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Abstract

Creating instruction data and evaluation benchmarks for serving Large language models often involves
enormous human annotation. This issue becomes particularly pronounced when rapidly developing such
resources for a non-English language like Japanese. Instead of following the popular practice of directly
translating existing English resources into Japanese (e.g., Japanese-Alpaca), we propose an efficient self-
instruct method based on GPT-4. We first translate a small amount of English instructions into Japanese
and post-edit them to obtain native-level quality. GPT-4 then utilizes them as demonstrations to generate
Japanese instruction data automatically. We also construct an evaluation benchmark containing 80 questions
across 8 categories, using GPT-4 to automatically assess LLMs’ response quality without human references.
The empirical results suggest that the models fine-tuned on our GPT-4 self-instruct data significantly outper-
formed the Japanese-Alpaca across all three base pre-trained models. Our GPT-4 self-instruct data allowed
the LLaMA 13B model to defeat GPT-3.5 (Davinci-003) with a 54.37% win-rate. The human evaluation exhibits
the consistency between GPT-4’s assessments and human preference. Our high-quality instruction data and

evaluation benchmark are released here.!?
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1. Introduction

Recent advancements in large language mod-
els (LLMs) have aimed to refine their capacity to
accurately follow human instructions and nav-
igate intricate scenarios (Chiang et al., 2023;
Taori et al., 2023; Peng et al., 2023; Wang
et al., 2023a). This target can be accomplished
by supervised fine-tuning (SFT) using manu-
ally (Databricks, 2023; Kopf et al., 2023) or auto-
matically (Wang et al., 2023b) generated instruc-
tion data. A prevalent method in this domain
is self-instruction (Wang et al., 2023b; Honovich
et al., 2022; Xu et al., 2023), which generates
English SFT data with a state-of-the-art (SOTA)
LLM, such as GPT-4 (OpenAl, 2023) to train open-
source LLMs. This method proves to be an ef-
fective and efficient way to strengthen open-
source LLMs with minimal human effort. How-
ever, a notable limitation of current method-
ologies is their predominant focus on English,
leading to the gap in the abundance of data re-
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sources between English and other languages,
such as Japanese.

Recent work (rinna, 2023; Kunishou, 2023)
attempts to solve this gap by using machine
translation to convert an English instruction
dataset to Japanese. For instance, Japanese-
Alpaca (Kunishou, 2023) is fine-tuned with the
instruction data translated from English Alpaca
generated by GPT-3.5 (Brown et al., 2020). We
suspect that the original English data is gener-
ated by outdated LLMs such as GPT-3.5, and
translation could diminish the quality of instruc-
tion.

This paper proposes a novel method for
directly generating Japanese instruction with
GPT-4. We first translated the original En-
glish manual seed instruction tasks (Taori et al.,
2023) into Japanese. Native Japanese speak-
ers proofread the translations to ensure native-
level fluency and natural expression. The self-
instruction method was then employed, utiliz-
ing GPT-4 to generate diverse instruction data.
This self-instruct method generated data no-
tably outperformed the data directly translated
from English in Table 4.

Besides the lack of instruction data, another
gap exists in the shortage of resources for evalu-
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ating Japanese LLMs. How to evaluate LLMs re-
mains an open question. An effective and popu-
lar approachis to construct question-answering
pairs of various aspects (e.g., knowledge, writ-
ing, coding, etc.) to comprehensively assess
LLMs’ capabilities. However, constructing such
evaluation benchmarks involves human efforts
to create reference answers, which is costly and
time-consuming.

Encouragingly, an increasing number of stud-
ies (Chiang et al., 2023; Wang et al., 2023a; Chen
et al,, 2023) have revealed that LLMs like GPT-
4 show the reliable capability to assess model
outputsin a reference-free manner, i.e., no need
for human reference. To solve the second gap,
we propose to follow the reference-free trend
to construct the evaluation benchmark with 8
categories of 80 Japanese questions translated
from English Vicuna (Chiang et al., 2023), design
Japanese prompts to enhance the evaluation re-
liability, and let GPT4 be the judge with no refer-
ence offered.

In summary, the existing two gaps largely in-
fluence the fast development of LLMs in non-
English languages. In this paper, we focus on
a case study of Japanese to build a bridge be-
tween the two gaps above between English and
Japanese, with minimal human effort. We con-
clude our contributions as follows:

+ High-quality Japanese instruction dataset
generated by GPT-4 self-instruct for LLM
SFT.

+ Japanese LLMs evaluation benchmark with
8 categories of 80 Japanese questions trans-
lated by native speakers and assessed by
GPT-4 for evaluation .

» Experiment results demonstrate that mod-
els fine-tuned on our GPT-4 self-instruct
data consistently outperform existing ap-
proaches, and human evaluations validate
the consistency between GPT-4’s assess-
ments and human preferences.

2. Related Work

2.1. Instruction Data Generation

The success of instruction tuning (Longpre et al.,
2023; Wei et al., 2022a; Zhang et al., 2023) re-
quires that the instruction data is sufficiently di-
verse and representative to unlock LLMs’ poten-
tial for solving downstream tasks. High-quality
instruction datasets are often accumulated by
human annotation. Databricks (2023); Kopf
et al. (2023) gather instruction data via crowd-
sourcing. Recently, Wang et al. (2023b); Taori

et al. (2023); Chiang et al. (2023) Wang et al.
(2023a) have sparked a trend in automatically
generating instruction data by distilling it from
other LLMs with proper prompt guidance.

For a non-English language, such as
Japanese, due to the high cost and time
consumption of manual annotation, a typi-
cal approach (rinna, 2023; Kunishou, 2023)
is to translate English instruction data into
Japanese for fine-tuning Japanese LLMs such
as Japanese-Alpaca. We argue the outdated
version of the English source and the limits of
translation quality of this approach. Therefore,
we propose a novel method for generating
Japanese instruction with GPT4 directly.

2.2. LLM Evaluation

Recently, constructing question-answering
pairs of various aspects (e.g., knowledge, writ-
ing, coding, etc.) to assess LLMs’ capabilities
comprehensively has become popular. Several
QA benchmarks with manual reference answers
have been established (Bai et al., 2022; Geng
et al., 2023; Wang et al., 2023b). Leveraging
LLMs like GPT-4 to assess model answers in
a reference-free manner naturally becomes a
trend due to its convenience and efficiency (Chi-
ang et al., 2023; Wang et al., 2023a; Chen et al.,
2023). Though studies like Wang et al. (2023a);
Min et al. (2022); Zheng et al. (2023) suggest that
the judgment of LLMs may exhibit certain biases
to answer length and order, these issues can be
gradually alleviated with the advancement of
prompt research and model performance. We,
therefore, employ a reference-free evaluation
scheme utilizing the GPT-4 judge. Our compre-
hensive manual evaluation reveals that GPT-4’s
assessments are highly consistent with human
preference.

3. Methodology

Our methodology consists of two parts. The first
part is the generation of Japanese instruction
data for LLMs SFT. With them, we can fine-tune
various pre-trained models on natural and high-
quality instruction data. The second part entails
the construction of a credible evaluation bench-
mark for Japanese LLMs. The following subsec-
tions elaborate on the critical components of
our methodology.

3.1. GPT-4 Self-instruct Generation

Figure 1 shows the flow chart of our self-instruct
generation method. We revisited the original
self-instruct method, which leverages a limited
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Figure 1: The flow chart of our self-instruct proposal

amount of English seed tasks to generalize and
generate new task data. Our method translates
that small number of seed tasks into Japanese
and manually post-edits them to achieve native-
level quality. We can then utilize GPT-4 to
generate high-quality Japanese data directly.
We assume that such native seeds-guided self-
instruct data will substantially surpass the qual-
ity of translated data.

3.1.1. Translate Seed Tasks

To generate a large number of high-quality in-
struction data through self-instruct, we must en-
sure that the quality of the seed tasks is suf-
ficiently high. We use the same 175 human-
written instruction seeds as Taori et al. (2023);
Wang et al. (2023b). First, we utilized GPT-4 to
translate them into Japanese. Then, two na-
tive Japanese speakers help to review and post-
edit the translations to obtain native-quality
Japanese seed tasks.

3.1.2. Generate Self-instruct Data by
GPT-4

Then, we use the LLM GPT-4, which is accessed
through the OpenAl AP, to generate the instruc-
tion data.

Construct Japanese self-instruct prompt
We follow Taori et al. (2023); Wang et al. (2023b)
to construct a comprehensive prompt with the
following requirements to guide GPT4 to gener-
ate new instruction data automatically.

+ Instruction Diversity: This requirement en-
courages the generated instruction with di-
verse content.

+ Instruction Feasibility: It emphasizes re-
stricting the generated instruction, which
should be able to be completed by LLMs
rather than necessitating visual or audio in-
struction.

« Instruction Format: This part defines the
format of the generated instruction. For in-
stance, the generating instructions should
be in Japanese and comply with certain
length constraints.

« Input Section: This requirement clarifies
the role of the input section, which serves
as a comprehensive supplement to the in-
struction. Importantly, sometimes, it is
also acceptable for an instruction data ex-
ample to lack an input section.

« Output Section: It encapsulates the rules
of the output section. The output must re-
spond appropriately to the instruction with
length limitation.

Generate instruction data We utilize GPT-4
to generate the new instruction data in a few-
shot manner. At each generation round, we ran-
domly sample 3 task examples from seed tasks
to append them to the prompt. These task ex-
amples will be utilized by GPT-4 as a demonstra-
tion to generate instruction data of the same
format. The prompt instructs GPT-4 to gener-
ate new examples until the completion of a to-
tal number of 20, including 3 seed tasks and 17
newly generated examples.

Check the similarity of the generated data
and filter In order to encourage diversity of
the instruction data and ensure the instruction
data quality, we need to check the similarity
and filter the overly similar instruction exam-
ples generated in each round. After each gener-
ation round, we use Juman++ (Tolmachev et al.,
2018) to do segmentation and use ROUGE-L (Lin,
2004) to assess the similarity of a newly gen-
erated instruction against all previously gener-
ated data within the instruction data pool. If
any data in the instruction data pool with the
ROUGE-L score exceeding 0.7, it signifies that
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the newly generated instruction lacks sufficient
diversity and should be excluded.

In addition to this similarity assessment, the
work also employs a blacklist to filter out in-
struction data that is either unsuitable for SFT
or cannot be processed by LLMs. All instruc-
tion containing keywords such as audio, video,
images, and so forth will be filtered out by the
blacklist.

We finally generated the same amount of in-
struction data as the English instruction data, a
total of 52K examples.

3.2. Evaluation Benchmark

In this section, we describe the process of cre-
ating a QA benchmark consisting of 80 high-
quality questions for evaluating Japanese LLMs.
The benchmark follows the reference-free eval-
uation manner, which leverages GPT-4 to assess
the quality of the LLM answers.

3.2.1. Obtain Evaluation Question Data

The original questions data set, drawn from
the English Vicuna benchmark, is divided into
8 common question categories of user prompts
to guide LLMs response generation. These ques-
tions are designed to test instruction-following
ability, covering common use cases and focus-
ing on challenging questions to differentiate
models. We manually translate these questions
into Japanese and proofread them to ensure
their quality. We list a common-sense question
below.

RT—MEZREDS Ty hO—X &2 —
ICE-STD e, BVEWVWSREREZELDA
MVWB—AHT. 5 LIERZEITEAN
WBDIFRETIN?’ (Why do some
people enjoy the sensation of be-
ing scared, such as watching horror
movies or going on roller coasters,
while others avoid these experiences?)

3.2.2. Assess LLM Responses by GPT-4

In this work, each evaluated LLM needs to an-
swer all of those 80 Japanese questions. We will
use two methods to evaluate these responses.

+ Pairwise mode: GPT-4 performs pairwise
comparisons of responses from different
LLMs to ascertain which performs better or
yields comparable results for a given ques-
tion (see Figure 2). The LLMs’ capabilities
can be evaluated by statistically compar-
ing the pairwise models’ win/loss/tie rates
across 80 questions.

LLM1

LLM2

e

Figure 2: Pairwise mode flow chart

G

Judge

Figure 3: Single score mode flow chart

[

LLM1 Answer

+ Single score mode: GPT-4 directly assigns
a score to an answer generated by LLMs
(see Figure 3). GPT-4 will judge these an-
swers by considering factors such as the re-
sponse’s helpfulness, relevance, accuracy,
depth, creativity, and level of detail. Then
GPT-4 assigns a score ranging from 1 to 10.
Based on this score, we can directly assume
the ability between the different models
on specific questions. It is also a method
to evaluate the capability of LLMs quantita-
tively.

4. Experiment Setup

We conducted experiments to investigate two
research questions: (1) Is the GPT-4 self-instruct
data significantly better than the data trans-
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lated from English Alpaca? (2) How is the perfor-
mance of our instruction fine-tuned LLMs com-
pared to GPT3.5?

4.1. Setting of Fine-tuning
Instruction Data
4.1.1. Two Sets of Instruction Data

This section aims to demonstrate the superior
quality of the instruction data generated by the
self-instruct method via GPT4. Two distinct sets
of instruction data are deployed for the SFT of
various pre-trained models:

« MT Alpaca (baseline): Instruction data is
machine-translated from Stanford Alpaca
in English. The original English instruction
data is self-instructed by GPT-3.5 (Davinci-
003), utilizing a seed set of manual instruc-
tions.

+ Self-instruct (proposed): Utilizing GPT-4-
0613 as an instruction-following model,
the instruction data were generated by
our self-instruct method with high-quality
Japanese seed tasks.

We perform SFT with these two sets of instruc-
tion data for multiple pre-trained models. After-
ward, we can compare the performance of the
pair of trained LLMs by two evaluation methods
to judge the quality of the instruction data used
for SFT.

4.1.2. Multiple Pre-trained Models

In this experiment, we choose three pre-trained
models for supervised fine-tuning. The target
pre-trained models include:

« LLaMA2 7B,13B
+ LLaMA7b
« OpenCALM 7B

LLaMA (Touvron et al, 2023a) and
LLaMA2 (Touvron et al.,, 2023b) represent
the largest, highest-quality cross-lingual pre-
trained models available to the community.
OpenCALM (Andonian et al., 2021; CyberAgent,
2023) comprises a language model pre-trained
on Japanese datasets, including Wikipedia and
Common Crawl in Japanese. Given this model’s
pre-training foundation in Japanese data, its
performance is anticipated to be superior when
SFT with Japanese instruction data.

We leverage the low-rank adaptation
(Lora) (Hu et al.,, 2021) in our fine-tuning,
which proves to be computationally efficient

while ensuring the model’s performance. For
training details, we follow standard Lora hyper-
parameters for all models: we fine-tune for 4
epochs with a learning rate of 5e — 5 and 100
warmup steps. We also set the Lora rank to be
8. All models are trained on a single A100 GPU.
For the inference, we set a temperature of 0.95
and max new tokens of 512 for all models.

In this work, due to laboratory budget con-
straints, we selected the 7B model as the pri-
mary model for SFT and comparison target. Ad-
ditionally, within laboratory budget constraints,
we selected the larger size model, LLaMA2 13B,
as the pre-trained model, intending to pursue
optimal performance for challenging GPT-3.5.

4.2. Evaluate the Fine-tuned LLMs
with Our Benchmark

After generating answers to the questions from
the benchmark with language models, we can
compare the language capability among the
models. In this paper, we implement two lines
of evaluation:

« Ploting learning curve with increasing
data: We designate the instruction data
from 1K, 2K, 5K, and every subsequent
10K as checkpoint. At that time, we will
randomly draw equivalent samples of in-
struction data from the machine-translated
instruction data for SFT. Each checkpoint
will then be assessed using the single score
mode, and a corresponding learning curve
will be plotted for each pre-trained model.
The main target of this assessment is to
monitor any changes in score throughout
the SFT process with increasing the size of
instruction data.

« Comparing fine-tuned models to GPT-
3.5: For the comparison of each model af-
ter the fine-tuning on 52K instruction data,
we leverage two modes: the single-score
mode to directly score each model’s perfor-
mance and the pairwise mode to compare
each model with the GPT-3.5 (davinci-003).
We use two modes to enhance our evalua-
tion’s accuracy and analyze the consistency
between the two modes in the evaluation.

5. Result Analysis

5.1. Plot Learning Curve with the

Single-score Mode

As in Figures 4, 5, and 6, we evaluated each
checkpoint on 80 questions in the single mode
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Figure 4: The LLaMA-2 7B learning Curve
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Figure 5: The LLaMA 7B learning Curve

to observe the performance improvements
caused by the increasing instruction data. We
also tested the answer scores of the pre-trained
model without SFT and concluded that SFT
with instruction data will significantly improve
the models’ language ability and performance.

Furthermore, it is worth noting that as the
amount of data increases, the scores of the
model answer will increase smoothly and finally
converge to a constant value. In contrast, an in-
crease in the amount of data from 1K to 5K re-
sulted in a significant increase in the model an-
swer score. The model answer score is optimal
when the amount of instruction data increases
to 5K. We argue that the instruction data used
to SFT the language model while ensuring high
quality requires only a small amount of data to
dramatically improve the model’s capabilities
and performance.

Meanwhile, comparing two sets of instruction
data, our dataset substantially improves the
models’ performance compared to the MT Al-
paca with a large margin at each checkpoint,
confirming the high-quality of our instruction
data. Subsequently, just 5K self-instruct data
leads to a competitive performance with the
whole 5K MT Alpaca data, indicating that the
key to improving the model’s effectiveness is
through a small amount of high-quality data in-
stead of boosting the quantity of data.

Open-calm 7B
45
35

25

Single score by GPT-4
w

1.5

No 1K 2K 5K
SFT

16K 25K 35K 45K 52K

—e—MT Alpaca (baseline) Self-instruct (proposed)

Figure 6: The Open-calm 7B learning Curve

With that conclusion, we only need to manu-
ally translate the seed task and then generate a
small amount of instruction data through self-
instruction to constitute a high-quality instruc-
tion dataset for a language.

5.2. Fine-tuned Model Performance
Compared to GPT3.5

5.2.1. Single Score Mode

Base model | Instruction | Score
Davinci-003 - | 5.86
LLaMA 7B MT Alpaca 2.05
LLaMA 7B Self-instruct 2.36
LLaMA2 7B MT Alpaca 4.45
LLaMA2 7B Self-instruct 5.71
Open-calm 7B | MT Alpaca 3.36
Open-calm 7B | Self-instruct 4.75
LLaMA2 13B MT Alpaca 5.30
LLaMA2 13B Self-instruct | 6.06
Table 1: Single scores of models with 52K

data. The underline denotes the higher score
between two sets of instruction data.

In this section, we employed the single mode
to evaluate all the models fine-tuned with 52K
instruction data with a single score of quality
judged by GPT-4, including GPT-3.5 (Davinci-
003). As shown in Table 1, for all four base
models, fine-tuning the self-instruct data signif-
icantly outperforms MT Alpaca, which validates
our claim that, due to GPT-4 and the omission
of the translation step, the quality of our self-
instruct data significantly surpasses MT Alpaca.
An interesting observation is that stronger mod-
els benefit more from our proposal. For in-
stance, LLaMA2 obtained 1.26 points increase,
and Open-calm obtained 1.39 points increase,
which substantially surpasses the 0.31 points in-
crease of LLaMA.

After being fine-tuned with the self-instruct
data, LLaMA2 7B performs very close to GPT-

13542



generic

writing

coding and math

Q0 1,2 3 4)5 (86 /I

counterfactual

fermi

knowledge

model
Davinci-003
LLaMA2_13B_mt_data_52K
LLaMA2_13B_self-instruct_data_52K
LLaMA2_7B_mt_data_52K
LLaMA2_7B_self-instruct_data_52K
LLaMA _7B_mt_data 52K
LLaMA_7B_self-instruct_data_52K
OpenCALM_7B_mt_data_52K
OpenCALM_7B_self-instruct_data_52K

roleplay

common-sense

Figure 7: Single score performance of 52K fine-tuned models and GPT-3.5 (davinci-003) of each ques-

tion category

Base model | Instruction | Win-rate
LLaMA 7B MT Alpaca 5.99
LLaMA 7B Self-instruct 13.12
LLaMA2 7B MT Alpaca 33.12
LLaMA2 7B Self-instruct 46.25
Open-calm 7B | MT Alpaca 15.62
Open-calm 7B | Self-instruct 34.37
LLaMA2 13B MT Alpaca 32.50
LLaMA2 13B Self-instruct 54.37

Table 2: Win-rate compared with GPT-3.5 with
52K instruction data. The underline denotes
the higher win-rate between two instruction
sets.

3.5, and 13B finally outperforms GPT-3.5 by 0.2
points. This demonstrates the great potential
of our proposal in the Japanese language, en-
abling smaller LLMs to approach a similar gen-
eration quality to GPT-3.5.

5.2.2. Pairwise Win-rate Mode

This section employed the pairwise mode to
compare each fine-tuned LLM to the GPT-3.5
(Davinci-003). GPT-4 judges the answer pairs
and assigns ‘win/lose/tie’ against GPT-3.5. The
results are finally converted into a win-rate
score for each model according to the following
equation.

win + “79
win + loss + tie

In Table 2, a similar observation is found that
the LLMs fine-tuned with the self-instruction

win-rate =

data achieve higher win-rate scores against GPT-
3.5. LLaMA2 7B can achieve 46.25% win-rate
against GPT3.5, and the 13B model significantly
beats it with a 54.37% win-rate.

In addition, based on the data in Table 2 and
Table 1, there is apparent significant consis-
tency between the single score mode and pair-
wise win rate mode. The models evaluated
with superior scores in single score mode also
yielded a higher win-rate against GPT-3.5.

5.2.3. Scores on Each Question Category

Figure 7 shows that LLMs, when SFT with self-
instruct data, perform competitively or even
better in most categories. Especially, LLaMA2
SFT with 52K self-instruct data achieves a
higher score than GPT-3.5 davinci-003 in all cat-
egories except ‘coding and math’ and ‘fermi’.

A tentative hypothesis could be that a suffi-
cient size is necessary for answering both cat-
egories, considering the emergent ability of
LLMs (Weietal.,2022b), while the size of 13B lim-
its our models.

Another possible reason could be the defi-
ciencies of generated instruction data involving
these two categories, leading to poor perfor-
mance compared with GPT-3.5.

6. Additional analysis

6.1. Manual Instruction Data Quality

Check

We conducted a quality assessment of the in-
struction data by randomly selecting 100 sam-
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Quality Category | Sample Instruction

| Sample Input

| Sample Output

Proofread Sample

High quality

ABENIXEZ. SROFHEA

DB ESICHEMELTIIEE L,

(Simplify the input text so that a
5-year-old child can understand
it.)

NEIIREN B IRABMITT o/
OY—ZERERLTUVWEEA.
(Humanity has not yet discovered
standard intergalactic navigation
technology.)

EREAEEIFEDOEDEIC
T<HEEZRDITTVWEEA.
(As yet, humans have not
found a way to reach the
distant stars of the universe.)

Non-fluent text

52 bNIciEROIEF 2LV
BZ T BRIV ROIEFZ
ER LTS EE W, ]
(“Rearrange the order of the
given instructions to create a

FLLWI—H—TAU> ~EEM
L. OJ1Y L TRRT—R%E|
DYT3

(Add a new user account, login
and assign a password.)

mJ1>L. HLuna—+—
FHOYEEEBML. NKZXT—
RZEZDHTS, |
(“Log in, add a new user
account, and assign a

YRS

(appropriate instructions)

valid sequence of commands.”) password.”)

IL—X %=L IEEEE->TES NAOy FOREEIF. RITH NA Oy ~OHEEIF. RITH RAITHZIRIET S C
Formatviolation | EL&EL\, ZRRELTRIFI LT, ZIRELTRITIBETY CERIEIIETT,

(Rewrite the phrases using (A pilot’s job is to operate (A pilot’s job is to operate (to operate and fly

parallel structures.) the airplane for flying.) the airplane for flying.) airplanes.)

Table 3: Instruction data samples in three quality categories. Red denotes the problematical con-

tent.

Dataset HQ NT FV

MT Alpaca 42 28 30
Self-instruct (ours) 67 27 6

Table 4: Manual check of two types of instruc-
tion data. HQ, NT, and FV denote high-quality,
non-fluent text and format violation, respec-
tively.

ples each from the self-instruction and machine-
translated data. We then manually sorted the
samples into three quality categories:

- Format violation: An instruction text is
non-instructive, or a question/answer text
does not follow or is not coherent with an
instruction.

+ Non-fluent text: Except for the above, an
instruction, question, or answer text is syn-
tactically or semantically incorrect or un-
natural.

« High quality: An instruction, question,
and answer texts adhere to the format of in-
struction data and are both fluent and nat-
ural.

Note that we did not focus on the exact correct-
ness of the answers. This is because the pri-
mary objective of instruction data is to train the
model to follow instructions, not to provide ex-
act factual information.

In Table 3, we give an example for each qual-
ity category. In the high-quality example, the in-
struction data does not contain apparent prob-
lematic content. In the non-fluent example, the
red part ‘“‘B%7 1< > RDJERE’ means ‘a valid
command sequence. However, in Japanese,
it is preferred to use ‘%8R (appropriate
instructions)’ rather than ‘valid command se-
quence’ in this context. In the format violation
example, theinstruction requests to ‘rewrite the
phrase using parallel structures.” However, the

category win loss tie
generic 3 2 5
knowledge 4 1 5
roleplay 3 3 4
common-sense 4 1 5
fermi 2 1 7
counterfactual 5 0 5
coding 3 0 4
math 0 0o 3
writing 7 0 3
Total 31 8 41
Table 5: The human evaluation results of

LLaMA2 13B with self-instruct data vs LLaMA2
13B with MT Alpaca data. Both models use 52K
instructions.

output section does not follow the instructions
atall.

Table 4 clearly demonstrates that the qual-
ity of self-instruct data is significantly higher
than that of MT Alpaca data. However, 6 sam-
ples from the self-instruction data still exhibit
format-violations.

6.2. Manual Evaluation of The Model
Answers

Human evaluation was conducted between
LLaMA2 13B fine-tuned with the self-instruct
data and MT Alpaca data. The evaluation fol-
lowed the same method as the pairwise mode
evaluation of comparing two models and judg-
ing a win, loss, or tie result. The human evalua-
tion results are shown in Table 5.

Across all categories, the self-instruction data
outperforms the MT Alpaca data. The human
evaluation results are consistent with the GPT-
4 evaluation presented in Section 5.1 and 5.2. It
underscores thesignificance of high-quality self-
instruct instruction data.
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GPT-4 baseline Win-rate
MT Alpaca (5K) 55.6

Proposal
Self-instruct (5K)

Table 6: We separately STF LLaMA2 7B with 2 in-
struction datasets. This is the Win-rate for the
proposal directly compared to the translated
GPT-4 Alpaca.

When analyzed by category, the most sub-
stantial improvement was observed in the coun-
terfactual category. In answers to counterfac-
tual questions, the self-instruction data can pro-
vide greater depth and detail. On the other
hand, roleplay and math categories displayed
no noticeable enhancements. In the case of
math, both provided incorrect arithmetic re-
sults for all questions. It suggested that the
quality of instruction has less influence on arith-
metic performance.

6.3. Ablation Study

Itis worth noting that in our study, we used GPT-
4 to generate Japanese instruction data, while
in the baseline work, they translated the En-
glish data generated by GPT-3.5. This difference
leaves a concern that we are not sure which
factor leads to the performance improvements
most, whether it is the performance gap be-
tween GPT-4 and GPT 3.5 or the difference made
by the proposed approach.

In order to address this concern, we designed
the following ablation study. We randomly
sampled 5K samples from the Alpaca GPT-4
instruction data (Peng et al., 2023). This En-
glish instruction-following data is generated by
GPT-4 using the Alpaca prompt for fine-tuning
LLMs. Then, we translated it into Japanese us-
ing DeepL. Also, we randomly sampled 5K sam-
ples from our Japanese Self-instruct dataset.
We then perform SFT on LLaMA2 7B using these
2 datasets.

« Self-instruct (5K): 5K instruction data gen-
erated by our approach.

« MT Alpaca (5K): 5K GPT-4 Alpaca instruc-
tion data machine translated by DeepL.

From Table 6, we can see that even though
the original English dataset is also generated
by GPT-4, the translated baseline performs sig-
nificantly worse than our proposal. The result
demonstrates that the machine translation pro-
cess does lead to the deterioration in data qual-
ity, and our proposal can effectively avoid such
deterioration.

7. Conclusion

This paper introduces an efficient paradigm for
developing resources in non-English languages
like Japanese with minimal human effort. By
translating a small set of English instructions
into Japanese and subsequently post-editing
them for native-level quality, we enable GPT-4
to generate Japanese instruction data. Besides,
we construct an evaluation benchmark with 80
questions across eight categories, using GPT-
4 to automatically assess large language mod-
els with no demand for human references. Ex-
periment results demonstrate that models fine-
tuned on our GPT-4 self-instruct data consis-
tently outperform existing approaches, and hu-
man evaluations validate the consistency be-
tween GPT-4’s assessments and human prefer-
ences, underscoring the promise of our method-
ology for advancing large language models in
non-English contexts. Additionally, during the
analysis, we also found that the quality of in-
struction data showed more significance than
the quantity of the data, which may further
guide the study in the instruction tuning field.
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