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Abstract

Despite the remarkable capabilities of large lan-
guage models, generating high-quality text re-
mains a challenging task. Numerous decoding
strategies—such as beam search, sampling with
temperature, top-k sampling, nucleus (top-p)
sampling, typical decoding, contrastive decod-
ing, and contrastive search—have been pro-
posed to address these challenges by improv-
ing coherence, diversity, and resemblance to
human-generated text. In this study, we in-
troduce Adaptive Contrastive Search (ACS), a
novel decoding strategy that extends contrastive
search (CS) by incorporating an adaptive degen-
eration penalty informed by the model’s esti-
mated uncertainty at each generation step. ACS
aims to enhance creativity and diversity while
maintaining coherence to produce high-quality
outputs. Extensive experiments across various
model architectures, languages, and datasets
demonstrate that our approach improves both
creativity and coherence, underscoring its ef-
fectiveness in text-generation tasks. We release
our code, datasets, and models to facilitate fur-
ther research.

1 Introduction

The Transformer (Vaswani et al., 2017) plays a
key role in various generative natural language
processing (NLP) tasks, such as generating sto-
ries, completing contextual text, and dialogue sys-
tems. However, the conventional method of train-
ing these models using maximum likelihood esti-
mation (MLE) and decoding to the most probable
sequence often results in substantial shortcomings.
This can lead to repetitive and uncreative outputs,
also known as degenerate text.

To address this issue, previous approaches have
aimed to adjust the decoding strategy by incorpo-
rating sampling from less probable vocabularies.
While this helps reduce repetitiveness, it introduces
the problem of semantic inconsistency (Welleck
et al., 2020). The sampled text may stray from or
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Figure 1: Visualization of the Adaptive Contrastive
Search (ACS) process: A three-step procedure that uses
entropy as a proxy for model uncertainty to automati-
cally adjust contrastive search parameters.

even contradict the original context provided by a
human-written prompt.

In response, contrastive search (CS, Su et al.,
2022) has been introduced. It employs a fixed bal-
ance between model confidence and degeneration
penalty throughout the generation process, main-
taining a blend of likelihood and diversity. How-
ever, it is important to note that this fixed weighting
requires hyperparameter tuning and overlooks the
unique demands of each generation step, where a
different balance between model confidence and
degeneration penalty might be desirable and even
more effective.

We address this limitation by proposing adaptive
contrastive search (ACS), an adaptive approach that
automatically adjusts the hyperparameters of con-
ventional CS. This method evaluates the model’s
uncertainty at each generation step and adjusts the
weighting of both components without the need for
manual intervention. The experimental outcomes
demonstrate the effectiveness of our method, as it
performs well in the task of open-ended text gener-
ation across different architectures, languages, and
datasets.
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Contributions Our contributions can be summa-
rized as follows:

1. We introduce an adaptive CS method based on
the work by Su et al. (2022) that measures the
uncertainty of the model at each time step to au-
tomatically adjust the number of candidate tokens
and the degeneration penalty.

2. We conduct comprehensive experiments to com-
pare our approach to various established decod-
ing methods, such as nucleus sampling (Holtzman
et al., 2019), contrastive decoding (CD, Li et al.,
2023), and CS (Su et al., 2022), for open-ended
text generation.

3. We offer new insights into MAUVE and its
correlation with human judgments, highlighting
the need for a more robust metric that better aligns
with human preferences when evaluating decoding
strategies for open-ended text generation.

4. Our code and datasets and results are publicly
available under this link.

2 Related work

Decoding methods are generally categorized into
two types: deterministic and stochastic.

Deterministic Methods. These approaches focus
on choosing the text continuation with the highest
probability according to the model’s probability
distribution. Prominent examples are beam search
and greedy search. Recently, studies by Shao et al.
(2017); Vijayakumar et al. (2018); Paulus et al.
(2017); Klein et al. (2017) have demonstrated that
solely maximizing the output probability frequently
leads to degenerated or repetitive text sequences,
a problem that has been addressed by stochastic,
sampling-based methods.

Stochastic Methods. Top-k, proposed by Fan
et al. (2018), samples from a subset of tokens 14
that represent the tokens with the higher scores
in the output distribution. Alternatively, nucleus-
p sampling (Holtzman et al., 2019) samples from
the smallest subset .S with a total probability mass
above a threshold p; specifically, S is the smallest
subset such that the cumulative probability for to-
kens in .S surpasses p. While these methods reduce
model degeneration, the inherent stochasticity can
lead to semantic divergence or disconnection from
the human-written prompt.

To tackle the imbalance between coherence and
diversity, methods such as typical sampling (Meis-
ter et al., 2023) and CD have been developed to

produce more diverse and interesting text in open-
ended settings. Typical sampling aims at generat-
ing based on the information content, which should
be close to the expected information content, i.e.,
the conditional entropy of the model. CD, on the
other hand, employs an expert language model
(LM) and an amateur LM in parallel and searches
for text that maximizes the difference between the
expert’s and the amateur’s log probabilities, subject
to plausibility constraints.

Our study, however, focuses on the work of Su
et al. (2022), where they introduce Contrastive
Search. In CS, given the prompt text « ., the se-
lection of the output token z; follows:

Ty = argmax{(l —a) X pg(v|xey) —

veV (k) —

model confidence

a X (max{s(hy, hy;) : 1 < j<t—1}) } (1)

degeneration penalty

where V(¥ is the set of top-k predictions from
the LM’s probability distribution py (- | <;). In
Eq. (1), the first term, model confidence, is the
probability of the candidate v predicted by the LM.
The second term, degeneration penalty, measures
how discriminative is the candidate v with respect
to the previous context & 4 and s(-, -) computes the
cosine similarity between token representations. In-
tuitively, a larger degeneration penalty of v means it
is more similar to the context, therefore more likely
leading to undesirable repetitions in the generated
output. The hyperparameter & € N+ g determines
the number of candidate tokens to be considered,
while « € [0, 1] regulates the importance of these
two components.

Empirical results suggest different values for o
and k, depending on the task, the datasets, and the
language of interest, respectively (Su et al., 2022;
Su and Xu, 2022; Su and Collier, 2023). An empir-
ical study comparing CS and CD (Su and Collier,
2023) highlights the strengths and weaknesses of
both approaches. The automatic evaluation results
suggest that CD performs better on MAUVE Pil-
lutla et al. (2021), while CS excels in diversity and
coherence. Additionally, through extensive human
evaluations, they demonstrate that human annota-
tors universally prefer CS over CD by substantial
margins. Given the contradictory results between
MAUVE and human evaluations, their analysis re-
veals that balancing diversity and coherence met-
rics better correlates with human judgments.
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Further studies have extended the concept of CS
to incorporate additional criteria in scoring can-
didates for the next token. Chen et al. (2023) in-
vestigate the effect of adding a third criterion, fi-
delity, beyond model confidence and degeneration
penalty to enhance the coherence of the generated
text. This third criterion is again weighed by a hy-
perparameter (3 that is determined from empirical
results. To the best of our knowledge, adaptive
approaches based on the concept of CS have not
been thoroughly explored.

3 Methodology
3.1 Incorporating Model Uncertainty

In this work, we propose an adaptive method that
considers the estimated uncertainty of the model
at time step ¢ to automatically control k£ and c.
In other words, our adaptive approach consists in
modifying Eq. (1) as follows:

T = argmax{(l —ay) X po(v | xey) —
veV (k) —
model confidence

oy X (max{s(hy, hey) 11 <j <t—1}) } )
degeneration penalty
where

exp (6¢)

ke =105 20
! exp(0¢) + 1

+5 3)

with

maximum entropy

) — i (<t)
0t = q * arctanh <H(X) median(H (X) ))

4

and

H(X)® == "p(a | z<) Inpx | z<). (5)
eV
Once £ is selected, a similar procedure is fol-
lowed to determine oy:

exp (0; k)
= M 6
at exp(0gr) + 1 ©)

H(X)®R — median(H(X)(<t’k>))

04, = q * arctanh ( - -
maximum entropy (k)

(N

In other words, we follow a sequential procedure
for k; and o that involves these steps:

i) Measuring uncertainty: Compute the en-
tropy of the output distribution denoted as
H(X)®.

ii) Centering: Subtract the median entropy of
the previous prediction steps.

iii) Scaling: Divide by the maximum entropy.
This step aims to obtain a relative measure,
ensuring comparability across different vocab-
ulary sizes.

iv) Computation: Pass the centered and rescaled
entropy term through a sigmoid function,
yielding the value of a; € (0,1) - or for the
case of k - through a rescaled sigmoid func-
tion that yields positive integer values.

The scaling term maximum entropy refers to the
entropy of a uniform distribution over a finite set
x1, ..., T|y|, Where each token has an equal proba-
bility of ﬁ Consequently, this entropy remains
constant over time. For a vocabulary of size |V,
the maximum entropy is given by In(|V|), analo-
gously, the maximum entropy for the distribution
of the top-k tokens is given by In(k).

Additionally, the parameter ¢ serves as a tem-
perature factor, influencing the range of k£ and «
values at each time step. Adjusting ¢ can either
broaden or narrow this range: a lower temperature
reduces variability, while a higher value allows for
larger changes. This impact is demonstrated in Ap-
pendix A, Figures 3, 4, 5, 6, 7 and 8. However, it
is important to note that our evaluation is based on
a setup with no temperature (i.e., ¢ = 1).

3.2 Theoretical Motivation

The general question that might arise is to why
k; and oy should be chosen adaptively, i.e., why
there is no global « nor a global k that is optimal
at all time steps. Taking on a more statistical per-
spective on the problem offers an explanation: The
degeneration penalty in constrastive search can be
understood as a regularization term, see also (Chen
et al., 2023). More precisely, we have:

Proposition 1 The degeneration penalty
max;{s(hy, he,)} is a function of the penalty
|| — hy;||2 in statistical Tikhonov-regularization,
if the representations h are normalized.

The proof can be found in Appendix B. Clas-
sical statistical regularization aims at preventing
overfitting by smoothing out the effect of the train-
ing data on the model fit. In CS, the degeneration
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penalty plays a similar role: It attenuates the effect
of the model on the chosen output token. Recall
that we do not want to select tokens solely based
on the model to prevent repetitive text generation.
It is a well-known fact that optimal regularization
parameters (corresponding to k; and oy here) for
many statistical models correspond to the signal-
to-noise ratio in the data, see e.g. the work by
Kimeldorf and Wahba (1970); Rao et al. (2008);
Hastie et al. (2009); Fahrmeir et al. (2022). The
intuition is straightforward: For a given signal, the
more noise in the data, the higher the optimal reg-
ularization parameter should be chosen to prevent
overfitting to the latter. This motivates our adaptive
approach to CS. Instead of choosing fixed k& and
« in the beginning, we choose it based on the ob-
served variation of the object on which we want to
prevent overfitting. In contrast to statistical model-
ing, however, this object is the model output, not
the training data. We thus choose the optimal k;
and oy based on the variation of the model output,
i.e., its estimated uncertainty measured by §; and
d(¢,k)> the standardized Shannon entropy. While
several approaches to quantifying uncertainty ex-
ist, see Abdar et al. (2021) for an overview, we
rely on the classical Shannon entropy since it is
computationally efficient and tailored to measuring
epistemic (reducible) predictive uncertainty, see
(Hiillermeier and Waegeman, 2021, section 3.3), as
required here.

4 Experimental Setup

In this section, we describe the metrics, datasets,
baseline models, and human evaluation settings.

4.1 Evaluation Metrics

We follow Su and Xu (2022) and use three metrics
to automatically measure the quality the genera-
tions: Diversity, MAUVE, and Coherence.

Diversity. This metric aggregates n-gram repeti-
tion rates:

DIV — ﬁ | unique n-grams (Xcont ) |
2L total n-grams (Xcont ) |

A low diversity score suggests the model suffers
from repetition, and a high diversity score means
the model-generated text is lexically diverse.

MAUVE. MAUVE (Pillutla et al., 2021) score
measures the distribution similarity between the set
of generated text and the set of gold references.

Coherence. Proposed by Su et al. (2022), the
coherence metric is defined as the averaged log-
likelihood of the generated text conditioned on the
prompt as

d

. 1 . .
COH(z,x) = @ ZlogPM (@; | [z : <))
i=1

where  and & are the prompt and the generated
text, respectively; [:] is the concatenation operation
and M is the OPT model (2.7B) (Zhang et al.,
2022).

Human Eval. In order to evaluate the quality of
the generated text, we consider two critical aspects:
fluency and coherence. A fluent piece of text is
written in grammatical English and has a natural
flow (e.g. excluding unnatural repetition or web
formatting). A coherent piece of text should stay
on topic with the prompt and avoid unnatural topic
drift. We provide five native English speakers with
240 competing continuations (A and B) of the same
prompt and ask them to rate their coherence and
fluency. Definitions and instructions for the rating
process are shown in Appendix C, Figure 9.

4.2 Datasets

Following previous studies, we evaluate our pro-
posed method on three domains for open-ended
text generation: news, Wikipedia articles, and sto-
ries. For the news domain, we use articles from
Wikinews (2000 examples); for the Wikipedia do-
main, we use the WikiText-103 dataset (1314 exam-
ples; Merity et al., 2016); and for the story domain,
we use the BookCorpus (Project Gutenberg split,
1947 examples; Zhu et al., 2015). Each of the ex-
amples contains a prompt and a gold reference i.e.
human-generated continuation for evaluation pur-
poses. We extract the prompts and decode 256
tokens for the continuations. Finally, we evaluate
the generated text based on both the set of metrics
(as described in Sec. 4.1) and human preferences.

4.3 Baselines

We compare ACS to widely used decoding meth-
ods (including deterministic and stochastic ap-
proaches): greedy search, beam search, top-k sam-
pling, nucleus sampling, typical decoding, CD, and
CS with constant &« = 0.6 and two versions of k: 5
and 10. We include the latter for a fair comparison:
The CS generations with k£ = 10 achieve better au-
tomatic evaluation scores than those generated with
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Figure 2: Visualization of uncertainty over time, measured by the Shannon entropy of the output distribution (first
row, left). It is used to determine the value of k over time (right). The second row illustrates the entropy of the top-%
tokens distribution, which is used to compute the value of « (right).

Prompt: Knowing that she would be staying in, she started by choosing a pair of fitted, soft, black slippers, the type that barely

covered her feet but gave

Generated story: her a sense of comfort. As she walked to the dining room, she took a moment to admire the decor and thought
about what she would do for dinner. Her family was going to be here for a few days, and she wanted to make the most of the time

they had before they left.

Method Wikinews Wikitext Story

div.(%)1 | MAUVE(%)? | coh.t | div.(%)? | MAUVE(%)? | coh.t | div.(%)! | MAUVE(%)? | coh.?
Greedy Search* 355 13.96 047 | 177 491 -0.41 | 086 2.65 -0.34
Top- k Sampling* | 91.56 89.86 -2.22 | 8749 81.00 237 | 91.22 87.49 -2.45
Nucleus Sampling* | 93.54 89.45 -2.61 | 92.16 86.54 -3.03 | 94.50 91.47 -3.02
Typical Sampling* | 95.37 90.97 -3.26 | 94.82 86.07 371 | 96.29 88.58 -3.68
CD* 91.57 92.20 -2.16 | 88.02 91.46 -2.19 | 86.41 93.17 -2.09
CS(k=5a=06) | 9372 84.14 -1.39 | 89.35 77.97 -1.56 | 93.06 84.74 -1.61
CS (k=10,a=0.6) | 96.30 87.53 173 | 94.09 71.97 -1.93 | 9546 84.96 -1.91
ACS (Ours,g=1) | 9522 79.45 -1.60 | 92.72 78.67 -1.74 | 93.89 80.72 -1.71

| Bonus: DoubleExp | 9739 | 9065 | -212] 9658 | 8407 [ -218[ 9737 | 8566 | -2.16]

Table 1: Automatic evaluation results: Numbers marked with * are obtained using the generated texts originally
released by Li et al. (2023), CS results are taken from Su and Xu (2022). The highest scores are highlighted in bold.

k = 5. Furthermore, they are more comparable to
our method, centered around k = 10. Further, we
include an additional adaptive method: DoubleExp,
which consists on an exponentiation of the argu-
ment of the sigmoid function, with the purpose of
reaching values of « closer to 0 or 1. Our goal with
this method is to exemplify discrepancies between
human judgment and MAUVE. The respective hu-
man evaluation results are visualized in Table 2 and
its implementation is described in Appendix F.

4.4 Models

We explore the relationship between model size and
the effect of ACS. For this purpose, we use three

open-source autoregressive models: gpt2-x1, gpt2-
large, and gpt2-medium (Radford et al., 2019).

5 Results

5.1 Automatic evaluation results

The automatic evaluation of generated stories,
based on diversity, MAUVE, and coherence are
presented in Table 1. We observe that CS-based
approaches tend to foster diversity, while having a
slighter loss of coherence, compared to other de-
coding methods, such as CD and Typical sampling.
An additional common trait is that CS-based ap-
proaches exhibit lower MAUVE scores, where CD
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Dataset Coherence Fluency
CS is better | CS and DoubleExp are similar | DoubleExp is better | CS is better | CS and DoubleExp are similar | DoubleExp is better
Wikinews 56% 34% 10% 32% 58% 10%
Wikitext 34% 46% 20% 29% 63% 8%
Story 49% 31% 20% 32% 58% 10%
All 48% 36% 16% 28% 62% 10%
Dataset Coherence Fluency
CS is better | CS and ACS are similar | ACS is better | CS is better | CS and ACS are similar | ACS is better
Wikinews 24% 45% 31% 16% 67% 18%
Wikitext 37% 28% 35% 9% 74% 18%
Story 41% 27% 32% 21% 59% 21%
[ All | 31% ] 32% | 3% ] 11% ] 62% [ 21% |

Table 2: Human evaluation results for CS vs. DoubleExp (top) and CS vs. ACS (bottom) across different datasets.

Prompt

Butt criticized Donald’s controls in certain situations in the game, as well as the difficulty
of some levels and puzzles. Buchanan also criticized the controls, calling

div. | coh.

Beam

them " too easy " and " too difficult ". He also criticized the game’s graphics, stating that the game’s
graphics were " too simplistic " and "too simplistic ". He also criticized the game’s graphics, stating
that the game’s graphics were " too simplistic" and " too simplistic ". He also criticized the graphics,
stating that the game’s graphics were " too simplistic " and " too simplistic ". He also criticized the
graphics, stating that the game’s graphics were " too simplistic " and " too simplistic ". He also
criticized the graphics, stating that the game’s graphics were"...

0.02 | 0.605

Nucleus

them " offensively rudimentary ". After the game was released, Buchanan wrote a number of game
reviews about his review of the game, primarily summarizing what he thought the reviewers had
enjoyed about it. Buchanan was pleased with how consistently these reviews awarded the game.

For one, he praised the puzzles, compared them to Nos. 1 and 2 and enjoyed the construction of the
artificial intelligence in the game’s forms. He found no fault with the puzzles, even in those situations
where they seemed repetitive. According to an Xbox Magazine review, " every time...

0.98 | 0.597

CD

them " unimpressive " and a " nightmare " of an experience to play with players unfamiliar with
Tetris. On the other hand, his opinion was shared by other reviewers, and some were critical of the
game’s technical design for the Wii version of Tetris. In addition, Tintin’s review included a quote
from Roger Ebert, who said that Tetris was better than the original game due to its simplicity and
ease of play. Ebert’s comments were included in the game’s DVD commentary, released on March
22,2010 . It is unclear if any of the video commentary was taken from ...

0.98 | 0.626

CS

them " unimpressive " and a " nightmare " of an experience to play with players unfamiliar with
Tetris. On the other hand, his opinion was shared by other reviewers, and some were critical of the
game’s technical design for the Wii version of Tetris. In addition, Tintin’s review included a quote
from Roger Ebert, who said that Tetris was better than the original game due to its simplicity and
ease of play. Ebert’s comments were included in the game’s DVD commentary, released on March
22,2010 . It is unclear if any of the video commentary was taken from ...

0.98 | 0.626

ACS (Ours, g = 1)

them " a pain in the ass to get used to."

On the other hand, his opinion was shared by other reviewers, and some were critical of the
game’s technical design for the Wii version of Tetris. In addition, Tintin’s review included a quote
from Roger Ebert, who said that Tetris was better than the original game due to its simplicity and
ease of play. Ebert’s comments were included in the game’s DVD commentary, released on March
22,2010 . It is unclear if any of the video commentary was taken from ...

0.98 | 0.629

Table 3: Case Study: Beam search produces degenerative repetitions while nucleus sampling produces text with
incoherent semantics w.r.t. the prefix. Contrastive methods exhibit coherent and fluent text.

excels across all three datasets. We observe that
the method DoubleExp, which consists on an ex-
ponentiation of the sigmoid arguments, provides a
good balance of high diversity and MAUVE, main-
taining coherence values that are lower than non-
contrastive methods.

5.2 Human evaluation

The human evaluation scores for the CS and ACS
methods, as well as for CS and DoubleExp, are
displayed in Table 2. It is worth mentioning that
high MAUVE scores do not always align with hu-
man judgments. For instance, evaluators consis-

tently show a preference for CS over DoubleExp
across all datasets. Conversely, ACS is favored in
terms of fluency, and AC is preferred for coher-
ence. Nonetheless, when considering all datasets
together, there is a slight overall preference for
ACS compared to its non-adaptive version.

5.3 Qualitative examples

We present qualitative examples to illustrate the
distinct characteristics of different decoding strate-
gies. Table 3 highlights the generated text varia-
tions, while Figure 2 visualizes the behavior of key
parameters such as entropy, k, and a.
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Wikinews Wikitext Story
Method div.(%)t MAUVE(%)T coh.t div.(%)t MAUVE(%)T coh.t div.(%)T MAUVE(%)T coh.t
ACS,q=1 95.22 79.45 -1.6 92.72 78.67 -1.74  93.89 80.72 -1.71
ACS,q=2 95.03 81.66 -1.57  92.69 77.48 -1.71 93.38 80.85 -1.67
ACS,q=4 95.75 83.41 -1.76 - 94.02 81.56 -1.87 9497 80.14 -1.82
ACS,q=8 96.92 83.10 -2.02  95.23 77.79 -2.08  96.02 82.71 -2.04
ACS,q=15 9746 83.03 224 96.39 81.66 -2.25 96.66 81.44 -2.23
ACS,q=20 97.78 85.01 -2.32 96.55 81.61 -2.33  96.66 80.37 -2.26

Table 4: Ablation results for diversity, MAUVE, and coherence w.r.t. to the adaptiveness enforced by temperature q.

Method sec / story| # Tokens / sect
CS (a=0.6, k=10) 11.6 21.98
ACS (g=1) 15.7 16.29
ACS (¢=2) 15.9 16.14
ACS (¢=38) 16.3 15.35

Table 5: Comparison of generation speed for CS and
ACS with different temperatures g € {1, 2, 8}. Experi-
ments were conducted with a GPU NVIDIA RTX 3090.

5.4 Ablation studies

To assess the impact of varying levels of
adaptiveness, controlled by the temperature pa-
rameter, we conduct experiments for ¢ €&
{1 (no temperature), 2, 4,8, 15,20}. The results,
summarized in Table 4, demonstrate the sensitivity
of ACS to different values of gq. As expected, in-
creasing the temperature leads to higher diversity
but at the cost of reduced coherence. Moreover,
we observe that in both Wikitext and Story, the
MAUVE score begins to decline as the generated
texts become excessively diverse and erratic.

5.5 Generation speed

We have measured the average generation speed
across all three datasets by varying the temperature
q € {1, 2,8} with respect to our baseline (CS with
k =10 and o = 0.6). A summary is presented in
Table 5, showing a decrease of 35% in the speed
for ACS compared to CS with fixed o. A supple-
mentary analysis of this for smaller values of k is
provided in Appendix G.

5.6 Application to other languages

We evaluate the performance of our approach
across eight additional languages: Arabic, Ben-
gali, German, French, Hindi, Japanese, Dutch, and
Chinese. For this, we utilize pre-trained GPT-2-
based architectures of various sizes, comparing
the Adaptive Contrastive Search (ACS) to standard
Contrastive Search (CS). The detailed results are
provided in Table 6. The scores vary greatly across

languages and metrics, with particularly strong re-
sults in Bengali, French, Hindi, and Chinese. Nev-
ertheless, a clear trend emerges: ACS, with the
exception of German, consistently achieves com-
parable or superior MAUVE scores while main-
taining a balance between coherence and diversity,
outperforming its static counterpart.

5.7 Effect of varying model sizes

We examine the influence of model size on the
quality of text generation, focusing on three dif-
ferent sizes: gpt2-x1 (1.50B), gpt2-large (0.76B),
and gpt2-medium (0.35B). The generated outputs
are evaluated across the Wikinews, Wikitext, and
Story datasets. As shown in Table 7, there are
marked differences in performance, particularly
with gpt2-medium, where the diversity under CS is
substantially diminished across all datasets. We hy-
pothesize that this is linked to the model’s isotropy,
where only high values of « can foster diversity in
the generations. A visual inspection further sup-
ports this observation, as the outputs from gpt2-
medium tend to be repetitive and degenerate, re-
sembling those produced by greedy or beam search.

5.8 Findings about MAUVE

Our human evaluation results, as detailed in Table
2, corroborate the findings of Su and Xu (2022).
The discrepancies observed indicate that MAUVE
does not consistently align with human preferences.
Specifically, the Double Exp method yields higher
MAUVE values compared to CS and ACS. How-
ever, human evaluators consistently rate Double-
Exp as less coherent and fluent than the CS ap-
proach with £ = 10 and o = 0.6. Moreover, we
identified two considerable issues related to vary-
ing the truncation length in pairwise sentence com-
parisons: (1) Inconsistent results that lead to dif-
ferent conclusions regarding the optimal decoding
method, and (2) substantial differences in sample
sizes, as illustrated in Appendix E, Table 8.
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Language Contrastive Search Adaptive Contrastive Search A

div.(%)T MAUVE(%)T coh. div.(%)T MAUVE(%)? coh. div.(%) MAUVE(%) coh.
Arabic 89.55 70.53 -1.51 60.71 89.94 -1.23  -28.84 19.41 0.28
Bengali 72.48 89.87 -1.24  85.17 96.31 -1.34 12.69 6.44 -0.10
German 97.95 72.80 -2.16  93.04 42.82 -1.07  -491 -29.98 1.09
French 95.74 93.21 -2.27 9249 96.41 -2.08  -3.25 3.20 0.19
Hindi 98.99 95.95 -1.00  98.90 92.99 -1.00  -0.09 -2.96 0.00
Japanese 50.47 72.69 -0.92 3947 83.30 -1.80  -11.00 10.61 -0.88
Dutch 95.47 33.57 -2.96  98.03 72.32 -1.30  2.56 38.75 1.66
Chinese 91.42 93.28 -239 8255 92.76 -2.26  -8.87 -0.52 0.13

Table 6: Comparison across different languages. Positive A-values indicate better performance of ACS vs CS.

Dataset Model Contrastive Search Adaptive Contrastive Search A
div.(%)t MAUVE(%)T coh.t div.(%)T MAUVE(%)T coh.t div.(%) MAUVE(%) coh.
Wikinews — gpt2-xI 93.72 88.14 -1.39 96.92 83.10 -2.02 320 -5.04 -0.63
gpt2-large 93.80 78.55 -1.44  96.55 78.84 -2.06 275 0.29 -0.62
gpt2-medium 3.66 12.86 -0.56  49.88 20.25 -6.22  46.22 7.39 -5.66
Wikitext  gpt2-xl 89.35 77.97 -1.56 9523 77.79 -2.08  5.88 -0.18 -0.52
gpt2-large 89.04 73.91 -1.59  95.67 80.00 211 6.63 6.09 -0.52
gpt2-medium 2.25 4.75 -0.47  64.13 10.91 -594  61.88 6.16 -5.47
Story gpt2-x1 93.06 84.74 -1.61  96.02 82.71 -2.04 296 -2.03 -0.43
gpt2-large 90.63 81.16 -1.56  95.82 80.42 -2.05 519 -0.74 -0.49
gpt2-medium 1.22 3.08 -040  11.86 17.19 -6.13  10.64 14.11 -5.73

Table 7: Comparison of CS (k = 10, « = 0.6) and ACS across different datasets and models of varying size.

5.9 Interpretability

We conducted additional experiments employing
CS with varying values of k and «, measuring the
same automatic metrics for human-generated text
and examining which combinations of hyperparam-
eters align most closely with the gold references.
In Appendix D, our analysis reveals that extreme
parameter settings, such as very low values of a,
yield very low diversity and MAUVE scores but
excessively high coherence (even in combination
with high values of k). Conversely, very high val-
ues of « lead to texts that are overly diverse and
incoherent (even with moderate values of k). A
desired balance emerges from these observations:
moderate values of k£ and «, such as k¥ = 10 and
a = 0.6, tend to approximate human references by
favoring both diversity and coherence. Our experi-
ments show that ACS frequently generates results
within this range, at times favoring either higher
diversity or greater coherence, as dictated by the
uncertainty-guided regularization.

6 Discussion and Future Work

In this study, we introduce a novel approach
grounded in a CS framework. It is important to
note, however, that the quality of generated text ex-

tends beyond just model confidence and diversity.
Other factors, like informativeness, trustworthiness,
and cohesion (as discussed by De Beaugrande and
Dressler (1981)), contribute to the overall quality
of the text. Moving forward, our aim is to expand
our adaptable method to encompass these traits,
thereby improving the evaluation of text quality
through a more holistic approach. Furthermore, we
would like to explore other criteria for the auto-
matic selection of k and c. A path worth exploring
could be related to the ratio between generation per-
plexity and model perplexity, where the algorithm
would penalize deviations from the model perplex-
ity through automatic adaptation. Finally, our study
has centered on a specific task: Open-ended text
generation. However, the potential influence of this
adaptive decoding strategy on various tasks and
contexts warrants further investigation. We aim
to broaden our research to evaluate its efficacy in
Machine Translation and Summarization, particu-
larly within the scope of low-resource languages,
where our approach may prove beneficial in sce-
narios where training examples are scarce. Finally,
we wish to explore the potential of our approach
beyond base models and analyze the effect after
SFT and strategic prompting.
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7 Conclusion

We introduce an uncertainty-guided adaptive
method aimed at enhancing the quality of open-
ended text generation outputs. Our approach calcu-
lates the estimated uncertainty at each time step us-
ing Shannon entropy and leverages this measure to
dynamically adjust the weighting between model
confidence and the degeneration penalty, as pro-
posed by Su et al. (2022) and Su and Xu (2022).
Our experiments demonstrate that this method per-
forms well in terms of coherence and diversity,
achieving MAUVE scores comparable to existing
methods. It receives high ratings from human eval-
uators, particularly for the fluency of its outputs.
This method requires no hyperparameter tuning and
utilizes computational resources similar to the non-
adaptive CS. Notably, unlike CD, it does not rely
on two separate models, making it more versatile
and suitable for various tasks. While it introduces
some latency, our comprehensive studies compar-
ing this approach to CS highlight its robustness
across multiple languages and model sizes. We
encourage further research into adaptive methods
for open-ended text generation and advocate for
the development of new metrics that better align
with human judgments to improve the evaluation
of decoding strategies.

Limitations

The proposed approach represents a potential step
forward in enhancing text generation quality from
language models. However, a key limitation lies
in the method’s narrow focus on two main objec-
tives: model confidence and degeneration penalty.
While these are critical for evaluating certain as-
pects of text quality, they do not fully capture the
broad spectrum of desirable traits in generated text,
such as informativeness, fluency, accuracy, trust-
worthiness, coherence, and cohesion. By not incor-
porating these additional factors into the decoding
process, ACS may produce text that, while coherent
and diverse, lacks depth or fails to effectively com-
municate complex or specialized information (and
facts). Expanding the focus to include these dimen-
sions could significantly improve the robustness
and applicability of the method across diverse text
generation tasks. Another limitation worth consid-
ering is the architectural choice of our experiments,
which focuses on the family of gpt2-models, in
particular in its gpt2-x1 version. We plan to extend
this analysis to more modern architectures, such as

Mistral 7B, (Jiang et al., 2023, 2024), Llama2 7B
(Touvron et al., 2023), Llama 3.1 8B (Dubey et al.,
2024), Deepseek 7B (DeepSeek-Al et al., 2024),
Qwen?2 (Yang et al., 2024), Falcon2 (Malartic et al.,
2024).

Additionally, the application of ACS has primar-
ily been explored in the context of text generation
tasks such as language modeling and natural lan-
guage understanding. Its effectiveness on other
tasks, such as machine translation, summariza-
tion, or multi-modal tasks, remains largely untested.
Each of these tasks poses unique challenges and
requirements in terms of text diversity, context
preservation, and semantic accuracy. Investigating
the adaptability and performance of the approach
across a broader range of tasks will be essential for
its broader generalizability. Lastly, while various
measures of local uncertainty have been explored
in the context of ACS, such as KL divergence, vari-
ance, perplexity, and entropy, there is still much
room for exploration and refinement. Further ex-
perimentation and analysis are needed to determine
the optimal combination of uncertainty metrics that
can reliably produce high-quality, open-ended text
generation across diverse domains and languages.
However, the modularity of ACS in terms of choos-
ing the J-functions allows for a seamless further
exploration of different approaches and applica-
tions.
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Figure 3: Decoding behavior over time from a Wikinews
prompt, ¢ = 1.

Prompt: Two French journalists kidnapped on
Wednesday north-east of the capital Kabul are be-
lieved to be in good health, although the condition
of their three Afghan assistants is unknown.
Generated story: France’s foreign ministry
said in a statement on Thursday that the three
had been "kidnapped by armed individuals who
took them from their hotel in Herat province
at gunpoint”". Afghan President Ashraf Ghani’s
spokesman Aimal Faizi said a helicopter had been
sent to pick up the journalists and they were on
their way to Bagram airbase in the north-centre of
the country. Ghani, who took office in September,
has faced criticism for failing to make progress in
a war that has claimed more than 2,000 lives since
US-led forces overthrew the Taliban in 2001. The
United Nations Assistance Mission in Afghanistan
(Unama) said this week that security in the country
had deteriorated, with attacks on aid workers and
foreign military convoys on the rise. Last month,
Taliban fighters ambushed a convoy of UN peace-
keepers in Kunduz province, killing at least 15
people and wounding more than 30. (FRANCE 24
with AFP)
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Figure 4: Decoding behavior over time from a Wikinews
prompt, g = 8.

Prompt: Two French journalists kidnapped on
Wednesday north-east of the capital Kabul are
believed to be in good health, although the con-
dition of their three Afghan assistants is un-
known.

Generated story: Journalistically and militar-
ily dependent Pakistan has a policy of not tak-
ing sides in the Afghan conflict, but its rela-
tions with Kabul have frayed to the point where
there is no confidence at all on the part of the
Kabul government to co-operate with Islam-
abad. Afghan President Hamid Karzai last week
cancelled a high-level visit to the United States
in protest at Washington’s refusal to hand over
Bin Laden on humanitarian grounds. Bin Laden
escaped from Tora Bora four years ago by fly-
ing across the Hindu Kush mountains of Central
Asia with help from al-Qaeda-linked guerrillas
known as the Hagqani network. Since then his
hideout has been under watch by U.S. Special
Forces who have set up a command centre close
to the Afghanistan-Pakistan border for intelli-
gence, surveillance and counter-terrorism oper-
ations.
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Figure 5: Decoding behavior over time from a Wikitext
prompt, ¢ = 1. Figure 6: Decoding behavior over time from a Wikitext

prompt, g = 8.

Prompt: Headlam served as Officer Command-
ing North @-@ Western Area in 1946, and as
Director of Training from 1947 to 1950. In 1950
- 51,

Generated story: Headlam took a leave of ab-
sence to study the problems of war and peace-
time at the U.S. Army War College in Carlisle,
Pennsylvania. His dissertation was entitled
"Consequences of Disintegration of the Army"
and focused on the effect of demobilization on
the quality of officers and NCOs. After the war,
Headlam was an instructor at the United States
Military Academy at West Point, New York,
and served as a military attaché in the Middle
East and South Asia. He received the Distin-
guished Service Medal with Oak Leaf Cluster
for his part in the rescue of Lt. Col. (later Gen-
eral) Omar N. Bradley, who was under attack
by Japanese at Tarawa, Oahu, in the Solomons
(New Hebrides) in 1943. The award was posthu-
mously awarded to him by President Harry S.
Truman in recognition of his gallantry in the lat-
ter part of World War II. Returning to the United
States in the summer of 1951, Headlam began
his career as a civilian in the Civil Aeronautics
Administration (CAA), where he helped set up
the Air Traffic Control System at La Guardia
Airport in New York City. The following year,
he joined the Federal Aviation
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Prompt: Headlam served as Officer Command-
ing North @-@ Western Area in 1946, and as
Director of Training from 1947 to 1950. In 1950
- 51,

Generated story: Headlam’s career spanned
a number of high-profile assignments that in-
cluded command of the U.S. Coast Guard Aux-
iliary (Coast Guard Airmen), Assistant Surgeon-
Advocate to the Chief Surgeon of the United
States Public Health Service, Special Assistant
to the Under Secretary of the Navy for Re-
search and Development, Executive Vice Presi-
dent of the New York-Presbyterian Hospital for
30 years, a Trustee of the Ford Foundation, an
Emeritus Visiting Professor at Tufts University
in Medford, Mass., and, of course, one of the
most prolific authors of UFOlogy to this day.
This list goes on and on with every name you
can think of — not to mention his work behind
the scenes to bring UFOs into the limelight as
science rather than superstition. So what can
we learn from such a life in and out of the me-
dia spotlight? First and foremost, it is easy to
lose sight of the human and his/her inner life
when looking at the "big picture" of human his-
tory. There is nothing wrong with getting paid
or doing what you need to do in order to make
a living, but that does not mean you are off the
hook as a human being.
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Figure 7: Decoding behavior over time from a Story
prompt, g = 1.

Prompt: The atmosphere dripped with emotion.
Even Sola, the 13-year old, caught the current.
Her eyes, fixated on the mother-son scene
Generated story: , shimmered with tears. A
few minutes later, I was on the roof of the
school, peering through binoculars to see what
was happening down below. In the distance, I
could see the silhouettes of a number of school
buses, their windows blackened by fire. It was
hard to make out the number of casualties, but
by the time I got back to the bus station, there
were at least two or three bodies sprawled on
the tarmac. The death toll was expected to rise
as ambulances ferried the injured to hospitals
across the city. Many of the dead were in their
20s and 30s, including a man in his mid-forties
who had been driving a minibus when it was hit
by a rocket-propelled grenade. His body was
strewn across the road, next to a burnt-out car.
At the morgue, an elderly man with a moustache
and white turban sat in a chair surrounded by
coffins. One of the most horrific scenes of the
day was the sight of a little girl cradling her
mother’s mangled body in her arms. She was
barely a year old. After the funerals, hundreds
of mourners crowded into
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Figure 8: Decoding behavior over time from a Story
prompt, g = 8.

Prompt: The atmosphere dripped with emotion.
Even Sola, the 13-year old, caught the current.
Her eyes, fixated on the mother-son scene

Generated story: , shimmered for a fraction of
a second like starlight at an obelisk. In all my
years as a police officer, I was never asked to
take care of a child and that was the first time I
felt my heart ache as [ walked the beat of the dis-
trict. There was no mistaking the tears running
down my face. After our tour, it was time to
eat a celebratory meal that consisted of chicken
biryani, roti and samosas. The family seated on
the terrace was well-behaved and did not make
a peep in our direction. As we chatted amica-
bly, one of the women turned to me and said,
"Aunty, what’s your job?" I thought it was a
good question and tried to find the right answer.
"I’'m a constable," I said. "That’s good," she
said without breaking eye contact. "Why are
you an constable?" "For two reasons," I told her.
"First, it’s one of the jobs that requires physical
and mental fortitude. The second reason is that
in my line of work, every life is precious. You
have to make sure that everyone gets a fair



B Proofs

Proof of Proposition 1.

Proof 1 Per normalization we have for the repre-
sentations ||hy||2 = ||hv||l2 = 1. Further, recall
that the cosine distance is defined as

hd ha,

S(hy, hy,) = 75—
(s hay) = 1T Tl

We have

lho = hay |13 = (ho — ha;) (ho — ha,)
= hy hy = 2hy hay + g Dy
=2 —2h, hy,
=2 —25(hy, hy;)

It follows that

hy — he |3
max{s(hy, he;)} = max {2 - H]HQ} ,
J J 2

which was to be shown. O
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Figure 10: To assess the effectiveness of our method, we conducted experiments using Contrastive Search (CS)
with varying values of k € {1,3,5,10,15,20,50} and « € {0.2,0.4,0.6,0.8,1.0}. Additionally, we evaluated the
diversity, MAUVE, and coherence of human-generated texts from the same datasets, analyzing which hyperparameter
combinations most closely align with the gold references. The results indicate that moderate values of k£ and « tend
to produce high-quality generations, closely approximating the performance of human references (dotted red line).

E MAUVE
Dataset Truncation # Examples MAUVE(%)1 Preferred Method
Contrastive Search ~ Adaptive Contrastive Search ~ Contrastive Search ~ Adaptive Contrastive Search A

Wikinews 64 1939 2000 87.42 85.79 -1.63 Contrastive Search
96 1920 2000 81.11 88.13 7.02  Adaptive Contrastive Search
128 1859 1977 84.14 85.39 1.25  Adaptive Contrastive Search
160 1684 1824 84.86 85.78 0.92  Adaptive Contrastive Search
192 1447 1617 85.23 87.10 1.87  Adaptive Contrastive Search

Wikitext 64 1296 1314 82.78 86.83 4.05  Adaptive Contrastive Search
96 1280 1314 81.46 85.67 4.21  Adaptive Contrastive Search
128 1250 1301 7197 79.82 1.85  Adaptive Contrastive Search
160 845 889 69.66 80.53 10.87  Adaptive Contrastive Search
192 529 564 81.50 75.45 -6.05 Contrastive Search

Story 64 1907 1947 84.22 87.04 2.82  Adaptive Contrastive Search
96 1873 1947 87.82 83.66 -4.16 Contrastive Search
128 1657 1749 84.74 85.49 0.75  Adaptive Contrastive Search
160 863 922 83.59 83.68 0.09  Adaptive Contrastive Search
192 476 518 79.43 83.38 3.95 Adaptive Contrastive Search

Table 8: MAUVE scores as a function of truncation values, across three different datasets. Positive A- values
indicate a superior performance of our method. The computations were performed with a gpt2-xI model, for CS we
used the reported hyperparameters k = 5 and o = 0.6.

15078



F DoubleExp Method

A major concern regarding automatic evaluation metrics in open-ended text generation is their misalign-
ment with human judgment. To illustrate this issue, we introduce a method called DoubleExp, which
consistently achieves high scores on automatic metrics, yet is systematically rejected by human evaluators,
as illustrated in Table 2. At each time step ¢, « is dynamically adjusted while maintaining a fixed value of
k = 10. This approach modifies Eq. (1) as follows:

Ty = arg max{(l —ay) X po(v | ®ey) —
———

veV (k)
model confidence
oy X (max{s(hy, he;) 1 1 < j <t —1}) } (8)
degeneration penalty
where
_ exXp (Sgn((st,k) . eXp(|6t,k|)) 9)
exp (sgn( k) - exp(|ork[)) +1
with
(t,k) . (<t,k)
P <H(X) . medlan(H()i) )) (10)
maximum entropy (%)
and
H(X) R = — N p(a | ze) Inp(z | z<). (11)

zeV(k)
G Effect for lower values of £

In response to concerns about speed limitations, we compared the performance of contrastive search (CS)
and our proposed adaptive contrastive search (ACS) across three datasets: Wikitext, Wikinews, and Story.
This evaluation focused on key metrics - diversity, MAUVE, and coherence - of the generated texts. Even
at lower values of k (specifically, with k = 5), ACS demonstrated superior performance, outperforming its
static counterpart in 66% of cases. This improvement was particularly notable in diversity and MAUVE,
with only a moderate decrease in coherence. Despite a 32% reduction in generation speed for ACS
compared to standard CS, we do not view this decrease as prohibitive in practical applications. The higher
text quality achieved by ACS might compensate for the slower generation time, making it a valuable
trade-off for real-world use cases.

Method ‘Wikinews Wikitext Story Average

div. (%)t MAUVE(%)1 coh.t div(%)1T MAUVE(%)*1 coh.t div.(%)T MAUVE(%)T coh.T div.(%)1 MAUVE(%)1 coh.t
CS(a=0.6,k=05) 93.72 84.14 -1.39 89.35 71.97 -1.56 93.06 84.74 -1.61 92.04 82.28 -1.52
ACS (k =5) 96.16 85.39 -1.71 93.28 79.82 -1.79 94.53 85.49 -1.74 94.66 83.57 -1.75

Table 9: Comparison of Contrastive Search (CS) and Adaptive Contrastive Search (ACS) across three datasets.
Results for diversity, MAUVE, and coherence are reported.
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