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Abstract
We present BLASER 2.0, an automatic metric
of machine translation quality which supports
both speech and text modalities. Compared to
its predecessor BLASER (Chen et al., 2023),
BLASER 2.0 is based on better underlying text
and speech representations that cover 202 text
languages and 57 speech onesand extends the
training data. BLASER 2.0 comes in two va-
rieties: a reference-based and a reference-free
(quality estimation) model. We demonstrate
that the reference-free version is applicable not
only at the dataset level, for evaluating the over-
all model performance, but also at the sentence
level, for scoring individual translations. In par-
ticular, we show its applicability for detecting
translation hallucinations and filtering training
datasets to obtain more reliable translation mod-
els. The BLASER 2.0 models are publicly avail-
able at github.com/facebookresearch/SONAR.

1 Introduction

Automatic evaluation of machine translation (MT)
is difficult both because it requires good under-
standing of both source and target languages, and
because the number of possible ways to express
a thought in a language is often intractably large.
Although there are commonly accepted evaluation
metrics, such as BLEU (Papineni et al., 2002), the
search of the MT community for better metrics is
still ongoing.

Traditionally, MT is evaluated by comparing
the translations to the references with metrics
like BLEU/spBLEU (NLLB Team et al., 2022) or
ChrF++ (Popović, 2015) that estimate the propor-
tion of common word or character n-grams in the
texts. However, to evaluate translation accuracy,
we would really prefer to compare the meanings
(not the surface forms) of the translation and the
source (not the reference). Also, when the trans-
lation is in the speech modality, n-grams are no
longer available, so the direct comparison is impos-
sible. A workaround for this is to use automatic

speech recognition systems and compare texts (e.g.
ASR-BLEU by Jia et al. (2019)), but ASR intro-
duces an additional layer of errors.

A principled solution would be to use represen-
tations for the source and translation that abstract
away from the form and the language, but preserve
the meaning, and use an appropriate function to
compare them. BLASER (Chen et al., 2023) is us-
ing LASER3 embeddings (Heffernan et al., 2022)
as the representations, and a trainable function for
predicting the human judgement of semantic sim-
ilarity based on the source, translation, and refer-
ence embeddings. It was partially inspired by the
COMET model (Rei et al., 2020) that later evolved
into CometKiwi (Rei et al., 2022) and xCOMET
(Guerreiro et al., 2023). Another notable reference
is BLEURT (Sellam et al., 2020). All these metrics
are based on text-only representations, and may
not be easily extendable for speech or for texts in
other languages. BLASER seems to be the only MT
evaluation model based on language- and modality-
agnostic sentence representations, but it has been
applied only for evaluating S2ST outputs1.

This paper describes the BLASER 2.0 models,
which build upon BLASER by using better under-
lying text and speech representations based on
SONAR (Duquenne et al., 2023) and extending
the training data. It also introduces a reference-
free model (BLASER 2.0-QE), suitable for a more
diverse set of evaluation tasks where a reference
translation is not always available. To the best of
our knowledge, this is the first non-cascaded2 QE
metric for speech translation that covers a wide
range of languages. Finally, this paper demon-
strates the application of BLASER 2.0 for tasks
beyond evaluating speech translation models: hal-
lucination detection and filtering MT training data.

1S2ST, S2TT, T2ST and T2TT stand for speech-to-speech,
speech-to-text, text-to-speech and text-to-text translation.

2That is, a metric that encodes the speech directly instead
of relying on ASR outputs.
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Figure 1: Left: the architecture of SONAR (Duquenne et al., 2023). Right: the architecture of BLASER 2.0-QE.
The source and translation embeddings can be computed from text or from speech, interchangeably.

2 Development of BLASER 2.0

BLASER 2.0 is the new version of BLASER (Chen
et al., 2023), which works with both speech and
text modalities — hence being modality-agnostic.
Like its predecessor, our approach leverages the
similarity between sentence representations. It uses
SONAR embeddings (Duquenne et al., 2023), sup-
ports 57 languages in the speech modality and 202
in text, and is extendable to future encoders for
new languages or modalities that share the same
embedding space. The architectures of SONAR
and BLASER 2.0 are shown in Figure 1.

Architecture BLASER 2.0 takes the source in-
put, the translated output from any S2ST, S2TT,
or T2TT model, and the reference speech segment
or text, and converts them into embedding vectors
(es, et, and er, respectively). The reference-based
model version BLASER 2.0-Ref concatenates the 6
vectors of these embeddings and their derivatives3:
[er; et; es⊙et; |es−et|; er⊙et; |er−et|]. The result-
ing vector is fed into a small dense neural network
(a 3-layer perceptron with tanh activations) that
predicts an XSTS score for each translation output.
The reference-free model (called BLASER 2.0-QE,
for Quality Estimation) has a similar architecture,
but uses only source and translation. Thus, its in-
put to the perceptron is [es; et; es ⊙ et; |es − et|].
For both models, we mostly reuse the BLASER

hyperparameters (more details in Appendix A).
As an unsupervised baseline4 we use, like Chen

et al. (2023), the average of source-translation and
reference-translation cosine similarities.

Data The target labels for BLASER and BLASER

2.0 are obtained with XSTS (Licht et al., 2022), a
human protocol for annotating cross-lingual text

3The symbol ⊙ denotes here coordinate-wise multiplica-
tion, and |x| denotes coordinate-wise absolute values of x.

4It is introduced for ablation purposes: evaluating the im-
pact of including the trainable module in BLASER 2.0.

similarity on the scale from 1 (the source and trans-
lation share very little meaning) to 5 (the mean-
ing and style are preserved completely). XSTS
deliberately focuses on translation accuracy, and
does not penalize for fluency or audio quality is-
sues if they do not interfere with the meaning or
style preservation. The training data for BLASER

2.0 includes: the same S2ST annotations as in
BLASER;5additional S2ST, S2TT, and T2ST anno-
tations from internal studies6 based on FLEURS
(Conneau et al., 2023) and several other multilin-
gual datasets traditionally used in the speech trans-
lation research community; additional T2TT an-
notations from NLLB human evaluations (NLLB
Team et al., 2022). We filter out the audio files
longer than 30 seconds because the SONAR en-
coders were not trained with longer audios. For the
original BLASER data, train/test splits were reused;
other datasets were split randomly in 80/20 propor-
tion so that the same source audio or text always
goes to the same partition. Table 1 reports details
on the data. All the languages used for training
or evaluation of BLASER 2.0 models are listed in
Appendix F.

3 Experiments

3.1 Comparison to BLASER

Following the BLASER methodology, we evaluate
the models by Pearson correlation of their predic-
tions with XSTS scores for each translation direc-
tion. Their means are presented in the last four
columns of Table 1 for all data partitions. BLASER

2.0-REF outperforms the unsupervised baseline on
5Except the hk-en pair; SONAR does not support Hokkien.
6The studies included several versions of in-house end-

to-end speech translation models similar to UnitY(Inaguma
et al., 2023) and cascaded external models, including Whisper
and Google Translate chained with speech synthesis. It also
included some speech translations produced by humans. The
audio pairs were annotated by vendor-managed bilingual an-
notators who passed qualification tests, using the same XSTS
annotation guidelines (Licht et al., 2022) as in BLASER.
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BLASER 2.0 BLASER
Data partition test size train size systems langs ρunsup. ρRef ρQE ρRef

BLASER S2ST data 7795 7842 10 5 0.58 0.58 0.54 0.58
Other S2ST data 7462 18752 9 14 0.40 0.42 0.39
S2TT and T2ST data 5205 10246 7 8 0.42 0.47 0.54
T2TT data 20311 86776 2 59 0.41 0.45 0.45 0.26

All data 40773 123616 24 62 0.41 0.45 0.44

Table 1: The data for BLASER 2.0: test and train size, number of systems and languages, and average per-direction
Pearson correlation BLASER 2.0 and BLASER models with XSTS labels on the test subset of each partition.

each partition. BLASER 2.0-QE scores between
them in most cases, but for the mixed-modality
data, it outperforms the reference-based version.7

On the original S2ST BLASER test set, BLASER

2.0-REF achieves the same average correlation
with human judgements as BLASER, whereas the
unsupervised 2.0 model outperforms its predeces-
sor and reaches the same performance as the super-
vised one.8 This might indicate that the BLASER

data could be “easy” enough for the SONAR space
to achieve good performance without additional
training. The other data subsets seem to be more
difficult (maybe, due to the larger set of languages
or stronger translation systems), as the supervised
models mostly outperform the unsupervised one.

Although BLASER was intended for speech only,
we tried computing its scores with the T2TT data.
Their average is given in the last column of Table
1, and it is significantly below the BLASER 2.0
scores. BLASER 2.0, in contrast, shows robust
performance for all modality combinations.

3.2 Evaluation with SeamlessM4T data
Data. In Seamless Communication et al. (2023),
the SeamlessM4T end-to-end speech translation
model, as well a baseline model9 and human refer-
ences, were evaluated with the XSTS protocol. The
dataset, based on the FLEURS data (Conneau et al.,
2023), comprises 123260 translations (50% S2ST
and 50% S2TT) in 46 directions (23 languages to
and from English). We use this data to evaluate
BLASER 2.0 on its “native” task of speech transla-
tion evaluation, but with potentially more challeng-
ing data, as we expect the errors generated by these
strong translation models to be rather subtle.

7Most of this data comes from automatically aligned
datasets, where some references are misaligned with the
source. This demonstrates robustness of BLASER 2.0-QE
in case of unreliable references.

8A table in Appendix B displays performance of BLASER
2.0 and BLASER for each translation direction.

9Based on Whisper (Radford et al., 2023) and, for speech
outputs, on YourTTS (Casanova et al., 2022).

Experiments. With only three systems, system-
level correlations are not very informative, so we
focus on the item-level correlations within each
modality and translation direction, and on the corre-
lations of the mean scores for each combination of
modality, direction, and system. We report Spear-
man rank correlations. Because FLEURS has refer-
ences for all translation directions, we use BLASER

2.0-REF, and discuss the trends of its performance
across languages and modalities.

Results. For each of the 92 direction and modal-
ity combinations, item-level correlations of XSTS
scores and BLASER 2.0-REF predictions are pos-
itive, with the lowest of 15%, the highest of 85%,
and the mean of 45%. The group-level correlation
is 76%, suggesting that aggregated BLASER 2.0
scores can rank speech translation systems reliably.
Appendix C discusses these results in more detail.

3.3 Evaluation with WMT23 shared tasks

QE Hallucinations
Lang B2QE CK BS B2QE CK BS

en-de 0.26 0.41 0.34 0.93 0.95 0.87
en-gu 0.39 0.58 0.34 1.00 1.00 0.96
en-hi 0.31 0.39 0.28 0.98 0.98 0.90
en-mr 0.43 0.63 0.40 0.98 0.96 0.88
en-ta 0.37 0.55 0.51 0.99 0.99 0.89
en-te 0.25 0.23 0.19 1.00 1.00 0.97
he-en 0.50 0.62 0.47 0.96 0.95 0.82
zh-en 0.42 0.48 0.45 0.98 0.98 0.84

mean 0.37 0.49 0.37 0.98 0.98 0.89

Table 2: Spearman correlations of predictions with the
target on the halluciantion-free subset of the WMT 23
QE Task 1 sentence-level data (left), and ROC AUC
for detecting hallucinations on the same data (right).
B2QE stands for BLASER 2.0-QE, CK stands for
wmt22-cometkiwi-da, a comparably-sized model, and
BS stands for the baseline system.

Context. WMT Metrics shared task (Freitag
et al., 2023) and WMT Quality Estimation (QE)
shared task (Blain et al., 2023) evaluate the per-
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formance of various MT metrics in two princi-
pal settings: with and without access to reference
translations. The targets for these evaluation cam-
paigns are obtained through two human annota-
tion schemes: direct assessments (DA) and mul-
tidimensional quality metrics (MQM) (Lommel
et al., 2014). Both schemes do not focus specifi-
cally on translation accuracy, so they may be dif-
ficult for accuracy-specific metrics such as XSTS
and BLASER 2.0 that targets it. But if accuracy is
the main source of variation in translation quality,
evaluating it with BLASER 2.0 still makes sense.

Experimental Setup. To evaluate BLASER 2.0
in these settings, we compute BLASER 2.0-QE
scores on the QE shared task dataset and compare
its correlations with the human labels to the num-
bers reported by Blain et al. (2023). We also evalu-
ate BLASER 2.0-REF with the Metrics shared task
MTME toolkit.10. Note that we do not use any DA
or MQM training data for BLASER 2.0.

QE Results. On the QE shared task, BLASER

2.0-QE achieves the same average performance as
the baseline provided by the task organizers (Table
2), without being trained on the labels for this task.
However, it still lags behind a Comet-Kiwi model.

Hallucination detection. Table 2 also shows that
BLASER 2.0-QE significantly outperforms the
baseline and achieves the same performance as
COMET-Kiwi in detecting translation hallucina-
tions. This adds up to the evidence in Dale et al.
(2023) and Ropers et al. (2024) that BLASER 2.0
is competitive in hallucination detection.

Metrics Results. On the WMT23 Metrics shared
task benchmark, BLASER 2.0-REF achieves 0.711
average correlation with human annotations over
the 10 “tasks”, which is way below the SOTA met-
ric (0.825), but still higher than non-trainable base-
lines such as BLEU (0.696). Appendix D demon-
strates the full per-task results.

3.4 An ablation study for quality estimation

We use the QE shared task as an opportunity to clar-
ify the role of the sentence representation space, su-
pervised fine-tuning, and references in the BLASER

2.0 performance. With this purpose, we evaluate
the QE performance of supervised and unsuper-
vised BLASER and BLASER 2.0 models. For all

10github.com/google-research/mt-metrics-eval

models that require a reference embedding, we sub-
stitute it here with the source embedding, based on
the logic that a good reference should be seman-
tically equivalent to the source, and thus a good
representation space would map them into identi-
cal embedding vectors.

BLASER BLASER 2.0
Lang B1U B1R B2U B2QE B2R

en-de 0.09 0.22 0.17 0.26 0.21
en-gu 0.14 0.22 0.24 0.39 0.33
en-hi 0.10 0.25 0.20 0.31 0.26
en-mr 0.25 0.25 0.36 0.43 0.42
en-ta 0.05 0.06 0.28 0.37 0.30
en-te 0.06 0.07 0.16 0.25 0.22
he-en 0.31 0.40 0.52 0.50 0.50
zh-en 0.29 0.33 0.29 0.42 0.37

mean 0.16 0.23 0.28 0.37 0.33

Table 3: Spearman correlations on the halluciantion-free
subset of the WMT 23 QE Task 1 sentence-level data.
BLASER-unsupervised is represented as B1U, BLASER
as B1R, BLASER 2.0-unsupervised as B2U, BLASER
2.0-QE as B2QE, and BLASER 2.0-REF as B2R.

Table 3 reports the evaluation results and sug-
gests several conclusions:

1. B2U (SONAR cosine similarity) outperforms
B1U (LASER3 cosine similarity), suggesting
that the SONAR space suits better for QE.

2. For both BLASER and BLASER 2.0, the
trained models outperform the untrained ones
in almost all cases, which means that training
with XSTS labels is relevant for the QE task.

3. BLASER 2.0-QE outperforms BLASER 2.0-
REF (which uses source embeddings instead
of reference embeddings), which implies that
having a specialized QE model is not redun-
dant. Apparently, something in BLASER 2.0-
REF makes it treat the source and reference
embeddings differently11, so that using it with
the former in the place of the latter is worse
that using a reference-free model.

Thus, this small study demonstrates that all three
major features of BLASER 2.0-QE (SONAR space,
supervised fine-tuning, and reference-free setup)
are contributing to its performance in the QE task.

3.5 Using BLASER 2.0 to filter training data

Context An alternative to detecting and mitigat-
ing hallucinations at inference time is to “bake”
the competences of BLASER 2.0 directly into the

11Maybe, the SONAR embedding space not being com-
pletely language-agnostic plays a role.
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translation model, without changing its inference.
One way to achieve this is to use BLASER 2.0 as a
reward function for reinforcement learning, but we
follow Peter et al. (2023) with a simpler approach:
use the QE model for filtering the training data.

Experimental setup. To keep the training ex-
periments relatively simple and reproducible, we
focus on translation between English and 8 lan-
guages: 3 high-resourced ones (deu, fra, rus)
and 5 lower-resourced ones (est, azj, urd, xho,
mya), representing diverse language families and
scripts. As the base training data, we select the
first 1 million translations from the NLLB dataset,
automatically mined from monolingual corpora.
We fine-tune an mBART-50 model12 on the unfil-
ered version of this data, and on its versions fil-
tered with various scores: no filter; BLASER 2.0-
QE scores; margin (the margin score (distributed
with the dataset) based on LASER3 embeddings);
cometkiwi scores13 (Rei et al., 2022), and NLLB,
the mean token log-probability predicted by the
NLLB-200-600M model.

The NLLB score was computed as
1
2

(∑|t|
i=1 log p(ti|s,t0:i−1)

|t| +
∑|s|

i=1 log p(si|s,s0:i−1)
|s|

)
,

where s and t are the source and the target as
sequences of tokens, si and ti are their i’th tokens,
and s0:i−1 and t0:i−1 are their prefixes before
the position i. p denotes the probability that the
translation model assigns to the current target
token given the target prefix and the source.

To ensure comparability, each filtering method
drops 50% of the dataset. After that, we fine-tune
the model for 100K steps to translate in all 16 direc-
tions. We evaluate the models on the FLORES-200
dataset (NLLB Team et al., 2022).

Results in translation quality. Table 4 provides
mean BLEU and xCOMET14 scores for models
trained with various data filtering methods. The
margin baseline demonstrated almost no improve-
ment on average, but BLASER 2.0 and NLLB filter-
ing both increased the translation quality by about 1
BLEU point. CometKiwi occupies an intermediate
position. xCOMET, a state-of-the-art neural metric,
supports similar conclusions.

12We chose this model as it has been pretrained to under-
stand and generate diverse languaghes, but has not been trained
on the translation task, so its translation skills would be di-
rectly determined by the fine-tuning data.

13wmt22-cometkiwi-da
14xCOMET-XL

score BLEU xCOMET
filtering en-xx xx-en en-xx xx-en

No filter 14.5 21.3 56.9 65.4
Margin 14.5 21.4 56.8 65.5
CometKiwi 14.9 21.9 58.5 66.3
BLASER 2.0-QE 15.3 22.2 58.8 67.5
NLLB 15.6 22.2 59.4 67.6

Table 4: BLEU and xCOMET (x100) scores for an
MT model trained with different data filters, averaged
across languages, for into-English and from-English
translations. Full results in Appendix E.

The results of filtering the from-English data
with BLASER 2.0 are slightly worse than for NLLB.
Manual inspection of sampled translation outputs
revealed that all four models had fluency problems,
potentially related to them being undertrained. The
model trained with NLLB filtering seems to have
slightly less such problems, probably because fil-
tering with perplexity helped train the model on
more fluent data. This might explain that BLASER-
filtered model lags behind the NLLB-filtered one
on the from-English translation directions, as into-
English translation has less problems with fluency.

Despite this gap, filtering with BLASER 2.0
scores may have two potential advantages. One
is extensibility: upon collecting a dataset for a new
language, it may be easier to train a SONAR en-
coder for it (to enable computing BLASER 2.0)
than training a translation model to and from this
new language. The second advantage is setting
the threshold: because BLASER 2.0 scores follow
the XSTS scale, they are highly interpretable, and
choosing a filtering threshold might probably be
done in a more language-agnostic way than for fil-
tering with token log-probabilities which are highly
tokenization- and language-dependent.

4 Conclusions

BLASER 2.0 is a multilingual and multimodal met-
ric for translation evaluation and quality estima-
tion. Compared to its previous version, the sec-
ond BLASER has better coverage of modalities and
supports reference-free evaluation. BLASER 2.0
covers 202 languages in text and 57 languages in
speech and provides well calibrated, interpretable
and cross-lingually comparable scores. Apart from
evaluating translation models, BLASER 2.0 is suit-
able for pointwise scoring of source-translation
pairs, which enables its use for hallucination detec-
tion and training data filtering.
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Limitations

Annotations. The annotations on the training
data were provided by professionals and they were
all paid a fair rate.

Translation quality aspects. The XSTS protocol
used to annotate our training data deliberately fo-
cuses on evaluating translation accuracy, and does
not penalize for fluency issues unless they interfere
with meaning or make the translation incoherent.
For speech translation, the quality and naturalness
of the sound are also not covered. Thus, XSTS and
its derivative BLASER 2.0 are not comprehensive
metrics of translation quality; they are intended to
discriminate only translations with different levels
of accuracy, and may be insufficiently sensitive to
other quality aspects.

Dependence on SONAR. BLASER 2.0 is a met-
ric based on SONAR sentence encoders (Duquenne
et al., 2023) and may inherit some of their bi-
ases or limitations. Moreover, if SONAR encoders
have any “blind spot”, there is a chance that both
SONAR-based translation models and BLASER 2.0
inherit it. Therefore, BLASER 2.0 scores may ex-
hibit undue preferences towards MT models based
on SONAR or trained on the datasets filtered or
aligned using SONAR embeddings. Because of
these limitations, BLASER 2.0 scores may not al-
ways choose the MT model that best aligns with
human preferences. Therefore, we recommend us-
ing automatic metrics, such as BLASER 2.0, to
inform experiments and development of transla-
tion models, but including human annotations and
qualitative analysis into the final model evaluation.

Distribution. BLASER 2.0 models are dis-
tributed under a CC-BY-NC-4.0 license, following
the SONAR encoders on which they are based.
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A Training details

For BLASER 2.0 models, we used the training code
from BLASER15 with a few modifications in the
hyperparameters intended to mitigate overfitting:
50% dropout, 0.1 weight decay, batch size of 1024,
and linear decay of the learning rate to 0 by the end
of the training. To compensate for the increased
batch size, we trained for 50 instead of 20 epochs.

All computations were done on a single GPU.
Training of BLASER 2.0 models took only several
GPU-minutes, and encoding all texts and speech
with SONAR encoders for training and evaluation
took less than one GPU-day.

B Per-language comparison with BLASER

Table 5 presents the performance of BLASER and
BLASER 2.0 models on the BLASER test data. The
unsupervised 2.0 model slightly outperforms its
predecessor. BLASER and BLASER 2.0-REF mod-
els have the same average correlation with human
judgments.

C Evaluation with SeamlessM4T data,
detailed results

In this section, we describe in more details the re-
sults of evaluating BLASER 2.0-REF on the Seam-
lessM4T data in Section 3.2.

Table 6 shows that for each of the 92 direction
and modality combinations, item-level correlations
of XSTS scores and BLASER 2.0-REF predictions
are positive, with the lowest of 15% and the high-
est of 85%. The into-English translations feature
slightly higher correlations (45% on average) than
the from-English translations (40% on average),
perhaps, because SONAR is more accurate with
English, and the target-side language matters more
for BLASER 2.0-REF. For the S2ST modality, the
average correlation (49%) is much higher than for
the S2TT modality (35%). This may be partially
explained by S2ST being a harder task, with more
severe errors that are easier for BLASER 2.0 to
spot.

Figure 2 displays the average XSTS scores and
BLASER 2.0-REF predictions per modality, direc-
tion and system. For both translation systems, they
demonstrate high Spearman correlation (72% for
Seamless and 80% for the baseline system), but
human references, with their average XSTS scores

15https://github.com/facebookresearch/stopes/
tree/main/stopes/eval/blaser
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Figure 2: Mean XSTS scores and BLASER 2.0-REF
predictions for the SeamlessM4T evaluation data (per
translation direction, system and modality).

of 4.5-5, demonstrate very little variation in quality,
and therefore very moderate 29% correlation. The
overall correlation of these group-level mean pre-
dicted scores with the mean XSTS labels in solid
76%, suggesting that when there is sufficient vari-
ation in speech translation quality, the aggregated
BLASER 2.0-REF scores can correctly reflect it.

D WMT23 Metrics shared task
benchmark

Table 7 presents the performance of BLASER 2.0
models on the WMT23 Metrics shared task bench-
mark. BLASER 2.0-REF achieves 0.711 average
correlation with human annotations over the 10
tasks, which is way below the SOTA metric (0.825),
but still higher than non-trainable baselines such as
BLEU (0.696).

E Full evaluation results for training data
filtering

Table 8 gives the full per-direction results of scor-
ing the translations obtained with various training
data filtering methods. In addition to the BLEU
and xCOMET evaluation, we also report BLASER

2.0-QE scores.

F Languages registry

Languages registry Table 9 presents the list of
the 71 languages used within this work for training
or evaluating BLASER 2.0 models.
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↑Pearson Correlation

Model eng-deu eng-spa eng-fra spa-eng fra-eng rus-eng average

BLASER unsup 0.32 0.58 0.64 0.50 0.48 0.43 0.49
BLASER 2.0 unsup 0.37 0.75 0.71 0.59 0.57 0.49 0.58
BLASER 0.33 0.75 0.71 0.58 0.57 0.53 0.58
BLASER 2.0 Ref 0.36 0.75 0.73 0.58 0.56 0.50 0.58
BLASER 2.0 QE 0.34 0.73 0.71 0.54 0.48 0.45 0.54

Table 5: Pearson correlations of BLASER and BLASER 2.0 models with XSTS scores on the BLASER test data.

modality S2ST S2TT
direction en-xx xx-en en-xx xx-en

arb 0.56 0.48 0.29 0.52
ben 0.39 0.65 0.25 0.65
cat 0.37 0.38 0.25 0.38
cmn 0.75 0.60 0.49 0.51
deu 0.56 0.37 0.25 0.30
fin 0.63 0.60 0.34 0.53
fra 0.54 0.34 0.32 0.34
hin 0.32 0.29 0.17 0.36
ind 0.62 0.43 0.16 0.35
ita 0.34 0.26 0.15 0.18
jpn 0.70 0.65 0.43 0.62
kor 0.49 0.41 0.31 0.36
nld 0.47 0.37 0.21 0.32
por 0.40 0.29 0.22 0.24
ron 0.53 0.44 0.30 0.45
rus 0.63 0.43 0.36 0.32
spa 0.41 0.30 0.20 0.16
swh 0.58 0.85 0.30 0.82
tel 0.53 0.49 0.15 0.57
tha 0.65 0.63 0.37 0.59
tur 0.55 0.47 0.28 0.41
urd 0.42 0.50 0.25 0.54
vie 0.53 0.54 0.21 0.54

mean 0.52 0.47 0.27 0.44
min 0.32 0.26 0.15 0.16
max 0.75 0.85 0.49 0.82

Table 6: Item-level Spearman correlations of XSTS
scores and BLASER 2.0-REF predictions on the Seam-
lessM4T data, for each combination of translation direc-
tion (from-English and into-English) and modality.
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lang: all en-de en-de en-de he-en he-en he-en zh-en zh-en zh-en
level: sys sys seg seg sys seg seg sys seg seg
corr_fcn: accuracy pearson pearson acc-t pearson pearson acc-t pearson pearson acc-t
metric avg-corr task1 task2 task3 task4 task5 task6 task7 task8 task9 task10

XCOMET-Ensemble 0.825 0.928 0.980 0.695 0.604 0.950 0.556 0.586 0.927 0.650 0.543
XCOMET-QE-Ensemble 0.808 0.908 0.974 0.679 0.588 0.909 0.498 0.554 0.892 0.647 0.533
MetricX-23 0.808 0.908 0.977 0.585 0.603 0.910 0.548 0.577 0.873 0.625 0.531
GEMBA-MQM 0.802 0.944 0.993 0.502 0.572 0.939 0.401 0.564 0.991 0.449 0.522
MetricX-23-QE 0.800 0.892 0.969 0.626 0.596 0.858 0.520 0.564 0.859 0.647 0.527
mbr-metricx-qe 0.788 0.880 0.976 0.571 0.584 0.915 0.411 0.553 0.936 0.489 0.537
MaTESe 0.782 0.904 0.918 0.554 0.528 0.906 0.459 0.550 0.889 0.511 0.479
_CometKiwi 0.782 0.904 0.946 0.475 0.569 0.860 0.387 0.544 0.963 0.442 0.525
_COMET 0.779 0.900 0.990 0.432 0.574 0.940 0.401 0.532 0.898 0.396 0.514
_BLEURT-20 0.776 0.892 0.990 0.484 0.572 0.937 0.382 0.519 0.880 0.378 0.518
KG-BERTScore 0.774 0.884 0.926 0.451 0.556 0.908 0.382 0.537 0.962 0.430 0.516
sescoreX 0.772 0.892 0.952 0.519 0.563 0.901 0.385 0.484 0.797 0.536 0.499
cometoid22-wmt22 0.772 0.880 0.973 0.441 0.578 0.839 0.365 0.515 0.940 0.479 0.515
_docWMT22CometDA 0.768 0.904 0.990 0.394 0.559 0.922 0.339 0.497 0.907 0.353 0.493
_docWMT22CometKiwiDA 0.767 0.900 0.970 0.444 0.547 0.906 0.286 0.489 0.965 0.387 0.493
Calibri-COMET22 0.767 0.904 0.963 0.413 0.522 0.930 0.401 0.515 0.863 0.396 0.474
Calibri-COMET22-QE 0.755 0.863 0.978 0.441 0.483 0.778 0.395 0.506 0.934 0.443 0.491
_YiSi-1 0.754 0.871 0.925 0.366 0.542 0.917 0.395 0.529 0.823 0.290 0.504
_MS-COMET-QE-22 0.744 0.871 0.959 0.310 0.546 0.721 0.295 0.498 0.901 0.367 0.498
_prismRef 0.744 0.851 0.920 0.516 0.518 0.956 0.319 0.528 0.762 0.183 0.504
mre-score-labse-regular 0.743 0.888 0.942 0.111 0.530 0.958 0.378 0.522 0.903 0.145 0.481
_BERTscore 0.742 0.871 0.891 0.325 0.528 0.895 0.335 0.515 0.810 0.236 0.499
XLsim 0.719 0.855 0.925 0.239 0.527 0.887 0.233 0.480 0.796 0.111 0.464

BLASER-2.0-Ref 0.711 0.791 0.811 0.418 0.497 0.690 0.334 0.513 0.831 0.266 0.477

_f200spBLEU 0.704 0.819 0.919 0.237 0.526 0.805 0.230 0.447 0.772 0.108 0.476
MEE4 0.704 0.823 0.861 0.202 0.529 0.879 0.256 0.441 0.743 0.105 0.480
tokengram_F 0.703 0.815 0.858 0.227 0.520 0.878 0.226 0.461 0.795 0.060 0.485
embed_llama 0.701 0.831 0.861 0.250 0.483 0.841 0.215 0.430 0.785 0.161 0.447
_BLEU 0.696 0.815 0.917 0.192 0.520 0.769 0.220 0.442 0.734 0.119 0.472
_chrF 0.694 0.795 0.866 0.232 0.519 0.776 0.221 0.460 0.809 0.063 0.485
eBLEU 0.692 0.859 0.918 -0.011 0.512 0.911 0.131 0.445 0.727 -0.084 0.473
_Random-sysname 0.529 0.578 0.357 0.064 0.409 0.209 0.041 0.428 0.093 0.018 0.381
_prismSrc 0.455 0.386 -0.327 0.425 0.426 -0.017 0.140 0.441 -0.406 0.223 0.421

Table 7: The WMT23 Metrics shared task benchmark with BLASER 2.0-REF included. The table was produced
with the MTME tool (https://github.com/google-research/mt-metrics-eval).
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eng_Latn-azj_Latn 4.0 4.0 3.2 4.1 4.0 56.2 56.4 58.2 58.4 58.7 8.4 8.0 8.5 8.3 9.3
eng_Latn-deu_Latn 4.6 4.6 3.7 4.6 4.6 81.7 81.3 82.4 82.3 82.6 22.8 23.4 24.1 23.9 24.4
eng_Latn-est_Latn 4.3 4.4 2.6 4.4 4.4 62.9 62.3 65.4 63.8 65.7 15.7 16.4 16.9 16.8 16.7
eng_Latn-fra_Latn 4.7 4.7 4.3 4.7 4.7 70.5 69.5 69.5 71.6 71.8 30.4 29.8 29.5 31.2 31.2
eng_Latn-mya_Mymr 3.6 3.6 3.5 3.7 3.6 37.5 38.3 40.0 39.7 41.4 1.1 1.3 1.4 1.3 1.6
eng_Latn-rus_Cyrl 4.5 4.5 4.2 4.5 4.5 60.7 61.3 60.7 62.0 61.9 15.5 15.9 16.1 16.9 17.7
eng_Latn-urd_Arab 4.1 4.1 4.1 4.1 4.1 45.9 44.6 50.0 48.0 49.0 14.6 14.2 14.6 15.5 15.7
eng_Latn-xho_Latn 3.9 3.9 3.3 4.1 4.0 39.5 40.7 41.7 44.5 43.7 7.6 7.1 8.3 8.8 8.5

azj_Latn-eng_Latn 4.0 4.0 3.6 4.0 4.0 63.6 65.1 66.5 67.4 67.5 12.6 12.9 13.6 13.6 13.6
deu_Latn-eng_Latn 4.4 4.4 4.1 4.4 4.4 83.2 83.4 83.5 83.9 83.8 30.0 29.9 30.0 30.4 30.7
est_Latn-eng_Latn 4.2 4.2 3.8 4.3 4.3 71.2 71.1 72.7 73.0 73.5 23.6 23.9 24.4 24.6 24.6
fra_Latn-eng_Latn 4.4 4.4 4.1 4.4 4.5 83.6 84.0 83.1 84.6 84.7 32.7 32.2 33.0 33.2 32.9
mya_Mymr-eng_Latn 3.4 3.3 3.2 3.4 3.4 42.8 42.2 44.7 45.7 44.6 10.7 11.2 12.3 12.2 11.7
rus_Cyrl-eng_Latn 4.3 4.3 4.0 4.3 4.3 73.4 74.2 73.5 74.5 76.0 22.2 22.0 22.2 22.2 22.7
urd_Arab-eng_Latn 3.9 3.9 3.7 4.0 4.0 59.9 58.5 60.9 61.9 62.2 20.2 20.1 20.4 20.7 20.9
xho_Latn-eng_Latn 3.8 3.8 3.5 3.9 3.9 45.6 45.5 45.8 48.7 48.6 18.3 19.2 19.1 20.9 20.6

Table 8: Full results of scoring translations of FLORES obtained with various training data filtering methods.
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Code Language Train Test Seamless Metrics task QE task Filtering

amh_Ethi Amharic Tx Tx
arb_Arab Modern Standard Arabic Sp, Tx Sp, Tx Sp, Tx
ary_Arab Moroccan Arabic Tx Tx
asm_Beng Assamese Tx Tx
ayr_Latn Central Aymara Tx Tx
azj_Latn North Azerbaijani Tx
bam_Latn Bambara Tx Tx
bel_Cyrl Belarusian Tx Tx
ben_Beng Bengali Sp Sp Sp, Tx
bul_Cyrl Bulgarian Tx Tx
cat_Latn Catalan Sp, Tx
ceb_Latn Cebuano Tx Tx
ces_Latn Czech Tx Tx
ckb_Arab Central Kurdish Tx Tx
deu_Latn German Sp, Tx Sp, Tx Sp, Tx Tx Tx Tx
ell_Grek Greek Tx Tx
eng_Latn English Sp, Tx Sp, Tx Sp, Tx Tx Tx Tx
est_Latn Estonian Tx
ewe_Latn Ewe Tx Tx
fin_Latn Finnish Sp, Tx
fra_Latn French Sp, Tx Sp, Tx Sp, Tx Tx
fuv_Latn Nigerian Fulfulde Tx Tx
gaz_Latn West Central Oromo Tx Tx
gla_Latn Scottish Gaelic Tx Tx
guj_Gujr Gujarati Tx
hau_Latn Hausa Tx Tx
heb_Hebr Hebrew Tx Tx Tx Tx
hin_Deva Hindi Sp, Tx Sp, Tx Sp, Tx Tx
hye_Armn Armenian Tx Tx
ibo_Latn Igbo Tx Tx
ind_Latn Indonesian Sp, Tx Sp, Tx Sp, Tx
isl_Latn Icelandic Tx Tx
ita_Latn Italian Tx Tx Sp, Tx
jav_Latn Javanese Tx Tx
jpn_Jpan Japanese Sp, Tx Sp, Tx Sp, Tx
kan_Knda Kannada Tx Tx
kor_Hang Korean Tx Tx Sp, Tx
lij_Latn Ligurian Tx Tx
lug_Latn Ganda Tx Tx
luo_Latn Luo Tx Tx
mar_Deva Marathi Tx Tx Tx
mya_Mymr Burmese Tx
nld_Latn Dutch Sp Sp Sp, Tx
nno_Latn Norwegian Nynorsk Tx Tx
oci_Latn Occitan Tx Tx
pbt_Arab Southern Pashto Tx Tx
por_Latn Portuguese Sp, Tx
quy_Latn Ayacucho Quechua Tx Tx
ron_Latn Romanian Tx Tx Sp, Tx
rus_Cyrl Russian Sp, Tx Sp, Tx Sp, Tx Tx
som_Latn Somali Tx Tx
spa_Latn Spanish Sp, Tx Sp, Tx Sp, Tx
ssw_Latn Swati Tx Tx
swe_Latn Swedish Tx Tx
swh_Latn Swahili Sp Sp Sp, Tx
tam_Taml Tamil Tx Tx Tx
tel_Telu Telugu Sp, Tx Tx
tgk_Cyrl Tajik Tx Tx
tgl_Latn Tagalog Tx Tx
tha_Thai Thai Tx Tx Sp, Tx
tir_Ethi Tigrinya Tx Tx
tur_Latn Turkish Sp, Tx Sp, Tx Sp, Tx
twi_Latn Twi Tx Tx
urd_Arab Urdu Tx Tx Sp, Tx Tx
vie_Latn Vietnamese Sp, Tx Sp, Tx Sp, Tx
wol_Latn Wolof Tx Tx
xho_Latn Xhosa Tx
ydd_Hebr Eastern Yiddish Tx Tx
yue_Hant Yue Chinese Tx Tx
zho_Hans Chinese (Simplified) Sp, Tx Sp, Tx Sp, Tx Tx Tx
zul_Latn Zulu Tx Tx

Table 9: The languages used in this work. “Sp” stands for speech data, and “Tx” stands for text data in the language.
“Train” and “Test” columns denote the usage of a language for training and in-domain evaluation of BLASER 2.0
models (Sections 2 and 3.1). “Seamless” denotes evaluating with the SeamlessM4T annotated data. “Metrics task”
and “QE task” denote evaluating BLASER 2.0 on that language using the respective shared task (Section 3.3), and
“Filtering” denotes evaluating BLASER 2.0 for filtering MT training data in that language (Section 3.5).
The language codes follow the NLLB and SONAR convention (NLLB Team et al., 2022; Duquenne et al., 2023): a
three-letter ISO 639-3 language code followed by an ISO 15924 script code.
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