A Dataset of Ancient Chinese Math Word Problems and an Application
for Research in Historic Mathematics

Florian Kessler
Friedrich-Alexander-Universitit Erlangen-Niirnberg
florian.kessler@fau.de

Abstract

Solving math word problems, i.e. mathemati-
cal problems stated in natural language, has re-
ceived much attention in the Artificial Intelli-
gence (Al) community over the last years. Un-
surprisingly, research has focused on problems
stated in contemporary languages. In contrast
to this, in this article, we introduce a dataset of
math word problems that is extracted from an-
cient Chinese mathematical texts. The dataset
is made available.! We report a baseline per-
formance for GPT-40 solving the problems
in the dataset using a Program-of-Thought
paradigm that translates the mathematical pro-
cedures in the original texts into Python code,
giving acceptable performance but showing
that the model often struggles with understand-
ing the pre-modern language. Finally, we de-
scribe how the generated code can be used for
research into the history of mathematics, by of-
fering a way to search the texts by abstract op-
erations instead of specific lexemes.

1 Introduction

In recent years, using techniques such as Chain-
of-Thought (CoT, Wei et al., 2022) or Program-
of-Thought (PoT, Chen et al., 2023) prompting,
Large-Language-Models (LLMs) have achieved
excellent performance in solving mathematical
problems formulated in natural language, spiking
renewed interest in this area of artificial intelli-
gence. However, while datasets of such math
word problems are available in multiple languages,
to our knowledge, all of them are contemporary.
How do LLMs cope with ancient math problems,
which might both involve terms that are unfamil-
iar to the model, as well as rely on knowledge
about a world that differs significantly from what
the model is familiar with? In order to answer this
question, we will describe in Section 3 the creation

"https://github.com/notiho/ancient-chinese-mat
h-problems.

40

of a database of mathematical problems extracted
from ancient Chinese texts, using a semi-automatic
approach that utilizes the highly structured nature
of the textual material. Subsequently, in Section 4
the performance of GPT-40 in solving the prob-
lems in the database will be tested, showing that it
is able to derive solutions for around two thirds of
the problems in the database, but often struggles
with unfamiliar expressions in the technical lan-
guage of pre-modern Chinese mathematics. Fig-
ure 1 shows an overview over the setup discussed
in this article.

While solving mathematical problems in mod-
ern settings with LLMs is useful for real world ap-
plications, solving problems in the style of ancient
Chinese mathematical texts in itself is presumably
of no interest to any user. Also, in the texts con-
sidered here, the problems posed are always ac-
companied by numerical solutions. Hence, be-
ing able to automatically compute a solution does
not provide the researcher with any new informa-
tion, aside from being a convenient way of check-
ing for textual errors. However, being able to test
the model’s understanding of the problems lays
the groundwork for confidently applying LLM:s for
different downstream research tasks. Since his-
toric Chinese mathematics remains an understud-
ied subject, such assistance is especially valuable.
In particular, in this article, we suggest a way to
use the output of the model for a type of semantic
search. All of the state-of-the-art prompting tech-
niques for solving mathematical problems using
LLMs cause the model to output intermediate re-
sults, either in the form of natural language reason-
ing steps (Wei et al., 2022), program code (Chen
et al., 2023; Gao et al., 2023) or systems of sym-
bolic equations (He-Yueya et al., 2023). In Sec-
tion 5, we will show how such output, in our case
in the form of Python code, that can be aligned to
the original algorithms provided in the texts using
our prompting technique, can be used by histori-

Proceedings of the Second Ancient Language Processing Workshop associated with NAACL 2025, pages 40-51
May 4, 2025. ©2025 Association for Computational Linguistics

https://github.com/notiho/ancient-chinese-math-problems
https://github.com/notiho/ancient-chinese-math-problems

[Extract problems]

<
SHEE A A, [RE R ?
thrE - EE— 1, D AWkRZ, RS,
BH AT AR

[
(Hide numerical solutions)
2

LA MR, [---1“.
g LLM

[Solution a=126
[Use code for semantic search }—

r

Suppose there is of gold worth
100,000 qian.
Question: how much is 1 liang worth?

The procedure says: Place 100,000 qgian,

1 jin

and divide it by 16 liang,
obtaining the result.
Answer: *a* qian.

He—MhEE -5

$8 = 100000

—MIFER N W

W = 16

U— T RNmk.z, HfS

a = Fraction (#8, W)

Figure 1: Workflow described in this paper illustrated with problem 18 from chapter 3 of the Master Sun

ans of mathematics, by providing a way to search
for mathematical contents that abstracts from the
language of the texts.

2 Related Work

Solving math word problems using artificial intel-
ligence has been an active area of research for a
long time, and accordingly, many datasets of prob-
lems with different levels of mathematical diffi-
culty and language have been released (see Ahn
et al., 2024 for an overview). To our knowledge,
none of these contain problems extracted from pre-
modern works.

In solving math word problems with LLMs,
program-of-thought (PoT) prompting, that is, hav-
ing the model emit program code that computes
solutions has been one of the most successful
paradigms (Chen et al., 2023; Gao et al., 2023).
Recent research has shown that for advanced prob-
lems, having the model output symbolic equations
instead is beneficial (He-Yueya et al., 2023). How-
ever, the problems considered here are relatively
simple from the point of view of modern math-
ematics, and can mostly by easily solved using
straightforward arithmetic, although the dataset
also includes e.g. procedures for square and cube
root extractions and solving what is equivalent to a
system of linear equations (Martzloff, 2006: 127-
41). Furthermore, the potential of transforming an-
cient Chinese mathematical procedures into imper-
ative languages has long been recognized by the
eminent mathematician and historian of mathemat-
ics, Wu Wen-Tsun (e.g. Wu Wen-Tsun, 2019: 121).

41

3 Building a Dataset

As the basis of the dataset, a collection commonly
known as the Computational Canon in Ten Books
(Suanjing shishu A& 1) was chosen, contain-
ing the most important Chinese mathematical texts
up to the Tang dynasty (608-907).2 Having been
compiled from mostly much older sources to serve
educational purposes in 656 (Keller and Volkov,
2014: 59-63), among its nine surviving works,
there are seven that employ a rigid question-
answer-procedure pattern to structure their content
that is as typical of ancient Chinese mathematics as
it is convenient for automatic extraction. The titles
of the seven works as well as dating information
are shown in Table 1. In the following, the works
will be referred to by the shortened translated titles
underlined in the table.

In terms of their structure, these works consist
of series of usually thematically grouped triples
of questions, numerical answers and procedures
(“shu i7) to compute the answers (see Table 2 for
an example).?

%In fact, one of the titles included is a later apocryphal text
that was not included in the original collection (Wu Wenjun
and Shen Kangshen, 2000: 82). However, due to its compa-
rable structure and contents, it was nevertheless included in
the dataset.

3The strict triplet structure is not entirely followed in one
of the works, the Nine Categories, where it is common to
have several pairs of answers and questions followed by a
single procedure that solves them all, and there are a few
general procedures that precede a series of triplets, the pro-
cedures for which are special cases of the general procedure.
In the dataset, these general procedures were not included,
unless they were referenced by a stub-procedure specific to

Title
G 6/0 <,

. . . o S S early ISt
“Computational Procedures of Nine Categories” (Jiuzhang suanshu JUEEEAN) ntury 9 253 x
“Computational Treatise [Beginning with a Problem about a] Sea Island” ca263 1 9 «x
(Haidao suanjing 71 E554S)

“Computational Treatise of Five Departments” (Wucao suanjing 1178 5#K) after 386 5 67 x
“Computational Treatise of Master Sun” (Sunzi suanjing % 1 H45) ca400 2 61 x
“Computational Treatise of Zhang Qiujian” (Zhang Qiujian suanjing @5
%) —_— cad450 3 85
Computational Treatise on the Continuation [of Tradition] of Ancient [authors] 4600 1 20 «x

(Jigu suanjing %5 H)

“Computational Treatise of Xiahou Yang” (Xiahou Yang suanjing B 1P HRS) 763-779 3

82

Table 1: Date of compilation, number of chapters (limited to those containing problems), problems in each work
and indication whether a punctuated edition was available on Wikisource. Title translations and dating from Keller

and Volkov (2014: 62).

As is the case with many modern day math word
problem datasets, the problems almost always in-
voke a real world context in their setting, for ex-
ample, when asking about the price of purchased
goods, although this does not necessarily imply
that they were practical in nature (Martzloff, 2006:
54-8).

The procedures that are supplied to compute the
solutions can vary in level of detail, but are in gen-
eral expected to be complete in the sense that fol-
lowing them step by step, one is able to compute
the correct answer, although substantial interfer-
ence might be required in some parts. The proce-
dures often mention the specific numbers used in
the problems, and in many cases also contain in-
termediate numerical results.

In order to build a dataset that is useful for test-
ing automatic solving approaches on these prob-
lems, digitized versions were sourced from Wik-
isource* and the Kanseki repository® (Wittern,

a problem that is clearly incomplete without the general pro-
cedure. For the two general procedures for which such stub-
procedures exist (the Fangcheng /72 (equivalent to systems
of linear equations) and Yingbuzu %22 (double false posi-
tion) procedures from the Nine Categories), the general pro-
cedure was appended to the stub-procedure. Furthermore,
some of the works feature alternative procedures for solving
the same problem. In these cases, only the first procedure
given was included in the dataset.

“https://zh.wikisource.org/wiki/ JLEE AT, https://zh.wiki
source.org/wiki/sH tr FLAS, https://zh.wikisource.org/wiki/
135 EAE, https://zh. wikisource.org/wiki/ % 15K, https://
zh.wikisource.org/wiki/ 71 B B (All accessed 22.12.2024).

Shttps://www.kanripo.org/. The texts used here have
numbers KR3f0038 and KR3f0039 in the database.

42

2016). Since the Wikisource editions have punctu-
ation added to the texts by crowd sourced editors,
they were preferred where available.

Since the division of the works into questions,
answers, and procedures is expressed in the text us-
ing characteristic markers such as “suppose there
is” (jin you % 47) in the beginning of questions, as
well as layout of the text into paragraphs, it is easy
to extract triplets in a semi-automated way, tak-
ing care of the occasional deviation which is to be
expected in natural language documents that have
been transmitted over such a long time. Commen-
taries contained in the texts were removed during
the processing.

In total, this process resulted in 577 triplets ex-
tracted from the texts. Table 1 shows the number
of problems in each work. The table also shows
the number of chapters (juan %), which in mathe-
matical books often correlate with major thematic
subdivisions.

In order to use the dataset in an automatic eval-
uation, the answer strings of each triplet were de-
composed into numerical solutions and textual ele-
ments, by searching for numerals followed option-
ally by a unit of measurement (UoM) with a regular
expression. This step is necessary because the an-
swers often contain additional verbiage aside from
the bare result itself, for which it would be unrea-
sonable to expect the model to correctly predict it.
Cases in which a number in the answer does not
represent a value to be calculated, but rather helps
to structure it textually were manually fixed after-

https://zh.wikisource.org/wiki/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93
https://zh.wikisource.org/wiki/%E7%B7%9D%E5%8F%A4%E7%AE%97%E7%B6%93
https://zh.wikisource.org/wiki/%E7%B7%9D%E5%8F%A4%E7%AE%97%E7%B6%93
https://zh.wikisource.org/wiki/%E6%B5%B7%E5%B3%B6%E7%AE%97%E7%B6%93
https://zh.wikisource.org/wiki/%E6%B5%B7%E5%B3%B6%E7%AE%97%E7%B6%93
https://zh.wikisource.org/wiki/%E5%AD%AB%E5%AD%90%E7%AE%97%E7%B6%93
https://zh.wikisource.org/wiki/%E4%BA%94%E6%9B%B9%E7%AE%97%E7%B6%93
https://zh.wikisource.org/wiki/%E4%BA%94%E6%9B%B9%E7%AE%97%E7%B6%93
https://www.kanripo.org/

Ques-| & A B —EETHE, B CTEEAFE . B s 2

tion now have out cash 13 500 , buybamboo 2350 piece. ask: piece how much ?
Suppose one has paid out 13 500 cash [unit of currency] and purchased 2350 pieces of bamboo.
Question: how much is one piece?

An- | & H —@& , HE b 8 X S

swer | answersay : 1 piece, 5 cash, 47 part cash genitive particle 35
The answer says: 1 piece is 5 cash and 35 parts of 47 cash.

Con- o 1+ —qm , 270478% .

verted| answersay: 1 piece, 270/47 cash.

dure | freat ratio procedure say : with relative pronoun buy ratio make divisor, relative pronoun out cash
L o B , H mook o —8
number make dividend, dividend match divisor obtain 1 cash .
The procedure for treating ratios says: take the ratio of what has been bought as divisor, the
number of cash that has been paid out as dividend, do the division, obtaining one cash each
time the dividend matches the divisor.

Table 2: Example of a problem (number 32 from chapter 2 of the Nine Categories).

wards, as e.g. in cases where after buying a certain
number of goods for an amount of money, the price
of one item is sought after, and the one is repeated
in the answer.

In the texts, most answers are in the form of
quantities with an UoM attached. Often, a quan-
tity is expressed as a compound of integers or frac-
tions of several UoM at different levels of scale,
e.g. “two chi [unit of length] and four cun [unit of
length equivalent to % chi]” (er chi si cun — R
PUST). When extracting the numerical solutions,
such compounds were reduced to a single ratio-
nal number of the largest UoM, in the example,
2 4+ 11—0 -4 = %2 chi. The intention of this step
is to align the computational steps that need to be
taken to compute the result more closely to the pro-
cedures that are proscribed in the texts themselves,
which in most cases tacitly assume that appropriate
conversions are done by the mathematician.® The
ability of the model to understand and potentially
convert pre-modern UoM is still tested, since no
conversion of any form is done for the quantities
stated in the questions.

In a comparable step, mixed fractions in the an-
swers were reduced to a single improper fraction.
In general, fractions which are written in the texts
using the notation “z fen zhi 4.2 1”, being equiv-
alent to % in modern notation, are always consid-
ered as a single term in the extracted answers. This
runs contrary to the intent of some of the prob-

81t should be noted however that there are some problems
the main point of which are unit conversions, which are made
significantly easier due to this conversion.

43

lems, notably 16 problems identified in early parts
of the works, which explain basic arithmetic op-
erations on fractions, necessitating an understand-
ing of fractions in the answers as consisting of two
numbers to be computed, numerator and denom-
inator.” In most other procedures, knowledge of
these operations is assumed, so modelling frac-
tions in this way allows us to stay closer to the way
procedures are written in most cases.

As opposed to most modern math word prob-
lem datasets (Kao et al., 2024), the problems ex-
tracted from the ancient Chinese mathematical
texts commonly ask for the computation of several
unknowns, in one extreme case even 27 (mean 2,
sd 2.54). The length of the procedures associated
with the problems also varies considerably, rang-
ing (without punctuation) from 8 characters to 681
(mean 55.7, sd 64.1), indicating varying degrees
of mathematical complexity of the tasks.

During manual spot-checks, some textual errors
in the material were found and corrected. How-
ever, it has to be expected that the dataset is not
completely free of errors.

4 Solving the Problems with a LLM

4.1 Experimental setup

In this section, the performance of a state of the art
LLM, GPT-40 will be tested in solving the prob-
lems in the dataset described in the previous sec-
tion. The main strategy that will be used for this is
PoT (Chen et al., 2023).

"These 16 problems are included in the dataset, but were
excluded for the evaluation in Section 4.

Formally, let a problem triplet (Q;, A;, P;) con-
sist of question ();, answer A;, and procedure F;.
Let A; be the result of decomposing A; into tex-
tual and numerical elements as described in the
previous section, containing numerical solutions
ai1,...,a;. We then test the capability of the
model to generate Python code C, such that after
executing C, there are k variables a, b, ... such
that a has value a; 1, b has value a; 2 and so on.

In order to understand the impact of differ-
ent factors on the performance, various prompts
were tested. For the purpose of constructing these
prompts in a way that avoids spoiling the result
while still giving the necessary structure to give an
answer, we define fli as the string that is derived
from A; by substituting the numerical values with
letters “a”, “b” and so on.

Following the by now well-known
few-shot-learning approach (Brown et al.,
2020), the model was presented with a series of
sample inputs and expected answers. The five
problems used as exemplars were chosen in a way
that is reasonable for a human researcher, i.e. by
pulling respectively the first problems from the
first five chapters of the most famous work in the
dataset, the Nine Categories. For each example
1 < j < 5, aside from the solution code Cj, an
English translation £; of the problems, including
the procedure, was written. One of the exemplars
as well as the system prompt .S P can be found in
Appendix A. For reference, a zero-shot (Kojima
et al., 2022) approach was also tested, the prompt
for which is also in Appendix A.

Putting the elements together, the full few-shot
input for the model when trying to solve problem
(Qi, A;, P;) consists of the sequence

S(SP),

U(Qi[|P1[|Ay), M(E,||CY),

o (1)
U(Qs||P5||As5), M (E5||Cs5),

U(Qil| Pi||4y),

where || denotes concatenation and S, U and M
system, user and assistant messages respectively.

A solution generated by GPT-40 with this
prompt for the problem in Table 2 is shown in Fig-
ure 2. The accuracy achieved by GPT-40 using this
prompting format is shown in Table 3. The table
also shows the accuracy of the zero-shot strategy,
as well as several formats that are derived by mod-
ifications to (1):

"''"Suppose there is an expenditure of

13,500 qgian to buy 2,350 bamboo pieces.

Question: how much does each piece cost?

The procedure for proportional rates

says: Take the quantity bought as the

divisor , and the amount of money spent

as the dividend. Divide the dividend by

the divisor to obtain the cost per

piece.

Answer: one piece costs *a* qian.

Mg —wW =T+ h B [paid out 13500 cash]

At H 82 8 = 13500

BT =T A+E [bought 2350 pieces
of bamboo]

AT & = 2350

LIFT'E 23k [take the ratio of what
has been bought as divisor|]

ko= ArEE

Fr it 8880 75 # [the number of cash that

has been paid out as dividend]

= Jr B B

B —48 [do the division]

= Fraction (B, %)

#
a

44

Figure 2: Output of the model for problem 32 from
chapter 2 of the Nine Categories, with English trans-
lation in the block comment by the model, and trans-
lations of the single-line comments in square brackets
added manually afterwards. Empty lines before each
single-line comment contained in the original output
have been removed for better display.

Alternative system prompt For reasons that
will be laid out in Section 5, the system prompt
used in (1) stresses that the code should stay as
close as possible to the structure of the original,
and quote appropriate sections from it in com-
ments before each block of code. To test whether
this prevents the model from adopting more di-
rect solutions, an alternative system prompt with-
out these restrictions was tried (see Appendix A for
the prompt).

No punctuation For this configuration, punctu-
ation was removed from all strings in the input. It
is important to test the ability of the model to cope
with text written without punctuation, as this is the
format that the works were transmitted to us, and
modern punctuations are not available for all texts.
The results for the texts from the dataset without
punctuation, for which this was the only configu-
ration tested, are shown in Table 4.

No translation In this format, the English trans-
lations E1, . . ., E5 were removed from the prompt.
Doing a complete translation first would be reason-
able approach for a human tasked with solving the
problems, so we test whether this also helps the
model achieve higher accuracy.

All Nine) Sea Island Five Master Sun | Continuation
Categories Departments

Method Mean B-0-5|Mean B-0-5Mean B-0-5|Mean B-0-5|Mean B-0-5|Mean B-0-5
Zero-shot 440 60.7] 408 61.0] 44 11.1] 60.6 70.1| 589 772| 00 0.0
Few-shot - (de-1 5, 1 630] 530 66.1] 133 333| 525 657] 656 737| 00 00
fault)
Few-shot (alter-1 o) 3) 0 541 648 178 333| 564 627| 642 754| 00 00
native prompt)
No punctuation | 47.8 60.7| 46.6 61.0| 67 333| 582 687 639 754| 00 0.0
No translation | 51.1 59.4| 52.6 61.0| 133 222| 552 642| 63.5 73.7| 00 0.0
No procedures | 36.7 45.5| 33.8 42.8| 22 11.1| 472 53.7| 540 667| 1.0 5.0
Numerical solu- 5,) 6761 577 720| 44 111] 585 687 611 737 20 10.0
tions provided

Table 3: Accuracies of different prompting strategies on the punctuated dataset and by title in percent. Values in the
mean columns are averaged over five runs of the model, and in the best-of-5 (B-0-5) columns a problem is counted

as solved if it was solved in at least one run.

All Xiahou Yang | Zhang Qiujian
Mean B-0-5 | Mean B-0-5 | Mean B-0-5
374 49.7| 456 573| 294 424

Table 4: Accuracies in percent for the titles in the
dataset where no punctuation was available

No procedures In order to test whether the in-
formation provided in the question alone is suf-
ficient for the model to derive a solution, the
procedures P, ..., P; and P; are removed from
the prompt. Furthermore, the Python solutions
C1,...,C5 were streamlined to not include steps
described in the procedure but unnecessary in
Python, and comments that quote the procedures
are changed into English comments that explain
the reasoning. The system prompt was also
changed by removing the instruction to quote the
procedure before each block of code. This brings
the format much closer to conventional math word
problem setups, which usually do not contain pro-
cedures for computing results.

Numerical solutions provided In this format,
the solutions Ay, ..., A5 and A; are modified by
adding the values of the unknowns as Arabic nu-
merals, giving the model an opportunity to cheat
by knowing the correct solutions.

4.2 Discussion

As can be seen in Table 3, the performance in
all of the works leaves much room for improve-
ment. Unsurprisingly the setup where the model
has access to the solutions it is supposed to com-
pute shows the best accuracy, although even in

45

Category Type Count

misunderstood procedure 7

global misunderstood procedure 5
(inference required)

misunderstood question 4

misunderstood expression 27

unit conversion 17

code error (fractions) 16

localized math reasoning 4

textual error 3

code error (variable name) 2

code error (syntax) 1

result rounded in the text 1

Table 5: Count of errors by type encountered during the
evaluation of 50 randomly chosen failed solutions

that scenario, mean accuracy is significantly lower
than that reported for the same model on the
MATH dataset, 68.5%°%, which was designed to be
challenging for expert humans (Hendrycks et al.,
2021). While removing procedures outright leads
to a large drop in accuracy, telling the model to
focus on staying close to the procedure (default
prompt) or not (alternative prompt) does not cause
a statistically significant difference. Removing
punctuation leads to a small but significant drop
in mean accuracy. Removing translations did not
have a significant effect on mean accuracy.
Looking at the breakdown of the results by ti-
tle, we can observe considerable differences be-

Shttps://github.com/openai/simple-evals (entry
gpt-40-2024-11-20, accessed 23.01.2025).

https://github.com/openai/simple-evals

tween the accuracy values. In particular, the model
was almost unable to solve any problems in the
Sea Island and the Continuation. Inside a single
work, the performance can also vary considerably
by chapter. For example, the mean accuracy us-
ing the default few-shot prompt for the worst per-
forming chapter of the Nine Categories is as low
as 21%.° Since chapters often group thematically
related problems, this indicates that the model had
more difficulties in solving certain types of prob-
lems.!?

Running a logistic regression shows that both
the total textual length of a problem, i.e. the sum
of the lengths in characters without punctuation of
question, answer, and procedure, and the number
of unknowns in it are significant predictors on the
model being able to solve it.!! As a case in point,
both of the two works with the worst performances
each contain problems or procedures that are much
longer than the average of the dataset. The mean
number of characters (not counting punctuation)
per problem is 164 for the Sea Island and 311 for
the Continuation, but only 106 for the Zhang Qiu-
Jjian, which has the third highest values in this re-
gard. In the Continuation, many problems are fur-
ther complicated by a high number of unknowns to
be computed, 6.95 on average per problem, com-
pared to 1.99 for the text with the second highest
value. At the same time, it can be considered more
advanced in terms of computations involved, as al-
most all of the problems require the extraction of
cubic roots (Lim and Wagner, 2017: 27). Accord-
ingly, in its context as a historic textbook, it was
the only one of the works considered here reserved
for a program for advanced students (Keller and
Volkov, 2014: 61).

In order to gain a deeper understanding of why
the model fails to output correct code, a manual er-
ror analysis was conducted. 50 problems were ran-
domly sampled from among those where the few-

The complete table showing accuracy for each chapter
can be found in Appendix B.

19As groups of more specifically related problems also tend
to cluster inside each chapter, we would have furthermore ex-
pected to encounter clusters of easier or more difficult prob-
lems when arranging them by their position inside each chap-
ter. However, a runs test only gave a significant result for
one single chapter, number 2 in the Nine Categories, which is
clearly divided into two distinct parts, with the first part con-
taining a family of problems that is much easier than those in
the second part.

"n the few-shot configuration using best-of-5 for evalua-
tion. Biext ten = —0.0046629, SEicrt ten = 0.0009004,
Ptext_len < 0.001, /Bniunknown —0.3759104,
SEy unknown = 0.0562560, prn_unknown < 0.001.

46

shot prompting strategy failed in all five runs. For
each of those, the output for one of these runs was
then annotated, by first determining whether the
code was in general following the structure of a
correct solution and could be fixed by modifying
a few localized sections, or whether it was com-
pletely unusable, because either the model did not
understand the the structure of the procedure pro-
vided, or the intent of the question. Table 5 gives
an overview of the errors encountered.

In the cases where the code was fixable with lo-
calised modifications, the type of error in these lo-
cations was further analysed. Of course, there are
many possibilities for generating incorrect results.
However, a few major categories can be clearly
distinguished.'?

First, there were 27 cases where the model mis-
understood an expression in the original text, e.g.
translating the expression “tai ban sheng X}-T1
(two-thirds of a sheng) into “half a sheng” in the
English translation and “Fraction(1, 2)” in the
code section of the output.

Second, there were 17 cases where the model
made an error in doing unit conversions, reflecting
either a lack of world knowledge or applied math-
ematical reasoning skill.

Third, there were 19 cases where, judging from
the translation and the code it has produced, it
intended to do the right thing, but failed to pro-
duce working code. 16 of these are related to our
choice to force the model to use fractions in com-
puting results, running counter to the semantics of
Python defaulting to floating point numbers when
doing divisions with “/” or taking square root with
“math.sqrt”. To our surprise, in two of the exam-
ined outputs, the model generated code that was
invalid because of wrong variable names, in both
cases because it had used the same name with tradi-
tional characters in one place in the code, and then
with simplified characters in another location. In
one case, the syntax of the generated code was in-
correct.

Third, there were four cases where the prob-
lem seems to have been with the mathematical rea-
soning of the model. While the procedures sup-
plied with the problems in most cases give a com-
plete solution strategy, they are often not detailed
to the level that they could simply be mindlessly
followed, and not all mathematics can be left to the

2Examples of the most commonly encountered categories
can be found in Appendix C.

Python interpreter. For example, there was a case
where the procedure simply stated to add a “dif-
ference”, which in the context could refer to two
quantities, of which the model chose the wrong
one.

Finally, three cases were caused by an error in
the original text, and one by the solution provided
in the original being rounded, with no indication in
the procedure that such a step has to be taken.

5 Further Use of the Generated Code

In the previous section, the dataset was used as
a benchmark to test a model’s ability to output
code to calculate correct solutions for the prob-
lems. However, as mentioned in Section 1, for
the historical problems used here, this may not be
the most relevant task. In this section, it will be
shown that the code that is generated to compute
solutions is interesting in its own right, because it
allows us to explore ancient Chinese mathematics
from a perspective that was much more difficult to
attain before: what were the calculations needed to
solve the problems?

Of course, using the digitized full-text editions
of the texts, it is trivial to search the procedures
for the presence of words that commonly proscribe
certain mathematical operations, e.g. “cheng €
(to multiply). However, this does not necessarily
give us a complete picture: On the one hand, there
are some polysemous lexemes that can signify dif-
ferent operations, such as “chu F&” (to divide, to
subtract), or an operation and something entirely
else, e.g. “cong 1€ (length, to accord to, to add).
On the other hand, there can be operations that are
implicit, and not overtly expressed in the text. For
example, as described in Section 3, unit conver-
sions are often left for the practitioner to fill in,
and might, due to the system of UoMs used, re-
quire non-trivial multiplications or divisions.

By including the instruction for the model to
closely follow the structure of the provided proce-
dure, and quote the relevant section of the proce-
dure before each section of code (see Appendix A
for the prompt), we ensure that code can be aligned
to the original text. While this does of course not
ensure a perfect match between the Python im-
plementation and how a practitioner would have
done their calculations, the alignment allows a tar-
geted search for the code equivalents of expres-
sions. Furthermore, by restricting ourselves to
problems where the Python solution computes the

47

correct answers, without having them spoiled in
the prompt, we can be confident that the model
understood the problem at least to the level that it
could independently solve it.

Among the correct outputs produced by the de-
fault few-shot prompt, 76.1% of code blocks di-
vided by empty lines produced by the model were
started by a comment that could be matched to a
portion of either the question or procedure pro-
vided in the prompt. In order to check how reliable
this alignment is, a manual analysis of 50 randomly
sampled solutions was conducted. In particular, it
was examined whether 1) the mathematical opera-
tions specified in the text quoted as a comment be-
fore each block match the semantics of the code in
the block 2) there are calculations specified in the
procedure missing from the code 3) there are cal-
culations in the code proscribed neither explicitly
nor implicitly (e.g. UoM conversions) in the pro-
cedure. Code blocks that contain no calculations
but just assign variables were not checked.

In 43 of the 50 cases, no problems were discov-
ered according to the three criteria. In two cases,
both from the Fangcheng (equivalent to Gaussian
elimination) section of the Nine Categories, the
procedure given contains specific instructions for
one paradigmatic problem, which need to be gen-
eralized to the problem at hand.!® Hence, it is im-
possible to produce code that aligns perfectly to
the instructions in the procedure. In two cases,
the procedures contained steps needed to deal with
fractions, which were rendered unnecessary by us-
ing the Fraction class and thus not included in
the generated code. In one case each, the com-
ments were translated into English, an algorithm
that completely deviated from the procedure was
adopted by the model, and one of the code blocks
contained code that did not match the quoted sec-
tion from the procedure.

To demonstrate the potential of this alignment
between original text and its translation into code,
blocks were searched for multiplication with the
operator *, and the accompanying comments were
then analysed for the presence of several construc-
tions that commonly denote multiplication. The
results, grouped by title, are displayed in Table 6.
The table also contains a column for UoM conver-
sions, which are often not explicated in the original
text, but for which the model almost always added
a separate comment explaining the step. As can

13See Footnote 3 above.

Title ‘ cheng F& nzhi Z beifi ming fiii UoM conversion other

Nine Categories | 141 (56%) 29 (12%) 10 (4%) 0 (0%) 54 (21%) 20 (8%)
Five Departments | 43 (90%) 0(0%) 0(0%) 0(0%) 4 (8%) 2(4%)
Master Sun 46 (68%) 1 (1%) 4(6%) 3 (4%) 13 (19%) 5 (7%)
Sea Island 5 (62%) 0(0%) 0(0%) 0(0%) 3(38%) 0(0%)

Table 6: Constructions in sections of the procedures quoted before code blocks containing multiplications (* in
Python). Multiple categories can apply for the same code block.

be seen, “cheng F€” (to multiply), is the most fre-
quently used lexeme to express multiplication. All
of the texts also employ other ways for stating this
operation. However, the popularity of these differs
significantly between the works, with “n zhi Z”
(“to n it”, where n is a natural number) being the
most frequent in the earliest text in the dataset, the
Nine Categories, and seemingly dropping more or
less out of fashion in the later texts.

In the current setup, a major drawback is of
course that it is limited to those problems that the
model has successfully solved. As we have seen,
misunderstanding of the text is one of the main
reasons for errors in the output, and lexemes that
are infrequently used in a certain meaning might
be one of the main causes for misunderstandings.
For example, “ming i (to command, to name, to
multiply) is used to refer to multiplication in a few
procedures in the Nine Categories (Chemla and
Guo Shuchun, 2004: 963-4), but the model failed
to produce correct solutions for these. Hence, at
the current stage, the setup is mostly suited to dis-
cover larger trends. However, we are confident
that with simple means, the accuracy can be fur-
ther improved. Possible directions for this will be
discussed in the next section.

6 Conclusions

In this article, we have introduced a dataset of
ancient Chinese math word problems, and estab-
lished a baseline performance for an LLM solving
the problems using a PoT approach. While the fact
that around two thirds of the problems could be
solved in this setting shows the general potential of
using LLMs for historic mathematics, it of course
leaves much room to improvement. By releasing
the dataset, we hope to encourage further research
in this direction.

In particular, an obvious first step would be to
explore recent advancements over the basic PoT
prompting used here, by e.g. giving the model
feedback on its solution attempts (Zhou et al.,

48

2023). Of course, more sophisticated models
which achieve higher scores in modern day math
benchmarks could also be tried. However, as
our error analysis in Section 4.2 has revealed, the
biggest challenge for GPT-40 does not appear to
be in mathematical reasoning, but rather in under-
standing the language of the texts. In this regard,
a fruitful approach to explore could be in using re-
trieval augmented generation, by giving the model
explanations of technical terms contained in the
problem. Resources that could be used for this pur-
pose include both pre-modern commentaries that
accompany several of the texts in the dataset, as
well as modern day glossaries compiled by histo-
rians.

A limitation that might require more fundamen-
tal changes to the setup is the model of compu-
tation used. As outlined in Section 3, the choice
taken here was motivated by the consideration to
have the code output correspond as directly as pos-
sible to the procedures provided in the texts. How-
ever, using Python with rational numbers repre-
sented by the Fraction class is clearly not ideal.
First, it does not align perfectly which what is ex-
plicit and implicit in the procedures. Second, as we
have seen in Section 4.2, GPT-40 sometimes had
considerable problems in producing working code
under these conditions. Overcoming these could
potentially entail designing a simple custom pro-
gramming language as the target for translations,
or at least providing a set of purpose-built library
function that match the semantics of certain com-
pound operations in ancient Chinese mathematics,
e.g. root extraction or operations with mixed frac-
tions.

As the sketch of future applications in Section 5
demonstrates, doing further research in this direc-
tion might prove very fruitful, because it allows
us to approach historical mathematics from a new
perspective, guided by a large scale analysis of the
actual computations performed, without the need
for time-consuming human annotation.

Limitations

The text in the dataset were not systematically
checked to ensure that they are free from errors.
Only a single model and a single set of exem-
plars was tested.
No comparison was made against human perfor-
mance on the dataset.

Acknowledgements

I am grateful for the financial support from
the Alexander-von-Humboldt foundation, from a
grant awarded to Andrea Bréard. I would like to
thank Andrea Bréard and three anonymous review-
ers for their helpful remarks on the article.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large Language
Models for Mathematical Reasoning: Progresses
and Challenges. Preprint, arXiv:2402.00157.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, and
Amanda Askell. 2020. Language Models are Few-
Shot Learners. Advances in Neural Information Pro-
cessing Systems, 33:1877-1901.

Karine Chemla and Guo Shuchun. 2004. Les Neuf
Chapitres: Le classique mathématique de la Chine
ancienne et ses commentaires. Dunod, Paris.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of Thoughts
Prompting: Disentangling Computation from Rea-
soning for Numerical Reasoning Tasks. 7Transac-
tions on Machine Learning Research.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided Language
Models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764—
10799. PMLR.

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and
Noah D. Goodman. 2023. Solving Math Word Prob-
lems by Combining Language Models With Sym-
bolic Solvers. Preprint, arXiv:2304.09102.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring Mathematical
Problem Solving With the MATH Dataset. Preprint,
arXiv:2103.03874.

Kuei-Chun Kao, Ruochen Wang, and Cho-Jui Hsieh.
2024. Solving for X and Beyond: Can Large
Language Models Solve Complex Math Problems

49

with More-Than-Two Unknowns?
arXiv:2407.05134.

Preprint,

Agathe Keller and Alexei Volkov. 2014. Mathematics
Education in Oriental Antiquity and Middle Ages.
In Alexander Karp and Gert Schubring, editors,
Handbook on the History of Mathematics Education,
pages 55—83. Springer, New York.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
Language Models are Zero-Shot Reasoners. Ad-
vances in Neural Information Processing Systems,
35:22199-22213.

Tina Su-lyn Lim and Donald B. Wagner. 2017. The
Continuation of Ancient Mathematics: Wang Xiao-
tong’s “Jigu Suanjing”, Algebra and Geometry in
7th-Century China. NIAS Press, Copenhagen.

Jean-Claude Martzloff. 2006. A History of Chinese
Mathematics, 2nd edition. Springer, Berlin.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V. Le, and Denny
Zhou. 2022. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. Advances in
Neural Information Processing Systems, 35:24824—
24837.

Christian Wittern. 2016. Kanseki Repository. CIEAS
Research Report 2015, Special issue:1-80.

Wu Wen-Tsun. 2019. %2R - BUEBLAE [The
Complete Works of Wu Wen-Tsun - History of Math-
ematics]. Kexue chubanshe, Beijing.

Wu Wenjun and Shen Kangshen, editors. 2000. H
B KRGV 2 AR [Compendium of
the History of Chinese Mathematics Volume 4: From
Western Jin to the Five Dynasties]. Beijing shifan
daxue chubanshe, Beijing.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, and Hongsheng Li. 2023. Solv-
ing Challenging Math Word Problems Using GPT-4
Code Interpreter with Code-based Self-Verification.
Preprint, arXiv:2308.07921.

A System prompts and exemplar

Default system prompt: “Translate ancient Chi-
nese math problems into Python code, ensuring
that each section of code adheres to the structure
of the procedure (‘fii’) provided. Put the part of
the procedure that corresponds to each block of
code as a comment before the block. Ensure that
the complete procedure is encoded. Use the class
‘Fraction’ to represent numbers that might not be
integers and use the appropriate units for each cal-
culation. Don’t use any other external functions.”

https://doi.org/10.48550/arXiv.2402.00157
https://doi.org/10.48550/arXiv.2402.00157
https://doi.org/10.48550/arXiv.2402.00157
https://doi.org/10.48550/arXiv.2304.09102
https://doi.org/10.48550/arXiv.2304.09102
https://doi.org/10.48550/arXiv.2304.09102
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2407.05134
https://arxiv.org/abs/2407.05134
https://arxiv.org/abs/2407.05134
https://doi.org/10.1007/978-1-4614-9155-2_4
https://doi.org/10.1007/978-1-4614-9155-2_4
https://doi.org/10.48550/arXiv.2308.07921
https://doi.org/10.48550/arXiv.2308.07921
https://doi.org/10.48550/arXiv.2308.07921

Alternative system prompt: “Translate ancient
Chinese math problems into Python code. Ensure
that the complete procedure is encoded. Use the
class ‘Fraction’ to represent numbers that might
not be integers and use the appropriate units for
each calculation.”

System prompt for scenario without procedures:
“Translate ancient Chinese math problems into
Python code. Use the class ‘Fraction’ to represent
numbers that might not be integers and use the ap-
propriate units for each calculation. Don’t use any
other external functions.”

Zero-shot system prompt: “Translate ancient
Chinese math problems into Python code that com-
putes the values of the unknowns replaced by let-
ters (‘a’, ...) in the answer (‘& or “&’). Write
the solutions into variables that have exactly the
same name as the unknowns. Use the class ‘Frac-
tion’ to represent numbers that might not be inte-
gers and use the appropriate units for each calcu-
lation. Don’t use any other external functions.”

Exemplar for problem 1 from chapter 1 of the
Nine Categories:

User: “SHME+RP, R840, M A
] 2

Ji T H Efﬁéﬂ3§k$ﬁji%f$fiﬁo LAAGE — 1
Put+bErz, Wﬂﬁ FIHAZy—tH,

HH alo

Assistant:
11

Suppose there is a field with a
— width of 15 bu and a length
— of 16 bu.

Question: how large of a field
— does it make?

The procedure for rectangular
— fields says: The numbers of
— bu in width and length are
— multiplied with each other
— , obtaining the [number of]
— accumulated bu.

When dividing it by the mu-—
«— divisor , 240, it is the
— number of mu.

100 mu make 1 qing.

The answer says: s*ax mu.

[

#AE -+ 10

&
&

L =

RRAN
o7

B3
Fr?
II_{_—F

=
F

#IEE D B TR A5 F D
My = BB o« P E

#WAVE B+
wk vk = 240

#LLEAVE A0 Bz, Bl E
WA¥0 = Fraction(FfEW, WAE)
A X

a =

B Results by chapter

Table 7 shows accuracy separately for each chap-
ter.

C Examples of errors

Due to space considerations, only examples of the
most frequent categories of localized errors are re-
produced here. The complete annotated files can
be found at https://github.com/notiho/ancien
t-chinese-math-problems.

Misunderstood expression (Problem 17 from
chapter 1 of the Nine Categories): The relevant
fragment in the original textis “ X 4 = A, =4r A
L, N8z —, U882 = (Again,
there are three and one thlrd of a person, dividing
six cash, one third cash and three fourth cash). The
model translates this as “Suppose there are three
people. Each person is to receive one-third of the
total. The total is 6 gian, plus one-third of a gian,
plus three-fourths of a qian.” and produces the fol-
lowing code:

— A
N# =

Expected:
AN¥ = 3 + Fraction(1, 3)

Unit conversion (Problem 21 from chapter 3 of
the Master Sun): LLM output:

Convert sheng to hu (10 sheng =
— 1 hu)

Fraction(¥@ B =T, 10) #

— Total food in hu

a =

Expected (100 sheng = 1 hu):

https://github.com/notiho/ancient-chinese-math-problems
https://github.com/notiho/ancient-chinese-math-problems

Chap- Prob- Few-shot No No No Nurne.rical
Title Zero-shot| Few-shot| (alt. punctu- | trans- pro- solutions
ter lems . . .

prompt) | ation lation | cedures | provided

1 25(56.0 72.0(83.2 92.0(88.8 92.0|74.4 84.0/92.0 92.0/49.6 56.0/94.4 96.0

2 45(24.4 46.7|52.4 64.4|50.2 57.8|40.9 53.3(57.3 62.2| 7.1 8.9/56.0 73.3

3 19(51.6 63.2(165.3 78.9166.3 78.9|61.1 73.7|64.2 68.4|54.7 57.9|62.1 78.9

. 4 23149.6 65.2159.1 69.6/62.6 82.6|54.8 73.9(52.2 73.9153.0 56.5|/68.7 91.3

Cag;’:fries 5 34|37.6 64.7|58.8 70.6/56.5 64.7|56.5 64.7/49.4 55.9|34.1 41.2|63.5 73.5

6 28140.7 60.7|41.4 50.0{37.9 46.4|38.6 53.6|45.7 50.0|25.7 39.3|43.6 50.0

7 20(26.0 45.0{21.0 35.0{23.0 35.0(11.0 30.0{16.0 30.0{52.0 60.0|23.0 50.0

8 18(53.3 66.7({40.0 55.6|40.0 61.1|35.6 55.6(46.7 72.2145.6 72.2|150.0 77.8

9 24146.7 75.0|48.3 75.0(59.2 70.8|42.5 62.5|41.7 45.8|17.5 37.5|51.7 66.7

1 19168.4 73.7|34.7 63.2|46.3 63.2]49.5 73.7|25.3 36.8|56.8 63.2|34.7 52.6

Five 2 12168.3 75.0|163.3 66.7]66.7 66.7|65.0 66.7|81.7 91.7|51.7 58.3|65.0 66.7

Depart- 3 14(84.3 92.9(78.6 85.7|85.7 85.7|81.4 85.7|84.3 85.7|55.7 57.1|87.1 92.9

ments 4 12(21.7 41.7(40.0 50.0|33.3 41.7|36.7 50.0(45.0 58.3|16.7 25.0/38.3 50.0

5 10]50.0 60.0/52.0 60.0/50.0 50.0({60.0 60.0({52.0 60.0{48.0 60.0|/80.0 90.0

Master 2 23147.0 78.3160.9 73.9(57.4 73.9|54.8 73.9|56.5 73.9|45.2 56.5|53.0 69.6

Sun 3 34167.1 76.5|68.8 73.5168.8 76.5|70.0 76.5(68.2 73.5160.0 73.5|66.5 76.5

Sea 1 91 44 11.113.3 33.3|17.8 33.3| 6.7 33.3|13.3 22.2| 2.2 11.1| 44 11.1
Island

Contin- 1 20] 00 0.0/ 0.0 0.0/ 0.0 0.0/ 0.0 0.0/ 0.0 0.0 1.0 50| 2.0 10.0
uation

Table 7: Accuracy in percent by chapter

a = Fraction (8=, 100)

Code error (fractions) (Problem 8 from chapter
1 of the Five Departments): LLM output:

DAY 2
BE = 5 /4

Expected (division produces fractional result):

% = Fraction(4, 4)

51

	Introduction
	Related Work
	Building a Dataset
	Solving the Problems with a LLM
	Experimental setup
	Discussion

	Further Use of the Generated Code
	Conclusions
	System prompts and exemplar
	Results by chapter
	Examples of errors

