmatization and Token Prediction in Akkadian and Sumerian using LLMs
	Lemmatization of Cuneiform Languages Using the ByT5 Model
	Finetuning LLMs for EvaCun 2025 token prediction shared task
	Beyond Base Predictors: Using LLMs to Resolve Ambiguities in Akkadian Lemmatization
	A Low-Shot Prompting Approach to Lemmatization in the EvaCun 2025 Shared Task
	From Clay to Code: Transforming Hittite Texts for Machine Learning
	Towards Ancient Meroitic Decipherment: A Computational Approach
	Detecting Honkadori based on Waka Embeddings
	Incorporating Lexicon-Aligned Prompting in Large Language Model for Tangut–Chinese Translation
	ParsiPy: NLP Toolkit for Historical Persian Texts in Python

